2018-2019高二数学综合练习(四)附答案
2018-2019学年高二数学下学期期末考试试题(含解析)_4
2018-2019学年高二数学下学期期末考试试题(含解析)一、选择题(本大题共10小题,每小题4分,共40分)1.已知全集,则A. B. C. D.【答案】C【解析】【分析】根据补集定义直接求得结果.【详解】由补集定义得:本题正确选项:【点睛】本题考查集合运算中的补集运算,属于基础题.2.双曲线的渐近线方程是A. B.C. D.【答案】B【解析】【分析】由双曲线方程求得,由渐近线方程求得结果.【详解】由双曲线方程得:,渐近线方程为:本题正确选项:【点睛】本题考查双曲线渐近线的求解,属于基础题.3.已知某几何体的三视图如图所示,则该几何体的体积为A. B. C. D.【答案】A【解析】【分析】根据三视图可知几何体为三棱锥,根据棱锥体积公式求得结果.【详解】由三视图可知,几何体为三棱锥三棱锥体积为:【点睛】本题考查棱锥体积的求解,关键是能够通过三视图确定几何体为三棱锥,且通过三视图确定三棱锥的底面和高.4.已知是两条不同的直线,是两个不同的平面,则下列命题正确的是A. ,则B. ,则C. ,则D. ,则【答案】D【解析】【分析】根据空间中直线与平面的位置关系的相关定理依次判断各个选项即可.【详解】两平行平面内的直线的位置关系为:平行或异面,可知错误;且,此时或,可知错误;,,,此时或,可知错误;两平行线中一条垂直于一个平面,则另一条必垂直于该平面,正确.【点睛】本题考查空间中直线与平面、平面与平面位置关系的判定,考查学生对于定理的掌握程度,属于基础题.5.若直线经过点,且原点到直线的距离为,则直线的方程为A. B.C. 或D. 或【答案】D【解析】【分析】当直线斜率不存在时,满足题意;当直线斜率存在时,假设直线方程,利用点到直线距离公式构造方程解得结果.【详解】当直线斜率不存在时,方程为:,满足题意;当直线斜率存在时,设直线方程为:,即:原点到直线距离:,解得:直线为:,即:综上所述:直线的方程为:或本题正确选项:【点睛】本题考查点到直线距离公式的应用,易错点是忽略直线斜率不存在的情况,导致求解错误.6.设,则是的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】【分析】通过分类讨论可证得充分条件成立,通过反例可知必要条件不成立,从而得到结果.【详解】若,则;若,则;若,则,可知充分条件成立;当,时,则,此时,可知必要条件不成立;是的充分不必要条件本题正确选项:【点睛】本题考查充分条件与必要条件的判定,属于基础题.7.已知函数的图象如图所示,则的解析式可能是A. B.C. D.【答案】C【解析】【分析】根据且,可依次排除,从而得到答案.【详解】由图象知,且中,,不合题意;中,,不合题意;中,,不合题意;本题正确选项:【点睛】本题考查函数图象的识别,常用方法是利用排除法得到结果,排除时通常采用特殊位置的符号来进行排除.8.已知椭圆的右焦点为,短轴的一个端点为,直线与椭圆相交于、两点.若,点到直线的距离不小于,则椭圆离心率的取值范围为A. B. C. D.【答案】C【解析】【分析】根据椭圆对称性可证得四边形为平行四边形,根据椭圆定义可求得;利用点到直线距离构造不等式可求得,根据可求得的范围,进而得到离心率的范围.【详解】设椭圆的左焦点为,为短轴的上端点,连接,如下图所示:由椭圆的对称性可知,关于原点对称,则又四边形为平行四边形又,解得:点到直线距离:,解得:,即本题正确选项:【点睛】本题考查椭圆离心率的求解,重点考查椭圆几何性质,涉及到椭圆的对称性、椭圆的定义、点到直线距离公式的应用等知识.9.已知正方体的棱长为,定点在棱上(不在端点上),点是平面内的动点,且点到直线的距离与点到点的距离的平方差为,则点的轨迹所在的曲线为A. 圆 B. 椭圆 C. 双曲线 D. 抛物线【答案】D【解析】【分析】作,,连接,以为原点建立空间直角坐标系,利用勾股定理和两点间距离公式构造,整理可得结果.【详解】作,,垂足分别为以为原点建立如下图所示的空间直角坐标系:设,由正方体特点可知,平面,,整理得:的轨迹是抛物线本题正确选项:【点睛】本题考查立体几何中点的轨迹问题,关键是能够通过建立空间直角坐标系,求出动点满足的方程,从而求得轨迹.10.设,,,则下列正确的是A. B. C. D.【答案】B【解析】【分析】根据得单调性可得;构造函数,通过导数可确定函数的单调性,根据单调性可得,得到,进而得到结论.【详解】由的单调递增可知:,即令,则令,则当时,;当时,即:在上单调递增,在上单调递减,即,即:综上所述:本题正确选项:【点睛】本题考查根据函数单调性比较大小的问题,难点在于比较指数与对数大小时,需要构造函数,利用导数确定函数的单调性;需要注意的是,在得到导函数的零点后,需验证零点与之间的大小关系,从而确定所属的单调区间.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.公元前3世纪,古希腊数学家阿波罗尼斯在前人的基础上写了一部划时代的著作《圆锥曲线论》,该书给出了当时数学家们所研究的六大轨迹问题,其中之一便是“到两个定点的距离之比等于不为1的常数的轨迹是圆”,简称“阿氏圆”.用解析几何方法解决“到两个定点,的距离之比为的动点轨迹方程是:”,则该“阿氏圆”的圆心坐标是______,半径是_____.【答案】 (1). (2). 2【解析】【分析】将圆化为标准方程即可求得结果.【详解】由得:圆心坐标为:,半径为:本题正确结果:;【点睛】本题考查根据圆的方程求解圆心和半径的问题,属于基础题.12.已知等比数列中,,则公比______;______.【答案】 (1). 2 (2). 4【解析】【分析】根据等比数列通项公式构造方程求解即可.【详解】本题正确结果:;【点睛】本题考查等比数列基本量的求解,关键是熟练掌握等比数列通项公式,属于基础题.13.若实数满足不等式组则的最小值是_____,最大值是______.【答案】 (1). 3 (2). 9【解析】【分析】根据约束条件画出可行域,将问题转化为求解在轴截距的最大值和最小值,由图象可知过时,最小;过时,最大,求出坐标,代入可得结果.【详解】由约束条件可得可行域如下图阴影部分所示:令,则求的最大值和最小值即为求在轴截距的最大值和最小值由平移可知,当过时,最小;过时,最大由得:;由得:,本题正确结果:;【点睛】本题考查线性规划中的最值问题的求解,关键是能够将问题转化为直线在轴截距的最值问题的求解,属于常考题型.14.函数的最小正周期是______,值域是______.【答案】 (1). (2).【解析】【分析】利用二倍角公式将函数化为,根据余弦型函数周期性和值域得到结果.【详解】的最小正周期;值域为:本题正确结果:;【点睛】本题考查余弦型函数的最小正周期和值域的求解,关键是能够将已知函数化为余弦型函数的形式.15.已知函数则的最大值是______.【答案】【解析】【分析】分别在、和三种情况下求解在区间内的最大值,综合即可得到结果.【详解】当时,,此时:当时,,此时:当时,,此时:综上所述:本题正确结果:【点睛】本题考查分段函数最值的求解,关键是能够通过函数每一段区间上的解析式分别求解出在每一段区间上的最值.16.已知向量满足:,,当取最大值时, ______.【答案】【解析】【分析】根据向量模的性质可知当与反向时,取最大值,根据模长的比例关系可得,整理可求得结果.【详解】当且仅当与反向时取等号又整理得:本题正确结果:【点睛】本题考查向量模长的运算性质,关键是能够确定模长取得最大值时,两个向量之间的关系,从而得到两个向量之间的关系.17.已知,设,若存在不相等的实数同时满足方程和,则实数的取值范围为______.【答案】【解析】【分析】根据奇偶性定义求得为奇函数,从而可得且,从而可将整理为:,通过求解函数的值域可得到的取值范围.【详解】为上的奇函数又且且即:令,则在上单调递增又本题正确结果:【点睛】本题考查函数性质的综合应用问题,涉及到奇偶性的判定、单调性的应用,关键是能够将问题转化为的值域的求解问题;易错点是在求解的取值范围时,忽略的条件,错误求解为,造成增根.三、解答题(本大题共5小题,共74分)18.在中,内角所对边分别为,且.(1)求角的大小;(2)求的取值范围.【答案】(1)(2)【解析】【分析】(1)由已知边的关系配凑出余弦定理的形式,求得,根据的范围求得结果;(2)利用两角和差正弦公式和辅助角公式将整理为,由可求得的范围,进而结合正弦函数的图象可求得的值域,从而得到所求范围.【详解】(1)由得:,即:(2)的取值范围为:【点睛】本题考查余弦定理解三角形、三角形中取值范围类问题的求解,关键是能利用两角和差公式和辅助角公式将所求式子转变为的形式,利用正弦型函数值域的求解方法求得结果.19.如图几何体中,底面为正方形,平面,,且.(1)求证:平面;(2)求与平面所成角的大小.【答案】(1)见解析(2)【解析】【分析】(1)由,,结合面面平行判定定理可证得平面平面,根据面面平行性质证得结论;(2)连接交于点,连接,利用线面垂直的判定定理可证得平面,从而可知所求角为,在中利用正弦求得结果.【详解】(1)四边形为正方形又平面平面又,平面平面平面,平面平面平面平面(2)连接交于点,连接平面,平面又四边形为正方形平面,平面即为与平面所成角且又即与平面所成角为:【点睛】本题考查线面平行的证明、直线与平面所成角的求解,涉及到面面平行的判定与性质、线面垂直的判定与性质的应用;求解直线与平面所成角的关键是能够通过垂直关系将所求角放入直角三角形中来进行求解.20.已知函数,数列的前项和为,点()均在函数的图像上.(1)求数列的通项公式;(2)设,是数列的前项和,求使得对所有都成立的最小正整数.【答案】(1);(2)10.【解析】分析:(1)由已知条件推导出,由此能求出;(2)由,利用裂项求和法求出,由此能求出满足要求的最小整数.详解:(1)当时,当时,符合上式综上,(2)所以由对所有都成立,所以,得,故最小正整数的值为.点睛:利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.21.已知抛物线的焦点为,过点且与轴不垂直的直线与抛物线交于点,且.(1)求抛物线的方程;(2)设直线与轴交于点,试探究:线段与的长度能否相等?如果相等,求直线的方程,如果不等,说明理由.【答案】(1)(2)当的方程为时有.【解析】【分析】(1)设直线,与抛物线方程联立,利用韦达定理得到方程,解方程求得,从而得到抛物线方程;(2)将与抛物线方程联立,利用韦达定理可得,根据焦点弦长公式可求得,利用两点间距离公式得,利用构造方程,解方程求得,从而得到直线的方程.【详解】(1)设直线,代入抛物线方程得:,解得:抛物线方程为:(2)由(1)知:联立得:此时恒成立,过焦点由,由得:,即:,解得:或(舍)当直线方程为:时,【点睛】本题考查直线与抛物线综合应用问题,涉及到抛物线方程的求解、焦点弦长公式的应用等知识;难点在于利用等长关系构造方程后,对于高次方程的求解,解高次方程时,需采用因式分解的方式来进行求解.22.已知函数.(1)判断的图象是否是中心对称图形?若是,求出对称中心;若不是,请说明理由;(2)设,试讨论的零点个数情况.【答案】(1)的图象是中心对称图形,对称中心为:;(2)当或时,有个零点;当时,有个零点【解析】【分析】(1)设,通过奇偶性的定义可求得为奇函数,关于原点对称,从而可得的对称中心,得到结论;(2),可知为一个解,从而将问题转化为解的个数的讨论,即的解的个数;根据的范围,分别讨论不同范围情况下方程解的个数,从而得到零点个数,综合得到结果.【详解】(1)设定义域为:奇函数,图象关于对称的图象是中心对称图形,对称中心为:(2)令,可知为其中一个解,即为一个零点只需讨论的解的个数即可①当时,无解有且仅有一个零点②当时,为方程的解有,共个零点③当时,(i)若,即时,为方程的解有,共个零点(ii)若,即时,的解为:有且仅有一个零点(iii)若,即时,,方程无解有且仅有一个零点综上所述:当或时,有个零点;当时,有个零点【点睛】本题考查函数对称性的判断、函数零点个数的讨论.解决本题中零点个数问题的关键是能够将问题转化为方程根的个数的讨论,从而根据的不同范围得到方程根的个数,进而得到零点个数,属于较难题.2018-2019学年高二数学下学期期末考试试题(含解析)一、选择题(本大题共10小题,每小题4分,共40分)1.已知全集,则A. B. C. D.【答案】C【解析】【分析】根据补集定义直接求得结果.【详解】由补集定义得:本题正确选项:【点睛】本题考查集合运算中的补集运算,属于基础题.2.双曲线的渐近线方程是A. B.C. D.【答案】B【解析】【分析】由双曲线方程求得,由渐近线方程求得结果.【详解】由双曲线方程得:,渐近线方程为:本题正确选项:【点睛】本题考查双曲线渐近线的求解,属于基础题.3.已知某几何体的三视图如图所示,则该几何体的体积为A. B. C. D.【答案】A【解析】【分析】根据三视图可知几何体为三棱锥,根据棱锥体积公式求得结果.【详解】由三视图可知,几何体为三棱锥三棱锥体积为:本题正确选项:【点睛】本题考查棱锥体积的求解,关键是能够通过三视图确定几何体为三棱锥,且通过三视图确定三棱锥的底面和高.4.已知是两条不同的直线,是两个不同的平面,则下列命题正确的是A. ,则B. ,则C. ,则D. ,则【答案】D【解析】【分析】根据空间中直线与平面的位置关系的相关定理依次判断各个选项即可.【详解】两平行平面内的直线的位置关系为:平行或异面,可知错误;且,此时或,可知错误;,,,此时或,可知错误;两平行线中一条垂直于一个平面,则另一条必垂直于该平面,正确.本题正确选项:【点睛】本题考查空间中直线与平面、平面与平面位置关系的判定,考查学生对于定理的掌握程度,属于基础题.5.若直线经过点,且原点到直线的距离为,则直线的方程为A. B.C. 或D. 或【答案】D【解析】【分析】当直线斜率不存在时,满足题意;当直线斜率存在时,假设直线方程,利用点到直线距离公式构造方程解得结果.【详解】当直线斜率不存在时,方程为:,满足题意;当直线斜率存在时,设直线方程为:,即:原点到直线距离:,解得:直线为:,即:综上所述:直线的方程为:或本题正确选项:【点睛】本题考查点到直线距离公式的应用,易错点是忽略直线斜率不存在的情况,导致求解错误.6.设,则是的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】【分析】通过分类讨论可证得充分条件成立,通过反例可知必要条件不成立,从而得到结果.【详解】若,则;若,则;若,则,可知充分条件成立;当,时,则,此时,可知必要条件不成立;是的充分不必要条件本题正确选项:【点睛】本题考查充分条件与必要条件的判定,属于基础题.7.已知函数的图象如图所示,则的解析式可能是A. B.C. D.【答案】C【解析】【分析】根据且,可依次排除,从而得到答案.【详解】由图象知,且中,,不合题意;中,,不合题意;中,,不合题意;本题正确选项:【点睛】本题考查函数图象的识别,常用方法是利用排除法得到结果,排除时通常采用特殊位置的符号来进行排除.8.已知椭圆的右焦点为,短轴的一个端点为,直线与椭圆相交于、两点.若,点到直线的距离不小于,则椭圆离心率的取值范围为A. B. C. D.【答案】C【解析】【分析】根据椭圆对称性可证得四边形为平行四边形,根据椭圆定义可求得;利用点到直线距离构造不等式可求得,根据可求得的范围,进而得到离心率的范围.【详解】设椭圆的左焦点为,为短轴的上端点,连接,如下图所示:由椭圆的对称性可知,关于原点对称,则又四边形为平行四边形又,解得:点到直线距离:,解得:,即本题正确选项:【点睛】本题考查椭圆离心率的求解,重点考查椭圆几何性质,涉及到椭圆的对称性、椭圆的定义、点到直线距离公式的应用等知识.9.已知正方体的棱长为,定点在棱上(不在端点上),点是平面内的动点,且点到直线的距离与点到点的距离的平方差为,则点的轨迹所在的曲线为A. 圆B. 椭圆C. 双曲线D. 抛物线【答案】D【解析】【分析】作,,连接,以为原点建立空间直角坐标系,利用勾股定理和两点间距离公式构造,整理可得结果.【详解】作,,垂足分别为以为原点建立如下图所示的空间直角坐标系:设,由正方体特点可知,平面,,整理得:的轨迹是抛物线本题正确选项:【点睛】本题考查立体几何中点的轨迹问题,关键是能够通过建立空间直角坐标系,求出动点满足的方程,从而求得轨迹.10.设,,,则下列正确的是A. B. C. D.【答案】B【解析】【分析】根据得单调性可得;构造函数,通过导数可确定函数的单调性,根据单调性可得,得到,进而得到结论.【详解】由的单调递增可知:,即令,则令,则当时,;当时,即:在上单调递增,在上单调递减,即,即:综上所述:本题正确选项:【点睛】本题考查根据函数单调性比较大小的问题,难点在于比较指数与对数大小时,需要构造函数,利用导数确定函数的单调性;需要注意的是,在得到导函数的零点后,需验证零点与之间的大小关系,从而确定所属的单调区间.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.公元前3世纪,古希腊数学家阿波罗尼斯在前人的基础上写了一部划时代的著作《圆锥曲线论》,该书给出了当时数学家们所研究的六大轨迹问题,其中之一便是“到两个定点的距离之比等于不为1的常数的轨迹是圆”,简称“阿氏圆”.用解析几何方法解决“到两个定点,的距离之比为的动点轨迹方程是:”,则该“阿氏圆”的圆心坐标是______,半径是_____.【答案】 (1). (2). 2【解析】【分析】将圆化为标准方程即可求得结果.【详解】由得:圆心坐标为:,半径为:本题正确结果:;【点睛】本题考查根据圆的方程求解圆心和半径的问题,属于基础题.12.已知等比数列中,,则公比______;______.【答案】 (1). 2 (2). 4【解析】【分析】根据等比数列通项公式构造方程求解即可.【详解】本题正确结果:;【点睛】本题考查等比数列基本量的求解,关键是熟练掌握等比数列通项公式,属于基础题.13.若实数满足不等式组则的最小值是_____,最大值是______.【答案】 (1). 3 (2). 9【解析】【分析】根据约束条件画出可行域,将问题转化为求解在轴截距的最大值和最小值,由图象可知过时,最小;过时,最大,求出坐标,代入可得结果.【详解】由约束条件可得可行域如下图阴影部分所示:令,则求的最大值和最小值即为求在轴截距的最大值和最小值由平移可知,当过时,最小;过时,最大由得:;由得:,本题正确结果:;【点睛】本题考查线性规划中的最值问题的求解,关键是能够将问题转化为直线在轴截距的最值问题的求解,属于常考题型.14.函数的最小正周期是______,值域是______.【答案】 (1). (2).【解析】【分析】利用二倍角公式将函数化为,根据余弦型函数周期性和值域得到结果.【详解】的最小正周期;值域为:本题正确结果:;【点睛】本题考查余弦型函数的最小正周期和值域的求解,关键是能够将已知函数化为余弦型函数的形式.15.已知函数则的最大值是______.【答案】【解析】【分析】分别在、和三种情况下求解在区间内的最大值,综合即可得到结果.【详解】当时,,此时:当时,,此时:当时,,此时:综上所述:本题正确结果:【点睛】本题考查分段函数最值的求解,关键是能够通过函数每一段区间上的解析式分别求解出在每一段区间上的最值.16.已知向量满足:,,当取最大值时, ______.【答案】【解析】【分析】根据向量模的性质可知当与反向时,取最大值,根据模长的比例关系可得,整理可求得结果.【详解】当且仅当与反向时取等号又整理得:本题正确结果:【点睛】本题考查向量模长的运算性质,关键是能够确定模长取得最大值时,两个向量之间的关系,从而得到两个向量之间的关系.17.已知,设,若存在不相等的实数同时满足方程和,则实数的取值范围为______.【答案】【解析】【分析】根据奇偶性定义求得为奇函数,从而可得且,从而可将整理为:,通过求解函数的值域可得到的取值范围.【详解】为上的奇函数又且且即:令,则在上单调递增又本题正确结果:【点睛】本题考查函数性质的综合应用问题,涉及到奇偶性的判定、单调性的应用,关键是能够将问题转化为的值域的求解问题;易错点是在求解的取值范围时,忽略的条件,错误求解为,造成增根.三、解答题(本大题共5小题,共74分)18.在中,内角所对边分别为,且.(1)求角的大小;(2)求的取值范围.【答案】(1)(2)【解析】【分析】(1)由已知边的关系配凑出余弦定理的形式,求得,根据的范围求得结果;(2)利用两角和差正弦公式和辅助角公式将整理为,由可求得的范围,进而结合正弦函数的图象可求得的值域,从而得到所求范围.【详解】(1)由得:,即:(2)的取值范围为:【点睛】本题考查余弦定理解三角形、三角形中取值范围类问题的求解,关键是能利用两角和差公式和辅助角公式将所求式子转变为的形式,利用正弦型函数值域的求解方法求得结果.19.如图几何体中,底面为正方形,平面,,且.(1)求证:平面;(2)求与平面所成角的大小.【答案】(1)见解析(2)【解析】【分析】(1)由,,结合面面平行判定定理可证得平面平面,根据面面平行性质证得结论;(2)连接交于点,连接,利用线面垂直的判定定理可证得平面,从而可知所求角为,在中利用正弦求得结果.【详解】(1)四边形为正方形又平面平面又,平面平面平面,平面平面平面平面(2)连接交于点,连接平面,平面又四边形为正方形平面,平面即为与平面所成角且又即与平面所成角为:【点睛】本题考查线面平行的证明、直线与平面所成角的求解,涉及到面面平行的判定与性质、线面垂直的判定与性质的应用;求解直线与平面所成角的关键是能够通过垂直关系将所求角放入直角三角形中来进行求解.20.已知函数,数列的前项和为,点()均在函数的图像上.(1)求数列的通项公式;(2)设,是数列的前项和,求使得对所有都成立的最小正整数.【答案】(1);(2)10.【解析】分析:(1)由已知条件推导出,由此能求出;(2)由,利用裂项求和法求出,由此能求出满足要求的最小整数.详解:(1)当时,当时,符合上式综上,(2)。
2018-2019年河南数学高二水平会考真题及答案解析
2018-2019年河南数学高二水平会考真题及答案解析班级:___________ 姓名:___________ 分数:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一、选择题1.如图,下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度和时间之间的关系,其中正确的有()A.1个B.2个C.3个D.4个【答案】B【解析】试题分析:根据题意,由于四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止,那么单位时间内进去的水量相等,选项A,应该是匀速上升,错误,选项B,先快后慢,成立,对不C,先快后慢,再快,故答案成立,丢与D,由于先慢后快再慢,故成立,因此正确的选项为B考点:函数图象点评:主要是考查了函数解析式与函数图象的关系,属于基础题。
2.设函数的定义域为R,是的极大值点,以下结论一定正确的是()A.B.是的极小值点C.是的极小值点D.是的极小值点【答案】D【解析】试题分析:对于A 项,x 0(x 0≠0)是f (x )的极大值点,不一定是最大值点,因此不能满足在整个定义域上值最大;对于B 项,f (-x )是把f (x )的图象关于y 轴对称,因此,-x 0是f (-x )的极大值点;对于C 项,-f (x )是把f (x )的图象关于x 轴对称,因此,x 0是-f (x )的极小值点; 对于D 项,-f (-x )是把f (x )的图象分别关于x 轴、y 轴做对称,因此-x 0是-f (-x )的极小值点. 故选D .考点:命题及命题的否定,函数的极值。
点评:小综合题,关键是理解命题的概念,明确函数存在极值的条件。
3.设, ,则的大小关系是( ) A .B .C .D .【答案】B 【解析】试题分析:根据题意,由于,,故那么有A-B=,故可知结论为,选B.考点:比较大小点评:主要是考查了运用作差法的思想,来比较大小,属于基础题。
2018-2019学年高二下学期期末考试数学试题(带答案)
2018-2019学年高二下学期期末考试一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合4{|0}2x A x Z x -=∈≥+,1{|24}4x B x =≤≤,则A B I =() A .{|12}x x -≤≤ B .{1,0,1,2}-C .{2,1,0,1,2}--D .{0,1,2}2.已知i 为虚数单位,若复数11tiz i-=+在复平面内对应的点在第四象限,则t 的取值范围为() A .[1,1]- B .(1,1)- C .(,1)-∞-D .(1,)+∞3.若命题“∃x 0∈R ,使x 20+(a -1)x 0+1<0”是假命题,则实数a 的取值范围为( ) A .1≤a ≤3 B .-1≤a ≤3 C .-3≤a ≤3D .-1≤a ≤14.已知双曲线1C :2212x y -=与双曲线2C :2212x y -=-,给出下列说法,其中错误的是()A.它们的焦距相等B .它们的焦点在同一个圆上C.它们的渐近线方程相同D .它们的离心率相等5.在等比数列{}n a 中,“4a ,12a 是方程2310x x ++=的两根”是“81a =±”的() A .充分不必要条件 B .必要不充分条件 C.充要条件D .既不充分也不必要条件6.已知直线l 过点P (1,0,-1),平行于向量a =(2,1,1),平面α过直线l 与点M (1,2,3),则平面α的法向量不可能是( ) A.(1,-4,2)B.⎝⎛⎭⎫14,-1,12 C.⎝⎛⎭⎫-14,1,-12 D.(0,-1,1)7.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成的图形的面积为( )A.14 B.3-34 C.2-34 D.138.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种 D .66种 9.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m 等于( )A .5B .6C .7D .8 10.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计6050110由K 2=n ad -bc 2a +bc +d a +c b +d算得,K 2=110×40×30-20×20260×50×60×50≈7.8.附表:P (K 2≥k ) 0.050 0.010 0.001 k3.8416.63510.828参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关”11.焦点为F 的抛物线C :28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当||||MA MF 取得最大值时,直线MA 的方程为() A .2y x =+或2y x =-- B .2y x =+ C.22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满足(2)2()f x f x +=,且当[2,4]x ∈时,224,23,()2,34,x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩()1g x ax =+,对1[2,0]x ∀∈-,2[2,1]x ∃∈-,使得21()()g x f x =,则实数a 的取值范围为()A .11(,)[,)88-∞-+∞UB .11[,0)(0,]48-U C.(0,8]D .11(,][,)48-∞-+∞U二、填空题:本大题共4小题,每小题5分.13.已知(1,)a λ=r ,(2,1)b =r,若向量2a b +r r 与(8,6)c =r 共线,则a r 和b r 方向上的投影为.14.将参数方程⎩⎨⎧x =a2⎝⎛⎭⎫t +1t ,y =b 2⎝⎛⎭⎫t -1t (t 为参数)转化成普通方程为________.15.已知随机变量X 服从正态分布N (0,σ2),且P (-2≤X ≤0)=0.4,则P (X >2)=________. 16.已知球O 是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A BCD -的外接球,3BC =,23AB =,点E 在线段BD 上,且3BD BE =,过点E 作圆O 的截面,则所得截面圆面积的取值范围是.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知直线l 的参数方程为24,222x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=,直线l 与圆C 交于A ,B 两点.(1)求圆C 的直角坐标方程及弦AB 的长;(2)动点P 在圆C 上(不与A ,B 重合),试求ABP ∆的面积的最大值18.(12分)设函数()1f x x x =+-的最大值为m .(1)求m 的值;(2)若正实数a ,b 满足a b m +=,求2211a b b a +++的最小值.19.(12分)点C 在以AB 为直径的圆O 上,PA 垂直与圆O 所在平面,G 为AOC ∆的垂心. (1)求证:平面OPG ⊥平面PAC ;(2)若22PA AB AC ===,求二面角A OP G --的余弦值.20.(12分)2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?21. (12分)已知椭圆x 2b 2+y 2a 2=1 (a >b >0)的离心率为22,且a 2=2b .(1)求椭圆的方程;(2)是否存在实数m ,使直线l :x -y +m =0与椭圆交于A ,B 两点,且线段AB 的中点在圆 x 2+y 2=5上?若存在,求出m 的值;若不存在,请说明理由.22. (12分)已知函数f(x)=ln(1+x)-x+k2x2(k≥0).(1)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求f(x)的单调区间.参考答案一、选择题1-5:BBBDA 6-10:DBDBC 11-12:AD 二、填空题13.35514:x 2a 2-y 2b 2=1 . 15.0.1 16.[2,4]ππ三、解答题17.解:(1)由4cos ρθ=得24cos ρρθ=,所以2240x y x +-=,所以圆C 的直角坐标方程为22(2)4x y -+=.将直线l 的参数方程代入圆:C 22(2)4x y -+=,并整理得2220t t +=,解得10t =,222t =-.所以直线l 被圆C 截得的弦长为12||22t t -=. (2)直线l 的普通方程为40x y --=.圆C 的参数方程为22cos ,2sin ,x y θθ=+⎧⎨=⎩(θ为参数),可设曲线C 上的动点(22cos ,2sin )P θθ+,则点P 到直线l 的距离|22cos 2sin 4|2d θθ+--=|2cos()2|4πθ=+-,当cos()14πθ+=-时,d 取最大值,且d 的最大值为22+. 所以122(22)2222ABP S ∆≤⨯⨯+=+, 即ABP ∆的面积的最大值为22+.18.解:(Ⅰ)f (x )=|x +1|-|x |=⎩⎪⎨⎪⎧-1,x ≤-1,2x +1,-1<x <1,1, x ≥1,由f (x )的单调性可知,当x ≥1时,f (x )有最大值1.所以m =1.(Ⅱ)由(Ⅰ)可知,a +b =1,a 2b +1+b 2a +1=13(a 2b +1+b 2a +1)[(b +1)+(a +1)] =13[a 2+b 2+a 2(a +1)b +1+b 2(b +1)a +1]≥13(a 2+b 2+2a 2(a +1)b +1·b 2(b +1)a +1) =13(a +b )2=13.当且仅当a =b =12时取等号. 即a 2b +1+b 2a +1的最小值为13. 19.解:(1)延长OG 交AC 于点M .因为G 为AOC ∆的重心,所以M 为AC 的中点. 因为O 为AB 的中点,所以//OM BC .因为AB 是圆O 的直径,所以BC AC ⊥,所以OM AC ⊥. 因为PA ⊥平面ABC ,OM ⊂平面ABC ,所以PA OM ⊥. 又PA ⊂平面PAC ,AC ⊂平面PAC ,PA AC A =I , 所以OM ⊥平面PAC .即OG ⊥平面PAC ,又OG ⊂平面OPG , 所以平面OPG ⊥平面PAC .(2)以点C 为原点,CB u u u r ,CA u u u r ,AP u u u r方向分别为x ,y ,z 轴正方向建立空间直角坐标系C xyz -,则(0,0,0)C ,(0,1,0)A ,(3,0,0)B ,31(,,0)22O ,(0,1,2)P ,1(0,,0)2M ,则3(,0,0)2OM =-u u u u r ,31(,,2)22OP =-u u u r .平面OPG 即为平面OPM ,设平面OPM 的一个法向量为(,,)n x y z =r ,则30,23120,22n OM x n OP x y z ⎧⋅=-=⎪⎪⎨⎪⋅=-++=⎪⎩r u u u u r r u u u r 令1z =,得(0,4,1)n =-r . 过点C 作CH AB ⊥于点H ,由PA ⊥平面ABC ,易得CH PA ⊥,又PA AB A =I ,所以CH ⊥平面PAB ,即CH u u u r为平面PAO 的一个法向量.在Rt ABC ∆中,由2AB AC =,得30ABC ∠=︒,则60HCB ∠=︒,1322CH CB ==. 所以3cos 4H x CH HCB =∠=,3sin 4H y CH HCB =∠=. 所以33(,,0)44CH =u u u r .设二面角A OP G --的大小为θ,则||cos ||||CH n CH n θ⋅==⋅u u u r r u u ur r 2233|0410|251441739411616⨯-⨯+⨯=+⨯+. 20.解:(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件A ,则333101()120C P A C ==,所以两位顾客均享受到免单的概率为1()()14400P P A P A =⋅=.(2)若选择方案一,设付款金额为X 元,则X 可能的取值为0,600,700,1000.333101(0)120C P X C ===,21373107(600)40C C P X C ===, 123731021(700)40C C P X C ===,373107(1000)24C P X C ===, 故X 的分布列为,所以17217()06007001000120404024E X =⨯+⨯+⨯+⨯17646=(元). 若选择方案二,设摸到红球的个数为Y ,付款金额为Z ,则1000200Z Y =-,由已知可得3~(3,)10Y B ,故39()31010E Y =⨯=, 所以()(1000200)E Z E Y =-=1000200()820E Y -=(元).因为()()E X E Z <,所以该顾客选择第一种抽奖方案更合算.21.解:(1)由题意得⎩⎪⎨⎪⎧c a =22,a 2=2b ,b 2=a 2-c 2,解得⎩⎨⎧a =2,c =1,b =1,故椭圆的方程为x 2+y22=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M (x 0,y 0). 联立直线与椭圆的方程得⎩⎪⎨⎪⎧x 2+y 22=1,x -y +m =0,即3x 2+2mx +m 2-2=0,所以Δ=(2m )2-4×3×(m 2-2)>0,即m 2<3, 且x 0=x 1+x 22=-m 3,y 0=x 0+m =2m3, 即M ⎝ ⎛⎭⎪⎫-m 3,2m 3,又因为M 点在圆x 2+y 2=5上,所以⎝ ⎛⎭⎪⎫-m 32+⎝ ⎛⎭⎪⎫2m 32=5,解得m =±3,与m 2<3矛盾.故实数m 不存在.22. 解: (1)当k =2时,f (x )=ln(1+x )-x +x 2, f ′(x )=11+x-1+2x .由于f (1)=ln 2,f ′(1)=32,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -ln 2=32(x -1),即3x -2y +2ln 2-3=0.(2)f ′(x )=x (kx +k -1)1+x,x ∈(-1,+∞).当k =0时,f ′(x )=-x1+x .所以,在区间(-1,0)上,f ′(x )>0; 在区间(0,+∞)上,f ′(x )<0. 故f (x )的单调递增区间是(-1,0), 单调递减区间是(0,+∞).当0<k <1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=0,x 2=1-kk>0.所以,在区间(-1,0)和(1-kk,+∞)上,f ′(x )>0;在区间(0,1-kk)上,f ′(x )<0.故f (x )的单调递增区间是(-1,0)和(1-kk,+∞),单调递减区间是(0,1-kk ).当k =1时,f ′(x )=x 21+x .故f (x )的单调递增区间是(-1,+∞).当k >1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=1-kk∈(-1,0),x 2=0.所以,在区间(-1,1-kk)和(0,+∞)上,f ′(x )>0;在区间(1-kk,0)上,f ′(x )<0.故f (x )的单调递增区间是(-1,1-kk)和(0,+∞),单调递减区间是(1-kk ,0).。
2018-2019学年高中数学 阶段综合测评2 苏教版选修4-4
阶段综合测评(二)(时间90分钟,满分120分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上) 1.已知动圆:x 2+y 2-2ax cos θ-2by sin θ=0(a ,b 是正常数,a ≠b ,θ是参数),那么圆心的轨迹是________.【答案】 椭圆 2.圆⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ+2的圆心坐标是________.【解析】 消去参数θ,得圆的方程为x 2+(y -2)2=4,所以圆心坐标为(0,2). 【答案】 (0,2)3.在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =5cos θ,y =5sin θ⎝ ⎛⎭⎪⎫θ为参数,0≤θ≤π2和⎩⎪⎨⎪⎧x =1-22t ,y =-22t (t 为参数),则曲线C 1与C 2的交点坐标为________.【解析】 C 1的普通方程为x 2+y 2=5(x ≥0,y ≥0).C 2的普通方程为x -y -1=0.解方程组⎩⎪⎨⎪⎧x -y -1=0,x 2+y 2=x ≥0,y ,得⎩⎪⎨⎪⎧x =2,y =1.∴C 1与C 2的交点坐标为(2,1).【答案】 (2,1)4.直线⎩⎪⎨⎪⎧x =2+3t ,y =-1+t 上对应t =0和t =1两点间的距离是________.【答案】 105.方程⎩⎪⎨⎪⎧x =a +t cos θ,y =b +t sin θ分别以t 为参数(t ≠0)和θ为参数,得到两条曲线,则这两条曲线公共点的个数是________.【答案】 2个6.已知点P (x ,y )在椭圆x 24+y 2=1上,则2x +y 的最大值________.【解析】 设x =2cos θ,y =sin θ(0≤θ<2π),2x +y =4cos θ+sin θ=17sin(θ+φ),所以2x +y 最大值为17. 【答案】177.直线⎩⎪⎨⎪⎧x =3+at ,y =-1+4t(t 为参数)过定点________.【答案】 (3,-1)8.直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线C 1:⎩⎪⎨⎪⎧x =3+cos θ,y =4+sin θ(θ为参数)和曲线C 2:ρ=1上,则AB 的最小值为________.【解析】 曲线C 1的方程是(x -3)2+(y -4)2=1,曲线C 2的方程是x 2+y 2=1,两圆外离,所以AB 的最小值为32+42-1-1=3.【答案】 39.过曲线⎩⎪⎨⎪⎧x =3cos θ,y =4sin θ(θ为参数,0≤θ≤π)上一点P 和原点连线的倾斜角为π4,则点P 的坐标为________.【解析】 由于y x =4sin θ3cos θ=tan π4=1,所以tan θ=34,cos θ=45,sin θ=35,点P 的坐标为(125,125).【答案】 (125,125)10.直线⎩⎪⎨⎪⎧x =t 2,y =-3+t(t 为参数)与圆⎩⎨⎧x =5cos θ,y =5sin θ(θ为参数)相交,弦长为________.【解析】 圆的普通方程为x 2+y 2=5,将⎩⎪⎨⎪⎧x =t 2,y =-3+t代入上式,得5t 2-24t +16=0,|t 1-t 2|= 242-4×5×1625=165,所以相交弦长为122+1|t 1-t 2|=855.【答案】85511.在平面直角坐标系xOy中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.【解析】 直线l :⎩⎪⎨⎪⎧x =t ,y =t -a 消去参数t 后得y =x -a .椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1.又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3. 【答案】 312.在平面直角坐标系下,已知曲线C 1:⎩⎪⎨⎪⎧x =2t +2a ,y =-t (t 为参数)和曲线C 2:⎩⎪⎨⎪⎧x =2cos θ,y =1+2sin θ(θ为参数),若曲线C 1,C 2有公共点,则实数a 的取值范围为________.【解析】 C 1可化为x +2y -2a =0,C 2可化为x 2+(y -1)2=4,曲线C 1,C 2有公共点,则|2-2a |5≤2,所以1-5≤a ≤1+5,故应填[1-5,1+5]. 【答案】 [1-5,1+5]13.直线⎩⎨⎧x =1+3t ,y =-2-3t(t 为参数)的倾斜角是______.【答案】 56π14.如图1,以过原点的直线的倾斜角θ为参数,则圆x 2+y 2-x =0的参数方程为________.图1【解析】 将x 2+y 2-x =0配方,得⎝ ⎛⎭⎪⎫x -122+y 2=14,∴圆的直径为1.设P (x ,y ),则x =|OP |cos θ=1×cos θ×cos θ=cos 2θ,y =|OP |sin θ=1×cos θ×sin θ=sin θcos θ,∴圆x 2+y 2-x =0的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).【答案】 ⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数)二、解答题(本大题共4小题,共50分,解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分12分)已知直线l 经过P (1,1),倾斜角为π6.(1)写出直线l 的参数方程;(2)设l 与圆x 2+y 2=4相交于两点A ,B ,求弦AB 中点M 的坐标及点M 到A ,B 两点的距离之积.【解】 (1)直线l 的参数方程为⎩⎪⎨⎪⎧x =1+32t ,y =1+12t (t 为参数).(2)将直线l 的参数方程代入圆方程x 2+y 2=4中得t 2+(3+1)t -2=0,设A ,B 两点对应的参数分别为t 1,t 2,则AB 中点M 所对应的参数为t 1+t 22.又∵AB 中点M 所对应的参数为t 1+t 22=-3+12, ∴AB 中点M 的坐标为(1-34,3-34).于是MA ·MB =⎪⎪⎪⎪⎪⎪t 1-t 1+t 22·⎪⎪⎪⎪⎪⎪t 2-t 1+t 22=t 1-t 224=6+32.16.(本小题满分12分)在极坐标系中,圆C 1的方程为ρ=42cos ⎝ ⎛⎭⎪⎫θ-π4,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,圆C 2的参数方程为⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ是参数),若圆C 1与圆C 2相切,求实数a 的值.【导学号:98990042】【解】 C 1:(x -2)2+(y -2)2=8,圆心C 1(2,2),半径r 1=22,C 2:(x +1)2+(y +1)2=a 2,圆心C 2(-1,-1),半径r 2=|a |.圆心距C 1C 2=32,两圆外切时,C 1C 2=r 1+r 2=22+|a |=32,a =±2; 两圆内切时,C 1C 2=|r 1-r 2|=|22-|a ||=32,a =±5 2.综上,a =±2,或a =±5 2.17.(本小题满分13分)P 为抛物线y 2=2px (p >0)上任意一点,F 为其焦点,以PF 的长t 为参数,写出抛物线的参数方程.【解】 设P (x ,y ),则由抛物线的定义知x =t -p2,y 2=2p (t -p2)=2pt -p 2,所以y =±2pt -p 2,因此抛物线的参数方程是⎩⎪⎨⎪⎧x =t -p 2,y =2pt -p 2和⎩⎪⎨⎪⎧x =t -p 2,y =-2pt -p 2,其中t 为参数且t ≥p2. 18.(本小题满分13分)已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t (t 是参数),C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ是参数)(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:⎩⎪⎨⎪⎧x =3+2t ,y =-2+t (t 是参数)距离的最小值.【解】 (1)C 1:(x +4)2+(y -3)2=1,C 2:x 264+y 29=1,C 1为圆心是(-4,3),半径是1的圆.C 2为中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.(2)当t =π2时,P (-4,4),Q (8cos θ,3sin θ),故M (-2+4cos θ,2+32sin θ).C 3为直线x -2y -7=0, M 到C 3的距离d =55|4cos θ-3sin θ-13|. 从而当cos θ=45,sin θ=-35时,d 取得最小值855.。
2018-2019学年高二数学下学期期末考试试题(含解析)
2018-2019学年高二数学下学期期末考试试题(含解析)一、填空题。
1.已知全集,集合,,则_______。
【答案】【解析】由,得:,则,故答案为.2.不等式的解集是_______.【答案】【解析】【分析】直接去掉绝对值即可得解.【详解】由去绝对值可得即,故不等式的解集是.【点睛】本题考查了绝对值不等式的解法,属于基础题.3.关于的不等式的解集是,求实数的取值范围是 _______.【答案】【解析】【分析】利用判别式△<0求出实数k的取值范围.【详解】关于x的不等式的解集为R,∴△=k2-4×9<0,解得∴实数k的取值范围为.【点睛】本题考查了一元二次不等式恒成立问题,是基础题.4.某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为_______。
【答案】2【解析】【分析】根据抽取6个城市作为样本,得到每个个体被抽到的概率,用概率乘以丙组的数目,即可得到结果.【详解】城市有甲、乙、丙三组,对应的城市数分别为4 ,12,8.本市共有城市数24 ,用分层抽样的方法从中抽取一个容量为6的样本,每个个体被抽到的概率是,丙组中对应的城市数8,则丙组中应抽取的城市数为,故答案为2.【点睛】本题主要考查分层抽样的应用以及古典概型概率公式的应用,属于基础题.分层抽样适合总体中个体差异明显,层次清晰的抽样,其主要性质是,每个层次,抽取的比例相同.5.有个元素的集合的3元子集共有20个,则= _______.【答案】6【解析】【分析】在个元素中选取个元素共有种,解=20即可得解.【详解】在个元素中选取个元素共有种,解=20得,故答案为6.【点睛】本题考查了组合数在集合中的应用,属于基础题.6.用0,1,2,3,4可以组成_______个无重复数字五位数.【答案】96【解析】【分析】利用乘法原理,即可求出结果.【详解】用0、1、2、3、4组成一个无重复数字的五位数共有4×4×3×2×1=96种不同情况,故选:A.【点睛】本题主要考查排列、组合以及简单计数原理的应用,属于基础题.7.在的二项式中,常数项等于_______(结果用数值表示).【答案】240【解析】【分析】写出二项展开式的通项,由的指数为0求得r值,则答案可求.【详解】由得由6-3r=0,得r=2.∴常数项等于,故答案为240.【点睛】本题考查了二项式系数的性质,关键是对二项展开式通项的记忆与运用,是基础题.8.已知,则实数_______.【答案】2或【解析】【分析】先求得,解即可得解.【详解】=解得故答案为2或【点睛】本题考查了复数的模的计算,属于基础题.9.在大小相同的6个球中,2个是红球,4个是白球.若从中任意选取3个,则所选的3个球中至少有1个红球的概率是________.(结果用分数表示)【答案】【解析】试题分析:由题意知本题是一个古典概型,∵试验发生包含的所有事件是从6个球中取3个,共有种结果,而满足条件的事件是所选的3个球中至少有1个红球,包括有一个红球2个白球;2个红球一个白球,共有∴所选的3个球中至少有1个红球的概率是.考点:等可能事件的概率.10.集合,集合,若,则实数____.【答案】0,2,【解析】【分析】解出集合A,由可得集合B几种情况,分情况讨论即可得解.【详解】,若,则,当时,;当时,;当时,;当时,无值存在;故答案为0,2,.【点睛】本题考查了集合子集的应用,注意分类讨论要全面,空集的情况易漏掉.11.若,,,且的最小值是___.【答案】9【解析】【分析】根据基本不等式的性质,结合乘“1”法求出代数式的最小值即可.【详解】∵,,,,当且仅当时“=”成立,故答案为9.【点睛】本题考查了基本不等式的性质,考查转化思想,属于基础题.12.定义“规范01数列”如下:共有项,其中项为0,项为1,且对任意,中0的个数不少于1的个数.若,则不同的“规范01数列”共有____个。
2018-2019学年高二数学人教B版选修4-5模块综合检测 Word版含解析
答案
1.选 C A 项中 a2-b2=(a+b)(a-b),
由 a<b 知 a-b<0.
但 a+b 的符号不确定,故 A 项错误.
B 项中,ab2-a2b=ab(b-a),
由 a<b 知 b-a>0,
但 ab 的符号不确定,故 B 项错误.
( ) 1 1 1 1 1 a-b
C 项中, - = - = , ab2 a2b ab b a a2b2
13. 若 不 等 式 |x- a|+ |x- 2|≥1 对 任 意 实 数 x 均 成 立 , 则 实 数 a 的 取 值 范 围 为
________________.
1
1
1
14.设正数 a,b,c 的乘积 abc=1,
+
+
的最小值为________.
a2b+c b2c+a c2a+b
x-1
A.(-∞,2)
B.[2,+∞)
C.[3,+∞)
D.(-∞,3]
11 9.若实数 x、y 满足 + =1,则 x2+2y2 有( )
x2 y2
A.最大值 3+2 2
B.最小值 3+2 2
C.最大值 6
D.最小值 6
1 16x 10.若 x>1,则函数 y=x+ + 的最小值为( )
x x2+1
5-3
5-3
边到-2 的距离等于 =1 的点-3,以及 1 右边到 1 的距离等于 =1 的点 2,这样就
2
2
得到原不等式的解集为(-∞,-3]∪[2,+∞).
( ) a b
6.选 A 设 m= , ,n=(cos θ,sin θ), cos θ sin θ
| | a
b
2018-2019年高二下学期4月联考数学(理)试题
一.选择题(每小题5分,其中只有一个选项是正确的,共60分):1. 已知函数(e是对自然对数的底数),则其导函数=()A. B. C. 1+x D. 1﹣x【答案】B【解析】根据导数除法公式有,故选择B.2. 只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有()A. 6个B. 9个C. 18个D. 36个【答案】C【解析】试题分析:完成这件事分为两步,第一步先排好1,2,3有种不同方法;第二步将第四个数(可以为1,2,3中的任一个)插到排好的3个数的4个间隔中,又同一数字不能相邻出现,所以每个数字只能放两个位置,有不同方法,这样每一个四位数都出现了两次,从而这样的四位数共有个,答案选C.考点:记数原理与排列组合3. 大于3的正整数x满足,x=A. 6B. 4C. 8D. 9【答案】A【解析】根据题意,则有或解可得x=3或6,又由为大于3的正整数,则故选:A.4. 设是虚数单位,若复数为纯虚数,则实数的值是A. B. 0 C. D. 2【答案】D【解析】为纯虚数故选D5. 用反证法证明命题“设为实数,则方程没有实数根”时,要做的假设是A. 方程至多有一个实根B. 方程至少有一个实根C. 方程至多有两个实根D. 方程恰好有两个实根【答案】B【解析】至少有一个实根的反面为没有实根 ,所以选A.6. 若a,b为非零实数,且下列四个命题都成立:①若,则;②;③;④若,则.则对于任意非零复数,上述命题仍成立的序号是A. ②B. ①②C. ③④D. ①③④【答案】A【解析】对于①,∵任意非零复数的平方可能为负数,故①错;对于②,根据复数的运算法则,可得,故②正确;对于③,存在非零复数,使,如,故③错误;对于④,如复数.满足,故错;故选:A.7. 满足的一个函数是A. B. C. D.【答案】C【解析】显然只有 C. 满足8. 曲线在点处的切线方程为A. B. C. D.【答案】D【解析】因为,所以,所以有点斜式可知,曲线在点处的切线方程为,即,故选D.9. 函数的零点个数为A. 0B. 1C. 2D. 3【答案】C【解析】因为,令,可知函数在区间和上单调递增,在区间单调递减;所以的极大值为,极小值为,所以由此可知函数的零点个数为2个,故选C.10. 已知直线与曲线相切,则的值为A. 1B. 2C. -1D. -2【答案】B【解析】设切点,则,又∵切线方程的斜率为1,即11. 设函数,则函数的所有极大值之和为A. B. C. D.【答案】D【解析】∵函数,∴,∵时,时,,∴时原函数递增,时,函数递减,故当时,取极大值,其极大值为,又,∴函数的各极大值之和.故选D.12. 若函数f(x)=sin2x+4cosx+ax在R上单调递减,则实数a的取值范围是()A. B. C. (﹣∞,6] D. (﹣∞,6)【答案】B【解析】若函数在上单调递减,则在上恒成立,令,故g(x)的最小值是-3,则,故选B二.解答题(每小题5分,共20分):13. 定积分的值为____________________.【答案】【解析】试题分析:由定积分的几何意义知表示半圆与所围图形的面积,,所以.考点:定积分的几何意义.14. 用0,1,2,3,4,5,6可以组成________个无重复数字的四位偶数【答案】420【解析】符合要求的四位偶数可分为三类:第一类:0在个位时有个;第二类:2在个位时,首位从1,3,4,5中选定1个(有种),十位和百位从余下的数字中选(有种),于是有个;第三类:4在个位时,与第二类同理,也有个.由分类加法计数原理知,共有四位偶数:个.【点睛】本题考查分类计数及简单计数问题,解题的关键是理解所研究的事件,对计数问题进行合理的分类,15. 已知点在曲线(是自然对数的底数)上,点在曲线上,则的最小值为____________________.【答案】..................考点:两点间的距离公式,转化与化归思想.16. 曲线在点(1,1)处的切线为l,则l上的点到圆上的点的最近距离是________.【答案】【解析】,,∴曲线在点(1,1)处的切线为l的斜率∴切线方程为,即圆的标准方程为∴圆心,半径则圆心到直线的距离上的点到圆上的点的最近距离是,故答案为【点睛】本题主要考查直线和圆的位置关系的应用,根据导数的几何意义求出切线方程是解决本题的关键.三.解答题:17. 已知在处的极值为0.(1)求常数的值;(2)求的单调区间.【答案】(1)(2) )在上递增,在上递减【解析】试题分析:(1)函数在处取得极值0,,解得.(2)解出导函数为0时的值,然后讨论的取值范围时导函数的正负决定的单调区间.试题解析:(1)设函数f(x)的导数为,依题意,故可得方程组,注意到解得(2)由(1)知,,则令得 ;令,得 ;所以 )在上递增,在上递减18. 复数,满足的虚部是2,对应的点A在第一象限.(1)求;(2)若在复平面上对应点分别为,求.【答案】(1)(2)【解析】试题分析; (1)利用已知条件列出方程组求解即可.(2)求出复数的对应点的坐标,然后通过三角形求解即可.试题解析:(1)依题意得,结合x>0,y>0知,x=1,y=1(2)由(1)值z=1+i, ,所以A(1,1),B(0,2),C(1,-1)有AB=,AC=2,BC=由余弦定理可得cos∠ABC=19. 设函数.(1)若在时有极值,求实数的值和的极大值;(2)若在定义域上是增函数,求实数的取值范围.【答案】(1)(2)【解析】试题分析:(1)在时有极值,意味着,可求解的值,再利用大于零或小于零求出函数的单调区间,进而确定函数的极大值;(2)转化成在定义域内恒成立问题,进而采用分离参数法,再利用基本不等式法即可求出参数的取值范围.试题解析:(1)∵在时有极值,∴有又∴,∴∴有由得,又∴由得或由得∴在区间和上递增,在区间上递减∴的极大值为(2)若在定义域上是增函数,则在时恒成立,需时恒成立,化为恒成立,,为所求.考点:1.函数的极值与导数;2.函数的单调性与导数;3.分离参数法;4.基本不等式.20. 已知,()(1)计算这个数列前4项,并归纳该数列一个通项公式。
2018-2019学年高二数学下学期期末考试试题(含解析)_3
2018-2019学年高二数学下学期期末考试试题(含解析)一、填空题(本大题满分54分)本大题共有12题,只要求直接填写结果,1-6题每题4分,7-12题每题5分1.椭圆的焦点坐标是__________.【答案】【解析】【分析】从椭圆方程中得出、的值,可得出的值,可得出椭圆的焦点坐标.【详解】由题意可得,,,因此,椭圆的焦点坐标是,故答案为:.【点睛】本题考查椭圆焦点坐标的求解,解题时要从椭圆的标准方程中得出、、的值,同时也要确定焦点的位置,考查计算能力,属于基础题.2.若复数满足,则的实部是_________.【答案】【解析】【分析】由得出,再利用复数的除法法则得出的一般形式,可得出复数的实部.【详解】,,因此,复数的实部为,故答案为:.【点睛】本题考查复数的概念,同时也考查了复数的除法,解题时要利用复数的四则运算法则将复数表示为一般形式,考查计算能力,属于基础题.3.球表面积是其大圆面积的________倍.【答案】【解析】【分析】设球的半径为,可得出球的表面积和球的大圆面积,从而可得出结果.【详解】设球的半径为,则球的表面积为,球的大圆面积为,因此,球的表面积是其大圆面积的倍,故答案为:.【点睛】本题考查球的表面积公式的应用,考查计算能力,属于基础题.4.棱长为的正四面体的高为__________.【答案】【解析】【分析】利用正弦定理计算出正四面体底面三角形的外接圆半径,再利用公式可得出正四面体的高.【详解】设正四面体底面三角形的外接圆的半径为,由正弦定理得,,因此,正四面体的高为,故答案为:.【点睛】本题考查正四面体高计算,解题时要充分分析几何体的结构,结合勾股定理进行计算,考查空间想象能力,属于中等题.5.展开二项式,其常数项为_________.【答案】【解析】【分析】利用二项展开式通项,令的指数为零,求出参数的值,再代入通项可得出二项式展开式的常数项.【详解】二项式展开式的通项为,令,得.所以,二项式展开式的常数项为,故答案为:.【点睛】本题考查二项展开式中常数项的计算,解题时要充分利用二项式展开式通项,利用的指数来求解,考查运算求解能力,属于基础题.6.从、、、、中取个不同的数组成一个三位数,且这个数大于,共有_____不同的可能.【答案】【解析】【分析】由题意得知,三位数首位为、、中的某个数,十位和个位数没有限制,然后利用分步计数原理可得出结果.【详解】由于三位数比大,则三位数首位为、、中的某个数,十位数和个位数没有限制,因此,符合条件的三位数的个数为,故答案为:.【点睛】本题考查排列组合综合问题,考查分步计数原理的应用,本题考查数字的排列问题,解题时要弄清楚首位和零的排列,考查分析问题和解决问题的能力,属于中等题.7.圆锥的母线长是,高是,则其侧面积是________.【答案】【解析】【分析】计算出圆锥底面圆的半径,然后利用圆锥的侧面积公式可计算出圆锥的侧面积.【详解】由题意知,圆锥的底面半径为,因此,圆锥的侧面积为,故答案为:.【点睛】本题考查圆锥的侧面积,解题的关键就是要求出圆锥的母线长和底面圆的半径,利用圆锥的侧面积公式进行计算,考查计算能力,属于中等题.8.双曲线的虚轴长为,其渐近线夹角为__________.【答案】60°.【解析】【分析】计算出的值,得出渐近线的斜率,得出两渐近线的倾斜角,从而可得出两渐近线的夹角.【详解】由题意知,双曲线的虚轴长为,得,所以,双曲线的渐近线方程为,两条渐近线的倾斜角分别为、,因此,两渐近线的夹角为,故答案为:.【点睛】本题考查双曲线渐近线的夹角,解题的关键就是求出渐近线方程,根据渐近线的倾斜角来求解,考查运算求解能力,属于基础题.9.在空间直角坐标系中,某个大小为锐角的二面角的两个半平面的法向量分别为和,则该二面角的大小为________(结果用反三角函数表示).【答案】【解析】【分析】设锐二面角的大小为,利用空间向量法求出的值,从而可求出的值.【详解】设锐二面角的大小为,则,,故答案为:.【点睛】本题考查利用空间向量法计算二面角,同时也考查了反三角函数的定义,考查运算求解能力,属于基础题.10.现有颜色为红、黄、蓝的小球各三个,相同颜色的小球依次编号、、,从中任取个小球,颜色编号均不相同的情况有___________种.【答案】【解析】【分析】设红色的三个球分别为、、,黄色的三个球分别为、、,蓝色的三个球分别为、、,列出所有符合条件的选法组合,可得出结果.【详解】设红色的三个球分别为、、,黄色的三个球分别为、、,蓝色的三个球分别为、、,现从中任取个小球,颜色编号均不相同的情况有:、、、、、,因此,从中任取个小球,颜色编号均不相同的情况有种,故答案为:.【点睛】本题考查分类计数原理的应用,在求解排列组合问题时,若符合条件的基本事件数较少时,可采用列举法求解,考查分类讨论数学思想,属于中等题.11.已知点,,,,复数、在复平面内分别对应点、,若,则的最大值是__________.【答案】【解析】【分析】由题意可知,点在曲线内,点在圆上,利用三角不等式得出,可求出的最大值.【详解】由题意知,点在曲线内,点在圆上,如下图所示:由三角不等式得,当点为正方形的顶点,且点、方向相反时,取最大值,故答案为:.【点睛】本题考查复数模的最值,解题时充分利用三角不等式与数形结合思想进行求解,能简化计算,考查数形结合思想的应用,属于中等题.12.已知点在二面角的棱上,点在半平面内,且,若对于半平面内异于的任意一点,都有,则二面角大小的取值的集合为__________.【答案】【解析】【分析】画出图形,利用斜线与平面内直线所成的角中,斜线与它的射影所成的角是最小的,判断二面角的大小即可.【详解】如下图所示,过点在平面内作,垂直为点,点在二面角的棱上,点在平面内,且,若对于平面内异于点的任意一点,都有.因为斜线与平面内直线所成角中,斜线与它的射影所成的角是最小的,即是直线与平面所成的角,平面,平面,所以,平面平面,所以,二面角的大小是.故答案为:.【点睛】本题考查二面角平面角的求解,以及直线与平面所成角的定义,考查转化与化归思想和空间想象能力,属于中等题.二、选择题(本大题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,每题选对得5分13.“夫叠棋成立积,缘幂势既同,则积不容异”是以我国哪位数学家命名的数学原理()A. 杨辉B. 刘微C. 祖暅D. 李淳风【答案】C【解析】【分析】由题意可得求不规则几何体的体积的求法,即运用祖暅原理.【详解】“夫叠棋成立积,缘幂势既同,则积不容异”的意思是“夹在两平行平面之间的两个几何体被平行于这两个平行平面的任意平面所截,如果两个截面面积仍然相等,那么这两个几何体的体积相等”,这就是以我国数学家祖暅命名的数学原理,故选:C.【点睛】本题考查祖暅原理的理解,考查空间几何体体积的求法,考查对概念的理解,属于基础题.14.已知n,,,下面哪一个等式是恒成立的()A. B.C. D.【答案】B【解析】【分析】利用排列数、组合数公式以及组合数的性质可对各选项中的等式的正误进行判断.【详解】由组合数的定义可知,A选项错误;由排列数的定义可知,B选项正确;由组合数的性质可知,则C、D选项均错误.故选:B.【点睛】本题考查排列数、组合数的定义以及组合数的性质的应用,意在考查对这些公式与性质的理解应用,属于基础题.15.在复数范围内,多项式可以因式分解为()A. B.C. D.【答案】A【解析】【分析】将代数式化为,然后利用平方差公式可得出结果.【详解】,故选:A.【点睛】本题考查复数范围内的因式分解,考查平方差公式的应用,属于基础题.16.已知抛物线(是正常数)上有两点、,焦点,甲:;乙:;丙:;丁:.以上是“直线经过焦点”的充要条件有几个()A. B. C. D.【答案】B【解析】【分析】设直线的方程为,将直线的方程与抛物线的方程联立,利用韦达定理验证四个选项结论成立时,实数的值,可以得出“直线经过焦点”的充要条件的个数.【详解】设直线的方程为,则直线交轴于点,且抛物线的焦点的坐标为.将直线的方程与抛物线的方程联立,消去得,,由韦达定理得,.对于甲条件,,得,甲条件是“直线经过焦点”的必要不充分条件;对于乙条件,,得,此时,直线过抛物线的焦点,乙条件是“直线经过焦点”的充要条件;对于丙条件,,即,解得或,所以,丙条件是“直线经过焦点”必要不充分条件;对于丁条件,,化简得,得,所以,丁条件是“直线经过焦点”的必要不充分条件.综上所述,正确的结论只有个,故选:B.【点睛】本题考查抛物线的几何性质,以及直线与抛物线的综合问题,同时也考查了充分必要条件的判定,解题时要假设直线的方程,并将直线方程与抛物线方程联立,利用韦达定理求解,考查运算求解能力与逻辑推理能力,属于中等题.三、解答题(本大题共有5题,满分76分)17.已知复数满足(为虚数单位),,求一个以为根的实系数一元二次方程.【答案】【解析】【分析】先由求出复数,再由求出复数,计算出其复数,可得出以复数为根的实系数方程为,化简后可得出结果.【详解】由,得,,.,,因此,以复数为一个根实系数方程为,即,即.【点睛】本题考查复数形式的乘法与除法运算,考查实系数方程与虚根之间的关系,考查运算求解能力,属于中等题.18.在平面直角坐标系中,椭圆,右焦点为.(1)若其长半轴长为,焦距为,求其标准方程.(2)证明该椭圆上一动点到点的距离的最大值是.【答案】(1);(2)见解析.【解析】【分析】(1)由题设条件可得出、的值,进而可求出的值,由此得出椭圆的标准方程;(2)设点,将该点代入椭圆的方程得出,并代入的表达式,转化为关于的函数,利用函数的性质求出的最大值.【详解】(1)由题意,,,则,.椭圆的标准方程为;(2)设,,,当时,.【点睛】本题考查椭圆方程的求解及椭圆方程的应用,在处理与椭圆上一点有关的最值问题时,充分利用点在椭圆上这一条件,将问题转化为二次函数来求解,考查函数思想的应用,属于中等题.19.推广组合数公式,定义,其中,,且规定.(1)求的值;(2)设,当为何值时,函数取得最小值?【答案】(1);(2)当时,取得最小值.【解析】【分析】(1)根据题中组合数的定义计算出的值;(2)根据题中组合数的定义求出函数,然后利用基本不等式求出函数的最小值,并计算出等号成立对应的的值.【详解】(1)由题中组合数的定义得;(2)由题中组合数的定义得.因为,由基本不等式得,当且仅当时,等号成立,所以当时,取得最小值.【点睛】本题考查组合数的新定义,以及利用基本不等式求函数最值,解题的关键就是利用题中组合数的新定义进行化简、计算,考查运算求解能力,属于中等题.20.被嘉定著名学者钱大昕赞誉为“国朝算学第一”的清朝数学家梅文鼎曾创造出一类“方灯体”,“灯者立方去其八角也”,如图所示,在棱长为的正方体中,点为棱上的四等分点.(1)求该方灯体的体积;(2)求直线和的所成角;(3)求直线和平面的所成角.【答案】(1);(2);(3).【解析】【分析】(1)计算出八个角(即八个三棱锥)的体积之和,然后利用正方体的体积减去这八个角的体积之和即可得出方灯体的体积;(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用空间向量法求出直线和的所成角;(3)求出平面的法向量,利用空间向量法求出直线和平面的所成角的正弦值,由此可得出和平面的所成角的大小.【详解】(1)在棱长为的正方体中,点为棱上的四等分点,该方灯体的体积:;(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系,、、、,,,设直线和的所成角为,则,直线和的所成角为;(3),,,,设平面的法向量,则,得,取,得,设直线和平面的所成角为,则,直线和平面的所成角为.【点睛】本题考查多面体的体积、异面直线所成角、直线与平面所成角的计算,解题的关键就是建立空间直角坐标系,利用空间向量法进行计算,考查运算求解能力,属于中等题.21.双曲线的左、右焦点分别为、,直线过且与双曲线交于、两点.(1)若的倾斜角为,,是等腰直角三角形,求双曲线的标准方程;(2),,若斜率存在,且,求的斜率;(3)证明:点到已知双曲线的两条渐近线的距离的乘积为定值是该点在已知双曲线上的必要非充分条件.【答案】(1);(2);(3)见解析.【解析】【分析】(1)将代入双曲线的方程,得出,由是等腰直角三角形,可得出,再将代入可得出的值,由此可得出双曲线的标准方程;(2)先求出双曲线的标准方程,并设直线的方程为,将该直线的方程与双曲线的方程联立,列出韦达定理,并求出线段的中点的坐标,由得出,转化为,利用这两条直线斜率之积为,求出实数的值,可得出直线的斜率;(3)设点,双曲线的两条渐近线方程为,利用点到直线的距离公式、双曲线的方程以及必要不充分条件的定义,即可得证.【详解】(1)直线的倾斜角为,,可得直线,代入双曲线方程可得,是等腰直角三角形可得,即有,解得,,则双曲线的方程为;(2)由,,可得,直线的斜率存在,设为,设直线方程为,,可得,由,联立双曲线方程,可得,可得,线段的中点为,由,可得,解得,满足,故直线的斜率为;(3)证明:设,双曲线的两条渐近线为,可得到渐近线的距离的乘积为,即为,可得,可得在双曲线或上,即有点到已知双曲线的两条渐近线的距离的乘积为定值是该点在已知双曲线上的必要非充分条件.【点睛】本题考查双曲线的方程与性质,考查直线与双曲线的位置关系,同时也考查为韦达定理和中点坐标公式、两直线垂直的条件、点到直线的距离公式以及必要不充分条件的判断,解题时要结合相应条件进行转化,考查化归与转化、以及方程思想的应用,属于难题.2018-2019学年高二数学下学期期末考试试题(含解析)一、填空题(本大题满分54分)本大题共有12题,只要求直接填写结果,1-6题每题4分,7-12题每题5分1.椭圆的焦点坐标是__________.【答案】【解析】【分析】从椭圆方程中得出、的值,可得出的值,可得出椭圆的焦点坐标.【详解】由题意可得,,,因此,椭圆的焦点坐标是,故答案为:.【点睛】本题考查椭圆焦点坐标的求解,解题时要从椭圆的标准方程中得出、、的值,同时也要确定焦点的位置,考查计算能力,属于基础题.2.若复数满足,则的实部是_________.【答案】【解析】【分析】由得出,再利用复数的除法法则得出的一般形式,可得出复数的实部.【详解】,,因此,复数的实部为,故答案为:.【点睛】本题考查复数的概念,同时也考查了复数的除法,解题时要利用复数的四则运算法则将复数表示为一般形式,考查计算能力,属于基础题.3.球表面积是其大圆面积的________倍.【答案】【解析】【分析】设球的半径为,可得出球的表面积和球的大圆面积,从而可得出结果.【详解】设球的半径为,则球的表面积为,球的大圆面积为,因此,球的表面积是其大圆面积的倍,故答案为:.【点睛】本题考查球的表面积公式的应用,考查计算能力,属于基础题.4.棱长为的正四面体的高为__________.【答案】【解析】【分析】利用正弦定理计算出正四面体底面三角形的外接圆半径,再利用公式可得出正四面体的高.【详解】设正四面体底面三角形的外接圆的半径为,由正弦定理得,,因此,正四面体的高为,故答案为:.【点睛】本题考查正四面体高计算,解题时要充分分析几何体的结构,结合勾股定理进行计算,考查空间想象能力,属于中等题.5.展开二项式,其常数项为_________.【答案】【解析】【分析】利用二项展开式通项,令的指数为零,求出参数的值,再代入通项可得出二项式展开式的常数项.【详解】二项式展开式的通项为,令,得.所以,二项式展开式的常数项为,故答案为:.【点睛】本题考查二项展开式中常数项的计算,解题时要充分利用二项式展开式通项,利用的指数来求解,考查运算求解能力,属于基础题.6.从、、、、中取个不同的数组成一个三位数,且这个数大于,共有_____不同的可能.【答案】【解析】【分析】由题意得知,三位数首位为、、中的某个数,十位和个位数没有限制,然后利用分步计数原理可得出结果.【详解】由于三位数比大,则三位数首位为、、中的某个数,十位数和个位数没有限制,因此,符合条件的三位数的个数为,故答案为:.【点睛】本题考查排列组合综合问题,考查分步计数原理的应用,本题考查数字的排列问题,解题时要弄清楚首位和零的排列,考查分析问题和解决问题的能力,属于中等题.7.圆锥的母线长是,高是,则其侧面积是________.【答案】【解析】【分析】计算出圆锥底面圆的半径,然后利用圆锥的侧面积公式可计算出圆锥的侧面积.【详解】由题意知,圆锥的底面半径为,因此,圆锥的侧面积为,故答案为:.【点睛】本题考查圆锥的侧面积,解题的关键就是要求出圆锥的母线长和底面圆的半径,利用圆锥的侧面积公式进行计算,考查计算能力,属于中等题.8.双曲线的虚轴长为,其渐近线夹角为__________.【答案】60°.【解析】【分析】计算出的值,得出渐近线的斜率,得出两渐近线的倾斜角,从而可得出两渐近线的夹角.【详解】由题意知,双曲线的虚轴长为,得,所以,双曲线的渐近线方程为,两条渐近线的倾斜角分别为、,因此,两渐近线的夹角为,故答案为:.【点睛】本题考查双曲线渐近线的夹角,解题的关键就是求出渐近线方程,根据渐近线的倾斜角来求解,考查运算求解能力,属于基础题.9.在空间直角坐标系中,某个大小为锐角的二面角的两个半平面的法向量分别为和,则该二面角的大小为________(结果用反三角函数表示).【答案】【解析】【分析】设锐二面角的大小为,利用空间向量法求出的值,从而可求出的值.【详解】设锐二面角的大小为,则,,故答案为:.【点睛】本题考查利用空间向量法计算二面角,同时也考查了反三角函数的定义,考查运算求解能力,属于基础题.10.现有颜色为红、黄、蓝的小球各三个,相同颜色的小球依次编号、、,从中任取个小球,颜色编号均不相同的情况有___________种.【答案】【解析】【分析】设红色的三个球分别为、、,黄色的三个球分别为、、,蓝色的三个球分别为、、,列出所有符合条件的选法组合,可得出结果.【详解】设红色的三个球分别为、、,黄色的三个球分别为、、,蓝色的三个球分别为、、,现从中任取个小球,颜色编号均不相同的情况有:、、、、、,因此,从中任取个小球,颜色编号均不相同的情况有种,故答案为:.【点睛】本题考查分类计数原理的应用,在求解排列组合问题时,若符合条件的基本事件数较少时,可采用列举法求解,考查分类讨论数学思想,属于中等题.11.已知点,,,,复数、在复平面内分别对应点、,若,则的最大值是__________.【答案】【解析】【分析】由题意可知,点在曲线内,点在圆上,利用三角不等式得出,可求出的最大值.【详解】由题意知,点在曲线内,点在圆上,如下图所示:由三角不等式得,当点为正方形的顶点,且点、方向相反时,取最大值,故答案为:.【点睛】本题考查复数模的最值,解题时充分利用三角不等式与数形结合思想进行求解,能简化计算,考查数形结合思想的应用,属于中等题.12.已知点在二面角的棱上,点在半平面内,且,若对于半平面内异于的任意一点,都有,则二面角大小的取值的集合为__________.【答案】【解析】【分析】画出图形,利用斜线与平面内直线所成的角中,斜线与它的射影所成的角是最小的,判断二面角的大小即可.【详解】如下图所示,过点在平面内作,垂直为点,点在二面角的棱上,点在平面内,且,若对于平面内异于点的任意一点,都有.因为斜线与平面内直线所成角中,斜线与它的射影所成的角是最小的,即是直线与平面所成的角,平面,平面,所以,平面平面,所以,二面角的大小是.故答案为:.【点睛】本题考查二面角平面角的求解,以及直线与平面所成角的定义,考查转化与化归思想和空间想象能力,属于中等题.二、选择题(本大题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,每题选对得5分13.“夫叠棋成立积,缘幂势既同,则积不容异”是以我国哪位数学家命名的数学原理()A. 杨辉B. 刘微C. 祖暅D. 李淳风【答案】C【解析】【分析】由题意可得求不规则几何体的体积的求法,即运用祖暅原理.【详解】“夫叠棋成立积,缘幂势既同,则积不容异”的意思是“夹在两平行平面之间的两个几何体被平行于这两个平行平面的任意平面所截,如果两个截面面积仍然相等,那么这两个几何体的体积相等”,这就是以我国数学家祖暅命名的数学原理,故选:C.【点睛】本题考查祖暅原理的理解,考查空间几何体体积的求法,考查对概念的理解,属于基础题.14.已知n,,,下面哪一个等式是恒成立的()A. B.C. D.【答案】B【解析】【分析】利用排列数、组合数公式以及组合数的性质可对各选项中的等式的正误进行判断.【详解】由组合数的定义可知,A选项错误;由排列数的定义可知,B选项正确;由组合数的性质可知,则C、D选项均错误.故选:B.【点睛】本题考查排列数、组合数的定义以及组合数的性质的应用,意在考查对这些公式与性质的理解应用,属于基础题.15.在复数范围内,多项式可以因式分解为()A. B.C. D.【答案】A【解析】【分析】将代数式化为,然后利用平方差公式可得出结果.【详解】,故选:A.【点睛】本题考查复数范围内的因式分解,考查平方差公式的应用,属于基础题.16.已知抛物线(是正常数)上有两点、,焦点,甲:;乙:;丙:;丁:.以上是“直线经过焦点”的充要条件有几个()A. B. C. D.【答案】B【解析】【分析】设直线的方程为,将直线的方程与抛物线的方程联立,利用韦达定理验证四个选项结论成立时,实数的值,可以得出“直线经过焦点”的充要条件的个数.【详解】设直线的方程为,则直线交轴于点,且抛物线的焦点的坐标为.将直线的方程与抛物线的方程联立,消去得,,由韦达定理得,.对于甲条件,,得,甲条件是“直线经过焦点”的必要不充分条件;对于乙条件,,得,此时,直线过抛物线的焦点,乙条件是“直线经过焦点”的充要条件;对于丙条件,,即,解得或,所以,丙条件是“直线经过焦点”必要不充分条件;对于丁条件,,化简得,得,所以,丁条件是“直线经过焦点”的必要不充分条件.综上所述,正确的结论只有个,故选:B.【点睛】本题考查抛物线的几何性质,以及直线与抛物线的综合问题,同时也考查了充分必要条件的判定,解题时要假设直线的方程,并将直线方程与抛物线方程联立,利用韦达定理求解,考查运算求解能力与逻辑推理能力,属于中等题.三、解答题(本大题共有5题,满分76分)17.已知复数满足(为虚数单位),,求一个以为根的实系数一元二次方程.【答案】【解析】。
2018-2019学年高二数学下学期期末考试试题(含解析)_3
2018-2019学年高二数学下学期期末考试试题(含解析)一、选择题:本大题共15小题,每小题4分,共60分,每小题列出的四个选项中只有一个是符合题目要求的,不选、多选,错选均不得分1.设集合,,则集合()A. B. C. D.【答案】A【解析】【分析】利用交集的运算律可得出集合。
【详解】由题意可得,故选:A。
【点睛】本题考查集合的交集运算,考查计算能力,属于基础题。
2.直线的斜率为()A. B. C. D.【答案】A【解析】【分析】将直线方程化为斜截式,可得出直线的斜率。
【详解】将直线方程化为斜截式可得,因此,该直线的斜率为,故选:A。
【点睛】本题考查直线斜率的计算,计算直线斜率有如下几种方法:(1)若直线的倾斜角为且不是直角,则直线的斜率;(2)已知直线上两点、,则该直线的斜率为;(3)直线的斜率为;(4)直线的斜率为.3.函数的定义城是()A. B. C. D.【答案】C【解析】【分析】根据对数的真数大于零这一原则得出关于的不等式,解出可得出函数的定义域。
【详解】由题意可得,解得,因此,函数的定义域为,故选:C。
【点睛】本题考查对数型函数的定义域的求解,求解时应把握“真数大于零,底数大于零且不为”,考查计算能力,属于基础题。
4.中,,则()A. B. C. D.【答案】D【解析】【分析】利用余弦定理计算出的值,于此可得出的值。
【详解】,,由余弦定理得,,因此,,故选:D。
【点睛】本题考查利用余弦定理求角,解题时应该根据式子的结构确定对象角,考查计算能力,属于基础题。
5.一个空间几何体的三规图如图所示,则该几何体的体积为()A. B. C. D.【答案】B【解析】【分析】根据三视图得知该几何体是四棱锥,计算出四棱锥的底面积和高,再利用锥体体积公式可得出答案。
【详解】由三视图可知,该几何体是四棱锥,底面是矩形,其面积为,高为,因此,该几何体的体积为,故选:B。
【点睛】本题考查三视图以及简单几何体体积的计算,要根据三视图确定几何体的形状,再根据体积公式进行计算,考查空间想象能力与计算能力,属于中等题。
2018-2019人教版高二下学期期末数学试卷附答案解析[最新]
人教版高二(下学期)期末数学试卷
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.)
1.设集合S={x|x>﹣2},T={x|x2+3x﹣4≤0},则(?R S)∪T=()A.[﹣4,﹣2] B.(﹣∞,1] C.[1,+∞)D.(﹣2,1] 2.已知复数z=,则复数z的虚部为()
A.﹣B. i C.D.﹣
3.随机变量X~N(1,4),若p(x≥2)=0.2,则p(0≤x≤1)为()
A.0.2 B.0.6 C.0.4 D.0.3
4.若4个人报名参加3项体育比赛,每个人限报一项,则不同的报
名方法的种数有()
A.A B.C C.34D.43
5.广告投入对商品的销售额有较大影响.某电商对连续5个年度的广告费和销售额进行统计,得到统计数据如下表(单位:万元)广告费x 2 3 4 5 6
销售额y 29 41 50 59 71
由上表可得回归方程为=10.2x+,据此模型,预测广告费为8万元时的销售额约为()
A.90.8 B.72.4 C.98.2 D.111.2
6.从1,2,3,4,5中不放回地依次取2个数,事件A=“第一次取到的是奇数”,B=“第二次取到的是奇数”,则P(B|A)=()
第1页(共12页)。
2018-2019学年高二数学下学期四校联考试题文(含解析)
2018-2019学年高二数学下学期四校联考试题文(含解析)一、单选题。
1.若集合,集合,则()A. B. C. D.【答案】D【解析】由题意得,选D.2.设,则“”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】首先解这两个不等式,然后判断由题设能不能推出结论和由结论能不能推出题设,进而可以判断出正确的选项.【详解】,,显然由题设能推出结论,但是由结论不能推出题设,因此“”是“”的充分不必要条件,故本题选A.【点睛】本题考查了充分条件、必要条件的判断,解决本问题的关键是正确求出不等式的解集.3.若复数,则( )A. B. C. D.【答案】B【解析】【分析】根据复数除法和模长的运算法则整理出.【详解】本题正确选项:【点睛】本题考查复数的除法运算和模长运算,属于基础题.4.执行如图所示的程序框图,输出的k值为()A. 3B. 4C. 5D. 6【答案】D【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量k的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得S=12,k=0执行循环体,k=2,S=10不满足条件S≤0,执行循环体,k=4,S=6不满足条件S≤0,执行循环体,k=6,S=0满足条件S≤0,退出循环,输出k的值为6.故选:D.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.5.若双曲线的一条渐近线经过点,则此双曲线的离心率为()A. B. C. D.【答案】C【解析】【分析】先由渐近线过点,得到与关系,进而可求出结果.【详解】因为双曲线的一条渐近线经过点,所以,即,即,所以.故选C【点睛】本题主要考查双曲线的离心率,熟记双曲线的性质即可,属于基础题型.6.某店主为装饰店面打算做一个两色灯牌,从黄、白、蓝、红4种颜色中任意挑选2种颜色,则所选颜色中含有白色的概率是()A. B. C. D.【答案】B【解析】【分析】先求出基本事件总数,再求出所选颜色中含有白色的基本事件个数,由此利用等可能事件概率计算公式计算即可.【详解】从黄、白、蓝、红种颜色中任意选种颜色的所有基本事件有{黄白},{黄蓝},{黄红},{白蓝},{白红},{蓝红},共种.其中包含白色的有种,选中白色的概率为,故选B.【点睛】本题考查古典概型求概率的问题,考查了列举法的应用,属于基础题.7.已知,,,则()A. B. C. D.【答案】B【解析】【分析】本题采用中间值比较法,对三个数进行比较大小,利用指数函数和对数函数的单调性,指数式和1进行比较,对数式和零进行比较,最后得出答案.【详解】,,,所以本题选B.【点睛】本题综合考查了对数式、指数式的比较大小.解决本题的关键是掌握指数函数、对数函数的单调性以及一些特殊点的特征.本题采用了中间值的比较方法.8.已知函数满足,则的值是()A. B. C. D. 与有关【答案】C【解析】【分析】根据﹣= 12a+6b=0,得到4a+2b=0,从而求出f(2)的值.【详解】∵﹣= 12a+6b=0,∴4a+2b=0,∴f(2)=4a+2b+7=7,故选:C.【点睛】本题考查了二次函数的图象与性质,属于基础题.9.已知满足对任意,都有成立,那么a的取值范围是()A. B. C. D.【答案】C【解析】【分析】判断函数的单调性.利用分段函数解析式,结合单调性列出不等式组求解即可.【详解】解:满足对任意,都有成立,所以分段函数是减函数,所以:,解得.故选:C.【点睛】本题考查分段函数的单调性的应用,函数的单调性的定义的理解,考查转化思想以及计算能力.10.函数的值域是()A. B. C. D.【答案】C【解析】,因此选C.11.下列命题不正确的是()A. 由样本数据得到的回归方程必过样本点中心B. 相关指数用来刻画回归效果,的值越大,说明模型的拟合效果越好C. 归纳推理和类比推理都是合情推理,合情推理的结论是可靠的,是正确的结论D. 演绎推理是由一般到特殊的推理【答案】C【解析】【分析】根据涉及的知识对给出的四个选项分别进行分析、判断后可得结果.【详解】对于A,由线性回归分析可得回归直线一定经过样本中心,所以A正确.对于B,当相关指数的值越大时,意味着残差平方和越小,即模型的拟合效果越好,所以B正确.对于C,合情推理的结论是不可靠的,需要进行证明后才能判断是否正确,所以C不正确.对于D,由演绎推理的定义可得结论正确.故选C.【点睛】本题考查对基本知识的理解和掌握程度,解答类似问题的关键是熟知相关知识,然后再对每个命题的真假作出判断,属于基础题.12.已知是定义在上的单调递减函数,是的导函数,若,则下列不等式成立的是()A. B.C. D.【答案】C【解析】【分析】先由题意得到,化不等式若为,再令,对函数求导,判断出其单调性,即可求出结果.【详解】因为是定义在上的单调递减函数,所以时,,因此,由,可得,令,,则,即函数在上单调递增;所以,即,故ABD错误,C正确.故选C【点睛】本题主要考查导数的应用,利用导数的方法研究函数的单调性即可,属于常考题型.二、填空题13.已知x>0,y>0,且x+y=6,则的最大值为_____【答案】2【解析】【分析】由题意结合均值不等式的结论和对数的运算法则确定的最大值即可.详解】,,且;,当且仅当时取等号;;;的最大值为2.故答案为:2.【点睛】本题主要考查对数的运算法则,均值不等式及其应用等知识,意在考查学生的转化能力和计算求解能力.14.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为_____.【答案】4【解析】【分析】利用平均数、方差的概念列出关于的方程组,解方程即可得到答案。
2018_2019学年高二数学下学期期末考试试题文(含解析) (4)
2018-2019学年高二数学下学期期末考试试题 文(含解析)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0+2M x x =≤≤4,{}2,3N =-,则M N =A. ∅B. {}2-C. {}2D. {}2,2-【答案】B 【解析】 【分析】先求出集合M ,再将集合N 中的元素代入集合M ,将满足集合M 的元素保留下来得出集合M N ⋂。
【详解】{}{}02422M x x x x =≤+≤=-≤≤,因此,{}2M N =-I ,故选:B 。
【点睛】本题考查集合的基本运算,意在考查学生对集合的基本运算律的理解,属于基础题。
2.已知i 是虚数单位,复数1z 在复平面内对应的向量()12,1OZ =-,则复数11iz z =+的虚部为 A. 12-B. 32-C.12D. 32【答案】D 【解析】 【分析】根据复数的几何意义先得出复数1z ,然后利用复数的除法法则求出复数z ,于是可得出复数z 的虚部。
【详解】由题意可知12z i =-+,所以,()()()()1211313111222i i z i z i i i i -+--+====-+++-, 因此,复数z 的虚部为32,故选:D 。
【点睛】本题考查复数的几何意义、复数的除法以及复数的概念,求解复数问题,一般是利用复数的四则运算法则将复数表示为一般形式,确定复数的实部与虚部,然后针对复数的实部与虚部求解,属于基础题。
3.为考察某种药物预防疾病的效果,进行动物试验,得到如下药物效果与动物试验列联表:经过计算,2 6.110K ≈,根据这一数据分析,下列说法正确的是 临界值表供参考:A. 有97.5%的把握认为服药情况与是否患病之间有关系B. 有99%的把握认为服药情况与是否患病之间有关系C. 有99.5%的把握认为服药情况与是否患病之间有关系D. 没有理由认为服药情况与是否患病之间有关系 【答案】A 【解析】 【分析】根据2K 的观测值,找出临界的0k 的值,并由此计算出犯错误的概率,即可作出相应的结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学综合练习(四)
班级____姓名______
一、选择题:
1.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是 ( ) (A)[0,4,1] (B)(0,0.4) (C)(0,0.6) (D)[0.6,1]
2.由数字0,1,2,3,4,5可以组成无重复数字且奇偶数字相间的六位数的个数有 ( ) A 、72 B 、60 C 、48 D 、52 (C )
3.3名男生与3名女生站在一排,如果要求男女生相间站,那么站法有 ( ) (A )36种 (B )72种 (C )108种 (D )144种 4.在
()
100
3
32y x +的展开式中,系数为有理数的项共有 ( )
(A )16项 (B )17项 (C )18项 (D )19项 5.M ,N ,P 表示三个不同的平面,则下列命题中,正确的是
( )
A .若M ⊥P ,N ⊥P ,则M ∥N
B .若M ⊥N ,N ∩P=φ,则M ∩P ≠φ
C .若M 、N 、P 两两相交,则有三条交线
D .若N ∩P=a ,P ∩M=b ,M ⊥N ,则a ⊥b
6.ABCD —A 1B 1C 1D 1是正方体,M 、N 分别是AA 1、BB 1的中点,设C 1M 与DN 所成的角为θ,则
sin θ的值为
( )
(A ).9
1
(B ).3
2
(C ).592 (D ).59
4
7.某工厂生产的100件产品中,有95件正品,5件次品,从中任意取一件是次品的概率为 ( ) (A) 0.95 (B) 95 (C) 0.5 (D)0.05 8.函数
)(x f =x 3—3x 2—9x +3在区间[—2,2]上的最小值是 ( )
(A)l (B)8 (C)一19 (D)一24
9.对于可导函数)(x f ,)(0x f '=0是x 0为函数)(x f 的极值点的 ( ) (A)充分非必要条件 (B)必要非充分条件 (C)充要条件 (D)既不充分也不必要条件
10.正四面体的内切球球心到一个面的距离等于这个四面体高的 ( )
(A )
2
1 (B )
31 (C ) 4
1 (D )
5
1
11.一正方体的六个面上分别标有字母A 、B 、C 、D 、E 、F ,如
图是此
正方体的两种不同放置,则与D 面相对的面上的字母是:
(A )B (B )E
(C )F (D )以上三种情况均有可能 12.函数
)(x f =x 3十ax 2十bx 十c ,其中a ,b ,c 为实数,当a 2—3b <0时,)(x f 是 ( )
(A)增函数 (B)减函数 (C)常数 (D)以上都不对 二、填空题:把答案填在题中横线上
13.已知函数y =4(2x —1)2, 当x =_____时y ′=0。
14.设含有8个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,T S 的值为___________。
15.已知母线长为10cm ,底面半径为5cm 的圆锥内有一球,球与圆锥的底面及圆锥的所有母线都相切,则球的体积是.________ 16.
()1021x +的展开式中系数最大的项是第.________
项。
三、解答题:解答应写出文字说明,证明过程或演算步骤
17.设函数y =ax 3十bx 2十cx 十d 的图象与y 轴交点为P 且曲线在P 点处切线方程为12x —y —4=0.若函数在x =2处取得极值0,试确定函数的解析式.
18.在120个零件中.一级品24个,二级品36个,三级品60个,从中抽取容量为20的样本。
分别用简单随机抽样和分层抽样计算每个个体被抽到的概率。
用上述哪一种抽样使一级品中某甲与二级品中某乙都被抽到的概率较大。
[
19.正三棱柱ABC —A 1B 1C 1中,AA 1=2AB ,D 、E 分别是侧棱BB 1、CC 1上的点,且EC=BC=2BD ,过A 、D 、
E 作一截面,求:
(Ⅰ)截面与底面所成的角; (Ⅱ)截面将三棱柱分成两部分的体积之比.
20.用0,1,2,3,4,5组成没有重复数字的自然数,
(1) 有多少个比201 345大? (2)有多少个是25的倍数的四位数?
21.已知n a a
)3(
3-的展开式的各项系数之和等于53)514b
b -
展开式中的常数项,求n a a
)3(
3-
展开式中含1
-a
的项的二项式系数。
E
D
C 1
B 1
A 1
C
B
A。