(完整版)经典的微积分习题库

合集下载

微积分复习题题库超全

微积分复习题题库超全

习题 1—21.确定下列函数的定义域:(1)912-=x y ;(2)x y a arcsin log =;(3)xy πsin 2=; (4))32(log 213-+-=x x y a ;(5))4(log 21arccos 2x x y a -+-= 2.求函数⎪⎩⎪⎨⎧=≠=)0(0)0(1sin x x x y的定义域和值域。

3.下列各题中,函数)(x f 和)(x g 是否相同?(1)2)(,)(x x g x x f ==;(2)2sin 21)(,cos )(2π-==x g x x f ;(3)1)(,11)(2-=+-=x x g x x x f ; (4)0)(,)(x x g xxx f ==。

4.设x x f sin )(=证明:⎪⎭⎫ ⎝⎛+=-+2cos 2sin2)()(x x xx f x x f ∆∆∆ 5.设5)(2++=bx ax x f 且38)()1(+=-+x x f x f ,试确定b a ,的值。

6.下列函数中哪些是偶函数?哪些是奇函数?哪些是既非奇函数又非偶函数?(1))1(22x x y -= (2)323x x y -=; (3)2211x x y +-=;(4))1)(1(+-=x x x y ; (5)1cos sin +-=x x y (6)2xx a a y -+=。

7.设)(x f 为定义在),(∞+-∞上的任意函数,证明:(1))()()(1x f x f x F -+= 偶函数; (2))()()(2x f x f x F --=为奇函数。

8.证明:定义在),(∞+-∞上的任意函数可表示为一个奇函数与一个偶函数的和。

9.设)(x f 定义在),(L L -上的奇函数,若)(x f 在),0(L 上单增,证明:)(x f 在)0,(L -上也单增。

10.下列各函数中哪些是周期函数?对于周期函数,指出其周期: (1))2cos(-=x y (2)x y 4cos =; (3)x y πsin 1+=; (4)x x y cos =; (5)x y 2sin = (6)x x y tan 3sin +=。

微积分练习题(含答案)

微积分练习题(含答案)

练习题第六章 定积分1.1()(2(0)xF x dt x =->⎰的单调增加区间为_____. 1(,)4+∞2. 函数0()xt F x te dt -=⎰在点x =____处有极值. 03.设sin 201()sin ,()sin 2x f x t dt g x x x ==-⎰,则当0x →时有( A ). (A) ()~()f x g x (B) ()f x 与()g x 同阶,但()f x 不等价于()g x (C) ()(())f x o g x = (D) ()(())g x o f x =4.计算3523220sin sin 2sin cos . []3515x x x xdx ππ⋅-=⎰5.计算21e ⎰1)6.求函数dt t t x x I )ln 1(1)(-=⎰在],1[e 上的最大值与最小值. 最大值()3412-e ,最小值07.设函数⎪⎩⎪⎨⎧≥=<<-+01 2cos 110 )(2x xx xe x f x ,计算⎰-41)2(dx x f .()11tan 214-+e 8.2sin ()xt dt tπ'=⎰( C ) (其中2x π>).(A)sin x x (B)sin xC x+ (C)sin 2x x π- (D) sin 2x C x π-+ 9. 设()f x 是连续函数,且3()x f t dt x =⎰,则(8)f =_____.11210. xdt t x x cos 1)sin 1ln(lim-+⎰→=___1__ ;)1ln(cos lim202x tdtx x +⎰→=__1__ .11. 设()()()bad d I f x dx f x dx f x dx dx dx '=+-⎰⎰⎰存在,则(C ). (A) ()I f x = (B) ()I f x C =+ (C) I C = (D) 0I =12. 已知1(2),(2)02f f '==,及20()1f x dx =⎰,则120(2)x f x dx ''⎰ = 0__ .13. 若sin 0()cos xf t dt x x =+⎰(0)2x π<<,则()f x ___.第五章 不定积分1. 若()()F u f u '=,则(sin )cos f x xdx =⎰__ _. (sin )F x C +2. 若()sin 2,f x dx x C =+⎰则()f x =__ _. 2cos 2x3.2()1xf x dx C x =+-⎰,则sin (cos )xf x dx =⎰_ __. 2cos sin x C x-+ 4. 若()()f u du F u C =+⎰.则211()f dx x x⋅=⎰__ _. 1()F C x -+5.求sin cos sin cos x xdx x x -=+⎰_____. ln sin cos x x C -++6. 求ln(ln )x dx x ⎰. ln (ln ln 1)x x C -+7. 已知()f x 的一个原函数为xe -,求(2)xf x dx '⎰. 211()22x e x C--++8.计算⎰+dx xx2cos 12. tan ln cos x x x C ++9.求dx ex⎰-11. ln 1xx e C --+10.计算⎰+dx x xe x2)1(. 1xx xe e C x -+++ 11.计算 ⎰++dx x xx )1(21222. 1arctan x C x-++ 12.求⎰dx x x 2sin 2cos 2. 12sin 2Cx -+13.求ln(x x C -+第四章 导数应用1.计算极限 (1)0ln lim ln sin x xx+→=___1___. (2) cot20lim(1)xx x →+ =___2e ___(3) 01lim(ln )xx x +→=___1___ (4) sin 0lim(cot)x x +→ =__1__(5) +1ln(1)lim arccot x x x →∞+=___1___2. 函数()(1)(2)(3)(4)f x x x x x x =----的二阶导函数有_____个零点. 33. 下列极限计算中,不能使用罗必塔法则的是( B ). (A) 111lim xx x-→ (B)201sinlimsin x x x x→(C) limx lim ln x x ax x a→+∞-+4. 设()y f x =满足方程sin 0xy y e'''+-=,且0()0f x '=,则()f x 在( A ).(A) 0x 处取得极小值 (B) 0x 处取得极大值 (C) 0x 的某个邻域内单调增加 (D) 0x 的某个邻域内单调减少 5. 若()f x 与()g x 可导,lim ()lim ()0x ax af xg x →→==,且()lim()x af x Ag x →=,则( C ). (A)必有()lim()x af x Bg x →'='存在,且A B = (B) 必有()lim()x af x Bg x →'='存在,且A B ≠ (C) 如果()lim()x af x Bg x →'='存在,则A B = (D) 如果()lim()x af x Bg x →'='存在,不一定有A B = 6. 设偶函数()f x 具有连续的二阶导数,且()0f x ''≠,则0x =( B ). (A) 不是函数()f x 的驻点(B) 一定是函数()f x 的极值点(C) 一定不是函数()f x 的极值点 (D) 是否为函数()f x 的极值点还不能确定7.求曲线22x y -=的单调区间、极值、拐点并研究图形的凹向.8.求函数32)1()4()(+⋅-=x x x f 的极值和拐点并讨论函数图形的单调性与凹向.9. 证明不等式:13(0)x x≥->.10. 证明方程5510x x -+=在(0,1)内有且仅有一个实根. (提示:设5()51f x x x =-+,利用零点存在定理和罗尔中值定理.) 11. 证明不等式:ln(1)1xx x x<+<+ (0x >). (提示:对()ln(1)f t t =+在[0,]x 上使用拉格朗日中值定理.)第三章 导数1.设函数()f x 依次是,,sin x ne x x ,则()()n fx =____ ,!,sin()2x ne n x π+.2.若直线12y x b =+是抛物线2y x =在某点处的法线,则b =_____.32 3.设)(x f 是可导函数,则220()()limx f x x f x x∆→+∆-=∆( D ).(A) 0 (B) 2()f x (C) 2()f x ' (D) 2()()f x f x '4.若0()sin 20ax e x f x b x x ⎧<=⎨+≥⎩ 在0x = 处可导,则,a b 值应为( A ).(A) 2,1a b == (B) 1,2a b == (C) 2,1a b =-= (D) 1,2a b ==- 5.设函数()y f x =有01()3f x '=,则0x ∆→ 时,该函数在0x x =的微分dy 是( B ).(A) 与x ∆等价的无穷小(B) 与x ∆同价的无穷小,但不是等价无穷小 (C) 比x ∆低阶的无穷小 (D) 比x ∆高阶的无穷小6.曲线21y ax =+在点1x =处的切线与直线112y x =+垂直,则a =__ _. -1 7.设()2xf x =,则0()(0)limx f x f x→''-=____. 2ln 28.)(x f =21sin00x x xx ⎧≠⎪⎨⎪=⎩ 在点x=0处 D .A.连续且可导B.连续,不可导C.不连续D .可导,但导函数不连续9.设()f x ''存在,求函数()f x y e-=的二阶导数. ()2[(())()]f x y ef x f x -'''''=-10.2ln(1)x y e =+,求dy . 2222ln(1)1x xx e x dy e dx dx e⋅'=+=+.11.arctanyxe =确定y 是x 的函数,求导数x y '.第一、二章 函数极限与连续1. )(x f 定义域是[2,3],则)9(2x f -的定义域是___. ]5,5[-2. 设x x g -=2)(,当1≠x 时,[]1)(-=x xx g f ,则=)23(f _ _. -13. 设函数)(x f 和)(x g ,其中一个是偶函数,一个是奇函数,则必有( D ). (A))()()()(x g x f x g x f -=-+- (B) )()()()(x g x f x g x f +-=-+-(C) )()()()(x g x f x g x f ⋅=-⋅- (D) )()()()(x g x f x g x f ⋅-=-⋅-4.()()()10201521213lim16x x x x →∞+++. 53()25.()()111lim 13352121n n n →∞⎛⎫+++⎪ ⎪••-+⎝⎭. 12 6. 231sin 53limxx x x -∞→. 37. 设⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<+=0sin01)1()(1x e x x x x x x f x ,求)(lim 0x f x →. e8. 0x →512。

微积分的应用专项练习60题(有答案)

微积分的应用专项练习60题(有答案)

微积分的应用专项练习60题(有答案)本文档包含60道微积分的应用专项练题目,每道题目均附有答案。

通过解答这些题目,您可以进一步巩固和应用微积分的知识,加深对微积分的理解。

以下是题目和答案的列表:1. 问题一(答案:A)2. 问题二(答案:B)3. 问题三(答案:C)4. 问题四(答案:D)5. 问题五(答案:A)6. 问题六(答案:B)7. 问题七(答案:C)8. 问题八(答案:D)9. 问题九(答案:A)10. 问题十(答案:B)11. 问题十一(答案:C)12. 问题十二(答案:D)13. 问题十三(答案:A)14. 问题十四(答案:B)15. 问题十五(答案:C)16. 问题十六(答案:D)17. 问题十七(答案:A)18. 问题十八(答案:B)19. 问题十九(答案:C)20. 问题二十(答案:D)21. 问题二十一(答案:A)22. 问题二十二(答案:B)23. 问题二十三(答案:C)24. 问题二十四(答案:D)25. 问题二十五(答案:A)26. 问题二十六(答案:B)27. 问题二十七(答案:C)28. 问题二十八(答案:D)29. 问题二十九(答案:A)30. 问题三十(答案:B)31. 问题三十一(答案:C)32. 问题三十二(答案:D)33. 问题三十三(答案:A)34. 问题三十四(答案:B)35. 问题三十五(答案:C)36. 问题三十六(答案:D)37. 问题三十七(答案:A)38. 问题三十八(答案:B)39. 问题三十九(答案:C)40. 问题四十(答案:D)41. 问题四十一(答案:A)42. 问题四十二(答案:B)43. 问题四十三(答案:C)44. 问题四十四(答案:D)45. 问题四十五(答案:A)46. 问题四十六(答案:B)47. 问题四十七(答案:C)48. 问题四十八(答案:D)49. 问题四十九(答案:A)50. 问题五十(答案:B)51. 问题五十一(答案:C)52. 问题五十二(答案:D)53. 问题五十三(答案:A)54. 问题五十四(答案:B)55. 问题五十五(答案:C)56. 问题五十六(答案:D)57. 问题五十七(答案:A)58. 问题五十八(答案:B)59. 问题五十九(答案:C)60. 问题六十(答案:D)这些题目的难度各不相同,涵盖了微积分应用的不同方面,包括导数、积分、微分方程等内容。

微积分练习题及答案

微积分练习题及答案

微积分练习题及答案微积分练习题及答案微积分是数学中的一门重要学科,它研究的是函数的变化规律和求解各种问题的方法。

在学习微积分的过程中,练习题是非常重要的,它能够帮助我们巩固知识、提高技能。

下面,我将为大家提供一些微积分的练习题及其答案,希望能够对大家的学习有所帮助。

一、求导练习题1. 求函数f(x) = x^3 + 2x^2 - 3x + 1的导数。

答案:f'(x) = 3x^2 + 4x - 32. 求函数g(x) = e^x * sin(x)的导数。

答案:g'(x) = e^x * sin(x) + e^x * cos(x)3. 求函数h(x) = ln(x^2 + 1)的导数。

答案:h'(x) = (2x) / (x^2 + 1)二、定积分练习题1. 计算定积分∫[0, 1] (x^2 + 1) dx。

答案:∫[0, 1] (x^2 + 1) dx = (1/3)x^3 + x ∣[0, 1] = (1/3) + 1 - 0 = 4/32. 计算定积分∫[1, 2] (2x + 1) dx。

答案:∫[1, 2] (2x + 1) dx = x^2 + x ∣[1, 2] = 4 + 2 - 1 - 1 = 43. 计算定积分∫[0, π/2] sin(x) dx。

答案:∫[0, π/2] sin(x) dx = -cos(x) ∣[0, π/2] = -cos(π/2) + cos(0) = 1三、微分方程练习题1. 求解微分方程dy/dx = 2x。

答案:对方程两边同时积分,得到y = x^2 + C,其中C为常数。

2. 求解微分方程dy/dx = e^x。

答案:对方程两边同时积分,得到y = e^x + C,其中C为常数。

3. 求解微分方程d^2y/dx^2 + 2dy/dx + y = 0。

答案:设y = e^(mx),代入方程得到m^2 + 2m + 1 = 0,解得m = -1。

(完整)微积分练习题及解析

(完整)微积分练习题及解析

练习题1、质量为2kg 的某物体在平面直角坐标系中运动,已知其x 轴上的坐标为x=3+5cos2t,y 轴上的坐标为y=—4+5sin2t ,t 为时间物理量,问:⑴物体的速度是多少?()'10sin(2)x dx V x t t dt===- ()'10cos(2)y dy V y t t dt===10V ==⑵物体所受的合外力是多少?222(3)(4)5x y -+-=运动轨迹是圆,半径为5,所以是做匀速圆周运动 22*100405mv F N r === ⑶该物体做什么样的运动?匀速圆周运动⑷能否找出该物体运动的特征物理量吗?圆心(3,4),半径52、一质点在某水平力F 的作用下做直线运动,该力做功W 与位移x 的关系为W=3x-2x 2,试问当位移x 为多少时F 变为零. 34dW F x dx==- ,所以当x=3/4时,F=0 3、已知在距离点电荷Q 为r 处A点的场强大小为E=错误!,请验证A点处的电势公式为:U = 错误!.规定无穷远处电势为零,A 处的电势即为把单位正电荷缓慢的从无穷远处移到A 点所做的功我们认为在r 变化dr 时,库仑力F 是不变的, 则2kQq dW F dr dr r=-•=-• 所以20W r kQq dW dr r ∞=-⎰⎰ 即 21r q kQq dr rϕ∞=⎰ 所以1|r kQ kQ r rϕ∞=-=4、某复合材料制成的一细杆OP 长为L ,其质量分布不均匀。

在杆上距离O 端点为x 处取点A,令M 为细杆上OA 段的质量。

已知M 为x 的函数,函数关系为M=kx 2,现定义线密度ρ=错误!,问当x=错误!处B 点的线密度为何? 2dM kx dxρ== ,2L x kL ρ∴==5、某弹簧振子的总能量为2×10-5J ,当振动物体离开平衡位置错误!振幅处,其势能E P = ,动能E k = 。

首先推导弹簧的弹性势能公式,设弹簧劲度系数为k,伸长量为x 时的势能为E(x )弹簧所具有的弹性势能即为将弹簧从原长拉长x 时所做的功dW F dx kx dx =•=• 00W xdW kx dx ∴=•⎰⎰ 2()2kx E x ∴= 所以在距平衡位置错误!振幅处的弹性势能为总能量的14,即655*10, 1.5*10p k E J E J --== 6、取无穷远处电势为零。

微积分练习100题及其解答

微积分练习100题及其解答
x 0 t x
2
1
x2

1
解: lim x e
x 0
2
1
lim
x2
et . t t
17.求极限: lim sin x ln x .
x 0
解: lim sin x ln x lim
x 0 x 0
1 ln x tan x sin x x lim lim 0. x 0 csc x x 0 csc x cot x x 1 x 2 1 x . 1 x2 lim x 1 1 x tan 2 1 x x
cos 2x 1 2 sin 2x lim 2 x 0 sin x 2 x sin 2 x x cos 2 x 2 sin 2x 6x cos 2x 2x2 sin 2x ; 2 sin 2x 1 2 x lim x 0 2 sin 2x 3 4 cos 2 x x sin 2 x 2x lim


2.求极限: lim
e x e sin x . x 0 x sin x
( x 0) ,∴ lim
解:∵ e x 1 ~ x
e x e sin x e x sin x 1 lim e sin x 1. x 0 x sin x x0 x sin x
x 0
2
13.求极限: lim
x1
1 1 . 1 x ln x
1 1 1 1 ln x 1 x x lim lim lim x 1 1 x x 1 x 1 1 x ln x (1 x) ln x ln x ; 解: x 1 x 1 1 lim lim x 1 1 x x ln x x 1 1 ln x 1 2

微积分基础考试题及答案

微积分基础考试题及答案

微积分基础考试题及答案一、单项选择题(每题2分,共20分)1. 函数f(x)=x^2+3x+2的导数为:A. 2x+3B. x^2+3C. 2x+6D. 3x+2答案:A2. 曲线y=x^3-3x+1在x=1处的切线斜率为:A. 0B. 1C. -1D. 3答案:D3. 函数f(x)=sin(x)的不定积分为:A. -cos(x)+CB. cos(x)+CC. sin(x)+CD. x+C答案:A4. 极限lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. π/2D. ∞答案:B5. 函数f(x)=x^3+2x^2-5x+7的极值点个数为:A. 0B. 1C. 2D. 3答案:C6. 曲线y=e^x与直线y=ln(x)相切的切点坐标为:A. (1,1)B. (e,e)C. (ln(e),e)D. (e,ln(e))答案:A7. 函数f(x)=x^2-4x+3的零点个数为:A. 0B. 1C. 2D. 3答案:C8. 函数f(x)=x^2-4x+3的单调递增区间为:A. (-∞,2)B. (2,+∞)C. (-∞,2)∪(2,+∞)D. (-∞,+∞)答案:B9. 函数f(x)=x^3-3x的拐点个数为:A. 0B. 1C. 2D. 3答案:C10. 曲线y=x^2+2x+1与x轴的交点个数为:A. 0B. 1C. 2D. 3答案:A二、填空题(每题3分,共15分)1. 函数f(x)=x^2+2x+1的最小值为_________。

答案:02. 函数f(x)=ln(x)的反函数为_________。

答案:e^x3. 曲线y=x^3+3x^2+2x+1在x=-1处的切线方程为_________。

答案:y=-x4. 函数f(x)=x^2-4x+3的极大值为_________。

答案:45. 曲线y=x^2与直线y=2x相切的切点坐标为_________。

答案:(1,1)三、计算题(每题10分,共30分)1. 计算定积分∫(0,1) (x^2-2x+1) dx。

微积分试卷及标准答案6套

微积分试卷及标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。

2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。

3.若当时,α与β 是等价无穷小量,则 。

0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。

=→)(lim x f ax 5.的连续区间是 。

)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。

=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. 。

='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。

Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。

11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。

=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。

当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。

微积分试题及答案

微积分试题及答案

微积分试题及答案一、选择题1. 函数 \( f(x) = x^2 \) 在 \( x = 2 \) 处的导数是:A. 0B. 2C. 4D. 8答案:C2. 定积分 \( \int_{0}^{1} x dx \) 的值是:A. 0B. 0.5C. 1D. 2答案:B二、填空题1. 若 \( f(x) = 3x^3 - 2x^2 + x \),则 \( f'(x) \) 等于__________。

答案:\( 9x^2 - 4x + 1 \)2. 曲线 \( y = x^3 \) 与直线 \( y = 6x \) 相切的点的横坐标是__________。

答案:2三、简答题1. 请说明如何求函数 \( f(x) = \ln(x) \) 的导数。

答案:函数 \( f(x) = \ln(x) \) 的导数可以通过对数函数的导数公式求得,即 \( f'(x) = \frac{1}{x} \)。

2. 计算定积分 \( \int_{1}^{e} e^x dx \)。

答案:首先找到 \( e^x \) 的原函数,即 \( e^x \) 本身。

然后根据定积分的计算法则,代入上下限得到 \( e^e - e \)。

四、计算题1. 求曲线 \( y = x^2 + 3x - 2 \) 在 \( x = -1 \) 处的切线斜率及切点坐标。

答案:首先求导得到 \( y' = 2x + 3 \)。

将 \( x = -1 \) 代入得到切线斜率 \( m = 1 \)。

切点坐标为 \( (-1, 0) \)。

2. 计算由曲线 \( y = x^2 \),直线 \( y = 4x \) 及 \( x \) 轴所围成的平面图形的面积。

答案:首先求出两曲线的交点,然后计算定积分 \( \int_{0}^{2} (4x - x^2) dx \),结果为 \( \frac{16}{3} \)。

五、证明题1. 证明 \( \frac{d}{dx} [(x^2 + 1)^5] = 10x(x^2 + 1)^4 \)。

(完整版)微积分综合练习题及参考答案

(完整版)微积分综合练习题及参考答案

综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f . 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( ) A .)1(+x x B .2xC .)2(-x xD .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线xx f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知xx x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若xx x f -=e )(,则='')0(f.答案:xx x x f --+-=''e e 2)(='')0(f 2-2.单项选择题 (1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C(2)设y x =lg2,则d y =( ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题(1)函数y x =-312()的单调增加区间是 . 答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( )A .单调增加B .单调减少C .先增后减D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间(,)-∞+∞上单调增加的是( ). A .x sin B .xe C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。

微积分考试题库(附答案)

微积分考试题库(附答案)

微积分考试题库(附答案)85考试试卷(⼀)⼀、填空1.设c b a,,为单位向量,且满⾜0=++c b a ,则a c c b b a ?+?+?= 2.xx e 10lim +→= ,xx e 10lim -→=,xx e 1lim →=3.设211)(x x F -=',且当1=x 时,π23)1(=F ,则=)(x F4.设=)(x f ?dt t x 2sin 0,则)(x f '=5.?>+≤+=0,0,1)(x b ax x e x f x 在x =0处可导,则=a ,=b⼆、选择1.曲线==-0122z y x 绕x 轴旋转⼀周所得曲⾯⽅程为()。

(A )12222=+-z y x ;(B )122222=--z y x ;(C )12222=--z y x ;(D )122222=+-z y x2.2)11(lim xx x x -∞→-+=()。

(A )1(B )21e (C )0 (D )1-e3.设函数)(x f 具有连续的导数,则=+'?dx x f x f x )]()([()(A )c x xf +)(;(B )c x f x +')(;(C )c x f x +'+)(;(D )c x f x ++)( 4.设)(x f 在],[b a 上连续,则在],[b a 上⾄少有⼀点ξ,使得()(A )0)(='ξf (B )ab a f b f f --=')()()(ξ86(C )0)(=ξf (D )ab dxx f a bf -=?)()(ξ5.设函数x x a y 3sin 31sin +=在x =3π处取得极值,则=a ()(A )0 (B )1 (C )2 (D )3 三、计算题1.求与两条直线??+=+==211t z t y x 及112211-=+=+z y x 都平⾏且过点(3,-2,1)的平⾯⽅程。

微积分考试题目及答案

微积分考试题目及答案

微积分考试题目及答案一、选择题1. 下列哪个选项描述了微积分的基本思想?A. 求导运算B. 求积分运算C. 寻找极限D. 都是答案:D2. 求函数f(x) = 2x^3 + 3x^2的导数是多少?A. f'(x) = 4x^2 + 6xB. f'(x) = 6x^2 + 3xC. f'(x) = 6x^2 + 6xD. f'(x) = 4x^2 + 3x答案:A3. 计算积分∫(2x^2 + 3x)dxA. x^3 + 2x^2B. x^3 + 2x + CC. (2/3)x^3 + (3/2)x^2D. (2/3)x^3 + 3x^2答案:C二、填空题4. 函数f(x) = 3x^2 + 2x的导数为_________答案:f'(x) = 6x + 25. 计算积分∫(4x^3 + 5x)dx = __________答案:x^4 + (5/2)x^2 + C6. 函数y = x^2在点x=2处的切线斜率为_________答案:4三、解答题7. 求函数y = x^3 + 2x^2在x=1处的切线方程。

解:首先求函数在x=1处的导数,f'(x) = 3x^2 + 4x。

代入x=1得斜率为7。

又因为该点经过(1,3),故切线方程为y = 7x - 4。

8. 求曲线y = x^3上与x轴围成的面积。

解:首先确定曲线截距为(0,0),解方程得x=0。

利用定积分区间求解:∫[0,1] x^3dx = 1/4。

以上为微积分考试题目及答案,希望对您的学习有所帮助。

感谢阅读!。

微积分考试题库(附答案)

微积分考试题库(附答案)

85考试试卷(一)一、填空1.设c b a,,为单位向量,且满足0=++c b a ,则a c c b b a ⋅+⋅+⋅=2.xx e 10lim +→= ,xx e 10lim -→=,xx e 1lim →=3.设211)(x x F -=',且当1=x 时,π23)1(=F ,则=)(x F4.设=)(x f ⎰dt t x 2sin 0,则)(x f '=5.⎩⎨⎧>+≤+=0,0,1)(x b ax x e x f x 在x =0处可导,则=a ,=b二、选择1.曲线⎩⎨⎧==-0122z y x 绕x 轴旋转一周所得曲面方程为( )。

(A )12222=+-z y x ; (B )122222=--z y x ;(C )12222=--z y x ; (D )122222=+-z y x2.2)11(lim xx x x -∞→-+=( )。

(A )1(B )21e (C )0 (D )1-e3.设函数)(x f 具有连续的导数,则=+'⎰dx x f x f x )]()([( ) (A )c x xf +)(; (B )c x f x +')(; (C )c x f x +'+)(; (D )c x f x ++)(4.设)(x f 在],[b a 上连续,则在],[b a 上至少有一点ξ,使得( ) (A )0)(='ξf (B )ab a f b f f --=')()()(ξ86(C )0)(=ξf (D )ab dxx f a bf -=⎰)()(ξ5.设函数x x a y 3sin 31sin +=在x =3π处取得极值,则=a ( ) (A )0 (B )1 (C )2 (D )3 三、计算题1. 求与两条直线⎪⎩⎪⎨⎧+=+==211t z t y x 及112211-=+=+z y x 都平行且过点(3,-2,1)的平面方程。

微积分练习题

微积分练习题

微积分练习题一、极限与连续(1) lim(x→0) (sin x / x)(2) lim(x→1) (x^2 1) / (x 1)(3) lim(x→∞) (1 + 1/x)^x(1) f(x) = |x| 1,在x = 0处(2) f(x) = (x^2 1) / (x 1),在x = 1处(3) f(x) = sqrt(x + 2) 2,在x = 1处二、导数与微分(1) f(x) = x^3 3x + 2(2) f(x) = e^x sin x(3) f(x) = ln(sqrt(1 + x^2))(1) f(x) = x^2 + 3x 5(2) f(x) = cos(2x)(3) f(x) = 1 / (1 x)三、高阶导数与微分方程(1) f(x) = x^4 2x^2 + 1(2) f(x) = e^x cos x(3) f(x) = ln(x^2 + 1)(1) y' = 2x + y(2) y'' 2y' + y = e^x(3) (1 + x^2) y'' + 2x y' = 0四、不定积分与定积分(1) ∫(x^2 + 1) dx(2) ∫(e^x x) dx(3) ∫(1 / (x^2 + 1)) dx(1) ∫_{0}^{1} (3x^2 2x + 1) dx(2) ∫_{π}^{π} (sin x) dx(3) ∫_{1}^{e} (1 / x) dx五、多元函数微分学(1) f(x, y) = x^2 + y^2(2) f(x, y) = e^(x + y) sin(x y)(3) f(x, y) = ln(x^2 + y^2)(1) f(x, y) = x^3 + y^3(2) f(x, y) = sin(x + y)(3) f(x, y) = sqrt(x^2 + y^2)六、重积分(1) ∬_D (x^2 + y^2) dxdy,其中D为圆心在原点,半径为1的圆(2) ∬_D (x y) dxdy,其中D为矩形区域0 ≤ x ≤ 1,0 ≤ y ≤ 2(3) ∬_D (e^(x + y)) dxdy,其中D为三角形区域0 ≤ x ≤ 1,0 ≤ y ≤ x(1) ∭_E (x^2 + y^2 + z^2) dxdydz,其中E为立方体区域0 ≤ x ≤ 1,0 ≤ y ≤ 1,0 ≤ z ≤ 1(2) ∭_E (xyz) dxdydz,其中E为长方体区域0 ≤ x ≤ 2,0 ≤ y ≤ 3,0 ≤ z ≤ 4七、级数(1) Σ (1/n^2),n从1到∞(2) Σ (n/(n+1)^2),n从1到∞(3) Σ ( (1)^n / n ),n从1到∞(1) Σ (x^n / n),n从1到∞(2) Σ (n! x^n),n从0到∞(3) Σ ( (n^2 + 1)^n x^n ),n从0到∞八、微分方程的应用(1) 物体在空气中自由下落,其速度v与时间t的关系,已知阻力与速度成正比。

经典微积分习题库

经典微积分习题库

( 1) f (x) x, g( x) x2 ;
(3) f (x) 4.设 f (x)
x2 1 , g(x)
x1 sin x 证明:
x 1;
( 2) f ( x) cos x, g( x) 1 2 sin 2 ; 2
(4) f ( x)
x , g(x)
x0 。
x
f (x x) f (x) 2 sin x cos x x
( 2)当 x
时,上述各函数中哪些是无穷小?哪些是无穷大?
1 ( 3)“ 是无穷小”,这种说法确切吗?
x
3.函数 y x cosx 在 ( , ) 是是否有界?又当 x
地,这个函数是否为无穷
大?为什么?
4.求下列极限
( 1)
lim
x
!000n n2 1

(| a | 1, | b | 1)
( 2) lim
( L, 0) 上也单增。
10.下列各函数中哪些是周期函数?对于周期函数,指出其周期:
( 1) y cos(x 2)
( 2) y cos4 x ;
( 3) y 1 sin x ;
( 4) y x cosx ;
( 5) y sin 2 x
(6) y sin 3x tan x 。
11.下列各组函数中哪些不能构成复合函数?把能构成复合函数的写成复合函数,并
e
x

x
求下列极限
11 1. lim
x 12 23
x2 2x 1
4. lim
x1
x2 1

习题 1—5
1
12
n(n
1)
; 2.
lim
x
n2

微积分练习100题及其解答

微积分练习100题及其解答

《微积分》练习100题及其解答1.求极限:.⎪⎭⎫ ⎝⎛--→x e x x 111lim 0解:∵,)0(~1→-x xe x ∴.()2121lim 1lim 11lim 111lim 02000-=-=+-=-+-=⎪⎭⎫ ⎝⎛--→→→→x e x e x e x e x x e x x x x x x x x x 2.求极限:.xx e e x x x sin lim sin 0--→解:∵,∴.)0(~1→-x xe x1sin 1lim sin lim sin sin 0sin 0=--⋅=---→→xx e e x x e e xx x x x x x 或者:记,则当时,在之间满足Lagrange 定理的条件,存x e x f =)(0≠x )(x f x x sin ,在(介于与之间),使得,从而ξξx x sin )(sin sin ξf x x e e xx '=--,所以,.1)0()(lim sin lim 0sin 0='='=--→→f f x x e e x x x x ξ1sin lim sin 0=--→xx e e x x x 3.求极限:.()x xx x e1lim+→解:;()11200lim lim 1xxe e xx xx x x x e xe e e →→⎡⎤⎛⎫⎢⎥+=⋅+= ⎪⎢⎥⎝⎭⎣⎦或者.()()12000ln 1limlim 2lim x x xx x x x x e x e e x e xe x →→→++==⇒+=+4.求极限:.01lim 1xx x +→⎛⎫+ ⎪⎝⎭解:,而,所以,.01lim ln 101lim 1x xx x x e x +→+⎛⎫+ ⎪⎝⎭→⎛⎫+= ⎪⎝⎭0ln(1)1lim ln 1lim0t x t x t x +→+∞→⎛⎫++== ⎪⎝⎭01lim 11xx x +→⎛⎫+= ⎪⎝⎭5.求极限:.())0,0,0(3ln ln lim0>>>-++→c b a xc b a x x x x解:.()00ln ln 3ln ln ln ln limlim 3x x x x x x x x x x x a b c a a b b c c abc xa b c →→++-++==++6.求极限:.()00x αα→>解:.()()112110001101lim lim 10111x x x x x x x αααααααααα--→→→->⎧==-=⎨∞<≤⎩-++7.求极限:.lim(0)x αα→>解:.()()22211000112202limlim022211x x x x x x x αααααααααα--→→→->⎧==-=⎨∞<≤⎩-++8.求极限:.(0)x αα→>解:.012x α→=-9.设函数在内,讨论的单调性.)(x f ()∞+∞-,0)0(,0)(≤>''f x f xx f y )(=解:,,⎥⎦⎤⎢⎣⎡-'=-'='⎪⎭⎫ ⎝⎛='x x f x f x x x f x f x x x f y )()(1)()()(20)0()()(--≤x f x f x x f 当时,,而,则,即,从而此时0>x )0()(f xx f '≤0)(>''x f )0()(f x f '≥'0>'y 递增;同理,当时,递增.x x f y )(=0<x xx f y )(=所以,在内单调增加.xx f y )(=()∞+∞-,10.设函数,求:(1)的极大值;(2)()220()2(0)xf x a ta dta =-+->⎰)(x f M 求极小时的值.M a 解:(1),而,所以xx f a x x f 2)(0)(=''±=⇒='0>a ;a a a f M 232)(3-=-=(2)时,,此时,0>a 102223223=⇒=-='⎪⎭⎫ ⎝⎛-='a a a a M a04>=''a M的极小值为.M 34)1(-=M 11.求极限:.22011lim sin x x x →⎛⎫-⎪⎝⎭解:()()2222224000sin sin 11sin lim lim lim sin sin x x x x x x x x x x x x xx →→→-+-⎛⎫-== ⎪⎝⎭.320000sin sin 1cos sin 1limlim 2lim 2lim 363x x x x x x x x x x x x x x →→→→-+-====12.求极限:.⎪⎭⎫ ⎝⎛-→x x x 220sin 11lim 解:2222222200011sin sin 22lim lim lim sin sin 2sin sin 2x x x x x x x x x x xx x x x →→→--⎛⎫-== ⎪+⎝⎭;222000cos 212sin 2limlimsin 2sin 2cos 22sin 26cos 22sin 22sin 212lim 2sin 234cos 2sin 22x x x x xx x x x x x x x x xx x x x x x x →→→--==+++--==-+-13.求极限:.⎪⎭⎫⎝⎛--→x x x ln 111lim 1解:;211ln 11lim ln 11lim ln 111lim ln )1(1ln lim ln 111lim 11111-=---=--+=--+=-+-=⎪⎭⎫ ⎝⎛--→→→→→x x x x x x xx xx x x x x x x x x x x 14.求极限:.1lim arcsin xx e x +→解:∵,∴.arcsin ~(0)x x x →11100lim arcsin lim lim t t xx x t x x ee x xe t ++=→+∞→→=====+∞15.求极限:.⎪⎭⎫⎝⎛-+∞→x x x arctan 2lim解:.22221arctan 21lim arctan lim lim lim 11121x x x x x x x x x x xxππ→+∞→+∞→+∞→+∞⎛⎫-- ⎪⎛⎫⎝⎭+-==== ⎪+⎝⎭-16.求极限:.2120lim x x x e→解:.22112lim lim t tx x x t e x et=→→+∞====+∞17.求极限:.lim sin ln x x x +→解:.00001ln tan sin lim sin ln lim lim lim 0csc csc cot x x x x x x x x x x x x x x++++→→→→===-=-18.求极限:.1lim x -→解:11lim x x -→→=112sec 24x x ππ--→→===19.求极限:.xx xx x sin tan lim 20-→解:.22232200000tan tan sec 11cos sin21lim lim lim lim lim sin 3363x x x x x x x x x x x x x x x x x x →→→→→----=====20.求极限:.()ln 1ln limcot x x xarc x→+∞+-解:()222222111ln 111lim lim lim 1lim 1.111cot 1111x x x x x x x x x x arc x x xx x x →+∞→+∞→+∞→+∞⎛⎫+-- ⎪+⎝⎭==+==-+⎛⎫⎛⎫++ ⎪ ⎪+⎝⎭⎝⎭21.求极限:.()2lim sec tan x x x π→-解:.()2221sin cos lim sec tan limlim 0cos sin x x x x xx x x x πππ→→→--===-22.求积分:.cos sin 1sin 2x xdx x --⎰解:()2cos sin cos sin 11sin 2cos sin cos sin x x x x dx dx dx x x x x x --==---⎰⎰⎰.1ln csc cot 2244sin 4dx x x C x πππ⎛⎫⎛⎫=-=---+ ⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭⎰23.求积分:.cos sin 1sin 2x xdx x -+⎰解:.()()()22cos sin 11cos sin cos sin sin cos sin cos x xdx d x x C x xx x x x -=+=-++++⎰⎰24.求积分:.cos sin 1cos 2x xdx x -+⎰解:()2cos sin cos sin 1sec tan sec 1cos22cos 2x x x x dx dx xdx xdxx x --==-+⎰⎰⎰⎰.()1sec ln sec tan 2x x x C =--++25.求积分:.dx xxx ⎰--2cos 1sin cos 解:()2cos sin cos sin 1csc cot csc 1cos 22sin 2x x x x dx dx x xdx xdxx x --==--⎰⎰⎰⎰.()1csc ln csc cot 2x x x C =-+-+26.求积分:.cos sin 1cos 2x xdx x +-⎰解:()2cos sin cos sin 1csc cot csc 1cos 22sin 2x x x x dx dx x xdx xdxx x ++==+-⎰⎰⎰⎰.()1csc ln csc cot 2x x x C =---+27.求积分:.1sin 1cos2xdx x--⎰解:()221sin 1sin 1csc csc 1cos 22sin 2x x dx dx xdx xdx x x --==--⎰⎰⎰⎰.()1cot ln csc cot 2x x x C =-+-+28.求积分:.1sin 1cos2xdx x -+⎰解:()221sin 1sin 1sec sec tan 1cos 22cos 2x x dx dx xdx x xdx x x --==-+⎰⎰⎰⎰.()1tan sec 2x x C =-+29.求积分:.1cos 1cos2xdx x-+⎰解:()221cos 1cos 1sec sec 1cos22cos 2x x dx dx xdx xdx x x --==-+⎰⎰⎰⎰.()1tan ln sec tan 2x x x C =-++30.求积分:.1cos 1cos2xdx x--⎰解:.()()221sin 1sin 1csc csc 1cos22sin 211cot ln tan cot ln csc cot 222x x dx dx xdx xdxx x x x C or x x x C--==--⎛⎫=-++-+-+ ⎪⎝⎭⎰⎰⎰⎰31.求积分:.1arctan21xedx x +⎰解:.1arctan11arctan arctan 21arctan 1xx x e dx e d e C x x=-=-++⎰⎰32.求积分:.2x dx解:222211222xe t x x e dx =⎛⎫==== ⎪⎝⎭.(2211ln ln 222x x e c e C ⎛ '=++=++ ⎝33.求积分:.211x dx e +⎰解:⎰+dx e x 211⎰⎰----++-=+=)1(112112222xx x x e d e dx e e C e x ++-=-)1ln(212或者:⎰⎰+=+=xxx x x x de e e dx e e e 222222)1(121)1(.[]C e x de e de e xx x x x ++-=⎥⎦⎤⎢⎣⎡+-=⎰⎰)1ln(221111212222234.求积分:.()21xxe dx x +⎰解:()()()2211(1)11111xxx xxxe xe xe dx d x xe d d xe x x x x x ⎛⎫=+=-=-+ ⎪+++⎝⎭++⎰⎰⎰⎰.11x x xxe e e dx C x x=-+=+++⎰35.求积分:.211dx x x -+⎰解:2221141133111422dx dx dxx x x x ==-+⎛⎫⎤⎫+-+- ⎪⎪⎥⎝⎭⎭⎦⎰⎰⎰.211122112d x x C x ⎤⎤⎫⎫=--+⎪⎪⎥⎥⎭⎭⎦⎦⎤⎫+-⎪⎥⎭⎦⎰36.求积分:.2141dx x x -+⎰解:()2221111413231dx dx dxx x x ==-+---⎰⎰⎰.21ln ln 3661d C C ⎫==+=⎪⎭⎫-⎪⎭⎰37.求积分:.dx解:22111ln 1111u u du du C u u u u -⎛⎫⎛⎫=-=+ ⎪ ⎪--++⎝⎭⎝⎭⎰⎰.))ln 2ln12ln1Cor x C or x C ⎛⎫=+-+-+ ⎝38.求积分:.解:设,则,,x e u +=1)1ln(2-=u x du u udx 122-=222112111u du du u u u ⎛⎫==+- ⎪--+⎝⎭⎰⎰12ln ln 1u u C C u ⎛⎫-⎛⎫=++=+ ⎪+⎝⎭.)2ln1orx C -+39.求积分:.21443dx x x +-⎰解:.21121ln 443823x dx C x x x -=++-+⎰40.求积分:.23222x dx x x --+⎰解:222323*********(1)x x dx dx x x x x x ⎡⎤--=+⎢⎥-+-+++⎣⎦⎰⎰.()23ln 22arctan(1)2x x x C =-++++41.求积分:.2dx x⎰解:设,则,,t x sin 2=t x cos 242=-tdt dx cos 2=.()222cot csc 1cot arcsin 2x dx tdt t dt t t C C x x ==-=--+=--+⎰⎰⎰42.求积分:.2dx x ⎰解:设,则,,θtan 2=x 2sec θ=θθd dx 2sec 2=.()Cxx x x C x x x x x x C d d d dx x x ++-++=++++--+-=++---=⎪⎭⎫⎝⎛-+=-==+⎰⎰⎰⎰22222222222244ln 44ln 2141sin 1sin ln 21csc sin sin 11sin 1sin sin )sin 1(1sin cos 14θθθθθθθθθθθθ43.求积分:.⎰++dx x x 1)2(1解:消去根号,记,t =122122+=+=-=t x tdtdx t x.()222arctan 21tdtt C C t t ==+=++⎰44.求积分:.⎰-+dx x x x21解:记,3122222+=+=+=⇒-=t x tdtdx t x x t ()()⎰⎰⎰⎰++=⎪⎭⎫ ⎝⎛++=++=-+dt t t dt t t t dt t t dx x x x 21222112232212222.C x x C tt +-+-=++=22arctan 2222arctan2245.求积分:.⎰++dx x x x21解:记,1122222-=+=-=⇒+=t x tdtdx t x x t ()()⎰⎰⎰⎰-+=⎪⎭⎫ ⎝⎛-+=--=++dt t t dt t t t dt t t dx x x x 21222112212212222.C x x x C t t t +++-+++=++-+=2222ln 222222ln 22246.求积分:.2dx x -⎰解:记,2213222t t t x dx tdt x +-=⇒==-=,.2222312212623332t dx dt dt t dt x t t t t C C⎛⎫==+=+ ⎪----⎝⎭=+=+⎰⎰⎰⎰47.求积分:.解:记,232212122+=+=-=⇒+=t x tdtdx t x x t .Cxx C t t dt t t dt t dt t t dx x x ++-+=+-=+-=⎪⎭⎫ ⎝⎛+-=+=++⎰⎰⎰⎰321arctan 322123arctan3223162331232221222248.求积分:.⎰++dx x 3111解:记,dt t dx t x x t 23323,211=-=⇒+=.22233313331ln 1212142233(1)ln 142t dx dt t dt t t t C t t x C ⎛⎫==-+=-+++ ⎪++⎝⎭=+-+++⎰⎰49.求积分:.()⎰-dx x xx 2321arcsin 解:设:,则x u arcsin =;()332222arcsin sin sin sin sec cos cos 1sec sec sec ln sec tan 1lnln 1ln 12x xu u u udx d u du ud uu u x u u udu u u u u C C x x C ===-=-=-++==-++-+⎰⎰⎰⎰⎰50.求积分:.()()2213xdx xx ++⎰解:.()()()222222211111ln 4134313xx dx d x C x x x x x ⎛⎫+⎛⎫=-=+ ⎪ ⎪+++++⎝⎭⎝⎭⎰⎰51.假设某种商品的需求量,商品的总成本是,每1200080Q P =-2500050C Q =+单位商品需要纳税2元,试求使销售利润最大时商品单价(单位:元)和最大利润额.P 解:收入,28012000)8012000(P P P P PQ R -=-==总成本,P Q C 40006250005025000-=+=总利润,649000161608022-+-=--=P P Q C R L 边际利润,16160160+-='-'='P C R L 令,得,此时,有最大利润(元).0='L 101=P 0160<-=''L 167080=Max L 52.一商家销售某种商品的价格(万元/吨),为销售量,商品的成本函数x P 2.07-=x 是(万元).(1)若每销售1吨商品,政府征税t (万元),求商家获取最大利润时13-=x C 的销售量;(2)t 为何值时,政府税收最大?解:(1)收入,总成本,22.07)2.07(x x x x Px R -=-==13-=x C 税收,总利润,tx T =1)4(2.02+-+-=--=x t x T C R L 边际利润;令,得,此时,有最t x L -+-='44.00='L t x 5.210-=04.0<-=''L 大利润;(2),,令,得,所以当时政府税25.210t t tx T -==t T 510-='0='T 2=t 2=t 收最大.53.求积分:.()322arcsin 1x xdx x -⎰解:设,则x u arcsin =;()332222arcsin sin sin sin sec cos cos 1sec sec sec ln sec tan 1ln 1ln 1.2x xu u u udx d u du ud u u ux u u udu u u u u C Cx x C ===-=-=-++==++-+⎰⎰⎰⎰⎰54.已知的一个原函数为,求积分:.()f x ()1sin ln x x +()xf x dx '⎰解:∵,()1sin ()1sin ln cos ln xf x x x x x x'+=+=+⎡⎤⎣⎦∴()()()()xf x dx xdf x xf x f x dx'==-⎰⎰⎰.()1sin cos ln 1sin ln x x x x x x C =++-++55.设是三阶可导函数,,而.求.()f t ()0f t ''≠()()()x f t y tf t f t '=⎧⎨'=-⎩33d y dx解:由已知,,,,从而;()dx f t dt ''=()dy tf t dt ''=dy dy dt t dx dx dt ==1d dy dt dx ⎛⎫= ⎪⎝⎭,.()221d y d dy dx dt dx dt dx f t ⎛⎫== ⎪''⎝⎭()()()323321()d f t d y d d y f t dx dx dx d f t f t ⎡⎤⎢'''''⎛⎫⎣⎦===- ⎪'⎡⎤''⎡⎤⎝⎭⎣⎦⎣⎦56.设,求.()22tan()sec x yx x y tdt x y ---=≠⎰22d ydx解:对等式两边求导.得,()()()()222sec 1sec 1x y y x y y ''---=--整理,得,2sin ()y x y '=-()()()222sin cos 1d yx y x y y dx '∴=---.()()()21sin 2()cos sin 22y x y x y x y '=--=--57.已知,其中二阶可微,求.()y f x y =+()f u 22d ydx 解:,.()()1y f x y y '''=++()'1()f x y y f x y '+∴='-+对两边再求导,()()1y f x y y '''=++,()()()21y f x y y y f x y ''''''''=++++.()()()211y f x y y f x y '''++''∴='-+3"()[1'()]f x y f x y +=-+58.已知,求.0sin ()xtf x dt t p =-ò0()f t dt p ò解:由已知,,或sin ()xf x xp ¢=-sin ()()x f x xf x p ¢¢=-01cos sin ()()t t tt xdx f x dx xf x dxp ¢¢-==-òòò,()(0)()()()()()t tt f t f xf x f x dx f t tf t f x dx p p p =--+=-+òò取,有,t p =021cos ()()()f f f x dx pp p p p p =-=-+ò.()2f t dt p\=ò59.求积分:.121211x x x e x +æö÷ç+-÷ç÷çèøò解:1111122222111112222221111x x x x x x x x x x I x e dx e dx x e dx e dx xd e x x +++++æöæöæö÷ç÷÷çç÷=+-=+-=+ç÷÷çç÷÷÷ççç÷çèøèøèøòòòòò.21521232x x xee +==60.求极限:.2240sin lim x x xx®-解:224300sin sin sin lim lim x x x x x x x x x x x ®®-+-=×302sin cos 222lim x x xx x®-=.3022sin cos 2lim 8t t t t t ®-=2011cos lim 2t t t ®-=2202sin 12lim 2t t t ®=20sin 12lim 42t t t ®æö÷ç÷ç÷çç=çç÷ç÷÷çèø14=而,22223200000sin sin sin 1cos 1sin 1lim lim lim 2lim 2lim sin 3323x x x x x x x x x x x x x x x x x x x ®®®®®-+--=×==´=请问以上方法错在哪里?61.计算.x ò解:记,代入,得()221ln 1x u e u x u ==+=+原式()()222ln 1121u u uduu u ++=+ò()()22222ln 12ln 121u u du u u duu =+=+-+òò.()22ln 12222u u u arctgu c c =+-++=-++62.求积分:.()12ln 11x dx x++ò解:令,,,,11t x t -=+211x t +=+()221dt dx t =-+()()22222111111t t x t t +æö-ç+=+=ççè++代入,则()12ln 11x I dx x +=+ò()()()()21122200ln 1122ln 11211x t I dx dt x t t t ++==×++++òò()()1112220001120ln 2ln 1ln 1ln 211112ln 2ln 214t x dt dt dx t t xI dt t p-++==-+++\==+òòòò.112011ln 221I dx x \=×+òln 28p =63.求积分:1ò解:记212t x t dx tdt==-=-当时,;当时,,则0x =t 1=1x =0t =原式.110202212dt arctgtt p ===-ò64.设在内有意义,且(1)可导;(2)有反函数;(3)()F x ()0,+¥()x j .求.()()5322115F x t dt x x j æö÷ç÷=-ç÷ç÷èøò()F x 解:由(3)可知,时,,0x =()()010F t dt j =ò()01F =记,则为其反函数()x F y =()y x j =且或()()F y y j =()()F x xj =对(3)的式子两边求导,有,即.()()()23321123F x F x x x j ¢=- ()23321123x F x x x ¢×=-化简有()F x ¢=()23321132F x dx x x c æö\==-+ò而,故.()01F =()233211132F x x x =-+65.求积分:1ò解:11I -==òò.112-==òò12arcsin tp ==66.求积分:1ò解:令sin 02x t t p =<<.()22202200sin cos cos 1cos 1cos 4t d t I dt arctg t tt p pp p==-=-=++òò67.证明:.()4011212n tg xdx n np<<+ò证明:记,则.14201n nn t I tg xdx dt t p==+òò()11212n I n n<<+68.求积分:.244sin 1xxdx ep p --+ò解:.224404sin 11sin 111x x x x dx xdx e e e pp p ---æö÷ç=+÷ç÷çèø+++òò2402sin 8xdx p p -==ò69.设,且,则方程0在()[],f x C a b Î()0f x >()()1xxabf x dx dx f x +=òò(),a b内有几个根.解:记,,()()()1xxabF x f t dt dt f t =+òò()()()110abbaF a dt dt f t f t ==-<òò,而.;()()0baF b f x dx =>ò()0f x >[],x a b Î()()()10F x f x f x ¢=+>在内严格单调增加.因此,在内只有一个根.()F x \(),a b ()F x (),a b 70.在上连续可微,且满足.试证存在一点.使()f x [)0,1()()1212f xf x dx =ò()0,1x Î.()()0f f x x x ¢+=证:设.则,()()F x xf x =()()0000F f =´=.()()()()112211122F f xf x dx F x dx =´==´òò由于在上可微,由积分中值定理,必存在一点,使得()F x []0,110,2h æö÷çÎ÷ç÷çèø,在上,满足Rolle 定理的三个条件,固而存在()()()1122F F F h h =´´=[],1h ()F x ,使得.即.x (),1h Î()0,1Ì()0F x ¢=()()0f f x x x ¢+=71.设求,.()11010x x xe x f x e x ìïïïï¹ï=íï+ïïï=ïî()0f -¢()0f +¢解:由知()()()000limx x f x f x f x x x ®-¢=-()0f -¢()()11000lim lim lim 0011txt t x x x f x f e e x e e --®-¥®®-====-++()0f +¢()()11000lim lim lim 1011txt t x x xf x f e e x ee ++®+¥®®-====-++另,时0x ¹()1121111xx x e e x f x e æö÷ç÷-+ç÷ç÷èø¢=æö÷ç÷+ç÷ç÷èø;()0f -¢()1121011lim lim 1xx x x xe e xf x e --®®æö÷ç÷-+ç÷ç÷èø¢==æö÷ç÷+ç÷ç÷èø()()121lim01u u u xu u e u e e =®-¥-+¾¾¾®=+()0f +¢()1121011lim lim 1xx x x xe e xf x e ++®®æö÷ç÷-+ç÷ç÷èø¢==æö÷ç÷+ç÷ç÷èø()()21lim1u u u u e u e e ®+¥-+=+()()()11lim21u u u u u uu e u e e e e e ®+¥-++-=+()22lim21u uu uu e ue e e ®+¥-=+.()221lim lim 1221u u u u u u e u e e e ®+¥®+¥--===+72.设在上连续,且,证明:必存在,使()f x []0,n ()()()0f f n n N =Î()0,n x Î.()()1f f x x +=证明:记,则在上连续,因而有最大(小)值()()()1x f x f x j =+-()x j []0,1n -,,;()M m ()m x M j ££[]0,1x n Î-而,,…,;()()()010f f j =-()()()121f f j =-()()()11n f n f n j -=--从而,()()()1110n n k k k f k f k m M nnj --==éù+-ëû£==£åå故而,必存在,使,即()0,n x Î()0j x =.()()1f f x x +=73.证明:函数在上一致连续.3)(x x f =[]1,0证明:任取两点,,不妨设,则,考虑到1x []1,02∈x 21x x ≠03231≠-x x ()321232312132232132121323121)()(x x x x x x x x x x x x x x x f x f +--≤++-=-=-;()2323121323121)()(x x x x x x x f x f --≤-=-即;2133231321)()(x x x x x f x f -≤-=-所以,对于任意小的正数,取,当时,必有0>ε3εη=η<-21x x 成立,ε<-≤-=-321323121)()(x x x x x f x f 故而函数在上一致连续.3)(x x f =[]1,074.函数在上有定义,且(1),(2)对于在,)(x f ()∞,0)1()(lim 1f x f x =→0>∀x ,则(为常数).)()(2x f x f =C x f ≡)(C 证明:任取,记,,,…,()∞+∈,0x x x =1x x x ==124123xx x x ===,….则1211-==-n x x x n n 由可知,,即)()(2x f x f =)()(x f x f =;)()()()()(321n x f x f x f x f x f ===== 而注意到,故)0(1lim >=+∞→x x n n ;)0(1lim lim 121>==-+∞→+∞→x x x n n n n 而,从而)1()(lim 1f x f x =→;)1()lim ()(lim )(11f x f x f x f n x n x ===→→所以,(为常数).C x f ≡)()1(f C =75.求极限:.21n n n tan n lim ⎪⎭⎫ ⎝⎛∞→解:注意到⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⋅=⎪⎭⎫ ⎝⎛n tan n ln n exp n tan n n 1122,⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛-⋅=11111112n tan n n tan n ln n tan n n exp 且,111111=-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+∞→ntan n n tan n ln lim n 而22111tan lim 11tan lim n n n n n n n n -=⎪⎭⎫ ⎝⎛-∞→∞→30201tan lim1tan lim y y y y y y y y ny -=-=→→=.yy tan lim y y sec lim y y 31331220220==-=→→故.e n tan n lim n n 3121=⎪⎭⎫⎝⎛∞→76.已知,,求.12a =()11112n n n a a n a +⎛⎫=+> ⎪⎝⎭lim n n a →∞解:很明显,,,,,12a =0n a >11112n n n a a a +⎛⎫=+≥ ⎪⎝⎭()12111122n n n a n a a +⎛⎫=+≤>⎪⎝⎭所以,,单调有界,存在;1212n n a a a +≤≤≤≤= {}n a lim n n a →∞记,则由得,注意到,解得.lim n n a l →∞=1112n n n a a a +⎛⎫=+ ⎪⎝⎭112l l l ⎛⎫=+ ⎪⎝⎭21≤≤l 1l =77.设函数,求.xx y +=12()n y 解:,,11112++-=+=x x x x y 2111111⎪⎭⎫⎝⎛+-='⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-='x x x y ,()()322121111+-='⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=''x x y 由数学归纳法可得:.()()())1(1!11>+-=+n x n yn n n 78.设函数在区间上连续,在内可导,且,()x f []0,1()0,1()()010==f f .试证:121=⎪⎭⎫ ⎝⎛f (1)存在,使;1,12η⎛⎫∈⎪⎝⎭()ηη=f (2)对任意实数,必存在,使得.λ()0,ξη∈()()1f f ξλξξ'--=⎡⎤⎣⎦证明:(1)设,则在区间上连续,在内可导,且()()h x x f x =-()h x []0,1()0,1,,,则存在,,即()00h =()11h =11022h ⎛⎫=-< ⎪⎝⎭1,12η⎛⎫∈ ⎪⎝⎭()()0h f ηηη=-=.()ηη=f (2)记,在区间上连续,在内可导,且,()()xF x f x x e λ-=-⎡⎤⎣⎦[]0,1()0,1()00F =,则由定理,必存在,使得,即()0F η=Rolle ()0,ξη∈()0F ξ'=.()()1f f ξλξξ'--=⎡⎤⎣⎦79.判断级数的敛散性.11nn ¥=åò提示:.220001122n xdx n n>=®<òòò80.证明:当时,.0>x ()x x xx<+<+1ln 1证明:记,则在上连续因而可积.tt f +=11)()(t f []x 0由积分第一中值定理,比存在一点,使得:()x 0∈ξ,()()x f dt t x x⋅=+=+⎰ξ0111ln 即.()x x ξ+=+111ln 而,,x <<ξ011111<+<+ξx ∴,)0(11><+<+x x x x x ξ即.()x x x x<+<+1ln 181.求在条件下,()22212312323,,2334f x x x x x x x x =+++2221231x x x ++=()123,,f x x x 的最大值和最大值点.解:利用拉格朗日乘数法,设,()()22222212312323123,,,23341L x x x x x x x x x x x λλ=++++++-,则123112233322221234206240624010x x x L x x L x x x L x x x L x x x λλλλ'=+=⎧⎪'=++=⎪⎨'=++=⎪⎪'=++-=⎩.1231222312323(1)020121(2)05x x x x Maxf x x x x x Maxf x x λ≠⇒=-⇒==→=±⇒=⎧+=⎪=⇒⇒==⇒=⎨=⎪⎩82.设随机变量,问:当取何值时,落入区间的概率最大?()2~,X N μσσX ()1,3解:因为,()212~x X f x σ⎛⎫- ⎝⎭=,{}133113()X P X P g σσσσσσ∆⎧⎫⎛⎫⎛⎫<<=<<=Φ-Φ=⎨⎬ ⎪ ⎪⎩⎭⎝⎭⎝⎭利用微积分中求极值的方法,有223311()g σσσσσ⎛⎫⎛⎫⎛⎫'''=-Φ+Φ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;222222221311111422231111130e e σσσσ⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⎢⎥==-=⎢⎥⎣⎦令得,则;又,故.404ln 3σ=0σ=0()0g σ''<0σ=故当落入区间的概率最大.σ=X ()1,383.设,讨论方程的实数根.x e x f x λ-=)(0=-x e x λ解:(1)显然,当时,方程没有实根;0λ=0=-x e x λ(2)当时,方程有唯一实根;0λ<0=-x e xλ(3)当时,;曲线为下凸的,0>λ0)(,)(>=''-='x x e x f e x f λx e x f x λ-=)(呈∪型;由可知,驻点,极小值,0)(=-='λx e x f λln 0=x )ln 1()(0λλ-=x f 由此可知,当时,方程没有实根;e <<λ00=-x e x λ当,极小值,方程只有一个实根;e =λ0)ln 1()(0=-=λλxf 0=-x e x λλln 0=x 当,极小值,方程有2个实根.e >λ0)ln 1()(0<-=λλxf 0=-x e xλ84.函数的单调增减区间、凹凸区间与极值.()()()211f x x x =-+解:,()()()()()()()()()22111211131f x x x ,f x x x x x x '=-+=++-+=+-由得驻点:;()0f x '=113x ,=-由上可知,函数在与内单调递增,在内递减;极()f x ()1,-∞-13,⎛⎫+∞ ⎪⎝⎭113,⎛⎫- ⎪⎝⎭大值,极小值;()10f -=132327f ⎛⎫=-⎪⎝⎭由可得,因而函数曲线在内()()()211f x x x =-+()62f x x ''=+13,⎛⎫-∞- ⎪⎝⎭,函数曲线上凸;在内下凸,如下图.()0f x ''<13,⎛⎫-+∞ ⎪⎝⎭85.已知收益函数为,其中为价格,为需求量,求需求弹性时260R=Q Q -P Q 2d ε=-的边际收益.MR 解:因为,所以需求函数,边际收益函数为,且260R=Q Q -60P Q =-602R =Q '-需求弹性函数为;60601d P dQ Q Q dP Q Qε-==-=-当需求弹性时,,此时的边际收益.2d ε=-20Q =()20604020MR R '==-=86.设函数,求其渐近线.xx exe x f y 111)(+==解:首先考虑其水平渐近线和垂直渐近线:x()1,-∞-1-113,⎛⎫- ⎪⎝⎭1313,⎛⎫+∞ ⎪⎝⎭()f x '+0-0+()f x 增加极大值递减极小值递增因为,,,所以,1lim 1=∞→x x e +∞=+→x x e 100lim 0lim 100=-→xx e ;11011lim lim lim 0(1)(1)1t x t t t t x xxee t t e t e x e+-→+∞→+∞→⎛⎫==== ⎪++⎝⎭+;11011lim lim lim 0(1)(1)1t x t t t t x xxee t t e t e x e--→-∞→-∞→⎛⎫==== ⎪++⎝⎭+;110011limlim lim (1)(1)1t x t t x t t xxee t t e t e x e-→∞→→⎛⎫===∞=⎪++⎝⎭+故而没有水平渐近线和垂直渐近线;xx exex f y 111)(+==由于,()111limlim 21xx x xf x e a x e →∞→∞===+()1111111211lim lim lim 2211x x x x x x x x xe x e xe b fx x x e e →∞→∞→∞⎡⎤⎛⎫-+⎢⎥⎡⎤ ⎪⎡⎤⎝⎭⎢⎥⎢⎥=-=-=⎢⎥⎢⎢⎥⎣⎦++⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,11011111122lim lim 2(1)41x t t x t xx xe e t t e x e→∞→-+-⎛⎫==== ⎪+⎝⎭+故而有斜渐近线:.xx exe x f y 111)(+==4121+=x y 87.求函数曲线的渐近线.()1ln 1x y e x=++解:显然,,为其垂直渐近线;()01lim ln 1x x e x→⎡⎤++=∞⎢⎥⎣⎦0x =,为其水平渐近线;()()1lim ln 1lim ln 10x xx x e e x →-∞→-∞⎡⎤++=+=⎢⎥⎣⎦0y =又,,,因而()()11ln 1ln 1x x y e x e x x -=++=+++()1lim ln 10x x e x -→+∞⎡⎤++=⎢⎥⎣⎦为其一条斜渐近线.y x=88.若,试证明:与具有相同的敛散性.lim (0)n n a a a →∞=≠∑∞=+-11n n n a a ∑∞=+-1111n nn a a 证明:问题为讨论两个正项级数的敛散性,可以用比较法的极限形式,因为不是具体的级数形式.记,则,111nn n a a V -=+0,0>>n n V U ==n n n V U ∞→limnn nn n a a a a 11lim11--=++∞→1.lim +∞→n n n a a )0(2≠a 可见,与具有相同的敛散性.∑∞=+-11n n n a a∑∞=+-1111n nn a a 89.讨论下列级数的敛散性:(1)2);(3);(4)1n ∞=11tan 2n n n ∞+=∑()3113nnn n n ∞=⎤+-⎣⎦∑()∑∞=+-+121211n n n n n(5);(6);(7).()()1111ln 1n n n ∞+=-+∑()211nn n n ∞=-+∑()()1111ln n n nn e e ∞+-=-+∑解:(1)当充分大时,比如时,有,从而n 3>n ()n n <+<1ln 1,而当时,,()n n n n <+<1ln 1∞→n 1→n n由极限的夹逼性定理知,当时,,所以,∞→n 1→1n ∞=(2)注意到,这是正项级数,当时,(等价无穷小),0→x x x ~tan 所以,而后者收敛,所以收敛.11tan ~2n n n π∞+=∑112n n n π∞+=∑11tan 2n nn π∞+=∑(3)利用柯西判别法:也是正项级数,,可见原()33113n+-=<→级数收敛;事实上,,,)())333111333nnnn nnnn nn ⎤+-+⎣⎦<<3113nnn n ∞=⎤⎣⎦∑都收敛,且同为正项级数,因而原级数收敛.3113nn n n ∞=⎤⎣⎦∑(4)因为,()()111111122221212112121→+⋅+⋅=+=+=+-+-nn nnnn n n n n n n nnnnnu 改用比较判别法:取,则21nv n =;()11lim 1lim lim 122121=⎪⎪⎭⎫⎝⎛+=+=+∞→++∞→∞→n n n n n nn n n n n nv u其中()(){}1122222lim lim exp lim 12ln ln 111n x n x x n x x x x n x ++→∞→+∞→+∞⎛⎫⎛⎫⎡⎤==+-+ ⎪ ⎪⎣⎦++⎝⎭⎝⎭,()()()()()22222222ln ln 1211exp lim exp lim exp lim 111111x x x x x x x x x x x x x →+∞→+∞→+∞⎧⎫⎧⎫⎪⎪-⎪⎪⎧⎫-++⎪⎪⎪⎪⎪⎪+===-=⎨⎬⎨⎬⎨⎬+⎪⎪⎪⎪⎪⎪-⎩⎭+⎪⎪⎪⎪+⎩⎭⎩⎭所以,与同时收敛.()∑∞=+-+121211n n n nn ∑∞=121n n(5)条件收敛.(6),发散.()()22111111nnn n n nn n n∞∞∞===-+-=+∑∑∑(7)=,()()1111ln n n n n e e ∞+-=-+∑()()12111ln 1n n n e n∞+=-+-∑,()222ln 1n n n e n e n e +-<-<()()()22222lim lim lim ln 1ln 1ln n x xn x x x n x x e e e e n e x e e -→∞→+∞→+∞==+-+-+==∞.()=+-=--+∞→x x x x xx e e e e e 22lim ()22221lim 1x x x x e e e →+∞+-x xx x ee e 2532106lim ++∞→另一方面,==,;()x x e e -+ln 1()xe x 21ln 1-++()x e xx x 1~1ln 11112-++()+∞→x 可见,原级数非绝对收敛;但是单调减少且趋于0,所以,原级数条件收敛.()x x e e -+ln 190.若正项级数与都发散,讨论与的敛散性.1nn v∞=∑1nn u∞=∑{}1max ,nnn u v ∞=∑{}1min ,nnn u v ∞=∑解:,,{}{}1max ,2n n n n n n u v u v u v =++-{}{}1min ,2n n n n n n u v u v u v =+--(1)显然,,或者,故而{}{}1max ,2n n n n n n n u v u v u v u =++-≥{}max ,n n n u v v ≥发散;{}1max ,nnn u v ∞=∑(2)而的敛散性未定.{}1min ,nnn u v ∞=∑例如,若,()222211111111123456212n n u n n ∞==+++++++++-∑ ,()222=11111111123456221n n v n n ∞=+++++++++-∑。

微积分考试题库(附答案)

微积分考试题库(附答案)

85考试试卷(一)一、填空1.设c b a,,为单位向量,且满足0=++c b a ,则a c c b b a ⋅+⋅+⋅=2.xx e 10lim +→= ,xx e 10lim -→=,xx e 1lim →=3.设211)(x x F -=',且当1=x 时,π23)1(=F ,则=)(x F4.设=)(x f ⎰dt t x 2sin 0,则)(x f '=5.⎩⎨⎧>+≤+=0,0,1)(x b ax x e x f x 在x =0处可导,则=a ,=b二、选择1.曲线⎩⎨⎧==-0122z y x 绕x 轴旋转一周所得曲面方程为( )。

(A )12222=+-z y x ; (B )122222=--z y x ;(C )12222=--z y x ; (D )122222=+-z y x2.2)11(lim xx x x -∞→-+=( )。

(A )1(B )21e (C )0 (D )1-e3.设函数)(x f 具有连续的导数,则=+'⎰dx x f x f x )]()([( ) (A )c x xf +)(; (B )c x f x +')(; (C )c x f x +'+)(; (D )c x f x ++)(4.设)(x f 在],[b a 上连续,则在],[b a 上至少有一点ξ,使得( ) (A )0)(='ξf (B )ab a f b f f --=')()()(ξ86(C )0)(=ξf (D )ab dxx f a bf -=⎰)()(ξ5.设函数x x a y 3sin 31sin +=在x =3π处取得极值,则=a ( ) (A )0 (B )1 (C )2 (D )3 三、计算题1. 求与两条直线⎪⎩⎪⎨⎧+=+==211t z t y x 及112211-=+=+z y x 都平行且过点(3,-2,1)的平面方程。

微积分考试题及答案文件

微积分考试题及答案文件

微积分考试题及答案文件一、选择题(每题5分,共20分)1. 函数f(x)=x^2+3x-4的导数是:A. 2x+3B. 2x-3C. x^2+3xD. x^2-3x答案:A2. 定积分∫(0,1)x^2dx的值是:A. 1/3B. 1/2C. 2/3D. 1/4答案:B3. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. -1D. ∞答案:B4. 函数y=e^x的不定积分是:A. e^x + CB. e^(-x) + CC. ln(x) + CD. 1/x + C答案:A二、填空题(每题5分,共20分)1. 如果f'(x)=6x^2+12x+10,那么f(x)=______。

答案:x^3+3x^2+5x+C2. 函数y=ln(x)的导数是______。

答案:1/x3. 定积分∫(1,e)1/xdx的值是______。

答案:14. 极限lim(x→∞) (1/x)的值是______。

答案:0三、解答题(共60分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。

(15分)答案:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1和x=11/3。

检查二阶导数f''(x)=6x-12,f''(1)=-6<0,f''(11/3)=2>0,所以x=1是极大值点,x=11/3是极小值点。

2. 求定积分∫(0,2)(2x-1)dx。

(15分)答案:∫(0,2)(2x-1)dx = [x^2-x](0,2) = (4-2)-(0-0) = 2。

3. 求极限lim(x→0) (x^2*sin(1/x))。

(15分)答案:由于sin(1/x)的值在-1和1之间,所以lim(x→0)(x^2*sin(1/x)) = 0。

4. 求函数y=x^2e^x的不定积分。

(15分)答案:∫x^2e^xdx = x^2e^x - ∫2xe^xdx = x^2e^x - 2∫xe^xdx,令u=x,则du=dx,dv=e^xdx,v=e^x,所以∫xe^xdx = xe^x -∫e^xd x = xe^x - e^x,代入原式得:x^2e^x - 2(xe^x - e^x) + C= x^2e^x - 2xe^x + 2e^x + C。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题1—21.确定下列函数的定义域:(1)912-=x y ;(2)x y a arcsin log =;(3)xy πsin 2=; (4))32(log 213-+-=x x y a ;(5))4(log 21arccos 2x x y a -+-= 2.求函数⎪⎩⎪⎨⎧=≠=)0(0)0(1sin x x xy的定义域和值域。

3.下列各题中,函数)(x f 和)(x g 是否相同?(1)2)(,)(x x g x x f ==;(2)2sin 21)(,cos )(2π-==x g x x f ;(3)1)(,11)(2-=+-=x x g x x x f ;(4)0)(,)(x x g xxx f ==。

4.设x x f sin )(=证明:⎪⎭⎫ ⎝⎛+=-+2cos 2sin2)()(x x xx f x x f ∆∆∆ 5.设5)(2++=bx ax x f 且38)()1(+=-+x x f x f ,试确定b a ,的值。

6.下列函数中哪些是偶函数?哪些是奇函数?哪些是既非奇函数又非偶函数?(1))1(22x x y -= (2)323x x y -=; (3)2211x x y +-=; (4))1)(1(+-=x x x y ; (5)1cos sin +-=x x y (6)2xx a a y -+=。

7.设)(x f 为定义在),(∞+-∞上的任意函数,证明:(1))()()(1x f x f x F -+= 偶函数; (2))()()(2x f x f x F --=为奇函数。

8.证明:定义在),(∞+-∞上的任意函数可表示为一个奇函数与一个偶函数的和。

9.设)(x f 定义在),(L L -上的奇函数,若)(x f 在),0(L 上单增,证明:)(x f 在)0,(L -上也单增。

10.下列各函数中哪些是周期函数?对于周期函数,指出其周期: (1))2cos(-=x y (2)x y 4cos =; (3)x y πsin 1+=; (4)x x y cos =; (5)x y 2sin = (6)x x y tan 3sin +=。

11.下列各组函数中哪些不能构成复合函数?把能构成复合函数的写成复合函数,并指出其定义域。

(1)t x x y sin ,3==(2)2,x u a y u ==; (3)23,log 2+==x u u y a ;(4)2sin ,-==x u u y (5)3,x u u y == (6)2,log 2-==x u u y a 。

12.下列函数是由哪些简单函数复合而成的? (1)321)1(++=x y(2)2)1(3+=x y ;(3))13(sin 2+=x y(4)32cos log x y a =。

13.求下列函数的反函数: (1)x y sin 2=;(2))2(log 1++=x y a ;(3)122+=x xy 。

习题1—31.利用数列极限定义证明:如果A u n n =∞→lim ,则||||lim A u n n =∞→,并举例说明反之不然。

习题1—41.设⎩⎨⎧≥+<=)1(1)1()(2x x x x x f(1)作函数)(x f y =的图形; (2)根据图形求极限)(lim 1x f x -→与)(lim 1x f x +→;(3)当1→x 时,)(x f 有极限吗? 2.求下列函数极限:(1)||lim 0x x x +→; (2)||lim 20x x xx ++→;(3)||lim 2x x xx +-→。

3.下列极限是否存在?为什么? (1)x x sin lim +∞→;(2)x x arctan lim ∞→;(3)xx 1coslim 0→; (4))e 1(lim x x -∞→+;(5)1|1|lim1--→x x x ;(6)x x -+∞→e lim 。

习题1—5求下列极限1.⎪⎪⎭⎫ ⎝⎛+++⋅+⋅∞→)1(1321211lim n n x Λ; 2. ⎪⎭⎫ ⎝⎛+++∞→22221lim n n n n x Λ; 3. 35lim 22-+→x x x ; 4.112lim 221++-→x x x x ;5. hx h x h 220)(lim -+→; 6. 11lim31--→x x x 。

习题1—61.求下列极限:(1))0(sin sin lim 0≠→b bx axx ;(2)30sin tan limxxx x -→; (3)xx xx sin cos 1lim0-→;(4)x xx x sin tan 2lim 0-→;(5)x xx arcsin lim 0→;(6)xx x ⎪⎭⎫ ⎝⎛+∞→21lim ; (7)tt t ⎪⎭⎫ ⎝⎛-∞→11lim ;(8)311lim +∞→⎪⎭⎫ ⎝⎛+x x x ;(9)x x x cot 0)tan 1(lim +→;(10)xx a x a x ⎪⎭⎫⎝⎛-+∞→lim ;(11)122212lim +∞→⎪⎪⎭⎫⎝⎛++x x x x ; (12)nx n ⎪⎭⎫ ⎝⎛-∞→211lim 。

2.利用极限存在准则证明:(1)11211lim 222=⎪⎭⎫⎝⎛++++++∞→πππn n n n n x Λ; (2)数列222,22,2+++,…的极限存在; (3)111lim 2=+++∞→x x x 。

习题1—71.当n 无限增加时,下列整标函数哪些是无穷小?(1)21n; (2)1)1(+-n n ; (3)n n 12+; (4)n n πcos 1-。

2.已知函数x x x xx x x -+e ,e ),1ln(,1,1,sin 2(1)当0→x 时,上述各函数中哪些是无穷小?哪些是无穷大? (2)当+∞→x 时,上述各函数中哪些是无穷小?哪些是无穷大?(3)“x1是无穷小”,这种说法确切吗?3.函数x x y cos =在),(∞+-∞是是否有界?又当+∞→x 地,这个函数是否为无穷大?为什么?4.求下列极限 (1)1000!lim 2+∞→n nx ;(2)2lim2-+∞→n n n x ; (3)n nx b b b a a a ++++++++∞→ΛΛ2211lim;)1||,1|(|<<b a(4)113)2(2)2(lim ++∞→+-+-n n n n x ; (5)1lim 31+-→x x x ; (6)15614lim 2221+--→x x x x ;5.求下列极限:(1)⎪⎭⎫ ⎝⎛++∞→x x x x sin e lim ;(2)xx x 1coslim 0⋅→; (3)ππn nn sin lim∞→;(4)xxx arctan lim ∞→; (5)x x x arctan e lim -∞→; (6)x x x arctan e lim -+∞→。

6.下列各题的做法是否正确?为什么? (1)∞=--=--→→→)9(lim )9(lim 99lim92929x x x x x x x (2)011lim 11lim )1111(lim 21121=∞-∞=---=---→→→x x x x x x x(3)01lim cos lim cos lim=⋅=∞→∞→∞→xx x x x x x 。

7.证明:当0→x 时,x x ~arcsin ,x x ~arctan 。

8.利用等价无穷小的性质,求下极限:(1)x x x 3sin 2sin lim 0→; (2)xxx arctan 2sin lim 0→;(3)m n x x x )(sin sin lim 0→(n m ,为正整数);(4)xxx cos 1lim 0-+→。

9.当1→x 时,233+-x x 是1-x 是多少阶无穷小?10.当+∞→x 时,114++x x 是x 1是多少阶无穷小?11.当∞→x 时,x x 1sin 1是x1是多少阶无穷小?习题1—81.研究下列函数的连续性,并画出函数的图形: (1)xxx f =)(;(2)⎩⎨⎧≤<-≤≤=)21(2)10()(2x x x x x f ;(3)⎩⎨⎧>≤=)1|(|)1|(|)(2x x x x x f ; (4)⎩⎨⎧=≠=)0(1)0(||)(x x x x ϕ。

2.指出下列函数的间断点,说明这些间断点属于哪一类?如果是可去间断点,则补充或改变函数的定义使它连续。

(1)23122+--=x x x y ; (2)x n y tan =; (3)xy 1cos 2=。

3.a 为何值时函数⎩⎨⎧≤<+≤≤=)21()10(e )(x x a x x f x 在[0,2]上连续?4.讨论函数x x x x f nnn 2211lim)(+-=∞→的连续性,若有间断点,判断共类型。

习题1—91.设)(x f 连续,证明|)(|x f 也是连续的。

2.若)(x f 在],[b a 上连续,且在],[b a 上)(x f 恒为正,证明:)(1x f 在],[b a 上迹连续。

3.求下列极限:(1)52lim20+-→x x x ; (2)34)2(sin lim x x π→; (3)xxx x sin 3sin 5sin lim0-→;(4)ax ax a x --→sin sin lim ; (5))0(lim>--→a b x a a b x b x ; (6)xx x )31ln(lim0+→;(7)x x xx +→20sin lim ; (8)x x th lim +∞→;(9))12(lim 3-+-∞→x x x ;(10)422lim 22--+-+→x x x x ;(11)1lim++++∞→x xx x x(12)xax a x ln )ln(lim 0-+→。

习题1—101.证明:方程135=-x x 在区间(1,2)上至少有一个根。

2.设)(x f 在闭区间[a ,b ]上连续,n x x x ,,,21Λ是[a ,b ]内的n 个点,证明:],[b a ∈∃ξ,使得nx f x f x f f n )()()()(21+++=Λξ习题2—11.用导数定义求下列函数的导数: (1)b ax y += (b a ,是常数);(2)x x f cos )(=;(3)xy 1=。

2.下列各题中假定)(0x f '存在,按照导数定义观察下列极限,指出A 表示什么? (1)A xx f x x f x =--→∆∆∆)()(lim 000; (2)A x x f x =→)(lim 0,其中,0)0(=f ;(3)A hh x f h x f h =--+→)()(lim000。

相关文档
最新文档