多人相遇与追及

合集下载

五年级奥数思维多人多次的相遇与追及

五年级奥数思维多人多次的相遇与追及

多人多次的相遇与追及【知识导学】本讲我们要学习多个对象之间的行程问题.在本讲的学习中,大家一定要重视线段图的作用.本讲行程问题最大的特点就是“繁”——人多、车多、过程多.怎么解决这样复杂的问题呢?首先,必须有勇气,只要有勇气,你就敢面对这样的问题,积极开动脑筋去想;其次,必须有耐心,只要有耐心,你就能动手去画图,细致地分析每一组数量关系,再花上些时间,题目自然能够搞定.一、从不同的角度想问题,同一段路程通过不同的角度去分析,会有不同的发现.二、两人的运动时间相同时,他们的路程倍数关系就等于速度倍数关系.【例题精讲】【例1】叮叮、咚咚两人从A地,铛铛从B地同时出发,相向而行.叮叮的速度为每小时7千米,铛铛的速度为每小时5千米.出发3小时后,叮叮与铛铛相遇.又过了1小时,咚咚也与铛铛相遇.请问:咚咚的速度是多少?【及时巩固】叮叮、咚咚两人从A地,铛铛从B地同时出发,相向而行.叮叮的速度为每小时6千米,铛铛的速度为每小时4千米.出发3小时后,叮叮与铛铛相遇.又过了1小时,咚咚也与铛铛相遇.请问:咚咚的速度是多少?【例2】甲、乙两辆汽车的速度分别为每小时52千米和每小时40千米,两车同时从A地出发到B地去.出发6小时后,甲车遇到一辆迎面开来的卡车.又过了1小时,乙车也遇到了这辆卡车.请问:这辆卡车的速度是多少?【及时巩固】叮叮、咚咚两人从A地,铛铛从B地同时出发,相向而行.铛铛出发5小时后遇到叮叮,6小时后遇到咚咚.已知叮叮每小时行2千米,咚咚每小时行1.6千米,请问:铛铛每小时能行多少千米?【例3】A、B两城相距48千米,甲、乙两人从A城,丙从B城同时出发,相向而行.甲、乙、丙三人的速度分别是每小时4千米、2千米、2千米.请问:出发多长时间后,甲正好在乙和丙的中点?【及时巩固】老贺、老刘和老郭同时出发,其中老刘从A出发往B走,另外两人从B出发往A走.已知A、B两地相距28千米,老贺、老刘和老郭分别以每小时1千米、2千米、3千米的速度前进.那么在出发后多久,老郭正好在老贺与老刘的中点?【例4】A、B 两城相距 48 千米,甲、乙两人从A 城,丙从B 城同时出发,相向而行.甲、乙、丙三人的速度分别是每小时 4 千米、2 千米、 2 千米.请问:出发多长时间后,丙正好在甲和乙的中点?【及时巩固】老贺、老刘和老郭同时出发,其中老刘从A 出发往B 走,另外两人从B 出发往A 走.已知A、B 两地相距 28 千米,老贺、老刘和老郭分别以每小时 1 千米、2 千米、3 千米的速度前进.那么在出发后多久,老刘正好在老郭与老贺的中点?【例5】甲、乙、丙三人步行的速度相同,骑车的速度也相同,骑车的速度是步行速度的 3 倍.现在甲从A 地向B 地行进,乙、丙两人从B 地向A 地前行.三人同时出发,出发时,甲、乙步行,丙骑车.甲走了 6 千米时遇到丙,丙将车给甲骑,自己改为步行,三人仍按原来的方向继续前进.试问:甲骑车行多少千米后遇到乙?甲、乙相遇时,甲将车给乙骑,两人仍按原来的方向继续前进.试问:乙骑车到达A地时,甲离B地有多远?【及时巩固】甲、乙、丙三人步行的速度相同,骑车的速度也相同,骑车的速度是步行速度的 2 倍.现在甲从A 地向B 地行进,乙、丙两人从B 地向A 地前行.三人同时出发,出发时甲、乙步行,丙骑车.甲走了 6 千米时遇到丙,丙将车给甲骑,自己改为步行,三人仍按原来的方向继续前进.试问:甲骑车行多少千米后遇到乙?甲、乙相遇时,甲将车给乙骑,两人仍按原来的方向继续前进.试问:乙骑车到达A 地时,甲离B 地有多远?【课后作业】1. 北京和唐山之间的铁路长 210 千米,甲、乙两辆列车分别从北京和唐山同时出发,甲车的速度是每小时 57 千米,乙车的速度是每小时 90 千米.在甲车出发时,同时有一辆列车丙也从北京开出,车速为每小时 120 千米,那么当乙、丙相遇时,列车甲距离唐山多少千米?2. 甲、乙两人同时从A 骑车出发前往B 地,其中甲的速度为 12 米/ 秒,乙的速度为8 米/ 秒.出发后 10 分钟,甲遇到了迎面走来的丙,又过了 2 分 40 秒,乙也遇到了丙.那么丙的速度等于多少?3. 老贺、老郭和老刘同时出发,分别以每小时 1 千米、3 千米、1 千米的速度前进.其中老贺从A 出发往B 走,另外两人则从B 出发往A 走.已知A、B 两地相距 36 千米,那么在出发后多久,老郭正好在老贺与老刘的中点?4. 老贺、老郭和老刘同时出发,分别以每小时 1 千米、3 千米、1 千米的速度前进.其中老贺从A 出发往B 走,另外两人则从B 出发往A 走.已知A、B 两地相距 36 千米,那么在出发后多久,老贺正好在老郭与老刘的中点?5. 甲、乙两人从A 出发,丙从B 出发,三人出发时间相同,且相向而行.在出发时,甲和丙的速度相同,而乙是他们的 4 倍.当甲前进了 5 千米时,乙、丙两人相遇,而且两人相遇之后速度大小相互交换但方向保持不变.当甲、丙相遇时,两人也相互交换速度,但方向保持不变,那么当乙到达B 点时,甲在距离B 点多少千米的地方?。

通用版小学五年级奥数《多次相遇和追及问题》讲义(含答案)

通用版小学五年级奥数《多次相遇和追及问题》讲义(含答案)

一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N 米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………, ………………;第N 次相遇,共走2N 个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键 几个全程多人相遇追及的解题关键 路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求知识框架多次相遇与追及问题数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

【例 1】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C 地。

问:甲车的速度是乙车的多少倍?【巩固】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。

问:甲、乙二人的速度各是多少?例题精讲【例 2】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D 点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【例 3】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?【巩固】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.【例 4】A、B两地相距2400米,甲从A地、乙从B地同时出发,在A、B间往返长跑。

小学数学10种经典行程问题解法总结

小学数学10种经典行程问题解法总结

小学数学10种经典行程问题解法总结行程问题是小学数学应用题中的基本问题,它包含了简单的相遇及追及问题、多人相遇追及问题、多次相遇追及问题、流水行船问题、环形跑道问题、钟面行程问题、火车过桥问题、猎狗追兔问题等,但万变不离其宗。

行程问题是物体匀速运动的应用题。

不论是同向运动还是相向运动,最后反映出来的基本关系式都可以归纳为:路程=速度×时间。

要想解答行程问题,首先要弄清物体的具体运动情况,可以在纸上画出相应的运动轨迹,更方便观察思考。

以下是总结的10种经典行程问题的相关解法。

一、简单相遇及追及问题相遇问题:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)甲速或乙速=总路程÷相遇时间-乙速或甲速追及问题:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速-慢速相离问题:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间二、流水行船问题(1)船速+水速=顺水速度(2)船速-水速=逆水速度(3) (顺水速度+逆水速度)÷2=船速(4) (顺水速度-逆水速度)÷2=水速两船在水流中的相遇问题与在静水中及两车在陆地上的相遇问题一样,与水速没有关系因为:甲船顺水速度+乙船逆水速度=(甲船速+水速) + (乙船速-水速)=甲船速+乙船速如果两只船在水流中同向运动,一只船追上另一只船的时间,也与水速无关因为:甲船顺水/逆水速度-乙船顺水/逆水速度=(甲船速+/-水速)-(乙船速+/-水速)=甲船速-乙船速三、环形跑道问题从同一地点出发(1)如果是相向而行,则每走一图相遇一次(2)如果是同向而行,则每追上一图相過一次四、多人相遇追及问题基本公式:路程和=速度和×相遇时间路程差=速度差×追及时间例题:有甲、乙、丙三人,甲每分钟走80米,乙每分钟走60米,丙每分钟走40米,现在甲从东端,乙、丙两人从西端同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇。

小学数学 多人的相遇与追及问题 PPT课件带答案带作业

小学数学 多人的相遇与追及问题 PPT课件带答案带作业

150米/分 乙 120米/分 丙
(2)当乙追上甲时,丙与甲、乙的距离,即为乙、丙的路 程差:5×(150-120)=150(米) 答:当乙追上甲时,丙距离他们有150米。
练习3
有甲、乙、丙三人,甲每分钟走75米,乙每分钟走100米,丙每分钟走85米。现在甲从东 村,乙、丙两人从西村同时出发向东行走,东、西两村相距800米。 请问:(1) 乙追上甲需要多长时间?
追及时间=路程差÷速度差
速度差=路程差÷追及时间
例题1
小新、小东和小芳三个人每分钟分别行走60米、50米和40米。小新从A地、小东和小芳
从相距2200米的B地同时出发,相向而行,小新与小东相遇后又过了多久小新与小芳相遇

2200米
小芳40米/分
A
B
60米/分 小新
小东 50米/分
小新和小东:相遇问题 相遇时间:2200÷(60+50)=20(分钟) 小新和小东相遇时,小芳也走了20分钟。 小新和小芳相遇的总时间: 2200÷(60+40)=22(分钟) 22-20=2(分钟) 答:小新和小东相遇后又过了2分钟,小新与小芳相遇。
甲、丙:追及问题 追及路程为10×(75-45)=300(千米) 乙、丙:追及问题 路程差:300千米,追及时间:10+5=15(小时) 速度差:300÷15=20(千米/时) 乙车速度:45+20=65(千米/时) 答:乙车每小时行驶65千米。
例题5:
甲、乙两辆汽车每小时分别行驶52千米和40千米,两车同时从A地出发去B地,出发6小时
练习2
小新、小东同时从学校出发去往几公里以外的冬令营营地,小新跑步,小东步行。与他们 同时,营地老师以每分钟80米的速度步行前往学校办事。出发15分钟以后营地老师遇到小 新,又过了5分钟遇到小东。如果小新的速度是120米/分,那么小东的速度是每分钟多少米 ?

(完整版)多次相遇和追及问题

(完整版)多次相遇和追及问题

1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 (难度等级 ※)甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点? 【解析】 从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300103000⨯=米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了3.5300014003.54⨯=+米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300200100-=米才能回到出发点.【巩固】 (难度等级 ※)甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次? 【解析】 17一共六百秒,第一次相遇是两人总共跑一个90米,以后是180米相遇次。

相对速度每秒五米。

第一次相遇是18秒。

180米相遇需要36秒。

此后是582秒总共有16次。

所以相遇17次。

知识精讲教学目标3-1-3多次相遇和追及问题【解析】【巩固】(难度等级※)甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米?【解析】176甲乙每分钟速度和:400×5÷8=250米每分钟,甲比乙多:0.1×60=6米甲每分钟:(250+6)÷2=128米128×8÷400=2 (224)相遇点与A最短路程为400-224=176米【解析】二、运用倍比关系解多次相遇问题【例 2】(难度等级※※)上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【解析】画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是4+8=12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16(千米).少骑行24-16=8(千米).摩托车的速度是8÷8=1(千米/分),爸爸骑行16千米需要16分钟.8+8+16=32.所以这时是8点32分。

苏科版四(下)奥数教案第3讲~多人多次相遇与追及

苏科版四(下)奥数教案第3讲~多人多次相遇与追及

四(下)奥数第3讲~多人多次相遇与追及【知识精讲】在之前的课程中,我们已经学过了如何处理两个对象之间的相遇与追及问题,本讲我们进一步学习过程更为复杂的三个对象之间的行程问题。

本讲中画线段图非常重要。

第一部分:复习基本相遇问题:速度和×相遇时间=路程和路程和÷速度和=相遇时间路程和÷相遇时间=速度和1:甲、乙两车从相距1500千米的两地同时出发,相向而行。

甲车每小时行40千米,乙车每小时行60千米,请问:出发多少小时后两车相遇?2:一辆巴士和一辆小轿车同时从A、B两地出发,相向而行。

巴士每小时行50千米,小轿车每小时行60千米,3小时后两车相遇,请问:A、B两地相距多少千米?3:A、B两艘船同时从相距150千米的两个码头出发,相向而行,3小时相遇,A船每小时航行25千米,请问:B船每小时航行多少千米?基本追及问题:速度差×追及时间=路程差路程差÷速度差=追及时间路程差÷追及时间=速度差1:圆圆、乐乐两人分别从相距30千米的两地同时向南行驶,圆圆骑自行车每小时行14千米,乐乐步行每小时走4千米,请问:多少小时后圆圆可以追上乐乐?2:蚂蚁在蜘蛛前面几百米处,同时出发同向而行,蜘蛛每分钟跑55米,蚂蚁每分钟爬1米,10分钟后蜘蛛追上了蚂蚁,请问:开始时蚂蚁距蜘蛛多少米?第二部分:多人相遇例1: 有A、B、C三个人,A每分钟走20米,B每分钟走40米,C每分钟走30米。

甲、乙两地相距3000米。

A从甲地,B、C从乙地同时出发相向而行。

请问:A在与B相遇之后多少分钟又与C相遇?练1:有圆圆、乐乐、静静三人,圆圆每秒钟走2米,乐乐每秒钟走4米,静静每秒钟走6米。

A、B 两地相距4800米。

圆圆从A地,乐乐、静静从B地同时出发相向而行,请问:圆圆与静静相遇后多少秒又与乐乐相遇?例2:有A、B、C三人,A每分钟走30米,B每分钟走70米,C每分钟走20米。

多次相遇和追及知识点总结

多次相遇和追及知识点总结

多次相遇和追及知识点总结一、多次相遇的原因1.1 巧合多次相遇有时是由于巧合造成的。

比如在一个大城市里,人口众多,交通繁忙,有时候我们可能会在街头、商场或者公园里多次遇到同一个人,这并不一定是有意为之,而是一种巧合。

1.2 共同兴趣有时候多次相遇是因为双方有着共同的兴趣爱好或者活动范围重叠,比如在同一个健身房锻炼、在同一个书店购书、在同一个音乐演出现场欣赏演出等等。

1.3 心理影响心理因素也可能导致多次相遇,比如我们对某人或某事情产生了强烈的情绪反应,就会在不同的时间和地点内多次遭遇到对方或者事件,这在心理学上被称为心理影响。

1.4 时间和地点限制有时多次相遇也可能是由于时间和地点的限制造成的,比如在同一个学校上学、在同一个公司工作、在同一个社区居住等等。

二、追及的原因2.1 感情因素在感情关系中,追及常常是因为对方产生了浓厚的兴趣和喜爱,比如爱慕、暗恋、追求等等。

2.2 工作需求在工作学习中,追及常常是因为需要和对方交流合作,比如合作项目、同事关系、师生关系等等。

2.3 人际交往在人际交往中,追及可能是因为想要与对方建立更深的人际关系,比如交友、拓展人脉、寻求帮助等等。

2.4 实现目标有时候追及也可能是为了实现自己的目标和利益,比如在商务活动中追求合作伙伴、在竞选中追求选民支持、在演艺圈中追求粉丝认可等等。

三、多次相遇和追及的应对方法3.1 积极主动对于多次相遇和追及,我们应该积极主动面对,不要因为害羞、胆怯或者被动而逃避和躲避。

3.2 理性思考在面对多次相遇和追及时,我们应该保持冷静和理性思考,不要因为情绪激动或者冲动而做出错误的决定。

3.3 坚持原则在处理多次相遇和追及时,我们应该坚持自己的原则和底线,不要为了迎合他人或者利益而做出妥协和让步。

3.4 寻求帮助如果遇到困难和问题,我们应该寻求他人的帮助和支持,不要孤立无援,因为团结一致可以力量倍增。

四、多次相遇和追及的影响4.1 关系发展多次相遇和追及可能会影响人际关系的发展,有时候会让关系更加紧密,有时候会让关系更加疏远。

小学高级奥数第14讲-多人多次相遇和追及问题

小学高级奥数第14讲-多人多次相遇和追及问题

例七
甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走65米,丙每分钟走 70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相 遇后,又经过1分钟与甲相遇,求东西两镇间的路程有多少米?
练一练
甲、乙、丙三人行路,甲每分钟走80米,乙每分钟走90米,丙每分钟走 100米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相 遇后,又经过5分钟与甲相遇,求东西两镇间的路程有多少同时相向而行,6时后相遇。 如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇 地点1千米。问:甲、乙二人的速度各是多少?
练一练
如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按 相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相 遇,在甲走完一周前60米处又第二次相遇。求此圆形场地的周长。
课后作业
<作业2>
在一圆形跑道上,甲从A点、乙从B点同时出发反向而行,6分后两人相遇, 再过4分甲到达B点,又过8分两人再次相遇。甲、乙环行一周各需要多少分?
课后作业
<作业3>
小轿车、面包车和大客车的速度分别为60千米/时、48千米/时和42千米/ 时,小轿车和大客车从甲地、面包车从乙地同时相向出发,面包车遇到小轿 车后30分又遇到大客车。问:甲、乙两地相距多远?
例六 甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同 时出发相向而行,途中甲遇到乙后15分又遇到丙。求A,B两地的距离。
练一练
小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们 两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲 地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇. 问:小李骑车从乙地到甲地需要多少时间?

(小学奥数)多次相遇和追及问题

(小学奥数)多次相遇和追及问题

1. 學會畫圖解行程題2. 能夠利用柳卡圖解決多次相遇和追及問題3. 能夠利用比例解多人相遇和追及問題板塊一、由簡單行程問題拓展出的多次相遇問題所有行程問題都是圍繞“=⨯路程速度时间”這一條基本關係式展開的,多人相遇與追及問題雖然較複雜,但只要抓住這個公式,逐步表徵題目中所涉及的數量,問題即可迎刃而解.【例 1】 甲、乙兩名同學在周長為300米圓形跑道上從同一地點同時背向練習跑步,甲每秒鐘跑3.5米,乙每秒鐘跑4米,問:他們第十次相遇時,甲還需跑多少米才能回到出發點?【巩固】 甲乙兩人在相距90米的直路上來回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他們同時分別從直路兩端出發,10分鐘內共相遇幾次?知識精講 教學目標3-1-4多次相遇和追及問題【巩固】甲、乙兩人從400米的環形跑道上一點A背向同時出發,8分鐘後兩人第五次相遇,已知每秒鐘甲比乙多走0.1米,那麼兩人第五次相遇的地點與點A沿跑道上的最短路程是多少米?【例 2】甲、乙二人從相距60千米的兩地同時相向而行,6時後相遇。

如果二人的速度各增加1千米/時,那麼相遇地點距前一次相遇地點1千米。

問:甲、乙二人的速度各是多少?板塊二、運用倍比關係解多次相遇問題【例 3】上午8點8分,小明騎自行車從家裏出發,8分鐘後,爸爸騎摩托車去追他,在離家4千米的地方追上了他.然後爸爸立即回家,到家後又立刻回頭去追小明,再追上小明的時候,離家恰好是8千米,這時是幾點幾分?【例 4】甲、乙兩車同時從A地出發,不停的往返行駛於A,B兩地之間。

已知甲車的速度比乙車快,並且兩車出發後第一次和第二次相遇都在途中C地。

問:甲車的速度是乙車的多少倍?【例 5】如圖,甲和乙兩人分別從一圓形場地的直徑兩端點同時開始以勻速按相反的方向繞此圓形路線運動,當乙走了100米以後,他們第一次相遇,在甲走完一周前60米處又第二次相遇.求此圓形場地的周長.【巩固】A、B是圓的直徑的兩端,甲在A點,乙在B點同時出發反向而行,兩人在C點第一次相遇,在D點第二次相遇.已知C離A有75米,D離B有55米,求這個圓的周長是多少米?【巩固】如右圖,A,B是圓的直徑的兩端,甲在A點,乙在B點同時出發反向而行,兩人在C點第一次相遇,在D點第二次相遇。

多人多次相遇与追及

多人多次相遇与追及

多人多次相遇与追及教师:__________ 科目; __________ 学生:________ 上课时间:________【专题知识点概述】本讲包含两个知识点,一是多次相遇追及问题,即两个对象在固定的长度上不断地往返运动,他们之间相遇追及问题;二是多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

【授课批注】多人多次是行程中重点,而画图是多人多次的重点,划出一个好的示意图,就等于问题已经解决三分之二了,剩下的三分之一才是解题技巧。

所以如何画图,如何画好图是行程问题的关键,需要反复练习,熟能生巧,做题才能得心应手,发挥自如。

一、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;。

,。

;第N次相遇,共走2N-1个全程;【授课批注】除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;。

,。

;第N次相遇,共走2N个全程;二、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差【重点难点解析】1.多人多次相遇追及的画图2.多次多次相遇追及的解题关键【竞赛考点挖掘】1.近两年来杯赛的热门考点2.常常与数论结合出题【习题精讲】【例1】(难度级别※※)甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.【例2】(难度级别※※)A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米【例3】(难度级别※※)甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米【例4】(难度级别※※)小王的步行速度是千米/小时,小张的步行速度是千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间【例5】(难度级别※※※)甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走65米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过1分钟与甲相遇,求东西两镇间的路程有多少米【例6】(难度级别※※※)小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)【例7】(难度级别※※※)快、中、慢三辆车同时同地出发,沿同一公路去追赶前面一骑车人,这三辆车分别用6分、9分、12分追上骑车人。

必考典型应用题之追及问题详解

必考典型应用题之追及问题详解

必考典型应用题之追及问题详解知识精讲:1、多人相遇追及问题的概念及公式多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

所有行程问题都是围绕这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化。

由此还可以得到如下两条关系式:多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.2、多次相遇追及问题的解题思路所有行程问题都是围绕""这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.多次相遇与全程的关系1.两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N 米。

2.同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差例题精讲:例1:甲、乙两人在相距16千米的A、B两地同时出发,同向而行。

甲步行每小时行4千米,乙骑车在后,每小时速度是甲的3倍,几小时后乙能追上甲?【分析】此题是两人同向运动问题,乙追甲,利用追及问题的关系式,就可以解决问题。

解:16÷(3×4-4)=2(小时)答:2小时后乙能追上甲。

例2:名士小学一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?【分析】当甲、乙同时同地出发后,距离渐渐拉大再缩小,最终甲又追上乙,这时甲比乙要多跑1圈,即甲乙的距离差为400米,而甲乙两人的速度已经知道,用环形跑道长除以速度差就是要求的时间。

【五年级应用题】多人多次相遇及追及问题

【五年级应用题】多人多次相遇及追及问题
甲第 1 次如果走了 K 米,则第 N 次相遇走了(2N-1)×K 米 (每有 1 个全程,就走 1 个 K 米)
2. 同地同向出发:第 1 次相遇,共走 2 个全程;
第 2 次相遇,共走 4 个全程;
第 3 次相遇,共走 6 个全程;
…………
第 N 次相遇,共走 2N 个全程;
3、多次相遇的解题关键:分析走了几个全程
6、快、中、慢3辆车同时从同一地点出发,沿同一公路追赶前面的一个骑车人.这3辆车分别用6分钟、10分钟、12分钟追上骑车人.现在知道快车每小时走24千米,中车每小时走20千米,那么,慢车每小时走多少千米?
7、甲、乙、丙三人,甲每分钟走40米,丙每分钟走60米,甲、乙两人从A、B地同时出发相向而行,他们出发15分钟后,丙从B地出发追赶乙。此后甲、乙在途中相遇,过了7分钟甲又和丙相遇,又过了63分钟丙才追上乙,那么A、B两地相距多少米?
6、甲、乙、丙三车同时从A地沿同一公路开往B地,途中有个骑摩托车的人也在同方向行进,这三辆车分别用7分钟、8分钟、14分钟追上骑摩托车人。已知甲车每分钟行1000米,丙车每分钟行800米,求乙速车的速度是多少米每分?
7、有甲乙丙三人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙丙两人从西村同时出发相向而行,在旅途中甲与乙相遇六分钟以后,甲又与丙相遇,东西两村的距离是多少米呢?
8、李华步行以每小时4千米的速度从学校出发到20.4千米处的冬令营报到。半小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。又过了1.5小时,张明从学校骑车去营地报到。结果三人同时在途中某地相遇。问骑车人每小时行驶多少千米?
9、一列长110米的火车以每小时30千米的速度向北缓缓驶去,铁路旁一条小路上,一位工人也正向北步行。14时10分时火车追上这位工人,15秒后离开。14时16分迎面遇到一个向南走的学生,12秒后离开这个学生。问:工人与学生将在14时____分相遇?

复杂的奥数行程问题

复杂的奥数行程问题

比较复杂的行程问题多人行程例题多人行程这类问题主要涉及的人数为3人,主要考察的问题就是求前两个人相遇或追及的时刻,第三个人的位置,解题的思路就是把三人问题转化为寻找两两人之间的关系。

例1.甲乙丙三人同时从东村去西村,甲骑自行车每小时比乙快12公里,比丙快15公里,甲行3.5小时到达西村后立刻返回。

在距西村30公里处和乙相聚,问:丙行了多长时间和甲相遇?例2.甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为60千米/时和48千米/时。

有一辆迎面开来的卡车分别在他们出发后6时、7时、8时先后与甲、乙、丙三辆车相遇。

求丙车的速度。

例3、李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。

0.5小时后,营地老师闻讯前来迎接,每小时比李华多走L2千米,又经过了1.5小时,张明从学校骑车去营地报到。

结果3人同时在途中某地相遇。

问:张明每小时行驶多少千米?例4:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。

甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。

在途中,甲和乙相遇后3分钟和丙相遇。

问:这个花画的周长是多少米?4例5、AB两地相距30千米,甲乙丙三人同时从A到B,而且要求同时到达。

现在有两辆自行车,但不许带人,但可以将自行车放在中途某处,后来的人可以接着骑。

已知骑自行车的平均速度为每小时20千米,甲步行的速度是每小时5千米,乙和丙每小时4千米,那么三人需要多少小时可以同时到达?例6、有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。

甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。

在途中,甲和乙相遇后3分钟和丙相遇。

问:这个花圃的周长是多少米?二次相遇行程问题答题思路点拨:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。

多次相遇和追及问题含答案

多次相遇和追及问题含答案

多次相遇与追及问题知识框架一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

例题精讲【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】 从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300103000⨯=米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了 3.5300014003.54⨯=+米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300200100-=米才能回到出发点.【答案】100米【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【考点】行程问题【难度】☆☆ 【题型】解答【解析】 17【答案】17【例 2】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。

小学数学行程问题之多人多次相遇和追及问题含答案

小学数学行程问题之多人多次相遇和追及问题含答案

多次相遇和追及问题知识框架一、多人相遇追及问题多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式:路程和速度和相遇时间;=⨯路程差速度差追及时间;=⨯多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇追及问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

例题精讲【例 1】A 、B 两地相距203米,甲、乙、丙的速度分别是4米/分、6米/分、5米/分。

如果甲、乙从A ,丙从B 地同时出发相向而行,那么,在__________分钟或________分钟后,丙与乙的距离是丙与甲的距离的2倍。

行程问题之多次相遇与追及问题 非常完整版题型训练+答案解析

行程问题之多次相遇与追及问题 非常完整版题型训练+答案解析

行程问题之多次相遇与追及问题非常完整版题型训练+答案解析本文介绍了行程体系中多次相遇和追及的问题。

其中,对于两地相向出发的情况,第N次相遇共走2N-1个全程;对于同地同向出发的情况,第N次相遇共走2N个全程。

在多人多次相遇追及的解题过程中,需要注意路程差和几个全程的关键。

例1中,甲、乙两车分别从A、B两地相对开出,第一次在离A地95千米处相遇,第二次在离B地25千米处相遇。

根据题意可知,A、B两地间的距离为260千米。

例2中,甲和乙两人在一圆形场地上按相反的方向绕圆形路线运动,第一次相遇时甲乙共走完0.5圈的路程,第二次相遇时甲乙共走完1.5圈的路程。

根据题意可得,此圆形场地的周长为480米。

例3中,甲、乙两人从环形跑道上一点A背向同时出发,8分钟后第五次相遇。

已知甲比乙每秒钟多走0.1米,求第五次相遇的地点与点A沿跑道上的最短路程。

根据题意可得,第五次相遇时共合走5个全程,相遇点与点A沿跑道上的最短路程为2000米。

甲和乙的速度分别为250米/分和122米/分,他们在周长为300米的圆形跑道上背向而行。

甲每秒钟跑3.5米,乙每秒钟跑4米。

他们第十次相遇时,甲还需跑100米才能回到出发点。

___和爸爸在上午8点8分开始在家门口的100米直线跑道上跑步。

___的速度为6米/秒,爸爸的速度为4米/秒。

爸爸在8分钟后追上___,然后回家,再次追上___时离家12千米,此时是8点32分。

___和___在长100米的直线跑道上来回跑步,___的速度为6米/秒,___的速度为4米/秒。

他们同时从跑道两端出发,连续跑了12分钟。

在这段时间内,他们迎面相遇了5次。

甲、乙两人从A、B两地同时出发,相向而行。

已知乙的速度是甲的速度的2倍。

解答:由于甲、乙的速度比是1:2,所以在相同的时间内,两人所走的路程之比也是1:2.第一次相遇时,两人共走完了AB的长度,可以把AB的长度看作3份,甲、乙各走了1份和2份。

第100次相遇时,甲、乙共走了199个AB,甲走了1×199=199份。

小学数学培优之 多次相遇和追及问题

小学数学培优之 多次相遇和追及问题

1.学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【巩固】 甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?【例 2】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。

问:甲、乙二人的速度各是多少?板块二、运用倍比关系解多次相遇问题知识精讲教学目标3-1-4多次相遇和追及问题地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【例 4】 甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C 地。

问:甲车的速度是乙车的多少倍?【例 5】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】 A 、B 是圆的直径的两端,甲在A 点,乙在B 点同时出发反向而行,两人在C 点第一次相遇,在D 点第二次相遇.已知C 离A 有75米,D 离B 有55米,求这个圆的周长是多少米?【巩固】 如右图,A ,B 是圆的直径的两端,甲在A 点,乙在B 点同时出发反向而行,两人在C 点第一次相遇,在D 点第二次相遇。

小学奥数训练专题 多次相遇和追及问题.学生版【精品】.doc

小学奥数训练专题 多次相遇和追及问题.学生版【精品】.doc

1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【巩固】 甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?【例 2】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。

问:甲、乙二人的速度各是多少?知识精讲教学目标3-1-4多次相遇和追及问题|初一·数学·基础-提高-精英·学生版| 第1讲第页2板块二、运用倍比关系解多次相遇问题【例3】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【例4】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。

问:甲车的速度是乙车的多少倍?【例5】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【巩固】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇。

六年级奥数行程问题专题:追及问题的要点及解题技巧

六年级奥数行程问题专题:追及问题的要点及解题技巧

六年级奥数专题:追及问题的要点及解题技巧一、多人相遇追及问题的概念及公式多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

所有行程问题都是围绕""这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式:多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解。

二、多次相遇追及问题的解题思路所有行程问题都是围绕""这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.多次相遇与全程的关系1。

两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N米。

2。

同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差奥数行程:追及问题例题及答案(一)例1。

一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3倍,每个隔10分钟有一辆公交车超过一个行人。

每个隔20分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车?A。

10 B。

8 C。

6 D。

4【解答】我们知道这个题目出现了2个情况,就是(1)汽车与骑自行车的人的追击问题,(2)汽车与行人的追击问题追击问题中的一个显著的公式就是路程差=速度差×时间我们知道这里的2个追击情况的路程差都是汽车的间隔发车距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多人相遇与追及问题
多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

所有行程问题都是围绕“=×路程速度时间”这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式:
=×路程和速度和相遇时间;
=×路程差速度差追及时间;
多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.
板块一多人从两端出发多人从两端出发——————相遇、追及
相遇、追及【例1】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,
乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇.那么,东、西两村之间的距离是多少米?
【例2】在公路上,汽车A 、B 、C 分别以80km /h ,70km /h ,50km /h 的速度匀速行驶,若汽车
A 从甲站开往乙站的同时,汽车
B 、
C 从乙站开往甲站,并且在途中,汽车A 在与汽车B 相遇后的两小时又与汽车C 相遇,求甲、乙两站相距多少km ?
【巩固】甲、乙、丙三人每分分别行60米、50米和40米,甲从B 地、乙和丙从A 地同时出发相向而行,
途中甲遇到乙后15分又遇到丙.求A,B 两地的距离.
【巩固】小王的步行速度是5千米/小时,小张的步行速度是6千米/小时,他们两人从甲地到乙地去.小
李骑自行车的速度是10千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后30分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?
【巩固】甲、乙两车的速度分别为52千米/时和40千米/时,它们同时从A 地出发到B 地去,出
发后6时,甲车遇到一辆迎面开来的卡车,1时后乙车也遇到了这辆卡车。

求这辆卡车的速度。

【巩固】甲、乙、丙三人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.甲从东村,乙、丙从西村同时出发相向而行,途中甲、乙相遇后3分钟又与丙相遇.求东西两村的距离.
【例3】甲、乙、丙三人,甲每分钟走40米,丙每分钟走60米,甲、乙两人从A、B地同时出发相向而行,他们出发15分钟后,丙从B地出发追赶乙。

此后甲、乙在途中相遇,过了7分钟甲又和丙
相遇,又过了63分钟丙才追上乙,那么A、B两地相距多少米?
【例4】甲乙丙三人沿环形林荫道行走,同时从同一地点出发,甲、乙按顺时针方向行走,丙按逆时针方向行走。

已知甲每小时行7千米,乙每小时行5千米,1小时后甲、丙二人相遇,又过了10
分钟,丙与乙相遇,问甲、丙相遇时丙行了多少千米?
【巩固】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?
【例5】甲、乙两人从相距490米的A、B两地同时步行出发,相向而行,丙与甲同时从A出发,在甲、乙二人之间来回跑步(遇到乙立即返回,遇到甲也立即返回).已知丙每分钟跑240米,甲每分
钟走40米,当丙第一次折返回来并与甲相遇时,甲、乙二人相距210米,那么乙每分钟走________米;甲下一次遇到丙时,甲、乙相距________米.
【例6】甲、乙、丙三人沿湖边一固定点出发,甲按顺时针方向走,乙与丙按逆时针方向走.甲第一次遇到乙后又走了1分15秒遇到丙,再过3分45秒第二次遇到乙.已知甲、乙的速度比是3:2,
湖的周长是600米,求丙的速度.
【巩固】甲从A地出发前往B地,1小时后,乙、丙两人同时从B地出发前往A地,结果甲和丙相遇在C 地,甲和乙相遇在D地.已知甲和乙的速度相同,丙的速度是乙的1.5倍,A、B两地之间的距离是220千米,C、D两地之间的距离是20千米.求丙的速度.
【例7】一条路上有东、西两镇.一天,甲、乙、丙三人同时出发,甲、乙从东镇向西而行,丙从西镇向东而行,当甲与丙相遇时,乙距他们20千米,当乙与丙相遇时,甲距他们30千米.当甲到达西镇时,丙距东镇还有20千米,那么当丙到达东镇时,乙距西镇千米.
【巩固】甲、乙、丙、丁4人在河中先后从同一个地方同速同向游泳,现在甲距起点78米,乙距起点27米,丙距起点23米,丁距起点16米.那么当甲、乙、丙、丁各自继续游泳米时,甲距起点的距离刚好为乙、丙、丁3人距起点的距离之和.
【例8】A、B两地相距336千米,有甲、乙、丙3人,甲、乙从A地,丙从B地同时出发相向而行,已知甲每小时行36千米,乙每小时行30千米,丙每小时行24千米,问几个小时后,丙正好处于甲、乙之间的中点?
、两地相距432千米,有甲、乙、丙三人,甲、乙从A地,丙从B地同时出发相向而行,【巩固】A B
已知甲每小时行36千米,乙每小时行30千米,丙每小时行24千米,问几个小时之后,乙正好在甲、丙两人的中点?
【例9】A、B两地相距203米,甲、乙、丙的速度分别是4米/分、6米/分、5米/分。

如果甲、乙从A,丙从B地同时出发相向而行,那么,在__________分钟或________分钟后,丙与乙的距离是丙与甲的距离的2倍。

板块二多人从同一段出发多人从同一段出发——————追及问题
追及问题【例10】张、李、赵3人都从甲地到乙地.上午6时,张、李两人一起从甲地出发,张每小时走5千米,
李每小时走4千米.赵上午8时从甲地出发.傍晚6时,赵、张同时达到乙地.那么赵追上李的时间是几时?
【巩固】甲、乙、丙三辆车先后从A 地开往B 地,乙比丙晚出发5分,出发后45分追上丙;甲比乙晚出
发15分,出发后1时追上乙。

甲和丙的速度比是多少?
【例11】甲、乙、丙三人同时从A 向B 跑,当甲跑到B 时,乙离B 还有20米,丙离B 还有40米;当乙
跑到B 时,丙离B 还有24米。

问:(1)A,B 相距多少米?(2)如果丙从A 跑到B 用24秒,那么甲的速度是多少?
【巩固】甲乙丙三人同时从东村去西村,甲骑自行车每小时比乙快12公里,比丙快15公里,甲行3.5
小时到达西村后立刻返回.在距西村30公里处和乙相聚,问:丙行了多长时间和甲相遇?
【例12】甲、乙、丙三车同时从A 地沿同一公路开往B 地,途中有个骑摩托车的人也在同方向行进,这
三辆车分别用7分钟、8分钟、14分钟追上骑摩托车人。

已知甲车每分钟行1000米,丙车每分钟行800米,求乙速车的速度是多少?
【巩固】快、中、慢3辆车同时从同一地点出发,沿同一公路追赶前面的一个骑车人.这3辆车分别用6
分钟、10分钟、12分钟追上骑车人.现在知道快车每小时走24千米,中车每小时走20千米,那么,慢车每小时走多少千米?
【例13】甲从A地出发前往B地,1小时后,乙也从A地出发前往B地,又过1小时,丙从B地出发前往A地,结果甲和丙相遇在C地,乙和丙相遇在D地.已知乙和丙的速度相同,丙的速度是甲
的2倍,C、D两地之间的距离是50千米.求乙出发1小时后距B地多少千米。

练习1.甲、乙、丙三人行路,甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?
练习2.甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为60千米/时和48千米/时。

有一辆迎面开来的卡车分别在他们出发后5时、6时、8时先后与甲、乙、丙三辆车相遇。

求丙车的速度。

练习3.池塘周围有一条道路.A、B、C三人从同一地点同时出发.A和B往逆时针方向走,C往顺时针方向走.A以每分钟80米、B以每分钟65米的速度行走.C在出发后的20分钟遇到A,
.请问,池塘的周长是几米?
再过2分钟,遇到B
练习4.甲、乙、丙三辆车同时从A地出发到B地去,出发后6分甲车超过了一名长跑运动员,2分后乙车也超过去了,又过了2分丙车也超了过去。

已知甲车每分走1000米,乙车每分走800米,丙车每分钟走多少米?
练习5.甲、乙、丙三人,他们的步行速度分别为每分钟480、540、720米,甲、乙、丙3人同时动身,甲、乙二人从A地出发,向B地行时,丙从B地出发向A地行进,丙首先在途中与乙相遇,3分钟后又与甲相遇,求甲、乙、丙3人行完全程各用多长时间?
练习6.快、中、慢三辆车同时同地出发,沿同一公路去追赶前面一骑车人,这三辆车分别用6分、9分、12分追上骑车人。

已知快、慢车的速度分别为60千米/时和40千米/时,求中速车的速度。

练习7.甲、乙、丙三人行路,甲每分钟走80米,乙每分钟走90米,丙每分钟走100米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过5分钟与甲相遇,求东西两镇间的路程有多少米?
练习8.甲、乙、丙在湖边散步,三人同时从同一点出发,绕湖行走,甲速度是每小时5.4千米,乙速度是每小时4.2千米,她们二人同方向行走,丙与她们反方向行走,半个小时后甲和丙相遇,在过5分钟,乙与丙相遇。

那么绕湖一周的行程是多少?
练习9.李华步行以每小时4千米的速度从学校出发到20.4千米处的冬令营报到。

半小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。

又过了1.5小时,张明从学校骑车去营地报到。

结果三人同时在途中某地相遇。

问骑车人每小时行驶多少千米?
练习10.小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.
小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?。

相关文档
最新文档