大学数学第三章线性方程组第六节(课堂讲义

合集下载

线性代数-线性方程组课件

线性代数-线性方程组课件

行最简形矩阵
经过初等行变换,行阶梯形矩阵还可以进一 步化为行最简形矩阵,其特点是:非零行的第一 个非零元为1,且这些非零元所在列的其它元素都 为0. 例如
1 0 0 0
4 1 10 1 0
线性方程组有解判别定理
(导学127页例7)
例题3
三、用初等行变换解线性方程组并写出线性方程组的解(非齐次写出 唯一解或一般解;齐次写出一般解)


例题1
例题2
例题3
行阶梯形矩阵
经过初等行变换,可把矩阵化为行阶梯形矩 阵,其特点是:可画出一条阶梯线,线的下方全 为0;每个台阶只有一行,台阶数即是非零行的 行数,阶梯线的竖线(每段竖线的长度为一行) 后面的第一个元素为非零元,也就是非零行的第 一个非零元. 1 1 2 1 4 例如 0 1 1 1 0 0 0 0 1 3 0 0 0 0 0
• ① ② • a. b. c.
线性方程组解的情况判定


一、齐次线性方程组解的判定及其解法 内容讲解
二、非齐次线性方程组解的判定(用秩来刻画)内容讲解
__ __
{


AX b有 解 秩A 秩 A AX b无 解 秩A 秩 A
例题1 例题2
{
AX b有唯一解秩A秩 A n AX b有无穷多解 秩A秩 A n
n元线性方程组的矩阵表示形式

2、
a11 a12 a1n x1 b1 a 21 a 22 a 2 n x 2 b2 a m 1 a m 2 a mn x n bn 简写为 b Ax

高等代数课件北大版第三章线性方程组

高等代数课件北大版第三章线性方程组

定义:将线性方程 组中的每一行进行 加减、倍乘等操作, 使得方程组简化
作用:将增广矩阵 化为阶梯形矩阵, 便于求解线性方程 组
步骤:对增广矩阵 进行初等行变换, 得到阶梯形矩阵
注意事项:变换过 程中需保持矩阵的 行列式不变,避免 出现错误结果
矩阵的逆法
定义:如果矩阵A存在逆矩阵,则称A为可逆矩阵 性质:可逆矩阵的行列式不为0 计算方法:通过行初等变换将矩阵变为单位矩阵,得到逆矩阵 应用:解线性方程组的重要工具之一
束优化问题等。
线性方程组在其他领域的应用
物理学中的应用:描述物理现象和规律,如牛顿第二定律、万有引力定律等。 经济学中的应用:分析经济问题,如供需关系、生产成本等。 计算机科学中的应用:解决优化问题、机器学习算法等。 统计学中的应用:处理数据分析和预测问题,如回归分析、主成分分析等。
线性方程组的扩展知识
添加标题
逆矩阵的计算方法:通过高斯消元法或拉普拉斯展开式等方法计算行列式|A|,然后通过|A|*|A^(1)|=1计算逆矩阵A^(-1)。
添加标题
逆矩阵的应用:在解线性方程组、求矩阵的秩、计算行列式、求向量空间的一组基等方面都有应用。
线性方程组的通解与特解的关系
通解与特解的定义
通解与特解的关系
通解与特解的求解方法
线性方程组在计算机科学中的应用
线性方程组在计算机图形学中 的应用:用于计算光照、纹理 映射和渲染等。

线性方程组在计算机视觉中的 应用:用于图像处理、特征提
取和目标检测等。
线性方程组在机器学习中的应 用:用于训练和优化模型,如 线性回归和逻辑回归。
线性方程组在人工智能领域的 应用:用于优化算法、求解约
通解与特解的应用
感谢您的耐心观看

线性代数讲义03线性方程组

线性代数讲义03线性方程组

第三章 线性方程组第一节 线性方程组与矩阵的行等价一 线性方程组以前学过求解二元一次方程组与三元一次方程组的方法. 这里研究一般的一次方程组.定义3.1 多元一次方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111称为线性方程组. 方程组有m 个方程, n 个未知数i x (1,2,,i n =), 而ij a (1,2,,i n =;m j ,,2,1 =)是未知数的系数, j b (m j ,,2,1 =)是常数项.如果0=j b (m j ,,2,1 =), 则称为齐次线性方程组, 否则称为非齐次线性方程组.数组n c c c ,,,21 是方程组的一个解, 如果用它们分别代替方程组中的未知数n x x x ,,,21 , 可以使方程组变成等式组. 方程组的全部解的集合称为方程组的通解. 相对于通解, 称方程组的一个解为特解.定义3.2 如果两个线性方程组有相同的通解, 则称它们同解.按照定义, 两个方程组同解是指它们的解的集合相等. 集合相等是一种等价关系, 因此方程组同解也是一种等价关系. 特别, 方程组同解具有传递性.通过消元, 可将线性方程组变成比较简单的同解方程组, 从而得到原方程组的解.例3.1 解线性方程组⎪⎩⎪⎨⎧=++=++=+-52452132321321321x x x x x x x x x .解 从上向下消元, 得同解方程组1232332312243x x x x x x -+=⎧⎪-=⎨⎪-=-⎩. 这种方程组称为阶梯形方程组. 从下向上消元, 得同解方程组⎪⎩⎪⎨⎧-=-=-=310232321x x x .再除以第一个未知数的系数, 得线性方程组的解2/31-=x , 52=x , 33=x .解线性方程组的基本方法是加减消元法. 求解过程中常用三种运算.定义3.3 下列三种运算称为方程组的初等变换.(1) 交换两个方程的位置;(2) 用一个非零常数乘以一个方程;(3) 将一个方程的k 倍加到另一个方程上去.注意 如果用一种初等变换将一个线性方程组变成另一个线性方程组, 则也可以用初等变换将后者变成前者. 即初等变换的过程是可逆的.定理3.1 用初等变换得到的新的线性方程组与原方程组同解.证 先证明只进行一次初等变换.首先如果一组数是原方程组的解, 则它满足方程组中的每一个方程. 此后, 无论进行的是哪种初等变换, 这组数也满足新方程组的每个方程, 因此是新方程组的解. 反之, 由于初等变换的可逆性, 新方程组的解也是原方程组的解. 因此, 两个方程组同解.最后, 由于方程组同解的传递性, 进行任意多次初等变换所得方程组与原方程组同解.二 矩阵的行等价用矩阵乘法, 可以将线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111写作 11121121222212n n m m mn n a a a x a a a x a a a x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=m b b b 21, 称为线性方程组的矩阵表示. 其中n m ⨯矩阵)(ij a A =称为方程组的系数矩阵, 1⨯n 列矩阵),,,(21'=n x x x x 称为未知数(矩阵), 1⨯m 列矩阵),,,(21'=m b b b b 称为常数(矩阵). 此时, 线性方程组可以简写作b Ax =.如果数组n c c c ,,,21 是线性方程组b Ax =的解, 令列矩阵12(,,,)n c c c ξ'=, 则有矩阵等式A b ξ=. 列矩阵12(,,,)n c c c ξ'=是方程组的解的矩阵表示.将常数矩阵添加到系数矩阵上作为最后一列, 得到分块矩阵),(b A A =, 称为线性方程组的增广矩阵.线性方程组与其增广矩阵是互相唯一确定的. 因此, 可以将方程组的语言翻译成矩阵的语言. 从线性方程组的初等变换, 产生矩阵的行初等变换的概念.定义3.4 设A 是矩阵, 则下列三种运算称为对矩阵A 的行初等变换.(1) 交换A 的两行;(2) 用非零常数k 乘以A 的一行;(3) 将A 的一行的k 倍加到另一行上去.定义 3.5 如果通过行初等变换, 可以将矩阵A 变成矩阵B , 则称矩阵A 与B 行等价. 记作B A r−→−. 仿照定理3.1的证明, 可以得到下面的结果.性质3.1 行等价是一种等价关系, 即具有下述性质.(1) 反身性: A A r −→−; (2) 对称性: 如果B A r −→−, 则A B r −→−; (3) 传递性: 如果B A r −→−,C B r −→−, 则C A r −→−. 当一类对象具有多种不同的等价关系时,要用不同的符号予以区别. 矩阵的相等是一种等价关系, 已经用等号表示为B A =. 作为矩阵的另一种等价关系, 行等价使用符号B A r −→−. 用矩阵的行等价的概念, 可以将定理3.1写作:定理3.2 如果两个线性方程组的增广矩阵行等价,则这两个线性方程组同解.通过初等变换, 可以从线性方程组产生一个阶梯形方程组. 换成矩阵的语言, 通过行初等变换, 可以从矩阵产生下面的具有特殊结构的矩阵.如果矩阵中某行中所有元素都是0, 则称为零行, 否则称为非零行.定义3.6 具有下面的性质的矩阵称为行阶梯形阵.(1) 非零行在上, 零行在下;(2) 每个非零行的第一个非零元素(首元素)在上面的非零行的首元素的右下方.例3.2 用行初等变换化简矩阵⎪⎪⎪⎭⎫ ⎝⎛-=521451121312A .解 做行初等变换, 得⎪⎪⎪⎭⎫ ⎝⎛-=521451121312A ⎪⎪⎪⎭⎫ ⎝⎛---−→−343042201312r ⎪⎪⎪⎭⎫ ⎝⎛----−→−310042201312r . 经过消元, 得到的已经是行阶梯形阵. 继续消元, 得⎪⎪⎪⎭⎫ ⎝⎛----−→−310042201312r A ⎪⎪⎪⎭⎫ ⎝⎛----−→−3100100208012r ⎪⎪⎪⎭⎫ ⎝⎛---−→−3100100203002r .最后, 每行除以其首元素, 得⎪⎪⎪⎭⎫ ⎝⎛---−→−3100100203002r A ⎪⎪⎪⎭⎫ ⎝⎛-−→−310050102/3001r .定义3.7 具有下列性质的行阶梯形阵称为行最简阵.(1) 每个非零行的首元素等于1;(2) 包含首元素的列的其它元素都是0.在例3.2中, 最后得到的是行最简阵. 由以上的讨论, 可得下面的定理.定理3.3 对于任意矩阵A , 存在一个行最简阵R , 使得A 与R 行等价.如果矩阵A 与行阶梯形阵R 行等价,则称R 是A 的行阶梯形阵. 如果A 与行最简阵R 行等价, 则称R 为矩阵A 的行等价标准形.其实, 例3.2中的矩阵就是例3.1中线性方程组的增广矩阵. 而矩阵的行初等变换的过程与线性方程组的初等变换的过程完全一样. 唯一的区别在于这里只有系数和常数, 没有未知数和等号. 由于增广矩阵与线性方程组可以互相唯一确定, 缺少未知数和等号完全不影响问题的解决.习题3-11. 写出线性方程组⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x 的系数矩阵与增广矩阵, 并用消元法求解.2. 设线性方程组的增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛------1681355422351312, 写出该线性方程组, 并用消元法求解.3. 求下列矩阵的行等价标准形.(1)102120313043-⎛⎫ ⎪ ⎪ ⎪-⎝⎭; (2) 023*********-⎛⎫ ⎪- ⎪ ⎪--⎝⎭; (3) 11343335412232033421--⎛⎫ ⎪-- ⎪ ⎪-- ⎪ ⎪---⎝⎭; (4) 23137120243283023743--⎛⎫ ⎪-- ⎪ ⎪- ⎪ ⎪-⎝⎭. 4. 求t 的值, 使得矩阵⎪⎪⎪⎭⎫ ⎝⎛-----t 22122351311321的行等价标准形恰有两个非零行.第二节 矩阵的秩一 矩阵的秩的定义定义 3.8 设矩阵n m ij a A ⨯=)(, 从A 中任意选取k 行,k 列(},min{n m k ≤), 位于这些行与列的交叉点上的2k 个元素按照原来的相对位置构成的k 阶行列式称为A 的一个k 阶子式. 例如, 位于矩阵⎪⎪⎪⎭⎫ ⎝⎛---=312097102431A 的第一,三行, 第二,四列的二阶子式为133223-=-. 一个n m ⨯矩阵有kn k m C C 个k 阶子式. 矩阵的每个元素都是它的一个一阶子式. 而n 阶方阵的行列式是它的唯一的n 阶子式.定义3.9 如果矩阵n m ij a A ⨯=)(中有一个r 阶子式不等于零, 而所有1+r 阶子式都等于零, 则称矩阵A 的秩等于r . 记作r A =)rank(.如果矩阵的所有1+r 阶子式都等于零, 根据行列式按照一行展开, 可以证明所有更高阶的子式也都等于零. 因此, 矩阵的秩等于它的不等于零的子式的最高阶数.约定 对于零矩阵O , 约定0)rank(=O .由矩阵的秩的定义, 可以得到下面简单事实:(1) 设A 是非零矩阵, 则1)rank(≥A ;(2) 设A 是n m ⨯矩阵, 则},min{)rank(n m A ≤;(3) n 阶方阵A 可逆的充分必要条件为n A =)rank(. 于是, 可逆阵又称为满秩阵.例3.3 设⎪⎪⎪⎭⎫ ⎝⎛=064212100321A , 求它的秩.解 左上角的二阶子式不等于零. 而所有四个三阶子式都等于零. 于是, 2)rank(=A . 例3.4 求对角阵),,,diag(21n a a a A =的秩.解 由不等于0的主对角元素所在的行与列确定的子式不等于0. 而阶数高于这个子式的子式必然有零行. 因此对角阵的秩等于其不等于0的主对角线元素的个数.例3.5 设矩阵A 的秩等于0>r , 从A 删除一行得到矩阵B , 问B 的秩可能取哪些值? 如果给A 添加一行呢?解 因为矩阵B 的子式也是矩阵A 的子式, 所以B 的秩不大于A 的秩.已知r A =)r a n k (, 不妨设A 的r 阶子式D 不等于0. 如果D 也是B 的子式, 则r B =)rank(. 否则, 根据行列式按照一行展开, 在D 的未被删除的1-r 行中, 至少有一个1-r 阶子式不等于0. 于是1)rank(-≥r B .仿照上面的证明, 添加一行所得矩阵的秩等于r , 或者1+r .性质3.2 设A 是矩阵, k 是数, 则(1) 转置: )rank()rank(A A =';(2) 数乘: 如果0≠k , 则)rank()rank(A kA =.证 只证(2).考虑矩阵A 的一个s 阶子式s D , 根据矩阵的性质2.6, 矩阵kA 的相应的子式等于s s D k .已知0≠k , 因此0=s s D k 的充分必要条件为0=s D .设r A =)rank(, 则A 有一个r 阶子式不等于0, 而所有1+r 阶子式都等于0. 根据前面的分析, 矩阵kA 具有相同的性质. 因此, r kA =)rank(.二 行初等变换用定义计算矩阵的秩时, 需要计算许多个行列式. 计算量非常大.定理3.4 设矩阵A 与B 行等价, 则rank()rank()A B =.证 设一次行初等变换将矩阵A 变成矩阵B ,且r A =)r a n k (, 则A 的所有1+r 阶子式都等于0. 下面对于三种行初等变换证明矩阵B 的所有1+r 阶子式也都等于0.(1) 矩阵A 的一行乘以非零常数k . 此时B 的一个1+r 阶子式或者就是A 的相同位置的1+r 阶子式, 或者是A 的相同位置的1+r 阶子式的一行乘以非零常数k . 于是, B 的所有1+r 阶子式都等于0.(2) 交换矩阵A 的两行. 考虑B 的一个1+r 阶子式D , 则A 有一个1+r 阶子式与D 的差别至多是行的顺序不同. 于是, B 的所有1+r 阶子式都等于0.(3) 将A 的第j 行的k 倍加到第i 行. 如果B 的一个1+r 阶子式不包含A 的第i 行, 它就是A 的相同位置的1+r 子式. 如果B 的一个1+r 阶子式D 包含A 的第i 行, 用行列式的性质, 这个子式可以分解为21kD D +, 其中1D 就是A 的相同位置的1+r 子式. 如果D 不包含A 的第j 行, 则2D 可以由A 的某个1+r 阶子式经交换行得到. 如果D 包含A 的第j 行, 则2D 有两个相同的行. 于是, B 的所有1+r 阶子式都等于0.总之, )rank()rank(A r B =≤.另一方面, 由矩阵的行等价的对称性, 也可以用行初等变换将矩阵B 变成矩阵A . 从而还有)rank()rank(B A ≤. 于是, 无论做哪种行初等变换, 都有rank()rank()A B =.最后, 由矩阵的行等价的传递性, 进行多次行初等变换也不改变矩阵的秩.推论 3.1 矩阵的秩等于它的行阶梯形阵中非零行的个数, 也就是行等价标准形中非零行的个数.证 设矩阵A 的行等价标准形R 中恰有r 个非零行, 则所有1+r 阶子式都等于0. 另一方面, 它的非零行的首元素所在的列的前r 行构成r 阶单位阵. 于是r R =)rank(. 根据定理 3.4, 有r A =)rank(.例3.6 求矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=7931181332111511A 的秩. 解 用行初等变换, 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=7931181332111511A −→−r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----81440472047201511−→−r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0000000047201511. 矩阵A 的行阶梯形阵有两个非零行, 因此, 2)rank(=A .例3.7 设分块矩阵⎪⎪⎭⎫ ⎝⎛=C O O B A , 求证: )rank()rank()rank(C B A +=. 证 设矩阵C B ,的行等价标准形分别为R 和S , 分别对B 和C 所在的行做行初等变换, 得⎪⎪⎭⎫ ⎝⎛=C O O B A ⎪⎪⎭⎫ ⎝⎛−→−S O O R r , 其中R 和S 分别是B 和C 的行等价标准形. 将R 所在的行中的零行移动到矩阵的最下方, 而不改变非零行的上下顺序, 可得到一个行最简阵. 而且, 这就是A 的行等价标准形. 于是, A 的行等价标准形中非零行的个数恰等于B 与C 的行等价标准形中非零行的个数之和.用这个方法可以证明: 准对角阵的秩等于各对角块的秩的和.习题3-21. 设矩阵⎪⎪⎭⎫ ⎝⎛=75211111A ,按照从小到大的顺序排列它的所有二阶子式. 2. 设n m ⨯矩阵A 的秩等于r , 任取A 的s 行构成矩阵B , 求证: m s r B -+≥)rank(. *3. 设A 是n m ⨯矩阵,求证:1)rank(=A 的充分必要条件为: 存在1⨯m 非零矩阵B 与n ⨯1非零矩阵C ,使得BC A =.4. 用行初等变换求下列矩阵的秩.(1) 123235471⎛⎫ ⎪- ⎪ ⎪⎝⎭; (2) 321322131345561---⎛⎫ ⎪-- ⎪ ⎪--⎝⎭; (3) 1010011000011000011001011⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭; (4) 132541413514243273613-⎛⎫ ⎪ ⎪ ⎪ ⎪-⎝⎭. 5. 求t 的值, 使得方阵⎪⎪⎪⎭⎫ ⎝⎛-=t A 23312231的秩等于2.第三节 齐次线性方程组的基础解系齐次线性方程组的矩阵表示为0=Ax . 此时方程组与其系数矩阵A 互相唯一确定.齐次线性方程组0=Ax 总有零解. 于是, 解齐次线性方程组的基本问题是:(1) 对给定的齐次线性方程组,判定是否有非零解;(2) 如果有非零解, 求出所有的解(通解). 性质 3.3 如果列矩阵1ξ与2ξ是齐次线性方程组0=Ax 的两个特解, 则对于任意的数k h ,, 列矩阵21ξξk h +也是方程组的解.证 将21ξξk h +代入方程组, 得)(21ξξk h A +00021=+=+=ξξkA hA . 由定理3.2与定理3.3可得解齐次线性方程组的基本路线. 下面通过例题予以说明.例1求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++=-+++=-----=+++0434503223006225432154321543215432x x x x x x x x x x x x x x x x x x x 的通解. 解 首先写出方程组的系数矩阵.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------=14345321231111162210A . 然后做行初等变换, 由矩阵A 产生行阶梯形阵. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------14345321236221011111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----−→−00000010006221011111r . 继续做行初等变换, 得到矩阵A 的行等价标准形.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000010006021050101⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--−→−00000010006021050101r . 从行等价标准形得到同解方程组⎪⎪⎩⎪⎪⎨⎧===++=--000062054532531x x x x x x x .将行等价标准形的非零行中的首元素对应的未知数留在方程组的左边, 将其余未知数移到方程组的右边, 得到⎪⎪⎩⎪⎪⎨⎧==--=+=0006254532531x x x x x x x . 任意取定右边未知数(自由未知数)的值, 则左边未知数(约束未知数)的值也随之确定, 由此产生方程组的一个解.实际上,由此可以得到方程组的全部解. 设),,,,(54321'd d d d d 是方程组的任意的特解, 上面求解时3x 与5x 可以任意取值, 自然包含取值33d x =与55d x =. 由于),,,,(54321'd d d d d 是方程组的解, 必须满足方程组.因此5315d d d +=,53262d d d --=,04=d . 于是, 这个特解可以由上面的方法产生.令h x =3,k x =5, 得到齐次线性方程组的通解k h x 51+=,k h x 622--=,h x =3, 04=x , k x =5, 其中k h ,是任意常数.在通解中令1=h ,0=k , 得到齐次线性方程组的一个特解1(1,2,1,0,0)ξ'=-. 反之, 令0=h ,1=k , 得到另一个特解2(5,6,0,0,1)ξ'=-. 从而得到齐次线性方程组的通解的矩阵表示: 12x h k ξξ=+, 其中k h ,是任意常数. 为了得到方程组的通解, 只须求得特解1ξ与2ξ, 因此, 称12,ξξ为齐次线性方程组的基础解系.注意 将一个自由未知数取1, 其他自由未知数取0, 得到齐次线性方程组的一个特解. 这些特解的集合就是基础解系. 因此, 如果有s 个自由未知数, 则方程组的基础解系包含s 个特解.定理 3.5 设A 是n m ⨯矩阵, 则齐次线性方程组0=Ax 的基础解系中所包含的特解的个数等于)rank(A n -.证 根据推论 3.1, 系数矩阵A 的秩等于行等价标准形R 中非零行的个数, 也就是约束未知数的个数. 于是, 未知数的个数n 与系数矩阵的秩)rank(A 的差等于自由未知数的个数, 也就是基础解系中所包含的特解的个数.推论 3.2 齐次线性方程组只有零解的充分必要条件为: 系数矩阵的秩等于它的列数.证 根据定理 3.5, 此时没有自由未知数, 于是只有一个零解.推论3.3 设A 是n 阶方阵,求证:齐次线性方程组0=Ax 只有零解的充分必要条件为: 行列式0||≠A .证 根据推论3.2, 齐次线性方程组0=Ax 只有零解的充分必要条件为n A =)rank(. 由矩阵的秩的定义, n A =)rank(的充分必要条件为0||≠A .例 3.9 设A 是n 阶方阵, 且n r A <=)rank(, 求证: 存在n 阶方阵B , 满足O AB =, 且r n B -=)rank(.证 考虑齐次线性方程组0=Ax , 根据定理3.5, 它的r n -个特解12,,,n r ξξξ-组成基础解系. 即有0i A ξ=, r n i -=,,2,1 .构造分块n 阶方阵12(,,,,0,,0)n rB ξξξ-=, 即B 的前r n -列是基础解系中的特解构成的列矩阵, 后面的r 个列的元素都是0. 由基础解系的构造, 在B 的前r n -列中, 与自由未知数对应的行可以构成一个单位阵, 因此r n B -=)rank(.另一方面, 由分块矩阵的运算规则, 有12(,,,,0,,0)n r AB A ξξξ-=12(,,,,0,,0)n r A A A O ξξξ-==.习题3-31. 求下列齐次线性方程组的通解.(1)⎪⎩⎪⎨⎧=+=++=+-03200231321321x x x x x x x x ; (2)⎪⎩⎪⎨⎧=-+-+=+--+=-+-+024242052420632543215432154321x x x x x x x x x x x x x x x ; (3)⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++033450622032305432154325432154321x x x x x x x x x x x x x x x x x x x ; (4)⎪⎪⎩⎪⎪⎨⎧=+-+-=-+--=-+-+=+-+-02252022303220254321543215432154321x x x x x x x x x x x x x x x x x x x x .2. 设齐次线性方程组的系数矩阵的列数大于行数, 求证: 该方程组有非零解.3. 当a 满足什么条件时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x ax x x x ax 只有零解?4. 求a 的值, 使得齐次线性方程组⎪⎩⎪⎨⎧=+-=++=++004202321321321x x x x x x x x ax 有非零解. 并求其基础解系.5. 设0>n , 求证: n 次多项式至多有n 个两两不同的零点.第四节 非齐次线性方程组的通解解非齐次线性方程组b Ax =的基本问题是:(1) 对于给定的方程组, 判断是否有解;(2) 如果有解, 求出全部解(通解).定义 3.10 将非齐次线性方程组b Ax =中各方程的右边变成0, 得到的齐次线性方程组0=Ax 称为方程组b Ax =的导出组.性质3.4 设列矩阵1η与2η是线性方程组b Ax =的两个特解, 则它们的差21ηηξ-=是它的导出组0=Ax 的解.证 将21ηηξ-=代入导出组的左边, 得)(21ηηξ-=A A 021=-=-=b b A A ηη.推论 3.4 如果非齐次线性方程组有解, 则它的通解是它的一个特解与它的导出组的通解的和.证 首先, 设列矩阵η是方程组b Ax =的特解, 列矩阵ξ是其导出组0=Ax 的特解, 则有b b A A A =+=+=+0)(ηξηξ,即列矩阵ηξ+是方程组b Ax =的解.其次, 设列矩阵ζ是方程组b Ax =的任意的特解, 根据性质3.4, 列矩阵ηζξ-=是导出组0=Ax 的解. 移项, 得ξηζ+=, 即方程组b Ax =的任意的特解ζ可以表示为它的取定的特解η与导出组0=Ax 的解ξ的和.综合两方面, 即得本推论.注意 求非齐次线性方程组的通解, 只须求出它的一个特解, 以及它的导出组的通解. 而后面的问题已经解决.在齐次线性方程组的解题路线中, 用增广矩阵代替系数矩阵, 得非齐次线性方程组的解题路线. 现举例说明.例 3.10 求非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++-=-+++-=-----=+++13334533237246225432154321543215432x x x x x x x x x x x x x x x x x x x 的通解. 解 首先写出方程组的增广矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------13133453311237111112462210. 然后做行初等变换, 由增广矩阵产生行阶梯形阵.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------13133453311232462210711111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------−→−0000000000002462210711111r . 继续做行初等变换, 得到增广矩阵的行等价标准形.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000000000024622101751101⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----−→−00000000000024622101751101r . 从行等价标准形得到同解方程组⎪⎪⎩⎪⎪⎨⎧===+++-=---00002462217554325431x x x x x x x x . 将自由未知数移到右边, 得⎪⎪⎩⎪⎪⎨⎧==+---=-++=00002462217554325431x x x x x x x x . 将自由未知数取值0, 计算约束未知数的值, 即得非齐次方程组的一个特解)0,0,0,24,17('-=η.根据推论 3.3, 还需要求它的导出组的基础解系. 注意到: 如果删除增广矩阵的最后一列, 就是系数矩阵. 在做行初等变换之后, 如果删除增广矩阵的行等价标准形的最后一列, 也就是系数矩阵的行等价标准形. 于是, 如果将非齐次方程组的同解方程组的常数项变成0, 就是它的导出组的同解方程组. 用前面的方法, 得基础解系)0,0,1,2,1(1'-=ξ, )0,1,0,2,1(2'-=ξ,)1,0,0,6,5(2'-=ξ.于是, 非齐次线性方程组的通解的矩阵表示为332211ξξξηk k k x +++=, 其中321,,k k k 是任意常数.例 3.11 解非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++-=-+++-=-----=+++13334523237246225432154321543215432x x x x x x x x x x x x x x x x x x x .解 这个方程组的增广矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------13133453311237111112462210. 通过行初等变换, 得到行阶梯形阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------0000001000002462210711111. 在这里, 有一个非零行的首元素在最后一列. 当从行阶梯形阵出发, 得同解方程组时, 该行对应矛盾方程: 10=. 因此, 同解方程组无解. 于是, 原线性方程组无解. 反之, 如果不出现这种情况, 则用前面的方法可以求出通解.于是, 非齐次线性方程组有解的充分必要条件为: 它的增广矩阵的行阶梯形阵的非零行的首元素不出现在最后一列(常数项). 下面的定理用矩阵的秩表述这个结论.定理 3.6 非齐次线性方程组有解的充分必要条件为: 它的系数矩阵的秩等于它的增广矩阵的秩.证 在增广矩阵的行阶梯形阵中, 首元素不出项在最后一列的充分必要条件为: 增广矩阵的行阶梯形阵的非零行的个数等于系数矩阵的行阶梯形阵的非零行的个数. 由推论 3.1, 即系数矩阵与增广矩阵有相同的秩.推论 3.5 非齐次线性方程组有唯一解的充分必要条件为: 它的系数矩阵的秩等于其列数, 且等于增广矩阵的秩.证 综合定理3.6和推论3.2即可.例 3.12 当b a ,取何值时, 非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++1232)3(122043214324324321ax x x x bx x a x x x x x x x x 有唯一解, 无解, 有无穷多解? 对后者求通解.解 对增广矩阵做行初等变换, 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----112323101221001111a b a⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------−→−1321023101221001111a b a r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-−→−01000101001221001111a b a r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+----−→−01000101001221011101a b a r 根据定理3.6, 当1,1-≠=b a 时无解.当1,1-==b a 时, 非齐次线性方程组的特解为)0,0,1,1('-=η, 导出组的基础解系为)0,1,2,1(1'-=ξ, )1,0,2,1(2'-=ξ,通解为2211ξξηk k x ++=, 其中21,k k 是任意常数.当1≠a 时有唯一解)0,1,32,2(11'+--+--=b b a a b a η. 例3.13 设A 是n 阶方阵, 且0||≠A . 将A 分块),(C B A =, 其中C 是A 的最后一列, 求证: 线性方程组C Bx =无解.证 线性方程组的增广矩阵就是A , 由0||≠A , 增广矩阵的秩等于n . 而线性方程组的系数矩阵B 只有1-n 列, 它的秩不大于1-n . 根据定理3.6, 线性方程组C Bx =无解.推论 3.6 设A 是n 阶方阵, 则线性方程组b Ax =有唯一解的充分必要条件为: 行列式0||≠A .证 充分性. 设0||≠A , 则方阵A 的秩等于其列数n . 又方程组的增广矩阵),(b A 只有n 行, 于是, 由例3.5, 有≤=)rank(A n n b A ≤),rank(.根据推论3.5, 方程组有唯一解.必要性. 设方程组b Ax =有唯一解, 根据推论 3.5, 方阵A 的秩等于其列数n . 于是, 行列式0||≠A .条件0||≠A 保证方阵A 可逆. 用A 的逆阵左乘b Ax =, 得b A x 1-=. 这个公式是用逆阵表示线性方程组的唯一解. 从这个公式出发, 可以得到另一个公式. 根据定理2.1, 有 b A x 1-=b A A *||1=, 其中方阵*A 是A 的伴随阵. 计算这个矩阵等式的第j 行的元素, 得)(||12211n nj j j j b A b A b A A x +++= , n j ,,2,1 =. 根据定理 1.3, 等式右边的括号可以看作: 用常数矩阵b 代替系数行列式||A 的第j 列所得的行列式, 按照第j 列的展开式. 将这个行列式记作j D , 又将||A 改写作D , 则上式为D D x jj =, n j ,,2,1 =.这个公式是用行列式的商表示线性方程组的唯一解,称为克拉默法则.习题3-41. 设列矩阵i η(m i ,,,2,1 =)是非齐次线性方程组Ax b =的特解, 数i k (m i ,,,2,1 =)满足121=+++m k k k , 求证: 列矩阵1122m mk k k ηηη+++也是方程组Ax b =的特解.2. 求下列非齐次线性方程组的通解. (1)⎪⎪⎩⎪⎪⎨⎧=-+=++-=-+--=-+337713434234313214321431x x x x x x x x x x x x x ; (2) ⎪⎩⎪⎨⎧-=-+-=+-=-+-22344324314324321x x x x x x x x x x ; (3) ⎪⎪⎩⎪⎪⎨⎧=++-=+-=--=++0644352523222321321321321x x x x x x x x x x x x ; (4) ⎪⎪⎩⎪⎪⎨⎧=+++=++++=++++----nx x x x x x x x x x x x n n n n n n 122113113221 , 其中1>n .3. 求证: 线性方程组⎪⎩⎪⎨⎧=++-=+++=-++2543222432143214321x x x x x x x x x x x x 无解. 4. 求b的值, 使得线性方程组⎪⎩⎪⎨⎧=+-+=+-+=++-b x x x x x x x x x x x x 432143214321114724212有解, 并求其通解.5. 当d c b a ,,,满足什么条件时, 线性方程组⎪⎪⎩⎪⎪⎨⎧=+=+=+=+d x x cx x b x x a x x 42314321有解? 并求其通解.6. 当b a ,取何值时, 线性方程组⎪⎩⎪⎨⎧=++=++=++b ax x x x x x x x x 32132132132263132有唯一解, 无解, 有无穷多解? 对后者求其通解.*7. 设A 是n 阶方阵, b 是1⨯n 矩阵, 且分块方阵满足)rank(0rank A b b A =⎪⎪⎭⎫ ⎝⎛', 求证: 非齐次线性方程组b Ax =有解.第五节 初等方阵与初等变换一 初等方阵定义3.11 对单位阵E 做行初等变换所得方阵称为初等方阵.三种行初等变换产生三种初等方阵:(1) 交换E 的第i 行与第j 行所得方阵记作ij P ;(2) 用非零常数k 乘以E 的第i 行所得方阵记作)(k D i ;(3) 将E 的第j 行的k 倍加到第i 行所得方阵记作)(k T ij .三种初等方阵是可逆阵, 且它们的逆阵也是初等方阵. 实际上, 有ij ij P P =-1, ⎪⎭⎫ ⎝⎛=-k D k D i i 1)(1, )()(1k T k T ij ij -=-.定理 3.7 对矩阵A 做一种行初等变换, 相当于左乘一个相应的初等方阵.注意 定理3.7在矩阵的相等与矩阵的行等价之间建立了联系, 从而可以用矩阵的运算性质研究矩阵的行等价. 下面将看到, 有时这是非常方便的.推论 3.7 任意矩阵A 可以表示成R E E E A s 21=, 其中i E 是初等方阵, R 是A 的行等价标准形.证 对A 做行初等变换, 可得其行等价标准形R . 这个过程相当于用一系列初等方阵i E 左乘矩阵A . 即有R A E E E s =12 . 由于初等方阵可逆, 用它们的逆阵逐个左乘此式, 得R E E E A s 11211---= . 因为初等方阵的逆阵还是初等方阵, 换符号即得推论中的表示.推论3.8 方阵A 可逆的充分必要条件为: 它可以表示成初等方阵的乘积.例3.14 设B A ,都是n m ⨯矩阵, 求证: A 与B 行等价的充分必要条件为存在m 阶可逆阵P , 使得B PA =.二 矩阵方程矩阵方程B AX =, 其中A 是n 阶可逆阵, B 是m n ⨯矩阵, 而X 是m n ⨯未知矩阵.已知A 是可逆阵, 用其逆阵左乘方程, 得矩阵方程的解B A X 1-=. 对于可逆阵A , 存在初等方阵i E , 使得E A E E E s =12 . 用同样的初等方阵左乘矩阵方程B AX =, 得EX AX E E E s =12 B E E E X s 12 ==这个等式说明, 对可逆阵A 与矩阵B 做相同的行初等变换, 当将A 变成单位阵时, 矩阵B 变成矩阵方程B AX =的解B A X 1-=.例3.15设方阵⎪⎪⎪⎭⎫⎝⎛--=111012112A ,⎪⎪⎪⎭⎫ ⎝⎛--=521234311B , 解矩阵方程B AX =.解 做分块矩阵: 左边部分是A ,右边部分是B . 做行初等变换, 得()=B A |⎪⎪⎪⎭⎫⎝⎛----521111234012311112⎪⎪⎪⎭⎫⎝⎛----−→−311112234012521111r⎪⎪⎪⎭⎫ ⎝⎛-------−→−143100872230521111r⎪⎪⎪⎭⎫ ⎝⎛---−→−1431003/1053/80103/813/2001r .于是,⎪⎪⎪⎭⎫ ⎝⎛---==-1433/1053/83/813/21B A X . 如果矩阵方程B AX =中的方阵A 可逆, 方阵B 是单位阵E , 则用这个方法得到的矩阵方程的解E A X 1-=1-=A 就是A 的逆阵. 由此得到计算逆阵的简单方法.例3.16 求方阵⎪⎪⎪⎭⎫ ⎝⎛--=523012101A 的逆阵. 解 用初等变换法.()=E A |⎪⎪⎪⎭⎫ ⎝⎛--100523010012001101⎪⎪⎪⎭⎫ ⎝⎛---−→−127200012210001101r⎪⎪⎪⎭⎫ ⎝⎛----−→−2/112/71001150102/112/5001r于是 ⎪⎪⎪⎭⎫ ⎝⎛----=-2/112/71152/112/51A . 如果X 与B 是列矩阵, 用这里的方法可以得到线性方程组B AX =的解B A X 1-=. 而且这种解法正是前面的消元法.性质 3.5 两个矩阵的乘积的秩不大于每个因子的秩.证 设A 是p m ⨯矩阵, B 是n p ⨯矩阵, r A =)rank(. 先证明r AB ≤)rank(.根据推论 3.7, 有R A E E E s =12 , 其中A 的行等价标准形R 恰有r 个非零行. 用矩阵B 右乘此式, 得RB AB E E E s =)(12 . 根据矩阵乘法定义, 矩阵RB 至多有r 个非零行. 根据定理3.4, 有)rank()rank()rank(A r RB AB =≤=.转置可证明另一部分.例3.17 设A 是可逆阵,则)rank()rank(B AB =.证1 记矩阵AB C =. 由性质 3.5, 有)rank()rank(B C ≤. 用逆阵1-A 左乘AB C =, 得C A B 1-=, 从而有)rank()rank(C B ≤.上面的证明主要体现了逆阵的一种应用, 并不是最简捷的证明.证2 已知A 是可逆阵,根据推论3.8, 有B E E E AB s 12 =. 再根据定理 3.4, 有)rank()rank(B AB =.三 初等变换与矩阵的行初等变换类似, 可以定义矩阵的列初等变换.定义3.12 设A 是矩阵, 称下面三种变换为对矩阵A 的列初等变换.(1) 交换A 的两列;(2) 用非零常数k 乘以A 的一列;(3) 将A 的一列的k 倍加到另一列上去,与行初等变换类似, 可以定义矩阵的列等价与列等价标准形.性质 3.6 列初等变换与列等价具有下述性质.(1) 列初等变换不改变矩阵的秩;(2) 对一个矩阵做列初等变换, 相当于用相应的初等方阵右乘这个矩阵;(3) 矩阵的列等价是等价关系;(4) 矩阵B 与A 列等价的充分必要条件为: 存在可逆阵Q , 使得B AQ =.与用行初等变换解矩阵方程B AX =类似, 可以用列初等变换解矩阵方程B XA =.例3.18设⎪⎪⎪⎭⎫ ⎝⎛--=111012112A , ⎪⎭⎫ ⎝⎛-=234311B , 解矩阵方程B XA =.解 做分块矩阵, 上边是A , 下边是B . 然后做列初等变换. 当将A 变成单位阵时, B变成矩阵方程的解1-=BA X . 如果用→表示列等价, 则有⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---234311111012112⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→423131*********⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→253321301011001⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→3/253/8122100010001. 于是⎪⎭⎫ ⎝⎛---=3/253/8122X . 例 3.19 设分块矩阵),(B A , 求证: )rank()rank(),rank(B A B A +≤.证 设矩阵B A ,的列等价标准形分别为S R ,,则R 与S 分别有)ra nk(A 与)rank(B 个非零列. 从而分块矩阵),(S R 有)rank()rank(B A +个非零列. 另一方面, 如果在矩阵),(B A 中分别对两个子块做列初等变换, 则可以得到分块矩阵),(S R . 于是, 有)rank()rank(),rank(),rank(B A S R B A +≤=.。

数值分析解线性代数方程组的直接解法省公开课一等奖全国示范课微课金奖PPT课件

数值分析解线性代数方程组的直接解法省公开课一等奖全国示范课微课金奖PPT课件

i 2, , n, j 2, , n
b (2) i
b (1) i
mi1b1(1) ,
i 2, , n
对方程组A(1) x b(1)从左边乘以L1 L1 A(1) x L1b(1)
数值分第析18页
数值分析
第二步:设a2( 22 )
0,取mi 2
a(2) i2
a(2) 22
,i
3, ..., n
数值分第析4页
数值分析
数值求解方法有以下三条路径(三种框架)
直接法:利用Gauss消元或矩阵分解,经过有限次运 算可求出准确解。
迭代法:结构迭代格式,产生迭代序列,经过无限 次迭代过程求解。有限次截断得近似解。
极小化方法:结构二次模函数,用迭代过程求二次
模函数极小化问题,即变分法(经
n次运算,理论上得准确解)要求A
数值分析
将方程组Ax=b系数矩阵与右端项合并为
a11 a12
A, b
a21
a22
an1
an2
a1n b1
a2n
b2
A
ann
bn
记A
(1)
A
a1(11)
...
a(1) 1n
b(1) 1
1(1)
,
(1) 2
,
...,
(1) n
,
b(1)
an(11)
...
a(1) nn
b(1) n
第一步:设a1(11) 0, 取mi1 aa( (1i1111) ),
6 3 3
x1
2x2 x2
3x3 2x3 3x3
6 3 3
回代求得 x3 3 / 3 1
x2 (3 2 x3 ) (3 2 1) 1

第三章线性方程组

第三章线性方程组
A 进行行初等 定理.2 : 对线性方程组(1)的增广矩阵 变换化为 B ,则以 B 为增广矩阵的线性方程组(2)与(1)同 解。 由前面的讨论知,对一个线性方程组施行初等变换,相当 于对它的增广矩阵施行一个对应的行初等变换,那么我们要问: 一个矩阵在行初等变换下可以化为怎样的简单形式?
m n 矩阵A,通过行初等变换及列换法 定理3: 一个 变换可化为一下阶梯形
4.方程组的系数矩阵与增广矩阵
a 11 a 21 矩阵 A a s1 a 12 a 22 as2 a1 n a2n a sn
称为方程组(1)的系数矩阵 ; 而矩阵
a 11 a 21 A a s1 a 12 a 22 as2 a1 n a2n a sn b1 b2 bs
(1)
的方程组,其中 x 1 , x 2 , , x n 代表 n 个未知量的系数,
s 是方程的个数 ; a ij ( i 1, 2, , s , j 1, 2, , n )
b 称为方程组的系数; i ( i 1, 2, , s ) 称为常数项 。
2.方程组的解
设 k 1 , k 2 , , k n 是 n 个数,如果 x 1 , x 2 , , x n 分别用
类似考虑,若其为0,
则结论成立;若其不为0,不妨设 b22 0 ,用 b221bi 2 , i 3, , m 乘第2行加到第i(i=3,…,m)行,然后用 b221 乘第二行得:
1 0 A2 A3 0 0
b12 1 0 0

2 0 0
1 4 1
3 1 1
1 2 5
把第3个方程分别乘以(-4)、 1加到第2个、1个方程

数值计算方法-第3章--线性方程组的解法PPT课件

数值计算方法-第3章--线性方程组的解法PPT课件

个顺序主子式
a a (1)
(1)
11
12
Dk
a(1) 21
a(1) 22
a(1) 1k
a(1) 2k
0
(k 1, 2,..., n 1).
a a (1)
(1)
k1
k2
a(1) kk
.
13
顺序Gauss消去法计算过程中的 akk(k) 称为主元素,在 第k步消元时要用它作除数,则可能会出现以下几种情况
.
是原方程组 Ax=b 的解向量。
27
对于
Ly =b
1

l21
1
l31
l32 1
y1 b1
y2
b2
y3
b3
ln1 ln2 lnn1 1 yn bn
.
解得
y1 yk
b1 bk
k 1 i 1
lki
yi
,
k 2,3,, n
28
对于 Ux =y
u11 u12 u1n x1 y1
2x3 6

x1 6 (x2 x3 ) 1
x2 x3 5 / 4 2
x3 (6) / (2) 3
用x3, x2的值求x1 把x3的值代入②求x2
.
8
从下向上逐步求解
对应的增广矩阵的变化
1 1 1 6 1 1 1 6
( A | b) 0
4
1 5 0
4
1
5
2 2 1 1 0 4 1 11
0.8334
5.910
12.10
0.0120 0.0100 0.1670 0.6781
3200
1200
4.200 981.0

线性代数讲义(第三章)

线性代数讲义(第三章)

2 x1 3 x 2 x 3 4 x 2 x 4 x 5 1 2 3 3 x1 8 x 2 2 x 3 13 4 x1 x 2 9 x 3 6
解: 增广矩阵为
1 4 2 3 1 2 4 5 r r 1 4 1 2 4 5 1 2 2 3 A b 3 8 2 13 3 8 2 13 4 1 9 6 4 1 9 6
r(A)=r(A|b)=2<3,方程组有无穷多解。取x3=c, c为任意实数,则方程组的解为:
x1 1 2c x2 2 c x c 3
当c取遍所有实数时,就得到 方程组的所有解。
定理3.1和定理3.2的结论可以推广到矩阵方程: 定理 3.3 矩阵方程AX=B有解的充要条件是 r(A)=r(A, B)。 定理3.4 矩阵方程Am×n Xn×s=O仅有零解的充要条
ห้องสมุดไป่ตู้
§3.1 n维向量的概念
1、n维向量的定义
定义 3.1 由数域F 中的n个数a1,a2, …,an组成的有 序数组 a1 a (a1 , a2 ,, an ) 或 2 a n
称为n维向量;前者称为行向量,后者称为列向量 数 ai 称为向量的第i个分量;通常用 , 等希腊字母 来表示向量。
件是 r(A)=n。
§3.3 向量组的线性相关性
3.3.1 线性方程组的向量表示形式 对线性方程组
a11 x1 a12 x2 a1n xn b1 a21 x1 a22 x2 a2 n xn b2 am1 x1 am 2 x2 amn xn bm
x1 3 x2 2 x3 4 7 x2 x3 1 5 x 5 x 5 2 3

第3章、线性方程组

第3章、线性方程组

第三章 线性方程组(讲授6课时)一、教学目的:1、正确理解和掌握一般线性方程组、方程组的解、增广矩阵、线性方程组的初等变换等概念及性质。

掌握阶梯形方程组的特征及作用。

会求线性方程组的一般解。

2、理解和掌握n 维向量及两个向量相等的定义。

熟练掌握向量的运算。

3、正确理解和掌握线性组合、线性相关、线性无关的定义及性质,掌握两个向量组等价的定义及等价性定理。

深刻理解向量组的极大无关组、秩的定义,会求向量组的一个极大无关组。

4、深刻理解和掌握矩阵的行秩、列秩、秩的定义。

掌握矩阵的秩与其子式的关系。

5、熟练掌握线性方程组的有解判别定理。

理解和掌握线性方程组的公式解。

6、正确理解和掌握齐次线性方程组的基础解系,解空间的维数与概念。

熟练掌握基础解系的求法、线性方程组的结构定理。

会求一般线性方程组有解的全部解。

二、教学内容:1、消元法、n 维向量组、线性相关性、矩阵的秩。

2、线性方程组有解判别定理、线性方程组解的结构。

三、教学重点:线性相关性、矩阵秩、线性方程组解的判定及解的结构四、教学难点:线性相关性、线性方程组解的判定及解的结构五、教学方法:启发讲授式 六、教学过程:一、概念与解法1、矩阵(1)矩阵定义:A 由mn 个数排成m 行n 列的数表:12n n m m mn a a a a a a a a a ⎛⎫ ⎪⎪⎪ ⎪ ⎪⎝⎭1112121222,称为一个m n ⨯阶矩阵,记作ij m n A a ⨯=()。

(2)数域P 上一切m n ⨯ 阶矩阵组成的集合,记为m n P ⨯。

(3)当m n =时,n n P ⨯称为n 阶方阵构成的集合,n 阶单位矩阵记作n I 或n E 。

(4)阶梯型矩阵:若矩阵A 满足○1第1k +行的首非零元前零元的个数比第k 行的首非零元前零元的个数多 ○2如果某行没有非零元,则其下所有行的元全为零。

2、矩阵的秩(1)矩阵秩的定义:设非零矩阵ij m n A a ⨯=()中至少有一r 阶子式不为0,任意1r +阶子式全为零,则称A 的秩为r ,记作:r A r ()= (2)、若0m n A r A ⨯=⇔()=03、矩阵的初等变换(1) m n A P ⨯∈,A 的初等变换是指以下三种变换之一 ○1换法变换:交换矩阵A 中的某两行或某两列; ○2倍法变换:用数域P 中的一非零数λ乘矩阵A 的某一行(或列); ○3消法变换:把矩阵A 中某行(或列)的λ倍加到A 的另一行(或列)上去。

高等代数课件--第三章线性方程组§3.6线性方程组解的结构

高等代数课件--第三章线性方程组§3.6线性方程组解的结构

......................................arrxr ar,r1xr1 第五页,共16页。
arnxn
我们知道自由未知量的任意一组值都确定了 方程组(1)的一个解。
用组数 (1,0,…,0), (0,1,…,0),…,(0,0,…,0)
第二页,共16页。
2 .基础解系
定义 齐次线性方程组(1)的一组解
1,2,…,r,若满足
1) 1,2,…,r线性无关;
2) 齐次线性方程组(1)的任意一解都可由
1,2,…,r线性表出;
则称1,2,…,r为齐次线性方程组(1) 的一个
基础解系;
第三页,共16页。
4 .基础解系存在性
定理 在齐次线性方程组(1)有非零解的情 况下,它有基础解系,并且基础解系所 含解向量的个数等于nr, 其中r 为方程组
系数矩阵的秩。
第四页,共16页。
证:若r=n, 方程组只有零解,不存在基础解系
a11 a12? … a1r
若R(A) =r<n,不妨设
a21 a22? … a2r ………………
0,
则(1)可写成
a r1 ar2? … arr
a11x1a12x2 a1rxr a1,r1xr1 a1nxn
a21x1a22x2 a2rxr a2,r1xr1 a2nxn
来代替自由未知量(xr+1,…,xn), 就得到(2)的解, 也就是(1)的nr个解:
1 (c11,c12, ,c1r,1, 0,, 0)
2 (c21,c22, ,c2r, 0, 1,, 0)
(3)
nr (cnr,1,cnr,2,第六页,共1,6页c。nr,r, 0, 0,, 1)

高等代数课件第三章-线性方程组

高等代数课件第三章-线性方程组
as1 x1 as2 x2 L asn xn bs
(1')
设 (c1,c2 ,L ,cn )是方程组(1)的任一解,则
§3.1 2020/3/29 消元法
数学与计算科学学院
a11c1 a12c2 L a1ncn b1
aaL2s11ccL11 LaaL2s22ccL22
L a2ncn LLLLL L asncn
L
b2 bs
(1)
先检查(1)中 x1 的系数,若a11,a21,L ,as1 全为零, 则 x1没有任何限制,即x1 可取任意值,从而方程组
(1)可以看作是 x2 ,L , xn的方程组来解.
§3.1 2020/3/29 消元法
数学与计算科学学院
如果 x1的系数不全为零,不妨设,a11 0. 分别把第一个方程 ai1 的倍加 到第i个方程 (i 2,L , .s)
L
b2 bs
(1)
简便起见,不妨设把第二个方程的k倍加到第一个 方程得到新方程组(1').
(a11 ka21 ) x1 (a12 ka22 ) x2 L (a1n ka2n )xn b1 kb2
a21 x1 a22 x2 L a2n xn b2 LLLLLLLLLLL
2.方程组的解
设 k1, k2 ,L , kn 是 n 个数,如果x1, x2 ,L , xn 分别用 k1, k2 ,L , kn 代入后,(1)中每一个式子都变成恒等式, 则称有序数组 (k1, k2 ,L , kn ) 是(1)的一个解.
(1)的解的全体所成集合称为它的解集合. 解集合是空集时就称方程组(1)无解.
A
a21 L
a22 L
L L
as1 as2 L

线性代数第三章课件:线性方程组

线性代数第三章课件:线性方程组


有无穷多解 R(A) R(A, b) n
线
(2)无解 R(A) R(A,b)

方 由定理1容易得出:


定理 2 n元齐次线性方程组 Ax 0有非零解
R(A) n 进一步,由定理1还可以推广得到:
定理 3 矩阵方程AX B有解 R(A) R(A,B)
例1 设A是一个 mn 阶矩阵,且 R(A) r, 则 (a)
1. 多元线性方程组
第 一般地,n 个未知数 x1, x2, , xn 的如下形式的方程


a1x1 a2 x2 an xn b
线
性 称为n元一次方程,也称为n元线性方程,其中

程 组
a1, a2 , , an , b是已知常数,a1, a2 , , an是一次项系数,
b是常数项。
具有同样n个未知数 x1, x2, , xn 的若干个一次方程 组成的方程组:
x2
0
0
所有满足x1 x2 的数都是它的解
所以该方程组有无数多解。


x1 x2 0

x1
x2
1
x1 x2 2
显然不存在 x1, x2 , 使 x1 x2 1
和 x1 x2 2同时成立 故该方程组无解。


x1 x1
x2 x2
0 2
系数行列式 D 1
1 0
11
由Cramer法则知其有唯一解 x1
a21
a22

am1
am2
a1n
a2n
,
amn
x1
x
x2
,
xn
b1
b

第三章线性代数ppt课件

第三章线性代数ppt课件

二. Gauss消元法 • 阶梯形线性方程组的有三中基本类型 2x1+3x2 x3 = 1 2x2+x3 = 2 无解 0=1 x1x2+2x3 = 8 2x2 +x3 = 1 x3 = 5 x1+2x2+x3 + x4 = 2 x3+4x4 = 3 有唯一解
有无穷多解
第三章 ·线性方程组
§3.1线性方程组和Gauss消元法
第三章 线性方程组
§3.3 非齐次线性方程组
§3.3 非齐次线性方程组
一. 非齐次线性方程组的相容性
定理3.4. 设ARmn, bRm, 则
(1) Ax = b有解秩([A, b]) = 秩(A);
(2) 当秩([A, b])=秩(A)=n时, Ax = b有 唯一解; (3) 当秩([A, b])=秩(A)<n时, Ax = b有 无穷多解, 且通解中含有n秩(A) 个自由未知量.
第三章线性代 数
第三章 ·线性方程组
§3.1线性方程组和Gauss消元法
Ax = b 齐次线性方程组( b = 0)
线性方程组的分类 非齐次线性方程组 (b 0)
线性方程组的解
无解 (不相容) 有解 (相容)
唯一解 无穷多解 (通解)
表示全部解的表达式
第三章 ·线性方程组
§3.1线性方程组和Gauss消元法
第三章 线性方程组
§3.2 齐次线性方程组
§3.2 齐次线性方程组 齐次线性方程组 a11x1+a12x2+…+a1nxn = 0 a21x1+a22x2+… a2nxn = 0 … … … … … … … am1x1+am2x2+…+amnxn = 0 零/平凡解, 非零/平凡解

大学数学高数微积分第三章线性方程组第六节课堂讲解

大学数学高数微积分第三章线性方程组第六节课堂讲解

a21x1
a22x2 a2nxn
b2
,
(9)
as1x1 as2x2 asnxn bs .
若令 b1 = b2 = … = bs =0,就得到齐次方程组 (1).
方程组 (1) 称为方程组 (9) 的导出组.
2. 非齐次线性方程组的解 与其导出组的解之间的关系
方程组 (9) 的解与它的导出组 (1) 的解之间有密 切的关系:
解时,(10) 就给出 (9) 的全部解.
证明 显然
= 0 + ( - 0 ), 由上面的 1), - 0 是导出组 (1) 的一个解,令
- 0 = ,
就得到定理的结论.
既然 (9) 的任一个解都能表成
(10) 的形式,由 2) 在 取遍 (1) 的全部解的时候,
= 0 +
就取遍 (9) 的全部解.
是方程组 (1) 的两个解,则有
n
aijkj 0 (i1,2,,s),
j n1
aijlj 0 (i1,2,,s),
j1
把两个解的和
( k1 + l1 , k2 + l2 , … , kn + ln )
(2)
代入方程组,得
n
n
n
aij (k j l j ) aijkj aijlj
j 1
j1
1) 线性方程组 (9) 的两个解的差是它的导出组 (1) 的解.
证明 设 ( k1 , k2 , … , kn ) 与 ( l1 , l2 , … , ln )
是方程组 (9) 的两个解,则有
n
aijkj bi
j1 n
aijlj bi
j1
(i1,2,,s), (i1,2,,s),

【2021】线性代数ppt第三章 线性方程组.完整资料PPT

【2021】线性代数ppt第三章 线性方程组.完整资料PPT
注: 倍乘变换必须用非零的数去乘 非齐次线性方程组的相容性
(space of solutions)
某一个方程(multiplying by a
nonzero scalar).
第三章 线性方程组
§3.1 线性方程组和Gauss消元法
2. 阶梯形线性方程组的有三种基本类型.
例如:
2x1+3x2 x3 = 1 2x2+x3 = 2 0= 1
a11 a12 … a1n
x1
b1
设A =
a21 a22 … a2n …………
,
x=
x2 …
, b=
b2 …
,
am1 am2 … amn
xn
bm
vector of unknowns vector of constants
a11x1+a12x2+…+a1nxn = b1

a21x1+a22x2+… a2nxn = b2 …………………
r2 = r1 = n
12112 00143 00000
第三章 线性方程组
§3.2 齐次线性方程组
关于自由未知量的选择还可参见例题3.4 这是一个难点
作业: P105 (A) 一、(1) 预习3.2,3.3节
第三章 线性方程组
Ax = b.
am1x1+am2x2+…+amnxn = bm
通解:线性方程组全部解的表达式
同解方程组(having the same set of solutions);
第三章 线性方程组
§3.1 线性方程组和Gauss消元法
a11 a12 … a1n
称A =

高等代数课件PPT之第3章线性方程组

高等代数课件PPT之第3章线性方程组
该方程组的一个解;而该方程组的解的全体称为
它的解集合;
若两个方程组有相同的解集合,称它们是同解的.
第3章 线性方程组
消元法 n 维向量空间 向量组的线性相关性 矩阵的秩 线性方程组有解判别定理 线性方程组解的结构
§3.1 高斯消元法
高斯消元法是中学所讲的用消元法解二元、三元 线性方程组的发展. 基本思想是:逐次把方程组中 一部分方程变成含未知量较少的方程,直到得到一 个一元一次方程,进而求出方程组的解.
a11 a12 a1n b1
a21
a22
a2n
b2
as1
as2
asn
bs
消元法解方程组的过程 就是对数表中的行作变 换的过程;一个方程组 对应着一张数表
2. 矩阵及其初等变换
(1)矩阵的定义 数域P上的s×n个数排成的s行(横的)
n列(纵的)的数表
a11
a12
a1n
a21
a22
a2
第3章 线性方程组
上一章利用行列式理论解决了一类特殊的线 性方程组 (方程个数与未知量个数相等且系 数行列式不为零)的求解问题.本章讨论一般 的线性方程组,即形如
a11 x1 a12 x2 a1n xn b1
a21x1a22 as1 x1 as2
x2 x2
a2n xn asn xn
a21c1
a22c2
a2ncn b2
as1c1
as2c2
asncn bs
可见(c1 ,c2,…,cn)也为(**)的解;同理可证(**)的任
一解也为也为(*)的解.因此(**)与(*)同解. 由引例可见,对方程组施行初等变换,只是系数和
常数项在变,与未知量x1 ,x2,…,xn无关. 因此可以擦去 未知量,只写出其系数和常数项——一张数表:

线性代数课件PPT 第3章.线性方程组

线性代数课件PPT 第3章.线性方程组

2) (α β) γ α ( β γ() 加法结合律)
3) 存在任意一个向量α,有α 0n α 4)存在任意一个向量α,存在负向量-α,使α (α) 0n
5) 1α α
6) k(lα) (kl)α(数乘结合律)
7) k(α β) kα kβ(数乘分配律)
m
kiai k1α1 k2α2 L kmαm
i 1
称为向量组α1, α2,L , αm在数域F上的一个线性组合。如果记
m
β kiαi,就说β可由α1, α2,L , αm线性表示。 i 1
10
3.1 n维向量及其线性相关性
线性相关性 定义:如果对m个向量α1, α2, α3, ... , αm∈Fn,有m个不全 为0的数k1,k2,...,km∈F,使
α=(a1 a2 an) 其中ai 称为α的第i个分量。
向量写成行的形式称为行向量,向量写作列的形式称为 列向量(也可记作行向量的转置)。
a1
αT


a2

M
an

3
3.1 n维向量及其线性相关性
向量的定义 数域F上全体n元向量组成的集合,记作Fn。
4
3.1 n维向量及其线性相关性
向量的运算
定义:设α=(a1, a2, ... , an),β=(b1, b2, ... , bn)∈Fn,k∈F,
定义:
1)α=β,当且仅当ai=bi (i=1,...,n); 2)向量加法(或α与β之和)为
α β (a1 b1, a2 b2 , ... , an bn )
k1α1 k2α2 L kmαm 0n
成立,则称α1, α2, α3, ... ,αm线性相关;否则,称α1, α2, α3, ... ,αm线性无关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档