化学发光免疫分析
化学发光免疫分析
糖尿病
Albumin C-peptide Insulin
唐氏筛查
PAPP-A free βHCG HCG+β AFP
心肌标志
骨标志
肝纤维
CK-MB
ß-Crosslaps
LN
Digoxin
25-(OH) Vit. D
HA
Digitoxin
Intact PTH
PIIINP
Myoglobin
Intact PTH
试剂有效期长 有效期可长达1年以上,放射免疫分析由
于放射性同位素的衰变,一般有效期只有一 个月,而酶免的底物贮存性差,都无法与化 学发光相比,有效期长可以降低使用成本, 利于推广应用。
梦想——之以恒、真正为实现纳米科技事业的梦想而奋斗!
3 化学发光免疫分析的优越性
➢ 中国免疫诊断现状
中国
国际(欧美为主)
种类
方法
检测原理
酶联免疫
酶与样本反应,依据颜色变化程度确定结果
免疫 化学发光
诊断
将抗原抗体同样本结合,由磁珠捕捉反应物,加入 发光促进剂加大反应发光速度与强度,进而诊断
根据镧系元素螯合物发光特点,用时间分辨技术测 时间分辨荧光
量荧光,检测波长和时间两个参数进行信号分辨
分子 诊断
PCR 基因芯片
DNA高温变成单链,低温互补配对链合成
激发态ν
的中间体。这种激发态中间体,当其回到稳定的基态时,可同时发射出
光子。利用发光信号测量仪器即可测量光量子产额,该光量子产额与样
品中的待测物质的量成正比。由此可以建立标准曲线并计算样品中待测
能量
h.ν
物质的含量。
基态ν0 梦想——之以恒、真正为实现纳米科技事业的梦想而奋斗!
化学发光免疫分析
化学发光免疫分析化学发光免疫分析篇一:化学发光免疫分析方法化学发光是在常温下由化学反应产生的光的发射。
其发光机理是:反应体系中的某些物质分子,如反应物、中间体或者荧光物质吸收了反应释放的能量而由基态跃迁到激发态,当中间体由激发态回到基态时会释放等能级的光子,对光子进行测定而实现定量分析。
化学发光免疫分析方法是将化学发光与免疫反应相结合的产物,因化学发光具有荧光的特异性,但与荧光产生需要激发光不同,化学发光由化学反应产生光强度,并不需要激发光,从而避免了荧光分析中激发光杂散光的影响。
化学发光免疫分析包含了免疫化学反应和化学发光反应两个部分。
免疫分析系统是将化学发光物质或酶标记在抗原或抗体上,经过抗原与抗体特异性反应形成抗原-抗体免疫复合物。
化学发光分析系统是在免疫反应结束后,加入氧化剂或酶的发光底物,化学发光物质经氧化剂的氧化后,形成一个处于激发态的中间体,会发射光子释放能量以回到稳定的基态,发光强度可以利用发光信号测量仪器进行检测。
待测物质浓度因为与发光强度成一定的关系而实现检测目的。
一、化学发光免疫分析方法的类别化学发光免疫分析法根据标记物的不同可分为3 大类,即化学发光免疫分析、化学发光酶免疫分析和电化学发光免疫分析法。
(一)化学发光免疫分析化学发光免疫分析是用化学发光剂直接标记抗体或抗原的一类免疫测定方法。
目前常见的标记物主要为鲁米诺类和吖啶酯类化学发光剂。
1. 鲁米诺类标记的化学发光免疫分析。
鲁米诺类物质的发光为氧化反应发光。
在碱性溶液中,鲁米诺可被许多氧化剂氧化发光,其中H2O2最为常用。
因发光反应速度较慢,需添加某些酶类或无机催化剂。
酶类主要是辣根过氧化物酶(HRP),无机类包括O3、卤素及Fe3+、Cu2+、Co2+和它们的配合物。
鲁米诺在碱性溶液下可在催化剂作用下,被H2O2等氧化剂氧化成3-氨基邻苯二酸的激发态中间体,当其回到基态时发出光子。
鲁米诺的发光光子产率约为0.01,最大发射波长为425 nm。
化学发光免疫标记分析技术(基本原理)
优化技术操作流程,降低对专业人员的依赖,提高检测的便捷性和 普及性。
开发新型标记物
研究开发更多种类的化学发光标记物,拓展该技术的应用范围,满足 更多不同检测需求。
感谢您的观看
THANKS
放射免疫标记技术
利用放射性核素标记抗体或抗原,通 过放射性信号检测,常用的有放射免 疫分析法。
化学发光免疫标记技术
利用化学发光物质标记抗体或抗原, 通过化学发光信号检测,常用的有化 学发光免疫分析法。
免疫标记技术的原理
抗原-抗体反应
信号放大
免疫标记技术的基本原理是抗原 和抗体之间的特异性结合反应。 标记物(抗体或抗原)与待测样 本中的目标抗原或抗体结合,形 成标记的抗原-抗体复合物。
02
化学发光反应原理
化学发光反应的分类
偶合反应
01
通过两个化学反应的偶合,将化学能转变为光能。
氧化还原反应
02
通过电子的得失,将化学能转变为光能。
化学发光复合反应
03
通过化学反应将能量传递给另一物质,使其激发并发出光子。
化学发光反应的机制
激发态的形成
反应物吸收能量后跃迁至激发态。
能量传递与光子的发射
抗体标记
抗体选择
选择与目标抗原特异性结合的抗体,确保抗 体的纯度和特异性。
抗体标记技术
采用荧光染料、酶、同位素等标记抗体,以 便后续检测和信号放大。
标记效率与质量控制
对标记后的抗体进行质量评估和控制,确保 标记效率和稳定性。
免疫反应
1 2
ቤተ መጻሕፍቲ ባይዱ加样
将待测样本、标记抗体和抗原加入反应体系中, 进行免疫反应。
激发态的反应物将能量传递给另一物质,使其跃迁至激发态并释放 光子。
化学发光免疫分析技术
• 化学发光免疫分析仪是通过检测患者血清内待测物质从而 对人体进行免疫分析的医学检验仪器。将定量的患者血清 和辣根过氧化物(HRP)加入到固相包被有抗体的白色不 透明微孔板中,血清中的待测分子与辣根过氧化物酶的结 合物和固相载体上的抗体特异性结合。分离洗涤未反应的 游离成分。然后,加入鲁米诺Luminol发光底液 ,利用化 学反应释放的自由能激发中间体,从基态回到激发态,能 量以光子的形式释放。此时,将微孔板置入分析仪内,通 过仪器内部的三维传动系统,依次由光子计数器读出各孔 的光子数。样品中的待测分子浓度根据标准品建立的数学 模型进行定量分析。最后,打印数据报告,以辅助临床诊 断。
血清FT3和FT4降低: ⑴甲减病人两者皆下降,但轻型甲减、甲减初期多 以FT4下降为主;⑵低T3综合征仅有FT3下降; ⑶某些药物,如苯妥英 钠、多巴胺、糖皮质激素也可使FT3和FT4降低。
• T3、T4均升高:高TBG血症、甲亢、甲状腺激素不敏感综合征。
化学发光免疫分析
一、化学发光免疫技术的概念 二、化学发光免疫分析基本原理 三、化学发光免疫分析的类型 四、临床应用 五、发展与展望
一、化学发光免疫技术的概念
化学发光免疫技术:化学发光分析是根据化学反应统与免疫反应相结合,用化学发光相关的物质标记抗体或抗原,与 待测的抗原或抗体反应后,经过分离游离态的化学发光标记物,加入 化学发光系统的其它相关物产生化学发光,进行抗原或抗体的定量或 定性检测。
磁微粒模式图
特点 – 抗原和抗体结合与未结合 部分的易分离
Y
3.2、化学发光酶免疫分析
化学发光酶免疫分析(chemiluminescence enzyme immunoassay,CLEIA)是用参与催化某一化学发光反应的酶 如辣根过氧化物酶(HRP)或碱性磷酸酶(ALP)来标记抗原或抗 体,在与待测标本中相应的抗原(抗体)发生免疫反应后,形成固 相包被抗体-待测抗原-酶标记抗体复合物,经洗涤后,加入底物 (发光剂),酶催化和分解底物发光,由光量子阅读系统接收,光 电倍增管将光信号转变为电信号并加以放大,再把它们传送至 计算机数据处理系统,计算出测定物的浓度。
化学发光标记免疫分析法
不同IgG浓度下CRET免疫传感器的荧光光谱。IgG浓度分别为:0 (a), 0.5 (b), 1 (c),1.5 (d), 2 (e), 2.5 (f), 3 (g), 3.5 (h), 及4 nM (i)。插入的曲线为荧 光强度比率(R=I425/I525)随浓度变化曲线
01 吖啶酯 Add your texts here
02 三联吡啶钌
03 鲁米诺及其衍生物 04 AMPPD
化学发光剂
吖啶酯:在碱性条件下被H2O2氧化时,发出波长为470nm 的光,具有很高的发光效率,其激发态产物N-甲基吖啶酮 是该发光反应体系的发光体。
化学发光剂
三联吡啶钌: [RU(bpy)3]2+是电化学发光剂,它和电子供 体三丙胺(TPA)在阳电极表面可同时失去一个电子而发生 氧化反应。
化学发光剂
电化学发光剂反应原理
化学发光剂
鲁米诺:化学名称为3-氨基邻苯二甲酰肼 鲁米诺发光原理
化学发光剂
AMPPD:化学名称为 3-(2-螺旋金刚烷)-4-甲氧基-4-(3-磷氧 酰)-苯基-1,2-二氧环乙烷二钠盐
AMPPD发光原理
标记技术
发光物标记 酶标记 元素标记
标记技术:将
化学发光剂的 分子与某些分 子结合,直接 或间接地测定 待测组分。通 过分析被标记 物来完成对待 测组分的测定
人体免疫球蛋白A检测
化学发光夹心法检测lgA装置:多毛细管玻璃板的微孔示意图
化学发光免疫分析检测IgA过程
化学发光强度和lgA浓度的关系
人体免疫球蛋白A检测 集束板与96孔板检测lgA的比较
冲洗后
(2) 加入碱 (pH>10)
发光
化学发光免疫分析法-自己整理
化学发光免疫分析法(CLIA)A、管式磁性微粒子化学发光免疫分析法:(竞争法:用标记抗原与待检抗原竞争性结合固相抗体,待检抗原与检测信号成反比)一、原理:本实验采用竞争法,酶标抗原与标准品抗原竞争抗体,标准品抗值越小。
例:A为一原浓度越大,结合到抗体上的酶标抗原越少,RLU越小,B/B种抗原小分子,有免疫反应性。
实验中采用竞争法对尿液中的A进行分析,使待测A、辣根过氧化物酶标记的A(A-HRP)在均相体系中与异硫氰酸荧光素(FITC)标记的兔抗A抗体(FITC-A抗体)发生竞争性免疫反应,再加入用羊抗FITC抗体包被的磁微粒,反应生成物结合在磁微粒上,在磁场经分离、洗涤后加发光底物,用冷光分析仪检测发光强度(RLU),测定尿液中A的含量。
二、仪器:1、Flash’n glow LB955 30 管全自动进样冷光分析仪(Berthold 公司);2、高速离心机(Beckman 公司), 转速13000 r/min3、磁性分离器(北京科美生物技术有限公司定制, 磁场强度2800 高斯)4、XW80 旋涡混合器(上海精科实业有限公司)5、试管12 × 60 mm(浙江拱东医用塑料厂)6、磁性微粒子(磁性分离剂, Adaltis 公司)三、试剂1、A标准品2、A单克隆抗体3、A-BSA结合物4、抗FITC抗体包被的磁性微粒子(5mg/mL)5、FITC标记的A单克隆抗体6、HRP标记的A7、PBST 洗涤液L PBS, 含% Tween-20)8、分析缓冲液 mol/L 的PBS 缓冲溶液, pH , 含%BSA、 %的水解明胶、%的Proclin-300)9、发光底物液(鲁米诺、过氧化氢和对碘苯酚溶液)实验用水为二次蒸馏水四、试剂处理1、用分析缓冲液为稀释液, 梯度稀释标准品;2、取A-BSA-HRP溶液, 以分析缓冲液为稀释液, 梯度稀释, 配制1:1000、1:2000、1:5000 的A-BSA-HRP 溶液,4 ℃保存. FITC-A单克隆抗体溶液的配制: 取FITC-A单克隆抗体溶液, 以分析缓冲液为稀释液,梯度稀释, 配制1:1000、1:2000、1:5000、1:10000、1:12000 的FITC-A单克隆抗体溶液, 4 ℃保存。
化学发光免疫分析
化学发光分析缺点
• 虽然化学发光具备很高的特异性和很小的 干扰,但化学分析本身的不特异性,制约 了整个方法的使用。
化学发光免疫分析
Chemiluminescence
immunoassay (CLIA)
化学发光
免疫学
▪ 敏感性高 ▪ 简便、快速 ▪ 重复性好
特异性强
1.2 化学发光的种类
❖ 直接化学发光 一些化学反应能释放足够的能量把参加反应的物质
量子产率高,易于标记,是
催化剂:过渡金属离子、酶
发展化学发光免疫分析和 DNA发光探针的重要标记
抑制剂:酚类物质对此反应有抑制作用
物
间接测定:能够生成H2O2的基质及相应的酶
B.三联吡啶钌 三联吡啶钌 [RU(bpy)3]2+是电化学
发光剂,它和电子供体三丙胺(TPA)在阳电极表面 可同时失去一个电子而发生氧化反应。
用化学发光剂(吖啶酯或鲁米诺类)直接标记抗体 (抗原),与待测标本中相应的抗原(抗体)发生免疫反应 后,形成固相包被抗体-待测抗原-化学发光剂标记抗体 复合物,这时只需加入氧化剂(H2O2)和NaOH使成碱 性环境,化学发光剂在不需要催化剂的情况下分解、发 光。
由集光器和光电倍增管接收、记录单位时间内所产生 的光子能,这部分光的积分与待测抗原的量成正比,可 从标准曲线上计算出待测抗原的含量。
2 化学发光剂和标记技术
2.1 化学发光剂概念
在化学发光反应中参与能量转移并最终 以发射光子的形式释放能量的化合物, 称为化学发光剂或发光底物。
化学发光剂选择条件:
①发光的量子产率高; ②物理-化学特性要与被标记或测定的物质相匹配; ③能与抗原或抗体形成稳定的偶联结合物; ④其化学发光常是氧化反应的结果; ⑤在所使用的浓度范围内对生物体没有毒性。
化学发光免疫分析
化学发光免疫分析化学发光免疫分析,也称为化学发光法或发光免疫测定法,是一种高灵敏度和高特异性的生物分析技术。
它结合了免疫学、生物学和化学的原理,利用特异性抗体与其抗原(或其他生物分子)相互作用,通过化学反应使其辐射出光信号,从而定量地检测目标物质的存在和含量。
一、化学发光免疫分析原理化学发光免疫分析原理基于化学发光原理和免疫学原理。
化学发光原理就是将化学反应的能量通过光子的辐射转换为光的能量。
免疫学原理是利用特异性免疫反应来识别和区分不同的抗原或抗体。
化学发光免疫分析技术的基本步骤如下:1.选择特异性的抗体与目标物质的结合;2.引入辐射源激活化学发光前体(例如,过氧化物或二氧化硫酞);3.目标物质与抗体发生结合后,释放了辐射源激活前体,使其进一步分解并产生化学发光;4.测定样品中的荧光强度,用于定量分析目标物质的存在和含量。
化学发光免疫分析发出的荧光信号对于抗原-抗体的结合非常敏感和特异。
比较常见的荧光标记物包括酶(如辣根过氧化物酶和碱性磷酸酶)、荧光染料(如荧光素和荧光素衍生物)、金纳米粒子等。
二、化学发光免疫分析的应用化学发光免疫分析的应用涉及生物分子、环境污染、中药等领域。
下面将从这些不同应用领域来介绍化学发光免疫分析技术的具体应用。
1.生物分子分析生物分子分析是化学发光免疫分析技术的主要应用领域之一。
常见的生物分子包括蛋白质、核酸、糖等。
如免疫荧光分析技术可以快速、准确地分析细胞表面分子、内部生物分子和变态反应特异性IgE。
同时,化学发光免疫分析技术可以用于患者体液中的特定免疫球蛋白或蛋白质的定量检测。
2.环境污染分析环境污染分析是化学发光免疫分析技术的另一个主要应用领域。
通过测量土壤、水、空气等样品中的污染物含量,可以快速精准地确定其存在和含量。
化学发光免疫分析技术可用于检测重金属、有机污染物、致癌物等。
该技术不仅检测灵敏,而且简便易行。
3.中药分析中药分析中常用的技术包括高效液相色谱法、气相色谱法、电化学法等。
化学发光免疫分析方法
化学发光是在常温下由化学反应产生的光的发射。
其发光机理是:反应体系中的某些物质分子,如反应物、中间体或者荧光物质吸收了反应释放的能量而由基态跃迁到激发态,当中间体由激发态回到基态时会释放等能级的光子,对光子进行测定而实现定量分析。
化学发光免疫分析方法是将化学发光与免疫反应相结合的产物,因化学发光具有荧光的特异性,但与荧光产生需要激发光不同,化学发光由化学反应产生光强度,并不需要激发光,从而避免了荧光分析中激发光杂散光的影响。
化学发光免疫分析包含了免疫化学反应和化学发光反应两个部分。
免疫分析系统是将化学发光物质或酶标记在抗原或抗体上,经过抗原与抗体特异性反应形成抗原-抗体免疫复合物。
化学发光分析系统是在免疫反应结束后,加入氧化剂或酶的发光底物,化学发光物质经氧化剂的氧化后,形成一个处于激发态的中间体,会发射光子释放能量以回到稳定的基态,发光强度可以利用发光信号测量仪器进行检测。
待测物质浓度因为与发光强度成一定的关系而实现检测目的。
一、化学发光免疫分析方法的类别化学发光免疫分析法根据标记物的不同可分为 3 大类,即化学发光免疫分析、化学发光酶免疫分析和电化学发光免疫分析法。
(一)化学发光免疫分析化学发光免疫分析是用化学发光剂直接标记抗体或抗原的一类免疫测定方法。
目前常见的标记物主要为鲁米诺类和吖啶酯类化学发光剂。
1. 鲁米诺类标记的化学发光免疫分析。
鲁米诺类物质的发光为氧化反应发光。
在碱性溶液中,鲁米诺可被许多氧化剂氧化发光,其中H2O2最为常用。
因发光反应速度较慢,需添加某些酶类或无机催化剂。
酶类主要是辣根过氧化物酶(HRP),无机类包括O3、卤素及Fe3+、Cu2+、Co2+和它们的配合物。
鲁米诺在碱性溶液下可在催化剂作用下,被H2O2等氧化剂氧化成3-氨基邻苯二酸的激发态中间体,当其回到基态时发出光子。
鲁米诺的发光光子产率约为0.01,最大发射波长为425 nm。
2. 吖啶酯类标记的化学发光免疫分析吖啶酯用于化学发光免疫分析方法(ChemiluminescentImmunoassay,CLIA)由于热稳定性不是很好,Klee 等研究合成了更稳定的吖啶酯衍生物。
化学发光免疫分析法-自己整理
化学发光免疫分析法(CLIA)A、管式磁性微粒子化学发光免疫分析法:(竞争法:用标记抗原与待检抗原竞争性结合固相抗体,待检抗原与检测信号成反比)一、原理:本实验采用竞争法,酶标抗原与标准品抗原竞争抗体,标准品抗原浓度越大,结合到抗体上的酶标抗原越少,RLU越小,B/B0值越小。
例:A为一种抗原小分子,有免疫反应性。
实验中采用竞争法对尿液中的A进行分析,使待测A、辣根过氧化物酶标记的A(A-HRP)在均相体系中与异硫氰酸荧光素(FITC)标记的兔抗A抗体(FITC-A抗体)发生竞争性免疫反应,再加入用羊抗FITC抗体包被的磁微粒,反应生成物结合在磁微粒上,在磁场经分离、洗涤后加发光底物,用冷光分析仪检测发光强度(RLU),测定尿液中A的含量。
二、仪器:1、Flash’n glow LB955 30 管全自动进样冷光分析仪(Berthold 公司);2、高速离心机(Beckman 公司), 转速13000 r/min3、磁性分离器(北京科美生物技术有限公司定制, 磁场强度2800 高斯)4、XW80 旋涡混合器(上海精科实业有限公司)5、试管12 × 60 mm(浙江拱东医用塑料厂)6、磁性微粒子(磁性分离剂, Adaltis 公司)三、试剂1、A标准品2、A单克隆抗体3、A-BSA结合物4、抗FITC抗体包被的磁性微粒子(5mg/mL)5、FITC标记的A单克隆抗体6、HRP标记的A7、PBST 洗涤液(0.05mol/L PBS, 含0.05% Tween-20)8、分析缓冲液(0.05 mol/L 的PBS 缓冲溶液, pH 7.4, 含2.0%BSA、0.5 %的水解明胶、0.1%的Proclin-300)9、发光底物液(鲁米诺、过氧化氢和对碘苯酚溶液)实验用水为二次蒸馏水四、试剂处理1、用分析缓冲液为稀释液, 梯度稀释标准品;2、取A-BSA-HRP溶液, 以分析缓冲液为稀释液, 梯度稀释, 配制1:1000、1:2000、1:5000 的A-BSA-HRP 溶液,4 ℃保存. FITC-A单克隆抗体溶液的配制:取FITC-A单克隆抗体溶液, 以分析缓冲液为稀释液,梯度稀释, 配制1:1000、1:2000、1:5000、1:10000、1:12000 的FITC-A单克隆抗体溶液, 4 ℃保存。
化学发光免疫分析
化学发光免疫分析化学发光免疫分析化学发光免疫分析(chemiluminescence immunoassay,CLIA)在近十年来得到了很大发展,与微离子发光酶免疫分析(microparticle luminescence immunoassay, MLIA)、生物发光免疫分析(bioluminescence immunoassay, BLIA)、增强化学发光分析(enhanced chemiluminescence, EC)和电化学发光分析(electrochemical luminescence, ECL)等相比,以其灵敏度高(可达10-18mol)、检测速度快、操作简便、所用试剂对人体无危害的优点,成为非放射性免疫分析技术中最具有发展前途的方法之一。
(一)化学发光免疫分析的基本原理化学发光指化学反应引起的发光现象,当物质吸收化学反应过程中释放的化学能之后,能使自身分子受激发而发光;如在生物体中产生此种能源来自生物活体的发光现象,称为生物发光;若产生发光信号的能量来源于电激发,如从多环芳烃的自由基阴离子上除去一个电子,往往产生激发状态的中间物质,当其回到基态时,将产生光辐射,此种发光称为电化学发光。
化学发光反应所发出的光的强度依赖于化学发光反应的速度,而反应速度又依赖于反应物的浓度。
因此,通过检测化学发光强度可以直接测定反应物的浓度,从而进行物质的定性和定量分析。
化学发光与荧光的根本区别是形成激发态分子的激发能源不同。
荧光是发光物质吸收了激发光后使分子产生发射光,化学发光是化学反应过程中所产生的化学能使分子激发产生的发射光。
因此,化学发光反应中反应过程必须产生足够的激发能是产生发光效应的重要条件。
(二)化学发光兔疫分析中的标记物质化学发光免疫分析所使用的标记物根据其参与的化学反应不同,可分为三类:①直接参与发光反应的标记物;②以催化作用或能量传递参与发光反应的酶标记物;③以能量传递参与氧化反应的非酶标记物。
免疫化学发光法
免疫化学发光法免疫化学发光法是一种具有高灵敏度、高特异性的免疫分析方法,在生物医学领域得到了广泛应用。
下面是关于免疫化学发光法的各个方面的介绍。
1.直接法直接法是一种简单的免疫化学发光技术,通过将特异性抗体与发光标记物直接结合,形成免疫复合物,然后测定复合物发出的光强度,从而实现对目标分子的定量检测。
直接法的应用范围广泛,如肿瘤标志物、病毒和细菌等微生物的检测。
使用直接法时需要注意保证抗体的特异性,以及避免非特异性结合的影响。
2.间接法间接法是通过将特异性抗体与酶或化学发光物质结合,形成酶或化学发光标记的抗体,然后将该抗体与目标分子反应,形成免疫复合物,最后加入相应的底物或激发剂,根据发光强度实现对目标分子的定量检测。
间接法的灵敏度较高,适用于多种生物分子的检测。
需要注意的是,要确保抗体的特异性以及发光标记物的稳定性。
3.竞争法竞争法是一种免疫化学发光技术,通过将特异性抗体与目标分子和发光标记的竞争性抗体结合,形成免疫复合物,然后测定复合物发出的光强度,实现对目标分子的定量检测。
竞争法的应用范围包括激素、病毒和肿瘤标志物等生物分子的检测。
使用竞争法时需要注意保证竞争性抗体的特异性,以及避免非特异性结合的影响。
4.夹心法夹心法是一种免疫化学发光技术,通过将特异性抗体与目标分子和发光标记的抗体分别结合,形成夹心状的免疫复合物,然后测定复合物发出的光强度,实现对目标分子的定量检测。
夹心法的灵敏度较高,适用于多种生物分子的检测。
需要注意的是,要确保抗体的特异性和发光标记物的稳定性。
5.斑点免疫法斑点免疫法是一种将特异性抗体或抗原点状固定在支持物上的免疫分析方法。
在斑点免疫法中,待测样品中的目标分子与已固定的抗体或抗原相互作用,形成免疫复合物,然后加入发光标记物,形成点状发光。
通过测量发光强度,实现对目标分子的定量检测。
斑点免疫法的优点是灵敏度高、特异性强、操作简便,适用于多种生物分子的检测。
需要注意的是,要确保固定化抗体或抗原的特异性和稳定性。
化学发光免疫分析技术
化学发光免疫分析技术化学发光免疫分析技术(Chemiluminescence Immunoassay,简称CLIA)是一种用于检测物质浓度的生化分析技术。
该技术利用免疫反应,在荧光底物的作用下产生可见光发射,从而实现对物质的检测和定量分析。
化学发光免疫分析技术的基本原理是将待测物与对应的抗原或抗体结合,形成免疫复合物。
然后,将荧光标记的抗体或抗原加入到体系中,与免疫复合物结合。
接下来,加入荧光底物,在适当的条件下,底物被激活,产生化学反应,释放出能量,从而形成荧光。
荧光信号可以通过荧光仪进行检测和定量分析。
荧光仪通过光电倍增管等装置将荧光信号转化为电信号,经过控制和处理,最终得到物质的浓度。
化学发光免疫分析技术的优势在于其灵敏度高。
由于发光底物的特殊性质,即使在低浓度下,也能产生明显的发光信号。
此外,化学发光免疫分析技术的特异性强,能够准确识别目标物质,避免误判。
另外,与其他传统的免疫分析方法相比,化学发光免疫分析技术反应速度快,可以在较短的时间内得到结果。
此外,操作简单,无需复杂的设备和技术,具有很高的实用性。
化学发光免疫分析技术在医学诊断中有着广泛的应用。
比如,可以用于检测血清中肿瘤标志物的浓度,从而实现早期诊断和预测疾病进展的风险。
此外,化学发光免疫分析技术还可以应用于感染性疾病的快速诊断,如艾滋病、结核病等。
此外,化学发光免疫分析技术还被广泛应用于生物制药工业中的药物分析。
在食品安全领域,也可以利用化学发光免疫分析技术检测食品中的有害物质,从而保障食品的质量安全。
总之,化学发光免疫分析技术是一种灵敏、特异、操作简单的生化分析技术。
在医学诊断、药物检测、食品安全检测等领域有着广泛的应用前景。
随着技术的不断发展和创新,化学发光免疫分析技术将进一步完善,并在更多的领域发挥重要的作用。
化学发光免疫分析法-自己整理
化学发光免疫分析法(CLIA)A、管式磁性微粒子化学发光免疫分析法:(竞争法:用标记抗原与待检抗原竞争性结合固相抗体,待检抗原与检测信号成反比)、原理:本实验采用竞争法,酶标抗原与标准品抗原竞争抗体,标准品抗原浓度越大,结合到抗体上的酶标抗原越少,RLU越小,B/B o值越小。
例:A为一种抗原小分子,有免疫反应性。
实验中采用竞争法对尿液中的A进行分析,使待测A、辣根过氧化物酶标记的A(A-HRP在均相体系中与异硫氰酸荧光素(FITQ标记的兔抗A抗体(FITC-A抗体)发生竞争性免疫反应,再加入用羊抗FITC抗体包被的磁微粒,反应生成物结合在磁微粒上,在磁场经分离、洗涤后加发光底物,用冷光分析仪检测发光强度(RLU,测定尿液中A的含量、仪器:Flash ' n glow LB955管全自动进样冷光分析仪(Berthold公司); 高速离心机(Beckman公司),转速13000 r/min磁性分离器(北京科美生物技术有限公司定制,磁场强度2800高斯) XW80旋涡混合器(上海精科实业有限公司)试管12 X 60 mm®江拱东医用塑料厂)磁性微粒子(磁性分离剂,Adaltis公司)三、试剂1、A标准品2、A单克隆抗体•0——AFBi-BSA^HRP *:F!TC H AFB I +^4}抗FITCEFITC庐合別比FITCr^t I--r i詩玩FITC AFB1 FrrOAFBt^JMI 时fTC旳舸更片单丸垮序汗士体-F:障羊舍和料TJ5H笛箭♦—厲FR1 AF61^■ —FITC(- 歼ITC一餅3、A-BSA吉合物4、抗FITC抗体包被的磁性微粒子(5mg/mL)5、F ITC标记的A单克隆抗体6 HRP标记的A7、P BST 洗涤液L PBS,含% Tween-20)8、分析缓冲液mol/L的PBS缓冲溶液,pH ,含%BSA %的水解明胶、%的Procli n-300)9、发光底物液(鲁米诺、过氧化氢和对碘苯酚溶液)实验用水为二次蒸馏水四、试剂处理1、用分析缓冲液为稀释液,梯度稀释标准品;2、取A-BSA-HR溶液,以分析缓冲液为稀释液,梯度稀释,配制1:1000、1:2000、1:5000的A-BSA-HRP溶液,4 C保存.FITC-A单克隆抗体溶液的配制:取FITC-A 单克隆抗体溶液,以分析缓冲液为稀释液,梯度稀释,配制1:1000、1:2000、1:5000、1:10000、1:12000的FITC-A单克隆抗体溶液,4 C保存。
化学发光免疫标记分析技术(基本原理)
04
化学发光免疫标记分析流程
样本准备
01
02
03
样本采集
采集待检测样本,如血液、 尿液等生物样本。
样本处理
对样本进行离心、过滤等 处理,以去除杂质和不必 要的成分。
样本标记
将待检测的抗原或抗体与 荧光物质、酶等标记物结 合,以便后续检测。
加样与反应
加样
将处理后的样本加入化学 发光免疫分析的反应体系 中。
应用领域
临床诊断
环境监测
用于检测肿瘤标志物、激素、传染病 标志物等,为疾病的早期诊断、病情 监测和预后评估提供有力支持。
用于检测环境中的有害物质,如重金 属、有机污染物等,为环境保护和公 共卫生提供技术支持。
生物医药
用于药物研发、药代动力学研究、蛋 白质组学和基因组学分析等领域,加 速新药研发和生物医学研究进程。
提高特异性
针对不同目标分子开发更特异的标记物和探针,提高检测的准确性和 可靠性。
多指标检测
发展多指标联检技术,实现多种生物分子的同时检测,提高检测效率 和应用范围。
THANKS
感谢观看
该技术涉及多个步骤,操作相对 复杂,需要专业人员操作和经验 积累。
化学发光反应过程中可能产生有 害的化学物质,需要采取相应的 安全措施。
技术改进与发展方向
降低成本
通过研发更经济的试剂和仪器,降低化学发光免疫标记技术的成本, 使其更广泛地应用于临床和科研领域。
简化操作
优化试剂和仪器设计,简化操作流程,提高检测效率,降低对专业人 员的依赖。
化学发光反应的能量来源
化学发光反应的能量来源主要是化学能,即通过化学反应释 放的能量。
在化学发光免疫标记分析技术中,通常使用化学能作为能量 来源,通过特定的化学反应激发发光物质,使其发出可见光 。
化学发光免疫分析法
化学发光免疫分析法
化学发光免疫分析法(Chemiluminescent Immunoassay,CLIA)是一种用于高
灵敏性和特异性检测抗原和抗体的分析方法。
它可以用于测定血清中和其他生物样品中的多种抗原和抗体,包括肿瘤抗原、抗生素和其他药物物质,也可用于研究免疫应答机制,因此在生物分析、临床诊断和科学研究中受到普遍的应用。
该分析法的原理是利用酶或其他生物分子介导的亲和免疫反应,一种特定的抗
原或抗体与抗原或抗体受体上的一种指定的抗体结合后,再加上一种特定的子细胞质因子,这种反应会产生化学发光。
由于这种反应发生的时间很短,后续过程不容易受到干扰,并且其发光参量也比一般的发光反应更高,因此检测结果具有高灵敏性和特异性。
CLIA结果的准确性和可靠性在生物分析的领域得到了认可,其快速、实用性、特异性和准确性为生物技术提供了更有力的保证。
它不仅普遍用于临床诊断,还可用于研究生物的抗原和抗体的交互作用,有助于更好地研究免疫应答机制和其他相关科学问题。
化学发光免疫分析
化学发光免疫分析(Chemiluminescent Immunoassay,CLIA)介绍化学发光免疫分析(CLIA)是一种测定抗原和抗体的实验方法,它是一种特殊的免疫分析,可以用来测定血清中的抗原和抗体的含量。
CLIA的原理是利用抗原和抗体之间的特异性结合,将抗原和抗体结合在一起,然后将特异性结合物添加到一种特殊的化学发光物质中,当发生反应时,特异性结合物会产生发光,并且发光的强度与抗原和抗体的含量成正比。
因此,可以根据发光的强度来测定血清中的抗原和抗体的含量。
优势CLIA的优势在于它有很高的灵敏度和特异性,可以测定血清中抗原和抗体的含量,而且结果准确可靠,可以用于诊断疾病,比如癌症、HIV感染、肝炎等疾病。
此外,CLIA的操作简单,可以在实验室中快速完成,而且它还可以用于大量样本的检测,从而节省时间和成本。
应用CLIA可以用于多种疾病的诊断,比如甲状腺机能减退症(Hypothyroidism)、甲状腺功能亢进症(Hyperthyroidism)、慢性肝病(Chronic Liver Disease)、肝炎病毒感染(Hepatitis Virus Infection)、癌症(Cancer)、HIV感染(HIV Infection)等。
此外,CLIA还可以用于检测抗生素,如青霉素、氨苄西林、头孢菌素等,以及肝素、血清素等药物的含量。
结论CLIA是一种灵敏度和特异性很高的免疫分析方法,可以用来测定血清中抗原和抗体的含量,而且可以用于多种疾病的诊断,比如癌症、HIV感染、肝炎等疾病。
此外,CLIA的操作简单,可以在实验室中快速完成,可以用于大量样本的检测,从而节省时间和成本。
因此,CLIA可以作为一种有效的免疫分析方法,为疾病的诊断提供重要的帮助。
化学发光免疫分析方法.
为85.5%。Magliulo 等[20]建立了牛奶中黄曲霉毒素M1的化学发光酶
免疫分析方法,通过将黄曲霉毒素M牛血清白蛋白包被在聚丙烯板上,
通过酶标二抗在含有鲁米诺的基板上进行检测。该方法的最低检测限为
1 pg/mL,且板间板内数据的变异系数均低于9%,回收率在96%~
122%之间。 Lin 等[21]建立了农产品中黄曲霉毒素B1 的化学发光免 疫分析方法。该方法线性检测范围在0.05~10 ng/g 之间 ,检测灵敏度 为0.01 ng/g,板间及板内变异系数分别为12.2%及 10.0%。 农产品中样 品添加回收率在79.8%~115.4%之间。 同时, 将建立的分析方法与黄 曲霉毒素商品化酶联免疫试剂盒进行了相关性试验,相关系数为
菌素B1 的 ELISA 方法相比,其方法灵敏度提高了10 倍。 且通过样品的
添加回收率试验表明其有良好的回收率,其分析结果与ELISA 分析方法
与 HPLC 方法有良好的相关性。
Yang等[17]建立了食品中葡萄球菌肠毒素B(SEB)的碳纳米管的化
学发光免疫分析方法,通过将SEB 抗体吸附在碳纳米管表面 , 然后将抗
方面报道还有Perschel 等[13]通过化学发光免疫分析对原发性醛固酮
过多症(PHA)进行快速筛选, Tudorache等[14]利用磁颗粒免疫支
持液膜方法(m-ISLMA)检测唾液中的孕酮含量,Iwata 等[15]利用双
夹心化学发光免疫分析方法测定血浆中内皮素-1的含量等。关于这方
面的应用,化学发光免疫分析方法应用的最为广泛,正是在医学检测方
种生物化学领域中最新的超灵敏的碱性磷酸酶底物,其特点是反应速度
快,在很短时间内提供正确可靠的结果。在它的分子结构中有两个重要
化学发光免疫分析
化学发光免疫分析(Chemiluminescence analysis ,CLlA) 诞生于1977 年。
Halmann[1 ]等根据放射免疫分析的基本原理,将高灵敏的化学发光技术与高特异性的免疫反应结合起来,建立了化学发光免疫分析法。
CLIA 具有灵敏度高、特异性强、线性范围宽、操作简便、不需要十分昂贵的仪器设备等特点。
CLIA 应用范围较广,既可检测不同分子大小的抗原、半抗原和抗体,又可用于核酸探针的检测。
CLIA与放射免疫分析(RIA) 、荧光免疫分析( IFA) 及酶免疫分析(EIA) 相比,具有无辐射、标记物有效期长并可实现全自动化等优点。
CLIA 为兽医、医学及食品分析检测和科学研究提供了一种痕量或超痕量的非同位素免疫检测手段。
1. 化学发光免疫分析技术的基本原理化学发光免疫分析含有免疫分析和化学发光分析两个系统[2 ]。
免疫分析系统是将化学发光物质或酶作为标记物,直接标记在抗原或抗体上,经过抗原与抗体反应形成抗原-抗体免疫复合物。
化学发光分析系统是在免疫反应结束后,加入氧化剂或酶的发光底物,化学发光物质经氧化剂的氧化后,形成一个处于激发态的中间体,会发射光子释放能量以回到稳定的基态,发光强度可以利用发光信号测量仪器进行检测[3 ]。
根据化学发光标记物与发光强度的关系,可利用标准曲线计算出被测物的含量电化学发光分析技术特点最先进的分析原理专利的电化学发光分析技术(ECL)。
ECL是一种在电极表面由电化学引发的特异性化学发光反应。
包括了两个过程。
发光底物二价的三联吡啶钌及反应参与物三丙胺在电极表面失去电子而被氧化。
氧化的三丙胺失去一个H成为强还原剂,将氧化型的三价钌还原成激发态的二价钌,随即释放光子恢复为基态的发光底物。
最好的发光标记物-三联吡啶钌分子量小,结构简单。
可以标记于抗原,抗体,核酸等各种分子量,分子结构的物质。
从而具有最齐全的检测菜单。
三联吡啶钌为水溶性,且高度稳定的小分子物质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文献综述题目:小麦全蚀病的发生与防治学院:生命科学学院专业:制药工程学号:2008044030226姓名:李宵宁指导老师:张冬冬小麦全蚀病的发生与防治李宵宁河北农业大学生命科学学院制药工程0802班摘要:小麦是重要的经济作物,小麦全蚀病是小麦生长过程中的重要病害之一,是一种世界性重要病害,本文主要介绍小麦全蚀病在我国的发生情况,并对引起小麦全蚀病的病菌禾顶囊壳菌(Gaeumannormyces graminis)的致病机理、传播途径及发生规律进行了介绍;从植物检疫、品种防治、生物防治、农业防治、化学防治等方面介绍了小麦全蚀病的综合治理方法。
关键词:小麦全蚀病;发生;防治1小麦全蚀病的概况自从1852年南澳大利亚首次报道小麦全蚀病以来,全蚀病在世界各国的发生时有报道,现已在澳洲、南北美洲、欧洲、亚洲、非洲等30多个国家发生[1]。
我国最早于1931年在浙江发现全蚀病,之后全国各麦区也相继发现该病[2]。
全蚀病破坏小麦根系,可造成受害麦田减产20%-50%,严重者甚至绝收[3]。
全蚀病为河南、山东等多个省的补充检疫病害,一旦发病,制种田的种子将无法利用,会造成很大的经济损失。
近年来,小麦全蚀病在河南省多处麦田屡见发生,且有加重的趋势[3]。
因此,全面了解小麦全蚀病的发生发展规律与防治措施,深入研究小麦抗病机制与病原菌致病机制,对于控制其危害具有重要意义。
而目前普遍采取的防治措施主要有植物检疫,农业防治,化学防治,选取抗性品种,生物防治。
2小麦全蚀病病状小麦全蚀病是土传根部病害,病菌菌丝侵入麦株根部后大量繁殖,破坏根组织细胞,堵塞根部导管,使植株体内营养及水分不能正常运输,导致麦株分蘖减少,黄叶增多,有的植株还会出现矮化现象。
病菌在小麦的整个生长期间都能侵染,以成株期症状最为明显[4]。
成株受害症状:由于根系受害,造成小麦水分、养分的吸收运输受阻,导致病株枯死、变白,抽穗期呈现典型的“白穗”症状。
由于养分供应不足,病株多表现为矮小瘦弱,穗数减少且不实,千粒重降低。
在湿润的土壤中,全蚀病菌的外生菌丝大量繁殖,缠绕在茎基表面,形成一层黑色菌丝鞘,且越接近基部颜色越深,状似在小麦的茎基部贴上了一块黑膏药,因此,全蚀病也被称为“黑脚病”。
这一典型症状是小麦全蚀病区别于其他根腐病的标志之一。
但土壤湿度小的地方,菌丝较少,故该症状不太明显。
剥开最低一片叶的叶鞘,用放大镜观察可见叶鞘内侧表皮及茎秆表面长满紧密交织的黑色菌丝座和成串连接的菌丝结。
病株死亡之后,其根、茎、叶鞘内侧,还可见到黑色颗粒状突起的子囊壳[4]。
3小麦全蚀病病原菌小麦全蚀病的病原真菌为子囊菌亚门、核菌纲、肉座菌目、肉座菌科、顶囊壳属真菌,学名Gaeumannomyces graminis( Sacc. ) Arx & Olivier var. tritici J. Walker。
病原菌的分类特征为子囊壳单生,埋入基质, 黑色, 颈圆柱形, 微侧生, 顶端有孔口。
壳壁为假薄壁组织,浅色或黑棕色。
子囊多为圆柱形, 薄壁, 有柄。
子囊内8个孢子,平行排列,线形,成熟时有假隔膜。
假侧丝线形, 纤细, 逐渐消失。
该菌为兼性寄生,可以在土壤中长期存活,主要靠菌丝体侵染寄主。
根据孢子的大小、菌丝附着枝特征及致病性, 可将全蚀病菌分为3个变种,即全蚀病菌小麦变种、全蚀病菌燕麦变种、全蚀病菌水稻变种。
全蚀病菌小麦变种广泛寄生于禾谷类作物和禾本科杂草;全蚀病菌燕麦变种可严重感染小麦属、大麦属、燕麦属作物及许多禾本科杂草。
全蚀病菌水稻变种主要感染热带和亚热带的稻属作物、狼尾草属和钝叶草属杂草,水稻变种能在小麦根表产生典型匍匐菌丝, 侵染薄皮层组织, 但不能侵入到根内部,属弱致病系,且能诱发受侵染小麦对全蚀病菌小麦变种的抗性。
小麦全蚀病菌为同宗结合。
在自然条件下,全蚀病菌的常见形态为菌丝体,亦可见到子囊壳和子囊孢子。
全蚀病菌的菌丝体粗壮,褐色,老化的营养菌丝多呈锐角分枝,在分枝处主枝与侧枝各形成一横隔,两横隔呈形,此为全蚀病菌的菌丝特征。
子囊壳通常在寄主成熟后产生,或在无效分蘖及枯死病株的茎基部叶鞘内侧形成,内生子囊及子囊孢子,其形态特征如前所述。
自然条件下,尚未发现全蚀病菌的无性孢子。
在实验室条件下,全蚀病菌在小麦根、茎及人工培养基上也能产生子囊壳,受培养基质和条件的影响,子囊壳个体较大。
全蚀病菌在人工培养条件下能形成无性小孢子,但其功能尚不明确。
全蚀病菌的菌丝体在人工培养基上,3~33℃均有生长迹象,最适生长温度19~ 24℃,在3℃以下和33℃以上停止生长。
在自然土壤中,病菌侵染小麦的最适土温为12~18℃,在土温超过25℃时侵染减少,而土温在6~ 8℃时,病菌仍能侵染。
子囊壳的形成一般要求温度在15~ 25℃,以20℃最适宜,低于14 ℃则不利于子囊壳产生及子囊孢子发育。
全蚀病菌是一种兼性寄生菌,寄主范围广泛,除危害多种禾本科作物外,还能寄生某些禾本科杂草。
据报道,全蚀病菌可以侵染的寄主有170多种。
鉴定全蚀病菌寄主的方法是在无病或灭菌土壤中按质量比接入15%~ 2%的玉米粉砂全蚀病菌培养物,然后播种供鉴定杂草或作物的种子,在土温16~ 22℃、保持湿润的条件下生长50~ 90d后,挖取生长的植株,检查其根茎的感病情况,能够感病的即为寄主[4]。
4小麦全蚀病的侵染、传播及发病规律小麦全蚀病菌在小麦整个生育期都可以侵染。
病菌可以从小麦幼苗的种子根、胚叶、外胚叶、胚芽鞘及根茎下的节间等不同部位侵入组织内部[1]。
在侵入根表皮时,病菌可产生类似附着胞的结构,称为附着枝[1,5]。
全蚀病菌对土壤拮抗微生物的作用很敏感,在土壤中的扩展受限,很难通过土壤伸展传播,可以将其视为很少发生再侵染的病害。
但病菌可以在土壤中的病残体上腐生或休眠,借以过渡到下季小麦上,完成侵染循环。
目前,小麦收割多用联合收割机作业,这使得病残体几乎全部留在土壤中,因此,土壤成为小麦全蚀病的主要传播途径。
特别是在小麦、玉米一年两熟地区,病菌可以不断积累,在一定时间内病情也会逐渐加重。
影响小麦全蚀病田间发生发展的因素很多,包括耕作制度、土壤营养、感病寄主、气候条件等。
实践表明,小麦、玉米等全蚀病寄主连作有利于病原菌的积累,从而使得连作地块的病害逐年加重,而换用非寄主作物如棉花等与小麦轮作则可以减轻病害。
土壤中有机质含量高,氮、磷配比平衡的,发病轻;反之,土壤有机质含量低,或者氮、磷配比失衡的,都会导致病害加重。
此外,如果小麦生长早期气温偏低,影响小麦正常生长,造成成熟期延迟,后期再遇上干热风,也能加重病害。
小麦全蚀病随着小麦连作时间的延长,会出现病害自然减弱的现象,这一现象被称为“全蚀病衰退”。
有研究表明[1],小麦全蚀病的发生发展过程可大致划分为4个阶段:病害上升阶段、危害高峰阶段、病害下降阶段、控制危害阶段。
5小麦全蚀病的防治大量研究表明小麦全蚀病的发生与危害程度与耕作措施,营养条件,土壤性质与温湿度及品种抗病性等息息相关,研究结果均认为在农业防治的基础上进行药剂防治能有效的控制小麦全蚀病的危害。
小麦全蚀病的侵染源主要来自土壤,其分布广,与小麦共生期长,寄主范围广泛,病害一旦发生就难以根除。
小麦全蚀病菌是一种非专化性弱寄生菌,对小麦品种没有严格的选择性,难以找到抗性良好的高抗品种,国内市场上也少见对该病防治效果令人满意的化学药剂。
目前对该病的防治一般都是采取农业措施和药剂防治相结合的方式,防治效果并不稳定,因此,在小麦全蚀病防控方面还有很多工作要做。
下面简单介绍一下目前对该病的常用防治措施。
5.1植物检疫小麦全蚀病是我国重要的检疫对象。
通过规范严格的植物检疫流程,可以有效的防治小麦全蚀病在我国各地区的传播与蔓延[6]。
尤其是产地检疫,可以及时发现病害,并有效的采取相应措施控制[7]。
5.2农业防治农业防治一般采用轮作倒茬、耕作栽培、配方施肥。
5.2.1轮作倒茬小麦全蚀病菌主要以菌丝体随病残体在土壤中越夏或越冬。
小麦或大麦连作有利于土壤中病原菌积累,连作多年病情逐年加重。
合理轮作不仅阻断了病菌菌丝与寄主作物的接触,使菌丝不断被削弱,而且某些轮作作物还可能产生对病原菌有毒的抑制物质。
在重病区实行轮作倒荐是控制全蚀病的有效措施,轻病区合理轮作可延缓病害的扩展蔓延[8]。
生产中常用的轮作作物有烟草、薯类、甜菜、胡麻、蔬菜、绿肥、棉花等。
此外,据陈厚德等[9]研究,用水旱轮作的方式来控制全蚀病的发生发展也是切实可行的。
就轮作控制小麦全蚀病而言,虽然轮作后第一年控病效果非常显著,但如果盲目轮作则会破坏土壤微生物之间的生态平衡,严重干扰全蚀病自然衰退的进程。
轮作防治全蚀病只能在有限的范围内进行,轮作年限以1年~2年换种一料非寄主作物较为合理[10]。
5.2.2耕作栽培关于耕作对小麦全蚀病的影响,目前也有两种观点,一种认为深耕有利于减轻病害,另一种则认为实行免耕或少耕能减轻发病[2,11]。
前一种观点的理由是小麦全蚀病菌是土壤习居菌,不形成特殊的休眠体,仅以菌丝体在寄主残体或残渣中存活。
重病地播前深翻,可将大量病残体翻入下层,降低了繁殖体存活力,改善了土壤透气性,调整土壤中空气和水分的关系,促使麦根发育良好,增强植株抗耐病能力,减少了病菌入侵机会。
后一种观点可能着眼于“全蚀病衰退”问题,认为全蚀病衰退与衰退土壤中存在的专化拮抗微生物有密切关系。
衰退麦田或即将衰退麦田的拮抗微生物在耕层上部比下部更活跃,若深翻则会扰乱耕层中抑制发病的衰退土壤层,导致病害加重[8]。
在北方冬麦区,小麦全蚀病的侵染受土壤温度的制约。
播种愈早,发病愈重,适当推迟播期可相应减轻病害。
已有不少研究证明冬小麦适期晚播,是控治全蚀病的有效措施之一[1,10,12]。
5.2.3配方施肥增施有机肥可提供较全面的营养,增强小麦植株抗病性,改良土壤理化特性,促进土壤微生物活动,增强土壤微生物间的竞争性,可以减少病原菌数量和抑制其生长。
所施用的有机肥必须经过腐熟,以杜绝病原菌传播途径。
当前生产上大量施用的是无机速效氮肥。
氮肥对小麦全蚀病菌的侵染有重要影响,缺氮侵染加重。
不同类型的氮对病菌侵染的影响不同,有资料表明[1],铵态氮对降低病害严重度效果明显,硝态氮则促使病害严重度增加。
施用铵态氮能降低小麦根际pH值,有利于小麦对氮和微量元素的吸收,抑制了病菌侵染;而硝态氮则提高了根际pH值,有利于病害发生发展。
此外,还有研究表明[12],施用铵态氮时,细菌和链霉菌数量大大增加,这对全蚀病菌有不同程度抑制作用。
同样,氮磷施用适当比例,硫与氮、磷同施,氯与铵态氮同施都有减轻发病的作用[8]。
5.3品种防治20世纪70年代以前,人们普遍认为小麦品种中对全蚀病不存在抗病性差异或差异很小。
20世纪70年代以后,随着试验条件和实验方法的进行改进,人们逐渐认识到小麦品种间存在着明显的抗病性差异[8]。