高中微积分经典例题

合集下载

微积分的应用专项练习60题(有答案)

微积分的应用专项练习60题(有答案)

微积分的应用专项练习60题(有答案)本文档包含60道微积分的应用专项练题目,每道题目均附有答案。

通过解答这些题目,您可以进一步巩固和应用微积分的知识,加深对微积分的理解。

以下是题目和答案的列表:1. 问题一(答案:A)2. 问题二(答案:B)3. 问题三(答案:C)4. 问题四(答案:D)5. 问题五(答案:A)6. 问题六(答案:B)7. 问题七(答案:C)8. 问题八(答案:D)9. 问题九(答案:A)10. 问题十(答案:B)11. 问题十一(答案:C)12. 问题十二(答案:D)13. 问题十三(答案:A)14. 问题十四(答案:B)15. 问题十五(答案:C)16. 问题十六(答案:D)17. 问题十七(答案:A)18. 问题十八(答案:B)19. 问题十九(答案:C)20. 问题二十(答案:D)21. 问题二十一(答案:A)22. 问题二十二(答案:B)23. 问题二十三(答案:C)24. 问题二十四(答案:D)25. 问题二十五(答案:A)26. 问题二十六(答案:B)27. 问题二十七(答案:C)28. 问题二十八(答案:D)29. 问题二十九(答案:A)30. 问题三十(答案:B)31. 问题三十一(答案:C)32. 问题三十二(答案:D)33. 问题三十三(答案:A)34. 问题三十四(答案:B)35. 问题三十五(答案:C)36. 问题三十六(答案:D)37. 问题三十七(答案:A)38. 问题三十八(答案:B)39. 问题三十九(答案:C)40. 问题四十(答案:D)41. 问题四十一(答案:A)42. 问题四十二(答案:B)43. 问题四十三(答案:C)44. 问题四十四(答案:D)45. 问题四十五(答案:A)46. 问题四十六(答案:B)47. 问题四十七(答案:C)48. 问题四十八(答案:D)49. 问题四十九(答案:A)50. 问题五十(答案:B)51. 问题五十一(答案:C)52. 问题五十二(答案:D)53. 问题五十三(答案:A)54. 问题五十四(答案:B)55. 问题五十五(答案:C)56. 问题五十六(答案:D)57. 问题五十七(答案:A)58. 问题五十八(答案:B)59. 问题五十九(答案:C)60. 问题六十(答案:D)这些题目的难度各不相同,涵盖了微积分应用的不同方面,包括导数、积分、微分方程等内容。

微积分练习100题及其解答

微积分练习100题及其解答
x 0 t x
2
1
x2

1
解: lim x e
x 0
2
1
lim
x2
et . t t
17.求极限: lim sin x ln x .
x 0
解: lim sin x ln x lim
x 0 x 0
1 ln x tan x sin x x lim lim 0. x 0 csc x x 0 csc x cot x x 1 x 2 1 x . 1 x2 lim x 1 1 x tan 2 1 x x
cos 2x 1 2 sin 2x lim 2 x 0 sin x 2 x sin 2 x x cos 2 x 2 sin 2x 6x cos 2x 2x2 sin 2x ; 2 sin 2x 1 2 x lim x 0 2 sin 2x 3 4 cos 2 x x sin 2 x 2x lim


2.求极限: lim
e x e sin x . x 0 x sin x
( x 0) ,∴ lim
解:∵ e x 1 ~ x
e x e sin x e x sin x 1 lim e sin x 1. x 0 x sin x x0 x sin x
x 0
2
13.求极限: lim
x1
1 1 . 1 x ln x
1 1 1 1 ln x 1 x x lim lim lim x 1 1 x x 1 x 1 1 x ln x (1 x) ln x ln x ; 解: x 1 x 1 1 lim lim x 1 1 x x ln x x 1 1 ln x 1 2

微积分基础考试题及答案

微积分基础考试题及答案

微积分基础考试题及答案一、单项选择题(每题2分,共20分)1. 函数f(x)=x^2+3x+2的导数为:A. 2x+3B. x^2+3C. 2x+6D. 3x+2答案:A2. 曲线y=x^3-3x+1在x=1处的切线斜率为:A. 0B. 1C. -1D. 3答案:D3. 函数f(x)=sin(x)的不定积分为:A. -cos(x)+CB. cos(x)+CC. sin(x)+CD. x+C答案:A4. 极限lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. π/2D. ∞答案:B5. 函数f(x)=x^3+2x^2-5x+7的极值点个数为:A. 0B. 1C. 2D. 3答案:C6. 曲线y=e^x与直线y=ln(x)相切的切点坐标为:A. (1,1)B. (e,e)C. (ln(e),e)D. (e,ln(e))答案:A7. 函数f(x)=x^2-4x+3的零点个数为:A. 0B. 1C. 2D. 3答案:C8. 函数f(x)=x^2-4x+3的单调递增区间为:A. (-∞,2)B. (2,+∞)C. (-∞,2)∪(2,+∞)D. (-∞,+∞)答案:B9. 函数f(x)=x^3-3x的拐点个数为:A. 0B. 1C. 2D. 3答案:C10. 曲线y=x^2+2x+1与x轴的交点个数为:A. 0B. 1C. 2D. 3答案:A二、填空题(每题3分,共15分)1. 函数f(x)=x^2+2x+1的最小值为_________。

答案:02. 函数f(x)=ln(x)的反函数为_________。

答案:e^x3. 曲线y=x^3+3x^2+2x+1在x=-1处的切线方程为_________。

答案:y=-x4. 函数f(x)=x^2-4x+3的极大值为_________。

答案:45. 曲线y=x^2与直线y=2x相切的切点坐标为_________。

答案:(1,1)三、计算题(每题10分,共30分)1. 计算定积分∫(0,1) (x^2-2x+1) dx。

微积分试卷及标准答案6套

微积分试卷及标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。

2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。

3.若当时,α与β 是等价无穷小量,则 。

0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。

=→)(lim x f ax 5.的连续区间是 。

)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。

=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. 。

='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。

Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。

11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。

=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。

当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。

(完整版)经典的微积分习题库(最新整理)

(完整版)经典的微积分习题库(最新整理)

(3) y x ; x2
(4) y x 2 3 x 。 x5
4.已知函数 f (x) 1 ,求 f (1), f (2) 。 x
5.已知函数 f (x) x ,求 f (2), f (4) 。
6.自由落体运动 s 1 gt 2 (g=9.8 米/秒 2)。 2
5
(1)求在从 t 5 秒到( t t )秒时间区间内运动的平均速度,设 t 1 秒, 0.1 秒,0.001
习题 1—2
1.确定下列函数的定义域: (1) y 1 ;
x2 9
(2) y loga arcsin x ;
(3) y 2 ; sin x
(4) y 3
1 x2
loga
(2x
3)
;(5)
y
arccos
x
1 2
loga
(4
x2
)
2.求函数
y
sin
1 x
(x 0)
0 (x 0)
的定义域和值域。
充或改变函数的定义使它连续。
(1) y
x2 1
; (2) y
n

x2 3x 2
tan x
(3) y cos2 1 。 x
3. a
为何值时函数
f
(x)
ex
a
x
(0 x 1)
在[0,2]上连续?
(1 x 2)
4.讨论函数
f (x)
1 lim n 1
x 2n x 2n
x 的连续性,若有间断点,判断共类型。
(2)当 x 时,上述各函数中哪些是无穷小?哪些是无穷大?
(3)“ 1 是无穷小”,这种说法确切吗? x
3.函数 y x cos x 在 (, ) 是是否有界?又当 x 地,这个函数是否为无穷

高等数学微积分练习题集完整版(含答案)

高等数学微积分练习题集完整版(含答案)

高等数学微积分练习题集2(含答案)1.求抛物线2x y =与直线02=--y x 之间的最短距离。

2.求点)8,2(到抛物线x y 42=的最短距离。

3.求过点31,1,2(的平面,使它与三个坐标面在第一卦限内所围成的立体体积最小。

4.计算二重积分dxdy xy I D ⎰⎰=2,其中D 是由直线2,==x x y 及双曲线1=xy 所围成的区域。

5.计算二重积分dxdy e I D y ⎰⎰-=2,其中区域D 由y 轴,直线x y y ==,1所围成。

6.求dxdy y xy I D ⎰⎰+=31,其中D 由2,1,0x y y x ===所围成。

7.求dy e dx x I x y ⎰⎰-=11022。

8.求dxdy y x I D ⎰⎰+=)(,其中D 为224,x y xy ==及1=y 所围成的区域。

9.求σd y x I D⎰⎰+=)|(|,其中D 为:1||||≤+y x 。

10.求dxdy y x I D⎰⎰--=221,其中D :y y x ≤+22。

11.求dxdy y x x I D ⎰⎰--=)2(22,其中D :1)1(22≤+-y x 。

12.设{}x y x y x D ≤+=22),(,求dxdy x D ⎰⎰。

13.计算二重积分dxdy yx y x D ⎰⎰++--222211,其中D 是由圆周122=+y x 及坐标轴所围成的在第一卦限内的闭区域。

14.求ds y x c ⎰+)(,其中c 是以)0,0(O ,)0,1(A ,)1,0(B 为顶点的三角形边界。

15.设L 是半圆周24y x -=上由点)2,0(A 到点)2,0(-B 之间的一段弧。

计算⎰++L ds y x )1(。

16.计算ds y x L ⎰+22,其中L 为圆周222a y x =+(0>a )。

17.计算曲线积分⎰+L ds y x 22,其中L 为圆周x y x =+22。

18.计算曲线积分:dy y x dx y x I L )653()42(-++--=⎰,其中L 是从点)0,0(O 到点)2,3(A 再到点)0,4(B 的折线段。

高考数学微积分练习题及答案

高考数学微积分练习题及答案

高考数学微积分练习题及答案1. 题目:求函数f(x)=x^2+2x+1的导函数f'(x)。

解析:首先,根据导函数的定义,我们需要对函数f(x)进行求导。

根据求导法则,对于幂函数f(x)=x^n (n为常数),其导函数为f'(x)=n*x^(n-1)。

因此,将函数f(x)=x^2+2x+1进行求导,得到f'(x)=2x+2。

答案:f'(x)=2x+2。

2. 题目:计算函数g(x)=∫(0 to x) (2t+1) dt。

解析:根据积分的定义,我们需要对被积函数进行积分,并将积分上限减去积分下限。

对于多项式函数的积分,我们可以按照常规的积分法则进行计算。

首先,对被积函数2t+1进行积分,得到∫(2t+1) dt = t^2 + t。

然后,将积分上限x代入积分结果,得到g(x) = x^2 + x - (0^2 + 0) = x^2 + x。

答案:g(x) = x^2 + x。

3. 题目:对函数h(x)=sin(x)进行求导。

解析:根据导函数的定义,我们需要对函数h(x)=sin(x)进行求导。

根据求导法则,对于三角函数sin(x),其导函数为cos(x)。

因此,函数h(x)=sin(x)的导函数为h'(x)=cos(x)。

答案:h'(x)=cos(x)。

4. 题目:求函数f(x)=e^x的不定积分。

解析:函数f(x)=e^x是指数函数,其不定积分可以根据指数函数积分的常规法则进行计算。

根据指数函数积分的法则,不定积分∫e^x dx = e^x。

答案:∫e^x dx = e^x。

5. 题目:已知函数f(x)满足f'(x)=2x,且f(0)=1,求f(x)的表达式。

解析:根据导数的定义,我们可以将f'(x)=2x积分得到函数f(x)。

根据积分的法则,函数f(x)的表达式为∫2x dx = x^2 + C,其中C为常数。

由已知条件f(0)=1,将x=0代入函数表达式得到1=0^2 + C,解得C=1。

微积分考试题目及答案

微积分考试题目及答案

微积分考试题目及答案一、选择题1. 下列哪个选项描述了微积分的基本思想?A. 求导运算B. 求积分运算C. 寻找极限D. 都是答案:D2. 求函数f(x) = 2x^3 + 3x^2的导数是多少?A. f'(x) = 4x^2 + 6xB. f'(x) = 6x^2 + 3xC. f'(x) = 6x^2 + 6xD. f'(x) = 4x^2 + 3x答案:A3. 计算积分∫(2x^2 + 3x)dxA. x^3 + 2x^2B. x^3 + 2x + CC. (2/3)x^3 + (3/2)x^2D. (2/3)x^3 + 3x^2答案:C二、填空题4. 函数f(x) = 3x^2 + 2x的导数为_________答案:f'(x) = 6x + 25. 计算积分∫(4x^3 + 5x)dx = __________答案:x^4 + (5/2)x^2 + C6. 函数y = x^2在点x=2处的切线斜率为_________答案:4三、解答题7. 求函数y = x^3 + 2x^2在x=1处的切线方程。

解:首先求函数在x=1处的导数,f'(x) = 3x^2 + 4x。

代入x=1得斜率为7。

又因为该点经过(1,3),故切线方程为y = 7x - 4。

8. 求曲线y = x^3上与x轴围成的面积。

解:首先确定曲线截距为(0,0),解方程得x=0。

利用定积分区间求解:∫[0,1] x^3dx = 1/4。

以上为微积分考试题目及答案,希望对您的学习有所帮助。

感谢阅读!。

微积分练习题

微积分练习题

微积分练习题一、极限与连续(1) lim(x→0) (sin x / x)(2) lim(x→1) (x^2 1) / (x 1)(3) lim(x→∞) (1 + 1/x)^x(1) f(x) = |x| 1,在x = 0处(2) f(x) = (x^2 1) / (x 1),在x = 1处(3) f(x) = sqrt(x + 2) 2,在x = 1处二、导数与微分(1) f(x) = x^3 3x + 2(2) f(x) = e^x sin x(3) f(x) = ln(sqrt(1 + x^2))(1) f(x) = x^2 + 3x 5(2) f(x) = cos(2x)(3) f(x) = 1 / (1 x)三、高阶导数与微分方程(1) f(x) = x^4 2x^2 + 1(2) f(x) = e^x cos x(3) f(x) = ln(x^2 + 1)(1) y' = 2x + y(2) y'' 2y' + y = e^x(3) (1 + x^2) y'' + 2x y' = 0四、不定积分与定积分(1) ∫(x^2 + 1) dx(2) ∫(e^x x) dx(3) ∫(1 / (x^2 + 1)) dx(1) ∫_{0}^{1} (3x^2 2x + 1) dx(2) ∫_{π}^{π} (sin x) dx(3) ∫_{1}^{e} (1 / x) dx五、多元函数微分学(1) f(x, y) = x^2 + y^2(2) f(x, y) = e^(x + y) sin(x y)(3) f(x, y) = ln(x^2 + y^2)(1) f(x, y) = x^3 + y^3(2) f(x, y) = sin(x + y)(3) f(x, y) = sqrt(x^2 + y^2)六、重积分(1) ∬_D (x^2 + y^2) dxdy,其中D为圆心在原点,半径为1的圆(2) ∬_D (x y) dxdy,其中D为矩形区域0 ≤ x ≤ 1,0 ≤ y ≤ 2(3) ∬_D (e^(x + y)) dxdy,其中D为三角形区域0 ≤ x ≤ 1,0 ≤ y ≤ x(1) ∭_E (x^2 + y^2 + z^2) dxdydz,其中E为立方体区域0 ≤ x ≤ 1,0 ≤ y ≤ 1,0 ≤ z ≤ 1(2) ∭_E (xyz) dxdydz,其中E为长方体区域0 ≤ x ≤ 2,0 ≤ y ≤ 3,0 ≤ z ≤ 4七、级数(1) Σ (1/n^2),n从1到∞(2) Σ (n/(n+1)^2),n从1到∞(3) Σ ( (1)^n / n ),n从1到∞(1) Σ (x^n / n),n从1到∞(2) Σ (n! x^n),n从0到∞(3) Σ ( (n^2 + 1)^n x^n ),n从0到∞八、微分方程的应用(1) 物体在空气中自由下落,其速度v与时间t的关系,已知阻力与速度成正比。

高数微积分真题及答案解析

高数微积分真题及答案解析

高数微积分真题及答案解析高等数学是大多数理科学生必修的一门课程,其中微积分是其中的重要组成部分。

在学习微积分时,遇到一些经典的高数微积分问题是很常见的。

本文将介绍一些常见的高数微积分真题,并给出详细的答案解析,希望能够帮助读者更好地理解微积分的概念和应用。

【真题一】计算函数 f(x) = x^3 - 3x^2 - 9x + 5 在 x = 2 处的导数。

【答案解析】首先,函数的导数可以通过求取函数的极限来计算。

对于本题中的函数 f(x),可以使用导数的定义来求取其导数:f'(x) = lim [f(x + h) - f(x)] / h as h -> 0将函数 f(x) 带入上述定义可得:f'(x) = lim [(x + h)^3 - 3(x + h)^2 - 9(x + h) + 5 - (x^3 - 3x^2 - 9x + 5)] / h as h -> 0化简后得:f'(x) = lim [3hx^2 + 3h^2x + h^3 - 6hx - 6h^2 - 9h] / h as h -> 0进一步化简得:f'(x) = lim [3x^2 + 3hx + h^2 - 6x - 6h - 9] as h -> 0当 h 趋近于 0 时,可以忽略掉 h^2、h 以及 9 这三项,得到最终的导数表达式:f'(x) = 3x^2 - 6x - 6【真题二】已知一曲线的方程为 y = x^2 + ax + b,该曲线过点 (1, -1) 和 (2, 2),求 a 和 b 的值。

【答案解析】首先,根据已知条件,可以得到两个方程:-1 = 1^2 + a(1) + b2 = 2^2 + a(2) + b化简上述两个方程得:-1 = 1 + a + b2 = 4 + 2a + b通过进一步化简,可以得到:b = -a - 2将该表达式代入第二个方程可得:2 = 4 + 2a + (-a - 2)化简得:2 = 4 + a - 2解得 a = 0将 a 的值代入第一个方程可得:-1 = 1 + 0 + b解得 b = -2因此,方程的解为 a = 0,b = -2。

微积分考试题目及答案

微积分考试题目及答案

微积分考试题目及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 - 4x + 4 \) 的导数是:A. \( 2x - 4 \)B. \( 2x + 4 \)C. \( x^2 - 4 \)D. \( x - 2 \)2. 曲线 \( y = x^3 - 6x^2 + 9x \) 在 \( x = 3 \) 处的切线斜率是:A. 0B. 3C. 6D. 93. 若 \( f(x) = 3x^3 + 2x^2 - 5x + 7 \),求 \( f'(1) \) 的值是:A. 12B. 10B. 8D. 64. 定积分 \( \int_{0}^{1} x^2 dx \) 的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{2}{3} \)D. \( \frac{3}{4} \)5. 函数 \( g(x) = \sin(x) + \cos(x) \) 的原函数 \( G(x) \) 是:A. \( -\cos(x) + \sin(x) + C \)B. \( \sin(x) - \cos(x) + C \)C. \( \sin(x) + \cos(x) + C \)D. \( \cos(x) + \sin(x) + C \)6. 函数 \( h(x) = \ln(x) \) 的导数是:A. \( \frac{1}{x} \)B. \( \frac{1}{x^2} \)C. \( \frac{1}{x+1} \)D. \( \frac{1}{x-1} \)7. 若 \( F(x) = \int_{1}^{x} e^t \, dt \),求 \( F'(x) \) 的值是:A. \( e \)B. \( e^x \)C. \( e^1 \)D. \( e^{-1} \)8. 函数 \( p(x) = e^x - x - 1 \) 在 \( x = 0 \) 处的泰勒展开式是:A. \( e^x - x - 1 \)B. \( 1 - x \)C. \( e^x \)D. \( 1 \)9. 函数 \( q(x) = \frac{1}{x} \) 在 \( x = 1 \) 处的导数是:A. 1B. -1C. 0D. 无穷大10. 函数 \( r(x) = \frac{x^2}{x-1} \) 在 \( x = 2 \) 处的导数是:A. 4B. 5C. 6D. 7二、简答题(每题10分,共30分)11. 求函数 \( f(x) = x^3 - 3x^2 + 2 \) 在区间 \( [0, 3] \) 上的定积分。

微积分练习100题及其解答

微积分练习100题及其解答

《微积分》练习100题及其解答1.求极限:.⎪⎭⎫ ⎝⎛--→x e x x 111lim 0解:∵,)0(~1→-x xe x ∴.()2121lim 1lim 11lim 111lim 02000-=-=+-=-+-=⎪⎭⎫ ⎝⎛--→→→→x e x e x e x e x x e x x x x x x x x x 2.求极限:.xx e e x x x sin lim sin 0--→解:∵,∴.)0(~1→-x xe x1sin 1lim sin lim sin sin 0sin 0=--⋅=---→→xx e e x x e e xx x x x x x 或者:记,则当时,在之间满足Lagrange 定理的条件,存x e x f =)(0≠x )(x f x x sin ,在(介于与之间),使得,从而ξξx x sin )(sin sin ξf x x e e xx '=--,所以,.1)0()(lim sin lim 0sin 0='='=--→→f f x x e e x x x x ξ1sin lim sin 0=--→xx e e x x x 3.求极限:.()x xx x e1lim+→解:;()11200lim lim 1xxe e xx xx x x x e xe e e →→⎡⎤⎛⎫⎢⎥+=⋅+= ⎪⎢⎥⎝⎭⎣⎦或者.()()12000ln 1limlim 2lim x x xx x x x x e x e e x e xe x →→→++==⇒+=+4.求极限:.01lim 1xx x +→⎛⎫+ ⎪⎝⎭解:,而,所以,.01lim ln 101lim 1x xx x x e x +→+⎛⎫+ ⎪⎝⎭→⎛⎫+= ⎪⎝⎭0ln(1)1lim ln 1lim0t x t x t x +→+∞→⎛⎫++== ⎪⎝⎭01lim 11xx x +→⎛⎫+= ⎪⎝⎭5.求极限:.())0,0,0(3ln ln lim0>>>-++→c b a xc b a x x x x解:.()00ln ln 3ln ln ln ln limlim 3x x x x x x x x x x x a b c a a b b c c abc xa b c →→++-++==++6.求极限:.()00x αα→>解:.()()112110001101lim lim 10111x x x x x x x αααααααααα--→→→->⎧==-=⎨∞<≤⎩-++7.求极限:.lim(0)x αα→>解:.()()22211000112202limlim022211x x x x x x x αααααααααα--→→→->⎧==-=⎨∞<≤⎩-++8.求极限:.(0)x αα→>解:.012x α→=-9.设函数在内,讨论的单调性.)(x f ()∞+∞-,0)0(,0)(≤>''f x f xx f y )(=解:,,⎥⎦⎤⎢⎣⎡-'=-'='⎪⎭⎫ ⎝⎛='x x f x f x x x f x f x x x f y )()(1)()()(20)0()()(--≤x f x f x x f 当时,,而,则,即,从而此时0>x )0()(f xx f '≤0)(>''x f )0()(f x f '≥'0>'y 递增;同理,当时,递增.x x f y )(=0<x xx f y )(=所以,在内单调增加.xx f y )(=()∞+∞-,10.设函数,求:(1)的极大值;(2)()220()2(0)xf x a ta dta =-+->⎰)(x f M 求极小时的值.M a 解:(1),而,所以xx f a x x f 2)(0)(=''±=⇒='0>a ;a a a f M 232)(3-=-=(2)时,,此时,0>a 102223223=⇒=-='⎪⎭⎫ ⎝⎛-='a a a a M a04>=''a M的极小值为.M 34)1(-=M 11.求极限:.22011lim sin x x x →⎛⎫-⎪⎝⎭解:()()2222224000sin sin 11sin lim lim lim sin sin x x x x x x x x x x x x xx →→→-+-⎛⎫-== ⎪⎝⎭.320000sin sin 1cos sin 1limlim 2lim 2lim 363x x x x x x x x x x x x x x →→→→-+-====12.求极限:.⎪⎭⎫ ⎝⎛-→x x x 220sin 11lim 解:2222222200011sin sin 22lim lim lim sin sin 2sin sin 2x x x x x x x x x x xx x x x →→→--⎛⎫-== ⎪+⎝⎭;222000cos 212sin 2limlimsin 2sin 2cos 22sin 26cos 22sin 22sin 212lim 2sin 234cos 2sin 22x x x x xx x x x x x x x x xx x x x x x x →→→--==+++--==-+-13.求极限:.⎪⎭⎫⎝⎛--→x x x ln 111lim 1解:;211ln 11lim ln 11lim ln 111lim ln )1(1ln lim ln 111lim 11111-=---=--+=--+=-+-=⎪⎭⎫ ⎝⎛--→→→→→x x x x x x xx xx x x x x x x x x x x 14.求极限:.1lim arcsin xx e x +→解:∵,∴.arcsin ~(0)x x x →11100lim arcsin lim lim t t xx x t x x ee x xe t ++=→+∞→→=====+∞15.求极限:.⎪⎭⎫⎝⎛-+∞→x x x arctan 2lim解:.22221arctan 21lim arctan lim lim lim 11121x x x x x x x x x x xxππ→+∞→+∞→+∞→+∞⎛⎫-- ⎪⎛⎫⎝⎭+-==== ⎪+⎝⎭-16.求极限:.2120lim x x x e→解:.22112lim lim t tx x x t e x et=→→+∞====+∞17.求极限:.lim sin ln x x x +→解:.00001ln tan sin lim sin ln lim lim lim 0csc csc cot x x x x x x x x x x x x x x++++→→→→===-=-18.求极限:.1lim x -→解:11lim x x -→→=112sec 24x x ππ--→→===19.求极限:.xx xx x sin tan lim 20-→解:.22232200000tan tan sec 11cos sin21lim lim lim lim lim sin 3363x x x x x x x x x x x x x x x x x x →→→→→----=====20.求极限:.()ln 1ln limcot x x xarc x→+∞+-解:()222222111ln 111lim lim lim 1lim 1.111cot 1111x x x x x x x x x x arc x x xx x x →+∞→+∞→+∞→+∞⎛⎫+-- ⎪+⎝⎭==+==-+⎛⎫⎛⎫++ ⎪ ⎪+⎝⎭⎝⎭21.求极限:.()2lim sec tan x x x π→-解:.()2221sin cos lim sec tan limlim 0cos sin x x x x xx x x x πππ→→→--===-22.求积分:.cos sin 1sin 2x xdx x --⎰解:()2cos sin cos sin 11sin 2cos sin cos sin x x x x dx dx dx x x x x x --==---⎰⎰⎰.1ln csc cot 2244sin 4dx x x C x πππ⎛⎫⎛⎫=-=---+ ⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭⎰23.求积分:.cos sin 1sin 2x xdx x -+⎰解:.()()()22cos sin 11cos sin cos sin sin cos sin cos x xdx d x x C x xx x x x -=+=-++++⎰⎰24.求积分:.cos sin 1cos 2x xdx x -+⎰解:()2cos sin cos sin 1sec tan sec 1cos22cos 2x x x x dx dx xdx xdxx x --==-+⎰⎰⎰⎰.()1sec ln sec tan 2x x x C =--++25.求积分:.dx xxx ⎰--2cos 1sin cos 解:()2cos sin cos sin 1csc cot csc 1cos 22sin 2x x x x dx dx x xdx xdxx x --==--⎰⎰⎰⎰.()1csc ln csc cot 2x x x C =-+-+26.求积分:.cos sin 1cos 2x xdx x +-⎰解:()2cos sin cos sin 1csc cot csc 1cos 22sin 2x x x x dx dx x xdx xdxx x ++==+-⎰⎰⎰⎰.()1csc ln csc cot 2x x x C =---+27.求积分:.1sin 1cos2xdx x--⎰解:()221sin 1sin 1csc csc 1cos 22sin 2x x dx dx xdx xdx x x --==--⎰⎰⎰⎰.()1cot ln csc cot 2x x x C =-+-+28.求积分:.1sin 1cos2xdx x -+⎰解:()221sin 1sin 1sec sec tan 1cos 22cos 2x x dx dx xdx x xdx x x --==-+⎰⎰⎰⎰.()1tan sec 2x x C =-+29.求积分:.1cos 1cos2xdx x-+⎰解:()221cos 1cos 1sec sec 1cos22cos 2x x dx dx xdx xdx x x --==-+⎰⎰⎰⎰.()1tan ln sec tan 2x x x C =-++30.求积分:.1cos 1cos2xdx x--⎰解:.()()221sin 1sin 1csc csc 1cos22sin 211cot ln tan cot ln csc cot 222x x dx dx xdx xdxx x x x C or x x x C--==--⎛⎫=-++-+-+ ⎪⎝⎭⎰⎰⎰⎰31.求积分:.1arctan21xedx x +⎰解:.1arctan11arctan arctan 21arctan 1xx x e dx e d e C x x=-=-++⎰⎰32.求积分:.2x dx解:222211222xe t x x e dx =⎛⎫==== ⎪⎝⎭.(2211ln ln 222x x e c e C ⎛ '=++=++ ⎝33.求积分:.211x dx e +⎰解:⎰+dx e x 211⎰⎰----++-=+=)1(112112222xx x x e d e dx e e C e x ++-=-)1ln(212或者:⎰⎰+=+=xxx x x x de e e dx e e e 222222)1(121)1(.[]C e x de e de e xx x x x ++-=⎥⎦⎤⎢⎣⎡+-=⎰⎰)1ln(221111212222234.求积分:.()21xxe dx x +⎰解:()()()2211(1)11111xxx xxxe xe xe dx d x xe d d xe x x x x x ⎛⎫=+=-=-+ ⎪+++⎝⎭++⎰⎰⎰⎰.11x x xxe e e dx C x x=-+=+++⎰35.求积分:.211dx x x -+⎰解:2221141133111422dx dx dxx x x x ==-+⎛⎫⎤⎫+-+- ⎪⎪⎥⎝⎭⎭⎦⎰⎰⎰.211122112d x x C x ⎤⎤⎫⎫=--+⎪⎪⎥⎥⎭⎭⎦⎦⎤⎫+-⎪⎥⎭⎦⎰36.求积分:.2141dx x x -+⎰解:()2221111413231dx dx dxx x x ==-+---⎰⎰⎰.21ln ln 3661d C C ⎫==+=⎪⎭⎫-⎪⎭⎰37.求积分:.dx解:22111ln 1111u u du du C u u u u -⎛⎫⎛⎫=-=+ ⎪ ⎪--++⎝⎭⎝⎭⎰⎰.))ln 2ln12ln1Cor x C or x C ⎛⎫=+-+-+ ⎝38.求积分:.解:设,则,,x e u +=1)1ln(2-=u x du u udx 122-=222112111u du du u u u ⎛⎫==+- ⎪--+⎝⎭⎰⎰12ln ln 1u u C C u ⎛⎫-⎛⎫=++=+ ⎪+⎝⎭.)2ln1orx C -+39.求积分:.21443dx x x +-⎰解:.21121ln 443823x dx C x x x -=++-+⎰40.求积分:.23222x dx x x --+⎰解:222323*********(1)x x dx dx x x x x x ⎡⎤--=+⎢⎥-+-+++⎣⎦⎰⎰.()23ln 22arctan(1)2x x x C =-++++41.求积分:.2dx x⎰解:设,则,,t x sin 2=t x cos 242=-tdt dx cos 2=.()222cot csc 1cot arcsin 2x dx tdt t dt t t C C x x ==-=--+=--+⎰⎰⎰42.求积分:.2dx x ⎰解:设,则,,θtan 2=x 2sec θ=θθd dx 2sec 2=.()Cxx x x C x x x x x x C d d d dx x x ++-++=++++--+-=++---=⎪⎭⎫⎝⎛-+=-==+⎰⎰⎰⎰22222222222244ln 44ln 2141sin 1sin ln 21csc sin sin 11sin 1sin sin )sin 1(1sin cos 14θθθθθθθθθθθθ43.求积分:.⎰++dx x x 1)2(1解:消去根号,记,t =122122+=+=-=t x tdtdx t x.()222arctan 21tdtt C C t t ==+=++⎰44.求积分:.⎰-+dx x x x21解:记,3122222+=+=+=⇒-=t x tdtdx t x x t ()()⎰⎰⎰⎰++=⎪⎭⎫ ⎝⎛++=++=-+dt t t dt t t t dt t t dx x x x 21222112232212222.C x x C tt +-+-=++=22arctan 2222arctan2245.求积分:.⎰++dx x x x21解:记,1122222-=+=-=⇒+=t x tdtdx t x x t ()()⎰⎰⎰⎰-+=⎪⎭⎫ ⎝⎛-+=--=++dt t t dt t t t dt t t dx x x x 21222112212212222.C x x x C t t t +++-+++=++-+=2222ln 222222ln 22246.求积分:.2dx x -⎰解:记,2213222t t t x dx tdt x +-=⇒==-=,.2222312212623332t dx dt dt t dt x t t t t C C⎛⎫==+=+ ⎪----⎝⎭=+=+⎰⎰⎰⎰47.求积分:.解:记,232212122+=+=-=⇒+=t x tdtdx t x x t .Cxx C t t dt t t dt t dt t t dx x x ++-+=+-=+-=⎪⎭⎫ ⎝⎛+-=+=++⎰⎰⎰⎰321arctan 322123arctan3223162331232221222248.求积分:.⎰++dx x 3111解:记,dt t dx t x x t 23323,211=-=⇒+=.22233313331ln 1212142233(1)ln 142t dx dt t dt t t t C t t x C ⎛⎫==-+=-+++ ⎪++⎝⎭=+-+++⎰⎰49.求积分:.()⎰-dx x xx 2321arcsin 解:设:,则x u arcsin =;()332222arcsin sin sin sin sec cos cos 1sec sec sec ln sec tan 1lnln 1ln 12x xu u u udx d u du ud uu u x u u udu u u u u C C x x C ===-=-=-++==-++-+⎰⎰⎰⎰⎰50.求积分:.()()2213xdx xx ++⎰解:.()()()222222211111ln 4134313xx dx d x C x x x x x ⎛⎫+⎛⎫=-=+ ⎪ ⎪+++++⎝⎭⎝⎭⎰⎰51.假设某种商品的需求量,商品的总成本是,每1200080Q P =-2500050C Q =+单位商品需要纳税2元,试求使销售利润最大时商品单价(单位:元)和最大利润额.P 解:收入,28012000)8012000(P P P P PQ R -=-==总成本,P Q C 40006250005025000-=+=总利润,649000161608022-+-=--=P P Q C R L 边际利润,16160160+-='-'='P C R L 令,得,此时,有最大利润(元).0='L 101=P 0160<-=''L 167080=Max L 52.一商家销售某种商品的价格(万元/吨),为销售量,商品的成本函数x P 2.07-=x 是(万元).(1)若每销售1吨商品,政府征税t (万元),求商家获取最大利润时13-=x C 的销售量;(2)t 为何值时,政府税收最大?解:(1)收入,总成本,22.07)2.07(x x x x Px R -=-==13-=x C 税收,总利润,tx T =1)4(2.02+-+-=--=x t x T C R L 边际利润;令,得,此时,有最t x L -+-='44.00='L t x 5.210-=04.0<-=''L 大利润;(2),,令,得,所以当时政府税25.210t t tx T -==t T 510-='0='T 2=t 2=t 收最大.53.求积分:.()322arcsin 1x xdx x -⎰解:设,则x u arcsin =;()332222arcsin sin sin sin sec cos cos 1sec sec sec ln sec tan 1ln 1ln 1.2x xu u u udx d u du ud u u ux u u udu u u u u C Cx x C ===-=-=-++==++-+⎰⎰⎰⎰⎰54.已知的一个原函数为,求积分:.()f x ()1sin ln x x +()xf x dx '⎰解:∵,()1sin ()1sin ln cos ln xf x x x x x x'+=+=+⎡⎤⎣⎦∴()()()()xf x dx xdf x xf x f x dx'==-⎰⎰⎰.()1sin cos ln 1sin ln x x x x x x C =++-++55.设是三阶可导函数,,而.求.()f t ()0f t ''≠()()()x f t y tf t f t '=⎧⎨'=-⎩33d y dx解:由已知,,,,从而;()dx f t dt ''=()dy tf t dt ''=dy dy dt t dx dx dt ==1d dy dt dx ⎛⎫= ⎪⎝⎭,.()221d y d dy dx dt dx dt dx f t ⎛⎫== ⎪''⎝⎭()()()323321()d f t d y d d y f t dx dx dx d f t f t ⎡⎤⎢'''''⎛⎫⎣⎦===- ⎪'⎡⎤''⎡⎤⎝⎭⎣⎦⎣⎦56.设,求.()22tan()sec x yx x y tdt x y ---=≠⎰22d ydx解:对等式两边求导.得,()()()()222sec 1sec 1x y y x y y ''---=--整理,得,2sin ()y x y '=-()()()222sin cos 1d yx y x y y dx '∴=---.()()()21sin 2()cos sin 22y x y x y x y '=--=--57.已知,其中二阶可微,求.()y f x y =+()f u 22d ydx 解:,.()()1y f x y y '''=++()'1()f x y y f x y '+∴='-+对两边再求导,()()1y f x y y '''=++,()()()21y f x y y y f x y ''''''''=++++.()()()211y f x y y f x y '''++''∴='-+3"()[1'()]f x y f x y +=-+58.已知,求.0sin ()xtf x dt t p =-ò0()f t dt p ò解:由已知,,或sin ()xf x xp ¢=-sin ()()x f x xf x p ¢¢=-01cos sin ()()t t tt xdx f x dx xf x dxp ¢¢-==-òòò,()(0)()()()()()t tt f t f xf x f x dx f t tf t f x dx p p p =--+=-+òò取,有,t p =021cos ()()()f f f x dx pp p p p p =-=-+ò.()2f t dt p\=ò59.求积分:.121211x x x e x +æö÷ç+-÷ç÷çèøò解:1111122222111112222221111x x x x x x x x x x I x e dx e dx x e dx e dx xd e x x +++++æöæöæö÷ç÷÷çç÷=+-=+-=+ç÷÷çç÷÷÷ççç÷çèøèøèøòòòòò.21521232x x xee +==60.求极限:.2240sin lim x x xx®-解:224300sin sin sin lim lim x x x x x x x x x x x ®®-+-=×302sin cos 222lim x x xx x®-=.3022sin cos 2lim 8t t t t t ®-=2011cos lim 2t t t ®-=2202sin 12lim 2t t t ®=20sin 12lim 42t t t ®æö÷ç÷ç÷çç=çç÷ç÷÷çèø14=而,22223200000sin sin sin 1cos 1sin 1lim lim lim 2lim 2lim sin 3323x x x x x x x x x x x x x x x x x x x ®®®®®-+--=×==´=请问以上方法错在哪里?61.计算.x ò解:记,代入,得()221ln 1x u e u x u ==+=+原式()()222ln 1121u u uduu u ++=+ò()()22222ln 12ln 121u u du u u duu =+=+-+òò.()22ln 12222u u u arctgu c c =+-++=-++62.求积分:.()12ln 11x dx x++ò解:令,,,,11t x t -=+211x t +=+()221dt dx t =-+()()22222111111t t x t t +æö-ç+=+=ççè++代入,则()12ln 11x I dx x +=+ò()()()()21122200ln 1122ln 11211x t I dx dt x t t t ++==×++++òò()()1112220001120ln 2ln 1ln 1ln 211112ln 2ln 214t x dt dt dx t t xI dt t p-++==-+++\==+òòòò.112011ln 221I dx x \=×+òln 28p =63.求积分:1ò解:记212t x t dx tdt==-=-当时,;当时,,则0x =t 1=1x =0t =原式.110202212dt arctgtt p ===-ò64.设在内有意义,且(1)可导;(2)有反函数;(3)()F x ()0,+¥()x j .求.()()5322115F x t dt x x j æö÷ç÷=-ç÷ç÷èøò()F x 解:由(3)可知,时,,0x =()()010F t dt j =ò()01F =记,则为其反函数()x F y =()y x j =且或()()F y y j =()()F x xj =对(3)的式子两边求导,有,即.()()()23321123F x F x x x j ¢=- ()23321123x F x x x ¢×=-化简有()F x ¢=()23321132F x dx x x c æö\==-+ò而,故.()01F =()233211132F x x x =-+65.求积分:1ò解:11I -==òò.112-==òò12arcsin tp ==66.求积分:1ò解:令sin 02x t t p =<<.()22202200sin cos cos 1cos 1cos 4t d t I dt arctg t tt p pp p==-=-=++òò67.证明:.()4011212n tg xdx n np<<+ò证明:记,则.14201n nn t I tg xdx dt t p==+òò()11212n I n n<<+68.求积分:.244sin 1xxdx ep p --+ò解:.224404sin 11sin 111x x x x dx xdx e e e pp p ---æö÷ç=+÷ç÷çèø+++òò2402sin 8xdx p p -==ò69.设,且,则方程0在()[],f x C a b Î()0f x >()()1xxabf x dx dx f x +=òò(),a b内有几个根.解:记,,()()()1xxabF x f t dt dt f t =+òò()()()110abbaF a dt dt f t f t ==-<òò,而.;()()0baF b f x dx =>ò()0f x >[],x a b Î()()()10F x f x f x ¢=+>在内严格单调增加.因此,在内只有一个根.()F x \(),a b ()F x (),a b 70.在上连续可微,且满足.试证存在一点.使()f x [)0,1()()1212f xf x dx =ò()0,1x Î.()()0f f x x x ¢+=证:设.则,()()F x xf x =()()0000F f =´=.()()()()112211122F f xf x dx F x dx =´==´òò由于在上可微,由积分中值定理,必存在一点,使得()F x []0,110,2h æö÷çÎ÷ç÷çèø,在上,满足Rolle 定理的三个条件,固而存在()()()1122F F F h h =´´=[],1h ()F x ,使得.即.x (),1h Î()0,1Ì()0F x ¢=()()0f f x x x ¢+=71.设求,.()11010x x xe x f x e x ìïïïï¹ï=íï+ïïï=ïî()0f -¢()0f +¢解:由知()()()000limx x f x f x f x x x ®-¢=-()0f -¢()()11000lim lim lim 0011txt t x x x f x f e e x e e --®-¥®®-====-++()0f +¢()()11000lim lim lim 1011txt t x x xf x f e e x ee ++®+¥®®-====-++另,时0x ¹()1121111xx x e e x f x e æö÷ç÷-+ç÷ç÷èø¢=æö÷ç÷+ç÷ç÷èø;()0f -¢()1121011lim lim 1xx x x xe e xf x e --®®æö÷ç÷-+ç÷ç÷èø¢==æö÷ç÷+ç÷ç÷èø()()121lim01u u u xu u e u e e =®-¥-+¾¾¾®=+()0f +¢()1121011lim lim 1xx x x xe e xf x e ++®®æö÷ç÷-+ç÷ç÷èø¢==æö÷ç÷+ç÷ç÷èø()()21lim1u u u u e u e e ®+¥-+=+()()()11lim21u u u u u uu e u e e e e e ®+¥-++-=+()22lim21u uu uu e ue e e ®+¥-=+.()221lim lim 1221u u u u u u e u e e e ®+¥®+¥--===+72.设在上连续,且,证明:必存在,使()f x []0,n ()()()0f f n n N =Î()0,n x Î.()()1f f x x +=证明:记,则在上连续,因而有最大(小)值()()()1x f x f x j =+-()x j []0,1n -,,;()M m ()m x M j ££[]0,1x n Î-而,,…,;()()()010f f j =-()()()121f f j =-()()()11n f n f n j -=--从而,()()()1110n n k k k f k f k m M nnj --==éù+-ëû£==£åå故而,必存在,使,即()0,n x Î()0j x =.()()1f f x x +=73.证明:函数在上一致连续.3)(x x f =[]1,0证明:任取两点,,不妨设,则,考虑到1x []1,02∈x 21x x ≠03231≠-x x ()321232312132232132121323121)()(x x x x x x x x x x x x x x x f x f +--≤++-=-=-;()2323121323121)()(x x x x x x x f x f --≤-=-即;2133231321)()(x x x x x f x f -≤-=-所以,对于任意小的正数,取,当时,必有0>ε3εη=η<-21x x 成立,ε<-≤-=-321323121)()(x x x x x f x f 故而函数在上一致连续.3)(x x f =[]1,074.函数在上有定义,且(1),(2)对于在,)(x f ()∞,0)1()(lim 1f x f x =→0>∀x ,则(为常数).)()(2x f x f =C x f ≡)(C 证明:任取,记,,,…,()∞+∈,0x x x =1x x x ==124123xx x x ===,….则1211-==-n x x x n n 由可知,,即)()(2x f x f =)()(x f x f =;)()()()()(321n x f x f x f x f x f ===== 而注意到,故)0(1lim >=+∞→x x n n ;)0(1lim lim 121>==-+∞→+∞→x x x n n n n 而,从而)1()(lim 1f x f x =→;)1()lim ()(lim )(11f x f x f x f n x n x ===→→所以,(为常数).C x f ≡)()1(f C =75.求极限:.21n n n tan n lim ⎪⎭⎫ ⎝⎛∞→解:注意到⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⋅=⎪⎭⎫ ⎝⎛n tan n ln n exp n tan n n 1122,⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛-⋅=11111112n tan n n tan n ln n tan n n exp 且,111111=-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+∞→ntan n n tan n ln lim n 而22111tan lim 11tan lim n n n n n n n n -=⎪⎭⎫ ⎝⎛-∞→∞→30201tan lim1tan lim y y y y y y y y ny -=-=→→=.yy tan lim y y sec lim y y 31331220220==-=→→故.e n tan n lim n n 3121=⎪⎭⎫⎝⎛∞→76.已知,,求.12a =()11112n n n a a n a +⎛⎫=+> ⎪⎝⎭lim n n a →∞解:很明显,,,,,12a =0n a >11112n n n a a a +⎛⎫=+≥ ⎪⎝⎭()12111122n n n a n a a +⎛⎫=+≤>⎪⎝⎭所以,,单调有界,存在;1212n n a a a +≤≤≤≤= {}n a lim n n a →∞记,则由得,注意到,解得.lim n n a l →∞=1112n n n a a a +⎛⎫=+ ⎪⎝⎭112l l l ⎛⎫=+ ⎪⎝⎭21≤≤l 1l =77.设函数,求.xx y +=12()n y 解:,,11112++-=+=x x x x y 2111111⎪⎭⎫⎝⎛+-='⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-='x x x y ,()()322121111+-='⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=''x x y 由数学归纳法可得:.()()())1(1!11>+-=+n x n yn n n 78.设函数在区间上连续,在内可导,且,()x f []0,1()0,1()()010==f f .试证:121=⎪⎭⎫ ⎝⎛f (1)存在,使;1,12η⎛⎫∈⎪⎝⎭()ηη=f (2)对任意实数,必存在,使得.λ()0,ξη∈()()1f f ξλξξ'--=⎡⎤⎣⎦证明:(1)设,则在区间上连续,在内可导,且()()h x x f x =-()h x []0,1()0,1,,,则存在,,即()00h =()11h =11022h ⎛⎫=-< ⎪⎝⎭1,12η⎛⎫∈ ⎪⎝⎭()()0h f ηηη=-=.()ηη=f (2)记,在区间上连续,在内可导,且,()()xF x f x x e λ-=-⎡⎤⎣⎦[]0,1()0,1()00F =,则由定理,必存在,使得,即()0F η=Rolle ()0,ξη∈()0F ξ'=.()()1f f ξλξξ'--=⎡⎤⎣⎦79.判断级数的敛散性.11nn ¥=åò提示:.220001122n xdx n n>=®<òòò80.证明:当时,.0>x ()x x xx<+<+1ln 1证明:记,则在上连续因而可积.tt f +=11)()(t f []x 0由积分第一中值定理,比存在一点,使得:()x 0∈ξ,()()x f dt t x x⋅=+=+⎰ξ0111ln 即.()x x ξ+=+111ln 而,,x <<ξ011111<+<+ξx ∴,)0(11><+<+x x x x x ξ即.()x x x x<+<+1ln 181.求在条件下,()22212312323,,2334f x x x x x x x x =+++2221231x x x ++=()123,,f x x x 的最大值和最大值点.解:利用拉格朗日乘数法,设,()()22222212312323123,,,23341L x x x x x x x x x x x λλ=++++++-,则123112233322221234206240624010x x x L x x L x x x L x x x L x x x λλλλ'=+=⎧⎪'=++=⎪⎨'=++=⎪⎪'=++-=⎩.1231222312323(1)020121(2)05x x x x Maxf x x x x x Maxf x x λ≠⇒=-⇒==→=±⇒=⎧+=⎪=⇒⇒==⇒=⎨=⎪⎩82.设随机变量,问:当取何值时,落入区间的概率最大?()2~,X N μσσX ()1,3解:因为,()212~x X f x σ⎛⎫- ⎝⎭=,{}133113()X P X P g σσσσσσ∆⎧⎫⎛⎫⎛⎫<<=<<=Φ-Φ=⎨⎬ ⎪ ⎪⎩⎭⎝⎭⎝⎭利用微积分中求极值的方法,有223311()g σσσσσ⎛⎫⎛⎫⎛⎫'''=-Φ+Φ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;222222221311111422231111130e e σσσσ⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⎢⎥==-=⎢⎥⎣⎦令得,则;又,故.404ln 3σ=0σ=0()0g σ''<0σ=故当落入区间的概率最大.σ=X ()1,383.设,讨论方程的实数根.x e x f x λ-=)(0=-x e x λ解:(1)显然,当时,方程没有实根;0λ=0=-x e x λ(2)当时,方程有唯一实根;0λ<0=-x e xλ(3)当时,;曲线为下凸的,0>λ0)(,)(>=''-='x x e x f e x f λx e x f x λ-=)(呈∪型;由可知,驻点,极小值,0)(=-='λx e x f λln 0=x )ln 1()(0λλ-=x f 由此可知,当时,方程没有实根;e <<λ00=-x e x λ当,极小值,方程只有一个实根;e =λ0)ln 1()(0=-=λλxf 0=-x e x λλln 0=x 当,极小值,方程有2个实根.e >λ0)ln 1()(0<-=λλxf 0=-x e xλ84.函数的单调增减区间、凹凸区间与极值.()()()211f x x x =-+解:,()()()()()()()()()22111211131f x x x ,f x x x x x x '=-+=++-+=+-由得驻点:;()0f x '=113x ,=-由上可知,函数在与内单调递增,在内递减;极()f x ()1,-∞-13,⎛⎫+∞ ⎪⎝⎭113,⎛⎫- ⎪⎝⎭大值,极小值;()10f -=132327f ⎛⎫=-⎪⎝⎭由可得,因而函数曲线在内()()()211f x x x =-+()62f x x ''=+13,⎛⎫-∞- ⎪⎝⎭,函数曲线上凸;在内下凸,如下图.()0f x ''<13,⎛⎫-+∞ ⎪⎝⎭85.已知收益函数为,其中为价格,为需求量,求需求弹性时260R=Q Q -P Q 2d ε=-的边际收益.MR 解:因为,所以需求函数,边际收益函数为,且260R=Q Q -60P Q =-602R =Q '-需求弹性函数为;60601d P dQ Q Q dP Q Qε-==-=-当需求弹性时,,此时的边际收益.2d ε=-20Q =()20604020MR R '==-=86.设函数,求其渐近线.xx exe x f y 111)(+==解:首先考虑其水平渐近线和垂直渐近线:x()1,-∞-1-113,⎛⎫- ⎪⎝⎭1313,⎛⎫+∞ ⎪⎝⎭()f x '+0-0+()f x 增加极大值递减极小值递增因为,,,所以,1lim 1=∞→x x e +∞=+→x x e 100lim 0lim 100=-→xx e ;11011lim lim lim 0(1)(1)1t x t t t t x xxee t t e t e x e+-→+∞→+∞→⎛⎫==== ⎪++⎝⎭+;11011lim lim lim 0(1)(1)1t x t t t t x xxee t t e t e x e--→-∞→-∞→⎛⎫==== ⎪++⎝⎭+;110011limlim lim (1)(1)1t x t t x t t xxee t t e t e x e-→∞→→⎛⎫===∞=⎪++⎝⎭+故而没有水平渐近线和垂直渐近线;xx exex f y 111)(+==由于,()111limlim 21xx x xf x e a x e →∞→∞===+()1111111211lim lim lim 2211x x x x x x x x xe x e xe b fx x x e e →∞→∞→∞⎡⎤⎛⎫-+⎢⎥⎡⎤ ⎪⎡⎤⎝⎭⎢⎥⎢⎥=-=-=⎢⎥⎢⎢⎥⎣⎦++⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,11011111122lim lim 2(1)41x t t x t xx xe e t t e x e→∞→-+-⎛⎫==== ⎪+⎝⎭+故而有斜渐近线:.xx exe x f y 111)(+==4121+=x y 87.求函数曲线的渐近线.()1ln 1x y e x=++解:显然,,为其垂直渐近线;()01lim ln 1x x e x→⎡⎤++=∞⎢⎥⎣⎦0x =,为其水平渐近线;()()1lim ln 1lim ln 10x xx x e e x →-∞→-∞⎡⎤++=+=⎢⎥⎣⎦0y =又,,,因而()()11ln 1ln 1x x y e x e x x -=++=+++()1lim ln 10x x e x -→+∞⎡⎤++=⎢⎥⎣⎦为其一条斜渐近线.y x=88.若,试证明:与具有相同的敛散性.lim (0)n n a a a →∞=≠∑∞=+-11n n n a a ∑∞=+-1111n nn a a 证明:问题为讨论两个正项级数的敛散性,可以用比较法的极限形式,因为不是具体的级数形式.记,则,111nn n a a V -=+0,0>>n n V U ==n n n V U ∞→limnn nn n a a a a 11lim11--=++∞→1.lim +∞→n n n a a )0(2≠a 可见,与具有相同的敛散性.∑∞=+-11n n n a a∑∞=+-1111n nn a a 89.讨论下列级数的敛散性:(1)2);(3);(4)1n ∞=11tan 2n n n ∞+=∑()3113nnn n n ∞=⎤+-⎣⎦∑()∑∞=+-+121211n n n n n(5);(6);(7).()()1111ln 1n n n ∞+=-+∑()211nn n n ∞=-+∑()()1111ln n n nn e e ∞+-=-+∑解:(1)当充分大时,比如时,有,从而n 3>n ()n n <+<1ln 1,而当时,,()n n n n <+<1ln 1∞→n 1→n n由极限的夹逼性定理知,当时,,所以,∞→n 1→1n ∞=(2)注意到,这是正项级数,当时,(等价无穷小),0→x x x ~tan 所以,而后者收敛,所以收敛.11tan ~2n n n π∞+=∑112n n n π∞+=∑11tan 2n nn π∞+=∑(3)利用柯西判别法:也是正项级数,,可见原()33113n+-=<→级数收敛;事实上,,,)())333111333nnnn nnnn nn ⎤+-+⎣⎦<<3113nnn n ∞=⎤⎣⎦∑都收敛,且同为正项级数,因而原级数收敛.3113nn n n ∞=⎤⎣⎦∑(4)因为,()()111111122221212112121→+⋅+⋅=+=+=+-+-nn nnnn n n n n n n nnnnnu 改用比较判别法:取,则21nv n =;()11lim 1lim lim 122121=⎪⎪⎭⎫⎝⎛+=+=+∞→++∞→∞→n n n n n nn n n n n nv u其中()(){}1122222lim lim exp lim 12ln ln 111n x n x x n x x x x n x ++→∞→+∞→+∞⎛⎫⎛⎫⎡⎤==+-+ ⎪ ⎪⎣⎦++⎝⎭⎝⎭,()()()()()22222222ln ln 1211exp lim exp lim exp lim 111111x x x x x x x x x x x x x →+∞→+∞→+∞⎧⎫⎧⎫⎪⎪-⎪⎪⎧⎫-++⎪⎪⎪⎪⎪⎪+===-=⎨⎬⎨⎬⎨⎬+⎪⎪⎪⎪⎪⎪-⎩⎭+⎪⎪⎪⎪+⎩⎭⎩⎭所以,与同时收敛.()∑∞=+-+121211n n n nn ∑∞=121n n(5)条件收敛.(6),发散.()()22111111nnn n n nn n n∞∞∞===-+-=+∑∑∑(7)=,()()1111ln n n n n e e ∞+-=-+∑()()12111ln 1n n n e n∞+=-+-∑,()222ln 1n n n e n e n e +-<-<()()()22222lim lim lim ln 1ln 1ln n x xn x x x n x x e e e e n e x e e -→∞→+∞→+∞==+-+-+==∞.()=+-=--+∞→x x x x xx e e e e e 22lim ()22221lim 1x x x x e e e →+∞+-x xx x ee e 2532106lim ++∞→另一方面,==,;()x x e e -+ln 1()xe x 21ln 1-++()x e xx x 1~1ln 11112-++()+∞→x 可见,原级数非绝对收敛;但是单调减少且趋于0,所以,原级数条件收敛.()x x e e -+ln 190.若正项级数与都发散,讨论与的敛散性.1nn v∞=∑1nn u∞=∑{}1max ,nnn u v ∞=∑{}1min ,nnn u v ∞=∑解:,,{}{}1max ,2n n n n n n u v u v u v =++-{}{}1min ,2n n n n n n u v u v u v =+--(1)显然,,或者,故而{}{}1max ,2n n n n n n n u v u v u v u =++-≥{}max ,n n n u v v ≥发散;{}1max ,nnn u v ∞=∑(2)而的敛散性未定.{}1min ,nnn u v ∞=∑例如,若,()222211111111123456212n n u n n ∞==+++++++++-∑ ,()222=11111111123456221n n v n n ∞=+++++++++-∑。

微积分习题及答案

微积分习题及答案

微积分习题及答案微积分习题及答案微积分作为数学的重要分支,是研究变化和积分的学科。

它是现代科学和工程领域中不可或缺的工具。

在学习微积分的过程中,习题是非常重要的一部分,通过解答习题可以加深对概念和原理的理解,并提升解决实际问题的能力。

下面将介绍几个常见的微积分习题及其答案。

一、极限习题1. 求极限:lim(x→0) (sinx/x)解答:当x趋近于0时,sinx/x的值趋近于1。

这是因为sinx/x的极限定义为1,所以该极限的值为1。

2. 求极限:lim(x→∞) (1+1/x)^x解答:当x趋近于无穷大时,(1+1/x)^x的值趋近于e,其中e是自然对数的底数。

这是因为(1+1/x)^x的极限定义为e,所以该极限的值为e。

二、导数习题1. 求函数f(x) = x^2的导数。

解答:根据导数的定义,f'(x) = 2x。

所以函数f(x) = x^2的导数为2x。

2. 求函数f(x) = e^x的导数。

解答:根据导数的定义,f'(x) = e^x。

所以函数f(x) = e^x的导数为e^x。

三、积分习题1. 求∫(x^2 + 2x + 1)dx。

解答:根据积分的定义,∫(x^2 + 2x + 1)dx = (1/3)x^3 + x^2 + x + C,其中C为常数。

2. 求∫(sinx + cosx)dx。

解答:根据积分的定义,∫(sinx + cosx)dx = -cosx + sinx + C,其中C为常数。

四、微分方程习题1. 求解微分方程dy/dx = 2x。

解答:对方程两边同时积分,得到y = x^2 + C,其中C为常数。

2. 求解微分方程dy/dx = 3x^2。

解答:对方程两边同时积分,得到y = x^3 + C,其中C为常数。

通过解答以上习题,可以加深对微积分概念和原理的理解。

同时,通过解决实际问题的能力的提升,可以将微积分应用于科学和工程领域中的实际问题。

微积分的习题和答案是学习过程中的重要参考资料,希望以上内容对大家有所帮助。

高考数学微积分(附答案解析

高考数学微积分(附答案解析

定积分与微积分基本定理【考点导读】1. 了解定积分的实际背景,初步掌握定积分的相关概念,体会定积分的基本方法。

2. 了解微积分基本定理的含义,能利用微积分基本定理计算简单的定积分,解决一些简单的几何和物理问题。

【基础练习】1.下列等于1的积分是 (3) 。

(1)dx x ⎰10 (2)dx x ⎰+10)1( (3)dx ⎰101 (4)dx ⎰10212.曲线3cos (0)2y x x π=≤≤与坐标轴围成的面积是 52。

3.已知自由落体运动的速率v gt =,则落体运动从0t =到0t t =所走的路程为 220gt。

4.如果10N 的力能使弹簧压缩10cm ,为在弹性限度内将弹簧拉长6cm ,则力所做的功为 0.18J 。

5.220(3)10,x k dx k +==⎰则1 , 8-=⎰__454 。

【范例导析】例1.计算下列定积分的值: (1)⎰--312)4(dx x x ;(2)⎰-215)1(dx x ;(3)dx x x ⎰+20)sin (π;(4)dx x ⎰-222cos ππ;分析:求函数()f x 在某一区间上的定积分,常用的方法有两种:一是利用定积分的几何意义,转化为曲边梯形的面积来处理;二是应用微积分基本定理,关键在于找到()F x ,使()()F x f x '=。

解:(1)3223311120(4)(2)|33x x dx x x ---=-=⎰ (2)因为56)1(])1(61[-='-x x ,所以61|)1(61)1(216215=-=-⎰x dx x ;(3)222200(sin )(cos )|128x x x dx x πππ+=-=+⎰ (4)22222221cos 2sin 2cos |2242x x x xdx dx πππππππ---+==+=⎰⎰dx x ⎰-222cos ππ点评:除了题目有明确要求之外,在求定积分的两种方法中我们基本上选用微积分基本定理解决问题,避免每次都要进行“分割、以直代曲、作和、逼近”的操作,不过有时候我们不容易找到比较()F x ,这时候用定义或者其几何意义就显得方便了。

高二数学微积分初步练习题及答案

高二数学微积分初步练习题及答案

高二数学微积分初步练习题及答案练习题一:1. 将函数f(x) = x^3 - 6x^2 + 9x + 2求导并求出f'(2)的值。

2. 求函数g(x) = sin(2x)在区间[0, π/2]上的定积分值。

3. 求函数h(x) = ln(x)的不定积分。

4. 已知函数y = x^2 + 2x,求曲线y = f(x)在点(-1, f(-1))处的切线方程。

答案及解析:1. 对f(x)进行求导,得到f'(x) = 3x^2 - 12x + 9。

将x = 2代入,可以得到f'(2) = 3(2)^2 - 12(2) + 9 = 3。

2. 函数g(x) = sin(2x)在区间[0, π/2]上的定积分可以表示为∫[0, π/2] sin(2x) dx。

利用换元法,令u = 2x,dx = du/2,则原式变为∫[0, π] sin(u) du/2 = [-cos(u)/2] [0, π/2] = [-cos(π/2)/2 - (-cos(0)/2)] = [-0 + 1]/2 = 1/2。

3. 不定积分∫ln(x) dx可以通过分部积分法来解决。

令u = ln(x),dv = dx,则du = 1/x dx,v = x。

根据分部积分公式∫u dv = uv - ∫v du,将其代入,得到∫ln(x) dx = xln(x) - ∫x(1/x) dx = xln(x) - ∫dx = xln(x) - x + C,其中C为常数。

4. 曲线y = f(x)在点(-1, f(-1))处的切线方程可以通过求导来解决。

首先对y = x^2 + 2x求导,得到y' = 2x + 2。

代入x = -1,可以得到y'(-1) = 2(-1) + 2 = 0。

切线的斜率为0,代表切线与x轴平行。

由于(-1, f(-1))处的切线与x轴平行,所以切线的方程为y = f(-1)。

将(-1, f(-1))代入曲线方程y = x^2 + 2x,可以得到f(-1) = (-1)^2 + 2(-1) = -1。

2023年高考数学微积分练习题及答案

2023年高考数学微积分练习题及答案

2023年高考数学微积分练习题及答案1. 函数 $f(x) = 2x^3 - 3x^2 + 2x - 1$ 在区间 $(0, 2)$ 上是否存在驻点?若存在,请找出驻点的横坐标,并判断其是极大值点还是极小值点。

解析:为了找到函数的驻点,需要先求出函数的导数。

对函数$f(x)$ 求导可得:$f'(x) = 6x^2 - 6x + 2$要找到驻点,我们需要求出驻点对应的横坐标。

将导数 $f'(x)$ 设置为零,并求解该方程:$6x^2 - 6x + 2 = 0$通过求解这个二次方程,我们得到两个解:$x_1 = \frac{-1 -\sqrt{3}}{3}$ 和 $x_2 = \frac{-1 + \sqrt{3}}{3}$。

由于题目要求在区间 $(0, 2)$ 上找驻点,因此我们只需要判断这两个解是否在该区间内。

计算两个解的值可以得到:$f(x_1) = f\left(\frac{-1 - \sqrt{3}}{3}\right) = \frac{-4\sqrt{3} -27}{9}$$f(x_2) = f\left(\frac{-1 + \sqrt{3}}{3}\right) = \frac{4\sqrt{3} -27}{9}$根据计算结果可知,$f(x_1)$ 和 $f(x_2)$ 都不在区间 $(0, 2)$ 内,因此函数 $f(x)$ 在该区间上不存在任何驻点。

2. 计算曲线 $y = \ln(x^2 + 1)$ 的弧长。

解析:为了计算曲线的弧长,我们可以使用弧长公式:$L = \int_a^b \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx$对于给定曲线 $y = \ln(x^2 + 1)$,我们首先需要计算$\frac{dy}{dx}$,然后代入弧长公式进行计算。

首先对 $y = \ln(x^2 + 1)$ 求导得到:$\frac{dy}{dx} = \frac{2x}{x^2 + 1}$代入弧长公式,我们需要计算积分:$L = \int_a^b \sqrt{1 + \left(\frac{2x}{x^2 + 1}\right)^2} \, dx$利用换元法,将积分转化为更简单的形式。

高三数学微积分知识点例题

高三数学微积分知识点例题

高三数学微积分知识点例题微积分是数学的一个重要分支,它研究的是函数的变化规律以及求解曲线下面的面积等问题。

在高三阶段,学生需要掌握微积分的相关知识点,并能够熟练运用它们解决问题。

以下是几个与高三数学微积分知识点相关的例题,希望能对同学们的学习有所帮助。

例题一:已知函数 $y = x^3 - 2x^2 + 3x - 4$,求曲线 $y$ 在点$(1, -2)$ 处的切线方程。

解析:首先,我们需要求出曲线在给定点处的斜率。

根据微积分的知识,切线的斜率可以通过求函数的导数得到。

所以,我们先求出函数 $y$ 的导数:$y' = 3x^2 - 4x + 3$接下来,我们将 $x$ 的值代入导数函数计算斜率。

代入 $x = 1$,得到切线的斜率为:$y'(1) = 3(1)^2 - 4(1) + 3 = 2$切线的斜率已知,接下来我们可以利用点斜式的形式求解切线方程。

点斜式的一般形式为 $y - y_1 = m(x - x_1)$,其中 $(x_1, y_1)$ 是直线上的一点,$m$ 是斜率。

以切线过点 $(1, -2)$,斜率为 2 为已知条件,代入点斜式公式即可得到切线方程:$y - (-2) = 2(x - 1)$简化得:$y + 2 = 2x - 2$最后整理得到切线方程为:$y = 2x - 4$例题二:已知函数 $f(x) = \frac{1}{2}x^2 - 3x$,求函数$f(x)$ 在区间 $[1, 4]$ 上的定积分值。

解析:定积分可以用来计算曲线与坐标轴之间所夹的面积。

对于函数 $f(x)$ 在区间 $[1, 4]$ 上的定积分,可以表示为$\int_{1}^{4} f(x) \, dx$。

首先,我们需要求出函数 $f(x)$ 积分的原函数。

对于多项式函数,求导和求积分是容易操作的,所以我们通过求导函数来确定原函数。

对于 $f(x) = \frac{1}{2}x^2 - 3x$,它的导函数为 $f'(x) =x - 3$。

(完整版)高二数学微积分练习题

(完整版)高二数学微积分练习题

高二数学微积分练习题一、选择题:1.已知自由落体运动的速率gt v =,则落体运动从0=t 到0t t =所走的路程为( )A .320gt B .20gtC .220gt D .620gt[解析]要学生理解微积分在物理学中的应用,可用来求路程、位移、功 2、如图,阴影部分的面积是A .32B .329-C .332D .335[解析]让学生理解利用微积分求曲边形的面积3、 若11(2)3ln 2ax dx x+=+⎰,且a >1,则a 的值为( )A .6B 。

4C 。

3D 。

2 [解析] 4、用S 表示图中阴影部分的面积,则S 的值是( )A .⎠⎛a c f (x )d xB .|⎠⎛ac f (x )d x |C .⎠⎛a b f (x )d x +⎠⎛bc f (x )d xD .⎠⎛b c f (x )d x -⎠⎛ab f (x )d x5、已知f (x )为偶函数且⎠⎛06 f (x )d x =8,则⎠⎛-66f (x )d x等于( )A .0B .4C .8D .16 6、函数y =⎠⎛-xx (cos t +t 2+2)d t (x >0)( )A .是奇函数B .是偶函数C .非奇非偶函数D .以上都不正确7、函数f(x)=⎩⎨⎧x +1 (-1≤x<0)cosx (0≤x ≤π2)的图象与x 轴所围成的封闭图形的面积为( )A.32 B .1 C .2 D.128、⎠⎛03|x 2-4|dx =( ) A.213 B.223 C.233D.253二、填空题:9.曲线1,0,2===y x x y ,所围成的图形的面积可用定积分表示为 .10.由x y cos =及x 轴围成的介于0与2π之间的平面图形的面积,利用定积分应表达为 .11、若等比数列{a n }的首项为23,且a 4=⎠⎛14 (1+2x )d x ,则公比等于____.12、.已知函数f (x )=3x 2+2x +1,若⎠⎛-11f (x )d x =2f (a )成立,则a =________二、填空题9、 10、11、 12、三、解答题:.13.计算下列定积分的值(1)⎰-215)1(dx x ;(2)dx x ⎰-222cos ππ14.求曲线x x x y 223++-=与x 轴所围成的图形的面积.15.已知f(a)=1(2ax2-a2x)dx,求f(a)的最大值;⎠⎛016.设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+2.(1)求y=f(x)的表达式;(2)求y=f(x)的图象与两坐标轴所围成图形的面积.(2)若直线x=-t(0<t<1=把y=f(x)的图象与两坐标轴所围成图形的面积二等分,求t的值.参考答案一、1.C ;2.C ;3.D ;4.D ;5 A 6 C 7.D 8;C 二、9dx x ⎰-12)1( 10.dx x ⎰π20|cos |;11、3 12、-1或1/3三、15、[解析] 取F (x )=23ax 3-12a 2x 2则F ′(x )=2ax 2-a 2x ∴f (a )=⎠⎛01(2ax 2-a 2x )d x=F (1)-F (0)=23a -12a 2=-12⎝⎛⎭⎪⎫a -232+29∴当a =23时,f (a )有最大值29.16.解:(1)设f (x )=ax 2+bx +c ,则f ′(x )=2ax +b ,又已知f ′(x )=2x +2 ∴a =1,b =2.∴f (x )=x 2+2x +c又方程f (x )=0有两个相等实根, ∴判别式Δ=4-4c =0,即c =1. 故f (x )=x 2+2x +1.(2)依题意,有所求面积=31|)31()12(0123201=++=++--⎰x x x dx x x .(3)依题意,有x x x x x x ttd )12(d )12(2021++=++⎰⎰---, ∴023123|)31(|)31(t t x x x x x x ---++=++, -31t 3+t 2-t +31=31t 3-t 2+t , 2t 3-6t 2+6t -1=0,∴2(t -1)3=-1,于是t =1-321. 评述:本题考查导数和积分的基本概念.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中微积分经典例题
1. 函数求导
- 例题1: 求函数 $f(x) = x^3 - 2x^2 + x$ 在点 $x=2$ 处的导数。

将函数 $f(x) = x^3 - 2x^2 + x$ 求导,得到 $f'(x) = 3x^2 - 4x + 1$。

将 $x=2$ 代入导数函数,得到 $f'(2) = 3(2)^2 - 4(2) + 1 = 9$。

所以函数 $f(x)$ 在点 $x=2$ 处的导数为 9。

- 例题2: 求函数 $g(x) = e^x \sin x$ 的导数。

使用链式法则,将函数 $g(x) = e^x \sin x$ 求导。

根据链式法则, $\frac{d}{dx} (e^x \sin x) = (e^x)' \sin x + e^x (\sin x)'$。

对于 $(e^x)'$,使用指数函数求导法则,得到 $(e^x)' = e^x$。

对于 $(\sin x)'$,使用三角函数求导法则,得到 $(\sin x)' = \cos x$。

将这些导数结果带入,得到 $\frac{d}{dx} (e^x \sin x) = e^x \sin x + e^x \cos x$。

所以函数 $g(x) = e^x \sin x$ 的导数为 $e^x \sin x + e^x \cos x$。

2. 积分计算
- 例题1: 计算积分 $\int (3x^2 - 2x + 4) \, dx$。

根据积分的线性性质,将积分展开,得到 $\int (3x^2 - 2x + 4) \, dx = \int 3x^2 \, dx - \int 2x \, dx + \int 4 \, dx$。

对于每一项,根据幂函数积分法则,得到 $\int x^n \, dx =
\frac{1}{n+1} x^{n+1}$。

将这些结果带入积分式,得到 $\int (3x^2 - 2x + 4) \, dx =
\frac{1}{3} x^3 - x^2 + 4x + C$,其中 $C$ 为常数。

所以积分 $\int (3x^2 - 2x + 4) \, dx$ 的结果为 $\frac{1}{3} x^3 -
x^2 + 4x + C$。

- 例题2: 计算定积分 $\int_0^1 (x^2 + 2x - 1) \, dx$。

计算定积分相当于在积分结果两端同时代入积分下限和上限。

根据前面的结果,积分 $\int (x^2 + 2x - 1) \, dx = \frac{1}{3}
x^3 + x^2 - x + C$。

将下限和上限代入这个结果,得到定积分的值为
$\left[ \frac{1}{3} x^3 + x^2 - x + C \right]_0^1$。

代入上限 $x=1$,得到 $\frac{1}{3} \cdot 1^3 + 1^2 - 1 + C$。

代入下限 $x=0$,得到 $\frac{1}{3} \cdot 0^3 + 0^2 - 0 + C$。

两者相减,消去常数 $C$,得到定积分的值为 $\frac{1}{3}+1-1 = \frac{4}{3}$。

所以定积分 $\int_0^1 (x^2 + 2x - 1) \, dx$ 的结果为
$\frac{4}{3}$。

这些是高中微积分中的一些经典例题,让我们更深入地理解函数求导和积分计算的方法。

相关文档
最新文档