高三数学理科二轮复习同步练习 1-4-10三角函数的图象与性质
三角函数:三角函数的图像与性质-高三数学二轮复习

(4)对称轴:ωx + =________.
(5)对称中心:ωx + =________.
试卷讲评课件
(6)值域:若已知三角函数y = Asin ωx + + B,且x ∈ [m, n]
①若ωx +
π
可以取到
2
+
π
2kπ和−
2
+ 2kπ,则Asin ωx + + B的最大
值为________,最小值为________;
2
2
A.1
B.2
= f x 的图象与直线
C.3
D.4
π
6
试卷讲评课件
例10.( ⋅辽宁·二模)已知函数f x = sin2x + 2 3cos2 x − 3,则下
列说法正确的是(
)
A.函数f x 的最小正周期为π
B.函数f x
π 3π
在区间[ , ]上单调递减
6 4
C.将函数f x
π
的图象向右平移 个单位长度,得到函数y
π
是y
6
π
,0
3
对称
上单调递增
= f x 图象的一条对称轴
)
试卷讲评课件
例12.( ⋅河北沧州·一模)已知函数f x = sin 2x +
且f x = f
2π
3
函数,则(
)
A. =
≤
π
2
,
− x ,若函数f x 向右平移a a>0 个单位长度后为偶
π
−
6
B.函数f x 在区间
π
C.a的最小值为
6
象
高三数学二轮复习,第一讲三角函数图象性质

高2014届数学 二轮复习 专题二第一讲 三角函数图象与性质1.函数x x y cos sin =的单调减区间是( )A.]4,4[ππππ+-k k (z k ∈) B.)](43,4[z k k k ∈++ππππ C. )](2,4[z k k k ∈++ππππD. )](22,42[z k k k ∈++ππππ备注:2.为了得到函数⎪⎭⎫⎝⎛-=62sin πx y 的图象,可以将函数x y 2sin =的图象( ) A. 右移6π个单位 B. 右移12π个单位 C. 左移6π个单位 D.左移12π个单位 备注:二、热点透析 【热点一】)0,0)(sin(>>+=ωϕωA x A y 的图象与解析式例1.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π<φ<π)的部分图象如图所示,则函数f (x )的解析式为( ).A .f (x )=2sin ⎝⎛⎭⎫12x +π4B .f (x )=2sin ⎝⎛⎭⎫12x +3π4 C .f (x )=2sin ⎝⎛⎭⎫12x -π4 D .f (x )=2sin ⎝⎛⎭⎫12x -3π4 【变式训练】1.已知函数)2,0)(sin(2)(πϕωϕω<>+=x x f 图象如图,试确定ϕω,.【热点二】三角函数的性质例2.设函数)2,0)(cos()sin()(πϕωϕωϕω<>+++=x x x f 的最小正周期为π,且)()(x f x f =-,则( )A. )(x f y =在区间⎪⎭⎫ ⎝⎛2,0π上单调递减 B. )(x f y =在区间⎪⎭⎫⎝⎛43,4ππ上单调递减 C. )(x f y =在区间⎪⎭⎫ ⎝⎛2,0π上单调递增 D. )(x f y =在区间⎪⎭⎫⎝⎛43,4ππ上单调递增 备注:三、直击高考1.如图所示,点P 是函数y =2sin(ωx +φ)(x ∈R ,ω>0)的图象的最高点,M 、N 是图象与x轴的交点,若PM ·PN=0,则ω=( )A .8 B.π8 C.π4D .42.已知函数f (x )= (3sin ωx +cos ωx ) cos ωx ,其中0<ω<2. (1)若f (x )的周期为π,求当- π6≤x ≤π3时f (x )的值域;(2)对∀m ∈R 函数y =f (x ),x ∈[m ,m +π)图象与y =32有且仅有一个交点,求y =f (x )的单调递增区间.【拓展延伸】1.下列说法正确的是 .①“0=ϕ”是“))(cos()(R x x x f ∈+=ϕ为偶函数”的充分不必要条件 ②)(|,3sin |3sin )(x f x x x f 则+=为周期函数,且最小正周期为23π③函数f (x )=sinx -cos (x +6π)的值域为④函数()sin()4f x x πω=+(0ω>)在(,)2ππ上单调递减.则ω的取值范围是15[,]24【作业】必做题:二轮资料专题二,三角函数图象与性质(1);预习(2) 选做题:1.若函数)0)(2sin()(>+=A x A x f ϕπ满足0)1(=f ,则( )A. )2(-x f 一定是奇函数B. )1(+x f 一定是偶函数C. )3(+x f 一定是偶函数D. )3(-x f 一定是奇函数2.为使变换后的函数图象关于点(-π12,0)成中心对称,只需将函y =sin (2x +π3)的图象( )A .左移π12个单位长度B .左移π6个单位长度C .右平π12个单位长度D .右移π6个单位长度3.函数cos(2)()y x ϕπϕπ=+-≤≤的图象向右平移2π个单位后,与函数sin(2)3y x π=+的图象重合,则ϕ=_________.本节反思:真题欣赏2010年全国新课标卷(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0,, 角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为( )2011全国新课标卷(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=( )(A )45- (B )35- (C )35 (D )452012年全国新课标卷(9)已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是()(A )]45,21[ (B )]43,21[ (C )]21,0( (D )(0,2]2013年全国新课标卷(15)设当x =θ 时,函数 f (x )=sinx -2cosx 取得最大值,则 cosθ= ______ 2012年四川卷(4)如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =连接EC 、ED 则sin CED ∠=( )A 、10B 、10C 、10D 、15(18 )函数2()6cos3(0)2xf x x ωωω=+->在一个周期内的图象如图所示,A为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形.(Ⅰ)求ω的值及函数()f x 的值域;(Ⅱ)若0()f x =,且0102(,)33x ∈-,求0(1)f x +的值。
高考数学二轮复习 专题2 三角函数、三角变换、解三角形、平面向量 第一讲 三角函数的图象与性质 理-

专题二 三角函数、三角变换、解三角形、平面向量第一讲 三角函数的图象与性质1.角的概念.(1)终边相同的角不一定相等,相等的角终边一定相同(填“一定”或“不一定”). (2)确定角α所在的象限,只要把角α表示为α=2k π+α0[k ∈Z,α0∈[0,2π)],判断出α0所在的象限,即为α所在象限.2.诱导公式.诱导公式是求三角函数值、化简三角函数的重要依据,其记忆口诀为:奇变偶不变,符号看象限.1.三角函数的定义:设α是一个任意大小的角,角α的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx.2.同角三角函数的基本关系. (1)sin 2α+cos 2α=1. (2)tan α=sin αcos α.判断下面结论是否正确(请在括号中打“√”或“×”).(1)角α终边上点P 的坐标为⎝ ⎛⎭⎪⎫-12,32,那么sin α=32,cos α=-12;同理角α终边上点Q 的坐标为(x 0,y 0),那么sin α=y 0,cos α=x 0.(×)(2)锐角是第一象限角,反之亦然.(×) (3)终边相同的角的同一三角函数值相等.(√)(4)常函数f (x )=a 是周期函数,它没有最小正周期.(√) (5)y =cos x 在第一、二象限上是减函数.(×) (6)y =tan x 在整个定义域上是增函数.(×)1.(2015·某某卷)若sin α=-513,且α为第四象限角,则tan α的值等于(D )A.125 B .-125 C.512 D .-512解析:解法一:因为α为第四象限的角,故cos α=1-sin 2α=1-(-513)2=1213,所以tan α=sin αcos α=-5131213=-512. 解法二:因为α是第四象限角,且sin α=-513,所以可在α的终边上取一点P (12,-5),则tan α=y x =-512.故选D.2.已知α的终边经过点A (5a ,-12a ),其中a <0,则sin α的值为(B ) A .-1213 B.1213 C.513 D .-5133.(2014·新课标Ⅰ卷)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎪⎫2x +π6,④y=tan ⎝⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为(A ) A .①②③ B .①③④C .②④D .①③解析:①中函数是一个偶函数,其周期与y =cos 2x 相同,T =2π2=π;②中函数y =|cos x |的周期是函数y =cos x 周期的一半,即T =π;③T =2π2=π;④T =π2.故选A.4.(2015·某某卷)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin(π6x +φ)+k .据此函数可知,这段时间水深(单位:m)的最大值为(C )A .5B .6C .8D .10解析:根据图象得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8.一、选择题1.若sin(α-π)=35,α为第四象限角,则tan α=(A )A .-34B .-43C.34D.43 解析:∵sin(α-π)=35,∴-sin α=35,sin α=-35.又∵α为第四象限角, ∴cos α= 1-sin 2α= 1-⎝ ⎛⎭⎪⎫-352=45, tan α=sin αcos α=-3545=-34.2. 定义在R 上的周期函数f (x ),周期T =2,直线x =2是它的图象的一条对称轴,且f (x )在[-3,-2]上是减函数,如果A ,B 是锐角三角形的两个内角,则(A )A .f (sin A )>f (cosB ) B .f (cos B )>f (sin A )C .f (sin A )>f (sin B )D .f (cos B )>f (cos A )解析:由题意知:周期函数f (x )在[-1,0]上是减函数,在[0,1]上是增函数.又因为A ,B 是锐角三角形的两个内角,A +B >π2,得:sin A >cos B ,故f (sin A )>f (cos B ).综上知选A.3.函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为(A )A .2- 3B .0C .-1D .-1- 3解析:用五点作图法画出函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的图象,注意0≤x ≤9知,函数的最大值为2,最小值为- 3.故选A.4. 把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图象是(A )解析:y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的解析式为y =cos (x +1).故选A.5.(2015·新课标Ⅰ卷)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为(D )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z 解析:由图象知周期T =2⎝ ⎛⎭⎪⎫54-14=2,∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z.故选D.6.已知函数f (x )=A sin(ωx +φ)(x ∈R,A >0,ω>0,|φ|<π2)的图象(部分)如图所示,则f (x )的解析式是(A )A .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π6(x ∈R)B .f (x )=2sin ⎝ ⎛⎭⎪⎫2πx +π6(x ∈R)C .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π3(x ∈R)D .f (x )=2sin ⎝⎛⎭⎪⎫2πx +π3(x ∈R) 解析:由图象可知其周期为:4⎝ ⎛⎭⎪⎫56-13=2,∵2πω=2,得ω=π,故只可能在A ,C 中选一个,又因为x =13时达到最大值,用待定系数法知φ=π6.二、填空题7.若sin θ=-45,tan θ>0,则cos θ=-35.8.已知角α的终边经过点(-4,3),则cos α=-45.解析:由题意可知x =-4,y =3,r =5,所以cos α=x r =-45.三、解答题9. (2014·某某卷)已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.分析:思路一 直接将5π4代入函数式,应用三角函数诱导公式计算.(2)应用和差倍半的三角函数公式,将函数化简2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 得到T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.思路二 先应用和差倍半的三角函数公式化简函数f (x )=2sin x cos x +2cos 2x =2sin ⎝⎛⎭⎪⎫2x +π4+1.(1)将5π4代入函数式计算;(2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.解析:解法一 (1)f ⎝⎛⎭⎪⎫5π4=2cos 5π4⎝ ⎛⎭⎪⎫sin 5π4+cos 5π4=-2cos π4⎝ ⎛⎭⎪⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.解法二 因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)f ⎝⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2. (2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.10.函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx -π6+1(A >0,ω>0)的最大值为3, 其图象相邻两条对称轴之间的距离为π2.(1)求函数f (x )的解析式;word(2)设α∈⎝ ⎛⎭⎪⎫0,π2,则f ⎝ ⎛⎭⎪⎫α2=2,求α的值. 解析:(1)∵函数f (x )的最大值为3,∴A +1=3,即A =2.∵函数图象的相邻两条对称轴之间的距离为π2, ∴最小正周期为 T =π,∴ω=2,故函数f (x )的解析式为y =2sin ⎝ ⎛⎭⎪⎫2x -π6+1. (2)∵f ⎝ ⎛⎭⎪⎫α2=2sin ⎝⎛⎭⎪⎫α-π6+1=2, 即sin ⎝⎛⎭⎪⎫α-π6=12, ∵0<α<π2,∴-π6<α-π6<π3. ∴α-π6=π6,故α=π3. 11.(2015·卷)已知函数f (x )=2sin x 2cos x 2-2sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值.解析:(1)由题意得f (x )=22sin x -22(1-cos x )=sin ⎝ ⎛⎭⎪⎫x +π4-22,所以f (x )的最小正周期为2π.(2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值. 所以f (x )在区间[-π,0]上的最小值为f ⎝ ⎛⎭⎪⎫-3π4=-1-22.。
高三数学三角函数的图象与性质试题答案及解析

高三数学三角函数的图象与性质试题答案及解析1.关于函数f(x)=sinx(sinx-cosx)的叙述正确的是A.f(x)的最小正周期为2πB.f(x)在内单调递增C.f(x)的图像关于对称D.f(x)的图像关于对称【答案】D【解析】f(x)=sin2x-sinxcosx=(1-cos2x-sin2x)=-sin(2x+)于是,f(x)的最小正周期为π,A错误;由2kπ+<2x+<2kπ+(k∈Z)解得kπ+<x<kπ+(k∈Z),可知在上,函数不是单调函数,B错误;当时,函数取得最小值,根据正弦型函数图象的特征,可知C错误,D正确.【考点】三角函数的化简,正弦型函数的图象与性质2.方程在区间上的所有解的和等于.【答案】【解析】原方程可变形为,即,,由于,所以,,所以.【考点】解三角方程.3.已知函数的图像关于直线对称,且图像上相邻两个最高点的距离为.(1)求和的值;(2)若,求的值.【答案】(1);(2)【解析】(1)由函数图像上相邻两个最高点的距离为求出周期,再利用公式求出的值;由函数的图像关于直线对称,可得,然后结合,求出的值.(2)由(1)知,由结合利用同角三角函数的基本关系可求得的值,因为可由两角和与差的三角函数公式求出从而用诱导公式求得的值.解:(1)因的图象上相邻两个最高点的距离为,所以的最小正周期,从而.又因的图象关于直线对称,所以因得所以.(2)由(1)得所以.由得所以因此=【考点】1、诱导公式;2、同角三角函数的基本关系;3、两角和与差的三角函数公式;4、三角函数的图象和性质.4.若函数在区间是减函数,则的取值范围是 .【答案】.【解析】时,是减函数,又,∴由得在上恒成立,.【考点】1.三角函数的单调性;2.导数的应用.5.若,则()A.B.C.D.【答案】A【解析】函数在区间上单调递减,由于,,,即,而,而,由于,,即,因此有,故选A.【考点】1.三角函数单调性;2.比较大小6.在平面直角坐标系中,点,,其中.(1)当时,求向量的坐标;(2)当时,求的最大值.【答案】(1);(2)取到最大值.【解析】(1)求向量的坐标,由向量坐标的定义可知,,即可写出,再把代入求出值即可;(2)求的最大值,先求向量的最大值,由于是三角函数,可利用三角函数进行恒等变化,把它变化为一个角的一个三角函数,利用三角函数的性质,即可求出的最大值,从而可得的最大值.(1)由题意,得, 2分当时,, 4分,所以. 6分(2)因为,所以 7分8分9分. 10分因为,所以. 11分所以当时,取到最大值, 12分即当时,取到最大值. 13分【考点】向量的坐标,向量的模,三角恒等变化.7.将函数的图像向右平移个单位长度后,所得的图像与原图像重合,则的最小值等于.【答案】6【解析】函数的图像向右平移个单位长度后得函数式为,它和相同,则,,最小值为6.【考点】三角函数图象平移,诱导公式.8.已知函数f(x)=3cos(2x-)在[0,]上的最大值为M,最小值为m,则M+m等于()A.0B.3+C.3-D.【答案】C【解析】由x∈[0,]得2x-∈[-,],故M=f()=3cos0=3,m=f()=3cos=-,故M+m=3-.9.若函数f(x)=sin(x+φ)(0<φ<π)是偶函数,则cos =________.【答案】【解析】因为函数f(x)=sin(x+φ)(0<φ<π)是偶函数,所以φ=,故cos =cos =.10.函数的周期是 .【答案】2【解析】函数的周期为.【考点】三角函数的周期.11.已知函数的最小正周期是,则.【答案】1【解析】要把函数式化简为或的形式,本题中,因此其最小正周期为,.【考点】三角函数的周期.12.若函数()的图象关于直线对称,则θ=.【答案】【解析】研究三角函数的对称性,可从图像理解.因为三角函数的对称轴经过最值点,所以当时,取最值,即,又所以【考点】三角函数性质:对称轴.13.设平面向量,,函数。
三角函数的图象和性质(小题速做,大题细做)-2022届高考数学二轮复习

栏目导航
11
①两个相邻对称中心之间的距离等于T2;②两条相邻对称轴之间的距离等于T2;③对称 中心与相邻对称轴的距离等于T4.
(3)由点的坐标定 φ.把图象上的一个已知点的坐标代入(此时 A,ω,B 已知)求解. 2.在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其 中的自变量 x 而言的,如果 x 的系数不是 1,就要把这个系数提取后再确定变换的单位长 度数和方向.
栏目导航
14
当 f(x)>1 时,2cos2x-π6>1, 解得 x∈-1π2+kπ,π4+kπ,k∈Z, 此时最小正整数 x=3. 当 f(x)<0 时,2cos2x-π6<0, 解得 x∈π3+kπ,56π+kπ,k∈Z, 此时最小正整数为 2. 综上满足题意的最小正整数为 x=2. 答案:2
栏目导航
9
+φ=π+2kπ,k∈Z,得 φ=43π+2kπ,k∈Z,∴y=sin-2x+43π,但当 x=0 时,y=
sin-2x+43π=- 23<0,与图象不符合,舍去.综上,选 BC.
(2) 解 析 : 先 将 函 数
y
=
sin
x-4π
的
图
象
向
左
平
移
π 3
个
单
位
长
度
,
得
到
函
数
y=
sinx+3π-π4=sinx+1π2的图象,再将所得图象上所有点的横坐标伸长到原来的 2 倍,纵
栏目导航
24
好题精练——练技巧、练规范 2.(多选题)(2021·湖南、河北新高考联考)已知函数 f(x)=sin2x-π6,则下列结论正确 的是( ) A.f(x)的最小正周期为 π B.f(x)的图象关于直线 x=-67π 对称 C.f(x)在-π4,π6上单调递增 D.y=f(x)+fx+4π的最小值为- 2
2024_2025学年高三数学新高考一轮复习专题三角函数的图像和性质2含解析

三角函数的图像和性质学校:___________姓名:___________班级:___________考号:___________1.函数y=lgcos x的定义域为( )A. (2k π,+2kπ)(k∈Z)B. (-+2k π,+2kπ)(k∈Z)C. (k π,+kπ)(k∈Z)D. (-+k π,+kπ)(k∈Z)2.将函数的图象向左平移个单位长度,再将得到的图象上的全部点的横坐标变为原来的2倍(纵坐标不变),最终得到函数的图象,则()A. B. C. D.3.将函数的图象上各点向右平行移动个单位长度,再把横坐标缩短为原来的一半,纵坐标伸长为原来的4倍,则所得到的图象的函数解析式是()A. B.C. D.4.函数y=cos-2x的单调递增区间是()A. (k∈Z)B. (k∈Z)C. (k∈Z)D. (k∈Z)5.函数的单调递减区间为()A. B.C. D.6.函数在定义域内零点的个数为A. 3B. 4C. 6D. 77.下列函数中最小值为8的是()A. B. C . D.18.函数的图象向右平移个单位长度后得到函数g(x)的图象,且g(x)的图象的一条对称轴是直线,则ω的最小值为.9.函数的单调减区间为()A. B.C. D.10.已知函数.(1)求的最小正周期和单调递减区间;(2)试比较与的大小.1.【答案】B2.【答案】C3.【答案】A4.【答案】B5.【答案】B6.【答案】C7.【答案】D8.【答案】9.【答案】A10.【答案】解:(1),∴函数的最小正周期为.令,得,函数的单调增区间为,函数的单调减区间为,(2),.,且在上单调递增,,即.3。
【高三数学】二轮复习:专题二 第1讲 三角函数的图象与性质

)
A.sin x + 3
B.sin 3 -2x
C.cos 2x + 6
D.cos
5
-2x
6
答案 BC
解析 由题中函数图象可知2 =
2π π
+
3 6
x=
2
5π
5π
π
2π
= 2,则 T=π,所以 ω= =
3π
2π
=2,当
π
2π
= 12时,y=-1,所以 2× 12+φ= 2 +2kπ(k∈Z),解得 φ=2kπ+ 3 (k∈Z),所
看图比较容易得出,困难的是求ω和φ,常用如下两种方法
(1)由ω= 2 即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或
T
下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.
(2)代入图象中已知点的坐标,将一些已知点(最高点、最低点或“零点”)坐
标代入解析式,再结合图象解出ω和φ,若对A,ω的符号或对φ的范围有要求,
高考数学
专题二
第1讲 三角函数的图象与性质
1.“1”的变换
1=sin 2α+cos 2α=cos 2α(1+tan2α).
这是针对函数中的单个变量x
2.三角函数图象变换
而言的
三角函数y=sin ωx的图象向左或向右平移φ(φ>0)个单位长度,得到的图象
对应函数解析式是y=sin[ω(x+φ)]或y=sin[ω(x-φ)],而不是y=sin(ωx+φ)或
以函数的解析式为 y=sin 2 +
2021年高考数学二轮复习 三角函数的图象与性质专题训练(含解析)

2021年高考数学二轮复习 三角函数的图象与性质专题训练(含解析)一、选择题1.(xx·全国大纲卷)已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C .-35D .-45解析 cos α=-4-42+32=-45.答案 D2.(xx·四川卷)为了得到函数y =sin(2x +1)的图象,只需把函数y =sin2x 的图象上所有的点( )A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度解析 ∵y =sin(2x +1)=sin2⎝ ⎛⎭⎪⎫x +12,∴只需把y =sin2x 图象上所有的点向左平移12个单位长度即得到y =sin(2x +1)的图象.答案 A3.(xx·北京东城一模)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A.3π4B.π2C.π4D .-π4解析 y =sin(2x +φ)错误!sin 错误!=sin 错误!是偶函数,即错误!+φ=k π+错误!(k ∈Z )⇒φ=k π+π4(k ∈Z ),当k =0时,φ=π4,故选C.答案 C4.函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,若x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=( )A .1 B.12 C.22D.32解析 观察图象可知,A =1,T =π, ∴ω=2,f (x )=sin(2x +φ).将⎝ ⎛⎭⎪⎫-π6,0代入上式得sin ⎝ ⎛⎭⎪⎫-π3+φ=0, 由|φ|<π2,得φ=π3, 则f (x )=sin ⎝⎛⎭⎪⎫2x +π3. 函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),∴x 1+x 22=π12,∴x 1+x 2=π6, ∴f (x 1+x 2)=sin ⎝⎛⎭⎪⎫2×π6+π3=32.故选D.答案 D5.函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的最小正周期是π,若其图象向右平移π6个单位后得到的函数为奇函数,则函数f (x )的图象( )A .关于点⎝ ⎛⎭⎪⎫π12,0对称B .关于直线x =π12对称C .关于点⎝ ⎛⎭⎪⎫π6,0对称 D .关于直线x =π6对称解析 ∵T =2πω=π,∴ω=2.∴f (x )=sin(2x +φ)向右平移π6个单位,得y =sin ⎝⎛⎭⎪⎫2x -π3+φ为奇函数, ∴-π3+φ=k π(k ∈Z ),∴φ=π3+k π(k ∈Z ),∴φ=π3,∴f (x )=sin ⎝⎛⎭⎪⎫2x +π3. ∵sin ⎝ ⎛⎭⎪⎫2×π12+π3=1,∴直线x =π12为函数图象的对称轴.故选B.答案 B6.已知函数f (x )=cos ⎝⎛⎭⎪⎫2x +π3-cos2x ,其中x ∈R ,给出下列四个结论:①函数f (x )是最小正周期为π的奇函数;②函数f (x )图象的一条对称轴是直线x =2π3;③函数f (x )图象的一个对称中心为⎝ ⎛⎭⎪⎫5π12,0;④函数f (x )的递增区间为k π+π6,k π+2π3,k ∈Z .则正确结论的个数是( ) A .1 B .2 C .3D .4解析 由已知得,f (x )=cos ⎝⎛⎭⎪⎫2x +π3-cos2x =cos2x cos π3-sin2x sin π3-cos2x =-sin ⎝ ⎛⎭⎪⎫2x +π6,不是奇函数,故①错;当x =2π3时,f ⎝ ⎛⎭⎪⎫2π3=-sin ⎝ ⎛⎭⎪⎫4π3+π6=1,故②正确;当x=5π12时,f ⎝ ⎛⎭⎪⎫5π12=-sinπ=0,故③正确;令2k π+π2≤2x +π6≤2k π+32π,k ∈Z ,得k π+π6≤x ≤k π+23π,k ∈Z ,故④正确.综上,正确的结论个数为3.答案 C 二、填空题7.若sin ⎝ ⎛⎭⎪⎫π3+α=13,则sin ⎝ ⎛⎭⎪⎫π6+2α=________. 解析 sin ⎝ ⎛⎭⎪⎫π6+2α=-cos ⎝ ⎛⎭⎪⎫π2+π6+2α=-cos ⎝ ⎛⎭⎪⎫2π3+2α=2sin 2⎝ ⎛⎭⎪⎫π3+α-1=-79.答案 -798.(xx·江苏卷)已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是________. 解析 利用函数y =cos x 与y =sin(2x +φ)(0≤φ<π)的图象交点横坐标,列方程求解. 由题意,得sin ⎝⎛⎭⎪⎫2×π3+φ=cos π3, 因为0≤φ<π,所以φ=π6.答案π69.(xx·北京卷)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为________. 解析 由f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6知,f (x )有对称中心⎝ ⎛⎭⎪⎫π3,0,由f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫23π知f (x )有对称轴x =12⎝ ⎛⎭⎪⎫π2+23π=712π,记T 为最小正周期,则12T ≥π2-π6⇒T ≥23π,从而712π-π3=T4,故T =π.答案 π 三、解答题10.(xx·重庆卷)已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f ⎝ ⎛⎭⎪⎫α2=34⎝ ⎛⎭⎪⎫π6<α<2π3,求cos ⎝ ⎛⎭⎪⎫α+3π2的值.解 (1)因f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又因f (x )的图象关于直线x =π3对称, 所以2·π3+φ=k π+π2,k =0,±1,±2,….因-π2≤φ<π2得k =0,所以φ=π2-2π3=-π6.(2)由(1)得f ⎝ ⎛⎭⎪⎫α2=3sin ⎝ ⎛⎭⎪⎫2·α2-π6=34,所以sin ⎝ ⎛⎭⎪⎫α-π6=14.由π6<α<2π3得0<α-π6<π2, 所以cos ⎝⎛⎭⎪⎫α-π6=1-sin 2⎝⎛⎭⎪⎫α-π6= 1-⎝ ⎛⎭⎪⎫142=154.因此cos ⎝ ⎛⎭⎪⎫α+3π2=sin α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6+π6 =sin ⎝⎛⎭⎪⎫α-π6cos π6+cos ⎝⎛⎭⎪⎫α-π6sin π6 =14×32+154×12=3+158. 11.(xx·山东菏泽一模)已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π.(1)求函数f (x )的单调增区间; (2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值.解 (1)由题意得f (x )=2sin ωx cos ωx +23sin 2ωx -3=sin2ωx -3cos2ωx =2sin ⎝⎛⎭⎪⎫2ωx -π3, 由最小正周期为π,得ω=1,所以f (x )=2sin ⎝⎛⎭⎪⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 整理得k π-π12≤x ≤k π+5π12,k ∈Z ,所以函数f (x )的单调增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z . (2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到y =2sin2x +1的图象, 所以g (x )=2sin2x +1. 令g (x )=0,得x =k π+7π12或x =k π+11π12(k ∈Z ), 所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可,即b 的最小值为4π+11π12=59π12.B 级——能力提高组1.设函数f (x )=3cos(2x +φ)+sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2,且其图象关于直线x =0对称,则( )A .y =f (x )的最小正周期为π,且在⎝ ⎛⎭⎪⎫0,π2上为增函数B .y =f (x )的最小正周期为π,且在⎝⎛⎭⎪⎫0,π2上为减函数 C .y =f (x )的最小正周期为π2,且在⎝ ⎛⎭⎪⎫0,π4上为增函数 D .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎪⎫0,π4上为减函数 解析 f (x )=3cos(2x +φ)+sin(2x +φ) =2sin ⎝⎛⎭⎪⎫2x +π3+φ, ∵其图象关于x =0对称,∴f (x )是偶函数. ∴π3+φ=π2+k π,k ∈Z . 又∵|φ|<π2,∴φ=π6. ∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π3+π6=2cos2x .易知f (x )的最小正周期为π,在⎝⎛⎭⎪⎫0,π2上为减函数.答案 B2.(xx·全国大纲卷)若函数f (x )=cos2x +a sin x 在区间⎝ ⎛⎭⎪⎫π6,π2是减函数,则实数a 的取值范围是________.解析 f (x )=1-2sin 2x +a sin x =-2sin 2x +a sin x +1,sin x ∈⎝ ⎛⎭⎪⎫12,1,令t =sin x ∈⎝ ⎛⎭⎪⎫12,1,则y =-2t 2+at +1在⎝ ⎛⎭⎪⎫12,1是减函数,∴对称轴t =a 4≤12,∴a ≤2.答案 (-∞,2]3.(xx·湖北卷)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温? 解 (1)因为f (t )=10-2⎝ ⎛⎭⎪⎫32cos π12t +12sin π12t =10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3, -1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1. 当t =2时,sin ⎝ ⎛⎭⎪⎫π12t +π3=1;当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1. 于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f (t )>11时实验室需要降温.由(1)得f (t )=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,故有10-2sin ⎝ ⎛⎭⎪⎫π12t +π3>11,即sin ⎝ ⎛⎭⎪⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18. 在10时至18时实验室需要降温. 36014 8CAE 貮33058 8122 脢39755 9B4B 魋21980 55DC 嗜34759 87C7 蟇 30825 7869 硩f33504 82E0 苠 ?" y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考专题训练十 三角函数的图象与性质班级_______ 姓名_______ 时间:45分钟 分值:75分 总得分________一、选择题:本大题共6小题,每小题5分,共30分.在每小题给出的四个选项中,选出符合题目要求的一项填在答题卡上.1.设ω>0,函数y =sin(ωx +φ)(-π<φ<π)的图象向左平移π3个单位后,得到下面的图象,则ω,φ的值为( )A .ω=1,φ=2π3B .ω=2,φ=2π3C .ω=1,φ=-π3D .ω=2,φ=-π3解析:由图象可得y =sin ⎝ ⎛⎭⎪⎫2x -2π3,向右平移π3个单位为y =sin ⎝ ⎛⎭⎪⎫2x +2π3,与y =sin(ωx +φ)对照可得ω=2,φ=2π3.答案:B2.(2011·济南市2月高三模拟)为了得到函数y =sin2x +cos2x 的图象,只需把函数y =sin2x -cos2x 的图象( )A .向左平移π4个长度单位B .向右平移π4个长度单位C .向左平移π2个长度单位D .向右平移π2个长度单位解析:y =sin2x +cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π4, y =sin2x -cos2x =2sin ⎝⎛⎭⎪⎫2x -π4,只需把函数y =sin2x -cos2x 的图象向左平移π4个长度单位,即可得到y =sin2x +cos2x 的图象.答案:A3.(2011·南昌一模)若f (x )=2sin(ωx +φ)+m ,对任意实数t 都有f ⎝ ⎛⎭⎪⎫π8+t =f ⎝ ⎛⎭⎪⎫π8-t ,且f ⎝ ⎛⎭⎪⎫π8=-3,则实数m 的值等于( ) A .-1 B .±5 C .-5或-1D .5或1解析:依题意得,函数f (x )的图象关于直线x =π8对称,于是当x=π8时,函数f (x )取得最值,因此有±2+m =-3,m =-3∓2,m =-5或m =-1,选C.答案:C4.将函数y =sin x 的图象上的所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )A .y =sin ⎝ ⎛⎭⎪⎫2x -π10B .y =sin ⎝⎛⎭⎪⎫2x -π5C .y =sin ⎝⎛⎭⎪⎫12x -π10D .y =sin ⎝⎛⎭⎪⎫12x -π20解析:答案:C5.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG 是边长为2的等边三角形,则f (1)的值为( )A .-32B .-62C. 3 D .- 3解析:由函数为奇函数,且0<φ<π, 可知φ=π2,则f (x )=-A sin ωx ,由图可知A =3,T =4,故ω=π2所以f (x )=-3sin π2x ,f (1)=- 3.答案:D6.(2011·江西师大附中、临川一中联考)已知简谐振动f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫|φ|<π2的振幅为32,其图象上相邻的最高点和最低点间的距离是5,且过点⎝ ⎛⎭⎪⎫0,34,则该简谐振动的频率和初相是( )A.18,π6 B.16,π6 C.18,π3D.π6,π3解析:记f (x )的最小正周期为T ,则依题意得A =32,⎝ ⎛⎭⎪⎫T 22+32=5,∴T =8,频率为1T =18.又f (0)=32sin φ=34,∴sin φ=12,而|φ|<π2,因此φ=π6.故选A.答案:A二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.7.(2011·重庆市调研第二次抽测试卷)有一学生对函数f (x )=2x cos x 进行了研究,得到如下四条结论:①函数f (x )在(-π,0)上单调递增,在(0,π)上单调递减; ②存在常数M >0,使|f (x )|≤M |x |对一切实数x 均成立;③函数y =f (x )图象的一个对称中心是⎝ ⎛⎭⎪⎫π2,0; ④函数y =f (x )图象关于直线x =π对称.其中正确结论的序号是________.(写出所有你认为正确的结论的序号)解析:对于①,注意到f ⎝ ⎛⎭⎪⎫π6=2×π6cos π6=3π6,f ⎝ ⎛⎭⎪⎫π3=2×π3cos π3=π3,0<π6<π3<π,且f ⎝ ⎛⎭⎪⎫π6<f ⎝ ⎛⎭⎪⎫π3,因此函数f (x )在(0,π)上不是减函数,①不正确.对于②,注意到|f (x )|=|2x cos x |≤2|x |,因此②正确.对于③,若f (x )的图象的一个对称中心是⎝ ⎛⎭⎪⎫π2,0,由f (0)=0,点(0,0)关于点⎝ ⎛⎭⎪⎫π2,0的对称点是(π,0),由f (π)=2πcos π=-2π≠0,即点(π,0)不在函数f (x )的图象上,因此⎝ ⎛⎭⎪⎫π2,0不是函数f (x )的图象的对称中心,③不正确.对于④,若f (x )的图象关于直线x =π对称,则f (0)=0,点(0,0)关于直线x =π的对称点是(2π,0),f (2π)=4πcos2π=4π≠0,即点(2π,0)不在函数f (x )的图象上,因此直线x =π不是函数f (x )的图象的对称轴,故④不正确.综上所述,其中正确命题的序号是②.答案:②8.(2010·河北省石家庄市高三调研考试)已知定义域为R 的函数f (x )对任意实数x ,y 满足f (x +y )+f (x -y )=2f (x )cos y ,且f (0)=0,f ⎝ ⎛⎭⎪⎫π2=1.给出下列结论:①f ⎝ ⎛⎭⎪⎫π4=12;②f (x )为奇函数;③f (x )为周期函数; ④f (x )在(0,π)内单调递减.其中正确结论的序号是________.解析:在原式中令x =y =π4,得f ⎝ ⎛⎭⎪⎫π2+f (0)=2f ⎝ ⎛⎭⎪⎫π4cos π4,∴f ⎝ ⎛⎭⎪⎫π4=22,故①错误;在原式中令x =0,得f (y )+f (-y )=0,∴函数f (x )为奇函数,故②正确;在原式中令y =π2,得f ⎝ ⎛⎭⎪⎫x +π2+f ⎝ ⎛⎭⎪⎫x -π2=0,∴f (x+2π)+f (x +π)=0,即f (x +π)=-f (x +2π),在原式中再令y =π,得f (x +π)+f (x -π)=-2f (x ),∴f (x +2π)+f (x )=-2f (x +π),∴f (x +2π)+f (x )=-2[-f (x +2π)],即f (x +2π)=f (x ),∴f (x )是以2π为周期的周期函数,故③正确;④由f ⎝ ⎛⎭⎪⎫π4=22,f ⎝ ⎛⎭⎪⎫π2=1即可知f (x )在(0,π)内不是减函数,故④错误.答案:②③9.函数f (x )=A sin(ωx +φ),(A ,ω,φ是常数,A >0,ω>0)的部分图象如图所示,则f (0)=________.解析:由图象知A =2,T =4⎝ ⎛⎭⎪⎫7π12-π3=π,∴ω=2,则f (x )=2sin(2x +φ),由2×π12+φ=π2,得φ=π3,故f (x )=2sin ⎝⎛⎭⎪⎫2x +π3 ∴f (0)=2sin π3=62.答案:6210.已知函数f (x )=A tan(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2,y =f (x )的部分图象如下图,则f ⎝ ⎛⎭⎪⎫π24=________.解析:从图可看出周期T =π2,∴πω=π2,ω=2.又f (x )=A tan(2x +φ)x =38π时,A tan ⎝ ⎛⎭⎪⎫34π+φ=0 tan ⎝ ⎛⎭⎪⎫34π+φ=0,|φ|<π2,∴φ=π4.∴f (x )=A tan ⎝ ⎛⎭⎪⎫2x +π4.取x =0,A tan π4=1,∴A =1,∴f (x )=tan ⎝ ⎛⎭⎪⎫2x +π4. f ⎝ ⎛⎭⎪⎫π24=tan ⎝ ⎛⎭⎪⎫π12+π4=tan π3= 3.答案: 3三、解答题:本大题共2小题,共25分.解答应写出文字说明、证明过程或演算步骤.11.(12分)(2011·潍坊2月模拟)函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫x ∈R ,A >0,ω>0,0<φ<π2的部分图象如图所示.(1)求f (x )的解析式;(2)设g (x )=⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x -π122,求函数g (x )在x ∈⎣⎢⎡⎦⎥⎤-π6,π3上的最大值,并确定此时x 的值.解:(1)由图知A =2,T 4=π3,则2πω=4×π3,∴ω=32.又f ⎝ ⎛⎭⎪⎫-π6=2sin ⎣⎢⎡⎦⎥⎤32×⎝ ⎛⎭⎪⎫-π6+φ =2sin ⎝ ⎛⎭⎪⎫-π4+φ=0, ∴sin ⎝ ⎛⎭⎪⎫φ-π4=0, ∵0<φ<π2,-π4<φ-π4<π4,∴φ-π4=0,即φ=π4,∴f (x )的解析式为f (x )=2sin ⎝⎛⎭⎪⎫32x +π4.(2)由(1)可得f ⎝ ⎛⎭⎪⎫x -π12=2sin ⎣⎢⎡⎦⎥⎤32⎝ ⎛⎭⎪⎫x -π12+π4=2sin ⎝ ⎛⎭⎪⎫32x +π8,∴g (x )=⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x -π122=4×1-cos ⎝ ⎛⎭⎪⎫3x +π42=2-2cos ⎝⎛⎭⎪⎫3x +π4,∵x ∈⎣⎢⎡⎦⎥⎤-π6,π3,∴-π4≤3x +π4≤5π4,∴当3x +π4=π,即x =π4时,g (x )max =4.12.(13分)(2011·合肥市高三第二次质检)将函数y =f (x )的图象上各点的横坐标缩短为原来的12(纵坐标不变),再向左平移π12个单位后,得到的图象与函数g (x )=sin2x 的图象重合.(1)写出函数y =f (x )的图象的一条对称轴方程;(2)若A 为三角形的内角,且f (A )=13,求g ⎝ ⎛⎭⎪⎫A 2的值.解:(1)由题意可知,将函数g (x )=sin2x 的图象向右平移π12个单位,再将横坐标伸长到原来的2倍,纵坐标不变,即可得到函数f (x )的图象,∴f (x )=sin ⎝⎛⎭⎪⎫x -π6.由x -π6=k π+π2,得x =k π+2π3(k ∈Z).故函数f (x )的对称轴方程为x =k π+2π3(k ∈Z).(只要写出一个对称轴方程即可)(2)由f (A )=13,得sin ⎝ ⎛⎭⎪⎫A -π6=13.∵0<A <π,∴-π6<A -π6<5π6,又0<sin ⎝ ⎛⎭⎪⎫A -π6=13<12, ∴0<A -π6<π2,∴cos ⎝ ⎛⎭⎪⎫A -π6=223.∴g ⎝ ⎛⎭⎪⎫A 2=sin A =sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫A -π6+π6=13×32+223×12=22+36.。