高中数学第2章推理与证明2.2.1直接证明课堂导学案苏教版选修
高中数学 第2章 推理与证明 2.2.1 直接证明(一)学案 苏教版选修1-2-苏教版高二选修1-2
![高中数学 第2章 推理与证明 2.2.1 直接证明(一)学案 苏教版选修1-2-苏教版高二选修1-2](https://img.taocdn.com/s3/m/1296c57cb9d528ea80c779d0.png)
2.2.1 直接证明(一) 课时目标 1.结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法.2.了解这两种方法的思考过程、特点.1.直接证明(1)直接从________________逐步推得命题成立,这种证明通常称为直接证明.(2)直接证明的一般形式 ⎭⎪⎬⎪⎫本题条件⇒A ⇒B ⇒C ⇒…⇒本题结论. 2.综合法(1)定义从____________出发,以已知的________、________、________为依据,逐步下推,直到推出要证明的结论为止.这种证明方法称为综合法.(2)综合法的推理过程已知条件⇒…⇒…⇒结论.3.分析法(1)定义从问题的________出发,追溯导致________成立的条件,逐步上溯,直到________________________________________为止,这种证明方法称为分析法.(2)分析法的推理过程结论⇐…⇐…⇐已知条件.一、填空题1.设a =2,b =7-3,c =6-2,则a 、b 、c 的大小关系为____________.2.设a ,b 是两个正实数,且a <b ,则下列式子一定成立的是________.①a >a +b 2>ab >b ;②b >ab >a +b 2>a ; ③b >a +b 2>ab >a ;④b >a >a +b 2>ab .3.已知xy =19,0<x <y <1,则log 13x ·log 13y 的取值范围是__________. 4.如果x >0,y >0,x +y +xy =2,则x +y 的最小值是________.5.要证明a +a +7<a +3+a +4 (a ≥0)可选择的方法有多种,其中最合理的是________.6.设a =3+22,b =2+7,则a 、b 的大小关系为________.7.已知a 、b 、u 均为正实数,且1a +9b=1,则使得a +b ≥u 恒成立的u 的取值范围是__________.二、解答题8.已知a >0,b >0,求证:b 2a +a 2b≥a +b .9.已知a ,b ,c ,d ∈R ,求证:ac +bd ≤a 2+b 2c 2+d 2.能力提升 10.a >b >c ,n ∈N *,且1a -b +1b -c ≥n a -c恒成立,则n 的最大值为________. 11.已知a 、b 、c 是不全相等的正数,且0<x <1.求证:log xa +b 2+log x b +c 2+log x a +c 2<log x a +log x b +log x c .1.运用综合法解题时,要保证前提条件正确,推理要合乎逻辑规律,只有这样才能保证结论的正确性.2.在分析法证明中,从结论出发的每一个步骤所得到的判断都是使结论成立的充分条件.最后一步归结到已被证明了的事实.因此,从最后一步可以倒推回去,直到结论,但这个倒推过程可以省略.3.综合法和分析法,是直接证明中最基本的两种证明方法,也是解决数学问题时常用的思维方式.如果从解题的切入点的角度细分,直接证明方法可具体分为:比较法、代换法、放缩法、判别式法、构造函数法等,这些方法是综合法和分析法的延续与补充.§2.2 直接证明与间接证明2.2.1 直接证明(一)答案知识梳理1.(1)原命题的条件 (2)已知定义 已知公理已知定理2.(1)已知条件 定义 公理 定理3.(1)结论 结论 使结论成立的条件和已知条件吻合作业设计1.a >c >b解析 ∵(7+2)2=9+214, (6+3)2=9+218. ∴7+2<6+3,∴7-3<6-2,即b <c . 又22>6,∴2>6-2,即a >c .∴a >c >b .2.③3.(0,1)解析 log 13x >0,log 13y >0, log 13x ·log 13y ≤log 13x +log 13y 2=12log 13(xy ) =12×2=1.∴0<log 13x ·log 13y <1. 4.23-2解析 由x >0,y >0,x +y +xy =2,则2-(x +y )=xy ≤⎝⎛⎭⎪⎫x +y 22, ∴(x +y )2+4(x +y )-8≥0,∴x +y ≥23-2或x +y ≤-2-2 3.∵x >0,y >0,∴x +y 的最小值为23-2.5.分析法解析 要证a +a +7<a +3+a +4, 只要证a +a +7+2aa +7 <a +3+a +4+2a +3a +4, 只要证a 2+7a <a 2+7a +12,只要证a 2+7a <a 2+7a +12,只要证0<12.由此可知,最合理的是分析法.6.a <b解析 a =3+22,b =2+7,两式的两边分别平方,可得a 2=11+46,b 2=11+47,明显6<7,故a <b . 7.(-∞,16]解析 ∵a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+b a +9a b ≥10+2b a ×9a b=16, 当且仅当b a =9a b即3a =b 时取等号, 若a +b ≥u 恒成立,则u ≤16.8.证明 ∵b 2a +a 2b =a 3+b 3ab=a +b a 2-ab +b 2ab, 又∵a >0,b >0,∴a 2-ab +b 2-ab =(a -b )2≥0, ∴a 2-ab +b 2≥ab ,∴a 2-ab +b 2ab ≥1, ∴(a +b )·a 2-ab +b 2ab≥a +b . ∴b 2a +a 2b≥a +b . 9.证明 ①当ac +bd ≤0时,显然成立. ②当ac +bd >0时,欲证原不等式成立, 只需证(ac +bd )2≤(a 2+b 2)(c 2+d 2).即证a 2c 2+2abcd +b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2. 即证2abcd ≤b 2c 2+a 2d 2.即证0≤(bc -ad )2.因为a ,b ,c ,d ∈R ,所以上式恒成立. 故原不等式成立,综合①、②知,命题得证.10.4解析 ∵a >b >c ,∴a -b >0,b -c >0,a -c >0. 若1a -b +1b -c ≥n a -c 恒成立,即a -c a -b +a -c b -c≥n 恒成立. a -c a -b +a -c b -c =a -b +b -c a -b +a -b +b -c b -c =2+b -c a -b +a -b b -c ≥2+2b -c a -b ·a -b b -c =4. ∴当且仅当a -b =b -c 时取等号. ∴n 的最大值为4.11.证明 要证log x a +b 2+log x b +c 2+log x a +c 2 <log x a +log x b +log x c ,只需要证明log x ⎝⎛⎭⎪⎫a +b 2·b +c 2·a +c 2<log x (abc ). 由已知0<x <1,只需证明a +b 2·b +c 2·a +c2>abc由公式a +b 2≥ab >0,b +c 2≥bc >0,a +c2≥ac >0.又∵a ,b ,c 是不全相等的正数, ∴a +b 2·b +c 2·a +c2>a 2b 2c 2=abc .即a +b 2·b +c 2·a +c2>abc 成立. ∴log x a +b 2+log x b +c 2+log x a +c 2<log x a +log x b +log x c 成立.。
高中数学 第2章 推理与证明 2.2.2 间接证明学案 苏教版选修1-2(2021年整理)
![高中数学 第2章 推理与证明 2.2.2 间接证明学案 苏教版选修1-2(2021年整理)](https://img.taocdn.com/s3/m/9a54ad932b160b4e767fcfec.png)
2016-2017学年高中数学第2章推理与证明2.2.2 间接证明学案苏教版选修1-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第2章推理与证明2.2.2 间接证明学案苏教版选修1-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第2章推理与证明2.2.2 间接证明学案苏教版选修1-2的全部内容。
2.2.2 间接证明1。
理解反证法的思考过程和特点,会运用反证法证明简单数学问题.(重点、难点)2.利用反证法证明时,对结论的假设否定.(易错点)[基础·初探]教材整理间接证明阅读教材P49“例1”以上部分,完成下列问题.1。
间接证明:(1)定义:不是直接从原命题的条件逐步推得命题成立,这种不是直接证明的方法通常称为间接证明。
(2)常用方法:反证法.2.反证法(1)基本过程:反证法证明时,要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题).(2)证题步骤:1.判断正误:(1)反证法属于间接证明问题的一种方法.()(2)反证法的实质是否定结论导出矛盾.( )(3)反证法的证明过程既可以是合情推理也可以是一种演绎推理。
()(4)用反证法证明命题“三角形的内角至多有一个钝角”时,假设应该是至少两个钝角.( )【答案】(1)√(2)√(3)×(4)√2.用反证法证明命题“三角形的内角中至少有一个角不大于60°”时,正确的反设是________.【解析】“至少有一个角不大于60°”的否定为“所有三角形的内角均大于60°”.【答案】假设三个内角均大于60°[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们"探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]利用反证法证明否定性命题(1整数根",正确的假设是方程存在实数根x0为________.(2)已知三个正整数a,b,c成等比数列,但不成等差数列,求证:a,错误!,错误!不成等差数列。
高中数学 第2章 推理与证明 第2节 直接证明与间接证明学案 理 苏教版选修2-2-苏教版高一选修2
![高中数学 第2章 推理与证明 第2节 直接证明与间接证明学案 理 苏教版选修2-2-苏教版高一选修2](https://img.taocdn.com/s3/m/f89db6f1eff9aef8951e06a4.png)
第2节直接证明与间接证明一、学习目标:1. 了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。
2. 了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。
二、重点、难点重点:了解分析法和综合法的思考过程、特点。
难点:运用分析法、综合法提高分析问题和解决问题的能力。
三、考点分析:对两种直接证明方法的考查在选择题、填空题和解答题中都有出现,单纯的考查并不常见,作为解决问题的工具,与其他知识综合运用的特点比较突出。
它可以和很多知识,如函数、数列、三角函数、导数等相联系,证明时不仅要用到不等式的相关知识,还要用到其他数学知识、技能和技巧,而且还考查了运算能力,分析问题和解决问题的能力。
对于反证法很少单独命题,但是运用反证法分析问题、进行证题思路的判断则经常用到,有独到之处。
三种证明方法的定义与步骤:1. 综合法是由原因推导到结果的证明方法,它是利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法。
2. 分析法是从要证明的结论出发,逐步寻求推证过程中,使每一步结论成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、公理、定理等)为止的证明方法。
3. 假设原命题的结论不成立,经过正确的推理,最后得出矛盾,由此说明假设错误,从而证明了原命题成立,这样的方法叫反证法;它是一种间接的证明方法。
用这种方法证明一个命题的一般步骤:(1)假设命题的结论不成立;(2)根据假设进行推理,直到推理中导出矛盾为止;(3)断言假设不成立;(4)肯定原命题的结论成立。
知识点一:综合法例1 对于定义域为[]0,1的函数()f x ,如果同时满足以下三个条件:①对任意的[]0,1x ∈,总有()0f x ≥;②(1)1f =;③若12120,0,1x x x x ≥≥+≤,都有1212()()()f x x f x f x +≥+成立,则称函数()f x 为理想函数。
高中数学第二章推理与证明2.2.1直接证明学案苏教版选修2_2
![高中数学第二章推理与证明2.2.1直接证明学案苏教版选修2_2](https://img.taocdn.com/s3/m/26f12ea2998fcc22bdd10d1e.png)
2.2.1 直接证明学习目标重点难点1.能知道直接证明的两种基本方法——综合法和分析法.2.会分析综合法和分析法的思考过程、特点,会用综合法和分析法证明数学问题.重点:综合法和分析法的思维方法和步骤.难点:综合应用两种方法解题.1.直接证明(1)直接从原命题的条件逐步推得命题成立,这种证明通常称为________.(2)直接证明的一般形式为:⎭⎪⎬⎪⎫本题条件已知定义已知公理已知定理⇒…⇒________.2.综合法(1)从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.这种证明方法常称为________.(2)综合法的推证过程是:________⇒…⇒…⇒______. 预习交流1做一做:已知数列{a n }的通项公式为a n =2n,求证:数列{a n }为等比数列. 3.分析法(1)从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法常称为________.(2)分析法的推证过程是:______……________. 预习交流2做一做:求证:6+7≥22+ 5.在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点 我的学疑点预习导引1.(1)直接证明 (2)本题结论 2.(1)综合法 (2)已知条件 结论预习交流1:提示:∵a n =2n,∴a n +1a n =2n +12n =2·2n2n =2(常数).∴由等比数列的定义可知,数列{a n }为公比是2的等比数列.3.(1)分析法 (2)结论 已知条件预习交流2:提示:要证原不等式成立,只需证(6+7)2≥(22+5)2,即证242>240,由于上式显然成立,因此原不等式成立.一、综合法的应用设a ,b ,c 为不全相等的正数,且abc =1,求证:1a +1b +1c>a +b +c .思路分析:(1)综合法证明不等式所依赖的主要是不等式的基本性质和已知的重要不等式.(2)综合法证明不等式时,要注意不等式的性质和已证过的不等式各自成立的条件,这样才能使推理正确,结论无误.如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E ,F 分别是AP ,AD 的中点.求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD .1.综合法的证明步骤:(1)分析条件,选择方向,确定已知条件和结论间的联系,合理选择相关定义、定理等.(2)转化条件,组织过程,将条件合理转化,书写出严密的证明过程.2.综合法的适用范围是:(1)定义明确的问题,如证明函数的单调性,奇偶性;立体几何中的证明,不等式的证明等问题;(2)已知条件明确,并且容易通过分析和应用条件能逐步逼近结论的题型.二、分析法的应用如图,SA ⊥平面ABC ,AB ⊥BC ,过A 作SB 的垂线,垂足为E ,过E 作SC 的垂线,垂足为F .求证:AF ⊥SC .思路分析:利用线线垂直、线面垂直的相互转化寻求AF ⊥SC 成立的条件.当a +b >0时,求证:a 2+b 2≥22(a +b ).在分析法证明中,从结论出发的每一个步骤所得到的判断都是结论成立的充分条件,最后一步归结到已被证明了的事实.因此,从最后一步可以倒推回去,得到结论,但这个倒推过程可以省略.三、综合法和分析法的综合应用求证:当x ≥0时,sin x ≤x .思路分析:不等式的成立问题,可以转化为函数最值问题来解决.已知α,β≠k π+π2(k ∈Z ),且sin θ+cos θ=2sin α,①sin θcos θ=sin 2β,②求证:1-tan 2α1+tan 2α=1-tan 2β2(1+tan 2β).实际解题时,用分析法思考问题,寻找解题途径,用综合法书写解题过程,或者联合使用分析法与综合法,即从“欲知”想“已知”(分析),从“已知”推“可知”(综合),双管齐下,两面夹击,找到沟通已知条件和结论的途径.1.设a =lg 2+lg 5,b =e x(x <0),则a 与b 的大小关系为__________.2.已知函数f (x )满足:当x ≥4时,f (x )=2x,当x <4时,f (x )=f (x +1),则f (2+log 23)=__________.3.命题“函数f (x )=x -x ln x 在区间(0,1)上是增函数”的证明过程“对函数f (x )=x -x ln x 取导得f ′(x )=-ln x ,当x ∈(0,1)时,f ′(x )=-ln x >0,故函数f (x )在区间(0,1)上是增函数”应用了________的证明方法.4.已知实数a ≠0,且函数f (x )=a (x 2+1)-⎝ ⎛⎭⎪⎫2x +1a 有最小值-1,则a =__________.5.补充下面用分析法证明基本不等式a 2+b 22≥ab 的步骤:要证明a 2+b 22≥ab ,只需证明a 2+b 2≥2ab , 只需证________, 只需证________.由于________显然成立,因此原不等式成立.答案:活动与探究1:证明:∵a >0,b >0,c >0,且abc =1, ∴1a +1b +1c=bc +ca +ab .又bc +ca ≥2bc ·ca =2abc 2=2c , 同理bc +ab ≥2b ,ca +ab ≥2a . ∵a ,b ,c 不全相等,∴上述三个不等式中的“=”不能同时成立. ∴2(bc +ca +ab )>2(c +a +b ), 即bc +ca +ab >a +b +c . 故1a +1b +1c>a +b +c .迁移与应用:证明:(1)在△PAD 中,因为E ,F 分别为AP ,AD 的中点,所以EF ∥PD .又因为EF ⊄平面PCD ,PD ⊂平面PCD , 所以直线EF ∥平面PCD .(2)连结BD .因为AB =AD ,∠BAD =60°, 所以△ABD 为正三角形. 因为F 是AD 的中点, 所以BF ⊥AD .因为平面PAD ⊥平面ABCD ,BF ⊂平面ABCD ,平面PAD ∩平面ABCD =AD , 所以BF ⊥平面PAD . 又因为BF ⊂平面BEF , 所以平面BEF ⊥平面PAD .活动与探究2:证明:要证AF ⊥SC ,而EF ⊥SC ,故只需证SC ⊥平面AEF , 只需证AE ⊥SC ,而AE ⊥SB ,故只需证AE ⊥平面SBC , 只需证AE ⊥BC ,而AB ⊥BC ,故只需证BC ⊥平面SAB .只需证BC ⊥SA ,而由SA ⊥平面ABC 可知SA ⊥BC ,即上式成立,∴AF ⊥SC . 迁移与应用:证明:要证a 2+b 2≥22(a +b ),只需证(a 2+b 2)2≥⎣⎢⎡⎦⎥⎤22(a +b )2, 即证a 2+b 2≥12(a 2+b 2+2ab ),即证a 2+b 2≥2ab .因为a 2+b 2≥2ab 对一切实数恒成立,所以a 2+b 2≥22(a +b )成立.综上所述,不等式得证.活动与探究3:证明:要证x ≥0时,sin x ≤x ,只需证x ≥0时,sin x -x ≤0即可. 设f (x )=sin x -x ,则即证x ≥0时,f (x )≤0,即证x ≥0时, f (x )的最大值小于或等于0即可.∵f (x )=sin x -x ,∴f ′(x )=cos x -1, ∴当x ≥0时f ′(x )≤0, ∴f (x )在[0,+∞)上递减.∴当x ≥0时,f (x )max =f (0)=0, ∴f (x )max ≤0成立,∴原不等式成立. 迁移与应用:证明:要证1-tan 2α1+tan 2α=1-tan 2β2(1+tan 2β), 即证1-sin 2αcos 2α1+sin 2αcos 2α=1-sin 2βcos 2β2⎝ ⎛⎭⎪⎫1+sin 2βcos 2β, 即证cos 2α-sin 2α=12(cos 2β-sin 2β),即证1-2sin 2α=12(1-2sin 2β),即证4sin 2α-2sin 2β=1.③因为(sin θ+cos θ)2-2sin θcos θ=1, 所以将①②代入上式,可得4sin 2α-2sin 2β=1.由于上式与③相同,于是问题得证. 当堂检测1.a >b 解析:∵a =lg 2+lg 5=lg 10=1,而b =e x <e 0=1,故a >b .2.24 解析:∵1=log 22<log 23<log 24=2,∴3<log 23+2<4.由已知得f (2+log 23)=f (3+log 23)=log 3223log 33222⨯+==8×3=24.3.综合法4.1 解析:f (x )=ax 2-2x +a -1a有最小值,则a >0,对称轴x =1a,则f (x )min =f ⎝ ⎛⎭⎪⎫1a =-1,即f ⎝ ⎛⎭⎪⎫1a =a ·⎝ ⎛⎭⎪⎫1a2-2·1a +a -1a=-1,即a -2a=-1,则a 2+a -2=0.∵a >0,∴a =1.5.a 2+b 2-2ab ≥0 (a -b )2≥0 (a -b )2≥0。
高中数学第二章推理与证明2-2直接证明与间接证明2-2-2间接证明教学案苏教版选修2_2
![高中数学第二章推理与证明2-2直接证明与间接证明2-2-2间接证明教学案苏教版选修2_2](https://img.taocdn.com/s3/m/15f17341763231126edb118d.png)
高中数学第二章推理与证明2-2直接证明与间接证明2-2-2间接证明教学案苏教版选修2_21.问题:在今天商品大战中,广告成了电视节目中的一道美丽的风景线,几乎所有的广告商都熟谙这样的命题变换艺术.如宣传某种食品,其广告词为:“拥有的人们都幸福,幸福的人们都拥有”.该广告词实际说明了什么?提示:说的是:“不拥有的人们不幸福”.2.已知正整数a,b,c满足a2+b2=c2.求证:a,b,c不可能都是奇数.问题1:你能利用综合法和分析法给出证明吗?提示:不能.问题2:a、b、c不可能都是奇数的反面是什么?还满足条件a2+b2=c2吗?提示:都是奇数.若a、b、c都是奇数,则不能满足条件a2+b2=c2.1.间接证明不是直接从原命题的条件逐步推得命题成立,这种不是直接证明的方法通常称为间接证明.反证法就是一种常用的间接证明方法,间接证明还有同一法、枚举法等.2.反证法(1)反证法证明过程反证法证明时,要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题),用反证法证明命题“若p 则q”的过程可以用下面的框图表示:肯定条件p 否定结论q →→→“若p则q”为真(2)反证法证明命题“若p则q”的步骤①反设——假设命题的结论不成立,即假定原结论的反面为真.②归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果.③存真——由矛盾结果,断定反设不真,从而肯定原结论成立.1.反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法.2.可能出现矛盾的四种情况:(1)与题设矛盾;(2)与反设矛盾;(3)与公理、定理或已被证明了的结论矛盾;(4)在证明过程中,推出自相矛盾的结论.[例1]的三角形不可能都是锐角三角形.[思路点拨] 本题证明的命题是否定性命题,解答时先假设四个三角形都是锐角三角形,再分情况去推出矛盾.[精解详析] 假设以每三点为顶点的四个三角形都是锐角三角形,记这四个点为A、B、C、D,考虑△ABC,点D的位置分为在△ABC之内或之外两种情况.(1)如果点D在△ABC之内(如图(1)),根据假设围绕点D的三个角都是锐角,其和小于270°,这与一个周角等于360°矛盾.(2)如果点D在△ABC之外(如图(2)),根据假设∠A,∠B,∠C,∠D都小于90°,这和四边形内角之和等于360°矛盾.综上所述.原结论成立.[一点通] (1)结论中含有“不”、“不是”、“不可能”、“不存在”等词语的命题称为否定性命题,此类问题正面比较模糊,而反面比较具体,适于应用反证法.(2)反证法属于逻辑方法范畴,它的严谨体现在它的原理上,即“否定之否定等于肯定”,其中:第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定了假设”.反证法属“间接解题方法”.1.实数a、b、c不全为0等价于________(填序号).①a,b,c全不为0;②a,b,c中最多只有一个为0;③a,b,c 中只有一个不为0;④a,b,c中至少有一个不为0.解析:“不全为0”等价于“至少有一个不为0”.答案:④2.如图,正方体ABCD-A1B1C1D1中,点M是A1D1的中点,点N是CD的中点,用反证法证明直线BM与直线A1N是两条异面直线.解:假设直线BM与A1N共面.则A1D1⊂平面A1BND1,且平面A1BND1∩平面ABCD=BN,由正方体特征知A1D1∥平面ABCD,故A1D1∥BN,又A1D1∥BC,所以BN∥BC.这与BN∩BC=B矛盾,故假设不成立.所以直线BM与直线A1N是两条异面直线.3.已知三个正数a,b,c成等比数列,但不成等差数列,求证:,,不成等差数列.证明:假设,,成等差数列,则+=2,即a+c+2=4b,而b2=ac,即b=,∴a+c+2=4,所以(-)2=0.即=,从而a=b=c,与a,b,c不成等差数列矛盾,故,,不成等差数列.[例2][思路点拨] “有且只有一个”的否定分两种情况:“至少有两个”、“一个也没有”.[精解详析] 假设结论不成立,则有两种可能:无交点或不只有一个交点.若直线a,b无交点,则a∥b或a,b是异面直线,与已知矛盾.若直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.[一点通] 证明“有且只有一个”的问题,需要证明两个命题,即存在性和惟一性.当证明结论以“有且只有”“只有一个”“惟一存在”等形式出现的命题时,由于反设结论易于导出矛盾,所以用反证法证其惟一性就较为简单明了.4.证明方程2x=3有且仅有一个根.证明:∵2x=3,∴x=log23,这说明方程有一个根.下面用反证法证明方程2x=3的根是惟一的,假设方程2x=3有两个根b1、b2(b1≠b2),则2b1=3,2b2=3.两式相除得:2b1-b2=1.如果b1-b2>0,则2b1-b2>1,这与2b1-b2=1相矛盾.如果b1-b2<0,则2b1-b2<1,这与2b1-b2=1相矛盾.因此b1-b2=0,则b1=b2,这就同b1≠b2相矛盾.如果方程的根多于两个,同样可推出矛盾.故2x=3有且仅有一个根.5.求证:过平面外一点有且只有一条直线和这个平面垂直.解:已知P∉平面α.求证:过点P和平面α垂直的直线b有且只有一条.证明:(1)存在性:∵P∉平面α,由立体几何知识知:过点P能作出一条直线与平面α垂直,故直线b存在.(2)惟一性:假设过点P还有一条直线c与平面α垂直.由b⊥α,c⊥α,得b∥c,这与b∩c=P矛盾,故假设不存在,因此直线b惟一.综上所述,过平面外一点有且只有一条直线和这个平面垂直.[例求证:a,b,c,d中至少有一个是负数.[思路点拨] 本题要证a、b、c、d中至少有一个是负数,具体有一个负数?两个负数?三个负数?还是四个负数?都有可能,谁是负数也都有可能.所以正面证明很复杂,可考虑用反证法.[精解详析] 假设a、b、c、d都不是负数,即a≥0,b≥0,c≥0,d≥0.∵a+b=c+d=1,∴b=1-a≥0,d=1-c≥0.∴ac+bd=ac+(1-a)(1-c)=2ac-(a+c)+1=(ac-a)+(ac-c)+1=a(c-1)+c(a-1)+1.∵a(c-1)≤0,c(a-1)≤0.∴a(c-1)+c(a-1)+1≤1,即ac+bd≤1.与ac+bd>1相矛盾.∴假设不成立.∴a、b、c、d中至少有一个是负数.[一点通](1)对于否定性命题或结论中出现“至多”“至少”“不可能”等字样时,常用反证法.(2)常用的“原结论词”与“反设词”归纳如下表:不能都大于.证明:假设(1-a)b,(1-b)c,(1-c)a都大于.∵a,b,c∈(0,1),∴1-a>0,1-b>0,1-c>0,∴≥>=.同理>,>.三式相加,得++>,即>,矛盾.所以(1-a)b,(1-b)c,(1-c)a不能都大于.7.用反证法证明:若函数f(x)在区间[a,b]上是增函数,那么方程f(x)=0在区间[a,b]上至多只有一个实数根.证明:假设方程f(x)=0在区间[a,b]上至少有两个根,设α,β为其中的两个实根.因为α≠β,不妨设α<β,又因为函数f(x)在区间[a,b]上是增函数,所以f(α)<f(β).这与f(α)=0=f(β)矛盾.所以方程f(x)=0在区间 [a,b]上至多只有一个实根.1.反证法证明的适用情形(1)一些基本命题、基本定理;(2)易导出与已知矛盾的命题;(3)“否定性”命题;(4)“惟一性”命题;(5)“必然性”命题;(6)“至多”“至少”类命题;(7)涉及“无限”结论的命题.2.用反证法证明问题应注意以下三点(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必然罗列出各种可能结论,缺少任何一种可能,反证都是不完全的;(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与事实矛盾等,推导出的矛盾必须是明显的.一、填空题1.命题“,中至多有一个小于2”的反设为________.答案:,都小于22.(山东高考改编)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是____________________.解析:至少有一个实根的否定是没有实根.答案:方程x3+ax+b=0没有实根1.用反证法证明命题“若a2+b2=0,则a,b全为0(a、b为实数)”,其反设为____________________.解析:“a,b全为0”即是“a=0且b=0”,因此它的反设为“a≠0或b≠0”.答案:a,b不全为04.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,故假设错误.②所以一个三角形不能有两个直角.③假设△ABC中有两个直角,不妨设∠A=90°,∠B=90°.上述步骤的正确顺序为________.解析:由反证法的一般步骤可知,正确的顺序应为③①②.答案:③①②5.用反证法证明命题“若x2-(a+b)x+ab≠0,则x≠a且x≠b”时,应假设为________.解析:对“且”的否定应为“或”,所以“x≠a且x≠b”的否定应为“x=a或x=b”.答案:x=a或x=b二、解答题6.(陕西高考)设{an}是公比为q的等比数列.(1)推导{an}的前n项和公式;(2)设q≠1,证明数列{an+1}不是等比数列.解:(1)设{an}的前n项和为Sn,当q=1时,Sn=a1+a1+…+a1=na1;当q≠1时,Sn=a1+a1q+a1q2+…+a1qn-1,①qSn =a1q +a1q2+…+a1qn ,②①-②得,(1-q)Sn =a1-a1qn ,∴Sn =,∴Sn =⎩⎪⎨⎪⎧ na1,q =1,-1-q ,q≠1.(2)证明:假设{an +1}是等比数列,则对任意的k∈N*, (ak +1+1)2=(ak +1)(ak +2+1),a +2ak +1+1=akak +2+ak +ak +2+1,aq2k +2a1qk =a1qk -1·a1qk+1+a1qk -1+a1qk +1,∵a1≠0,∴2qk =qk -1+qk +1.∵q ≠0,∴q2-2q +1=0,∴q =1,这与已知矛盾.∴假设不成立,故{an +1}不是等比数列.7.设f(x)=x2+ax +b ,求证:|f(1)|,|f(2)|,|f(3)|中至少有一个不小于.证明:假设|f(1)|<,|f(2)|<,|f(3)|<,则有⎩⎪⎨⎪⎧ -12<1+a +b<12,-12<4+2a +b<12,-12<9+3a +b<12.11 / 11 于是有⎩⎪⎨⎪⎧ -32<a +b<-12, ①-92<2a +b<-72, ②-192<3a +b<-172. ③由①、②得-4<a<-2,④由②、③得-6<a<-4.⑤④、⑤显然相互矛盾,所以假设不成立,所以原命题正确.8.已知P ∉直线a.求证:过点P 和直线a 平行的直线b 有且只有一条.证明:(1)存在性:∵P ∉直线a ,∴点P 和直线a 确定一个平面α. 由平面几何知识知:在平面α内过点P 能作出一条直线与直线a 平行,故直线b 存在.(2)惟一性:假设过点P 还有一条直线c 与a 平行.∵a ∥b ,a ∥c ,∴b ∥c ,这与直线b 、c 有共点P 矛盾.故假设不存在,因此直线b 惟一.综上所述,过直线外一点有且只有一条直线和这条直线平行.。
高中数学 第二章 推理与证明 2.2.1 直接证明导学案(无答案)苏教版选修2-2(2021年整理)
![高中数学 第二章 推理与证明 2.2.1 直接证明导学案(无答案)苏教版选修2-2(2021年整理)](https://img.taocdn.com/s3/m/5c64fd4451e79b89680226ea.png)
江苏省兴化市高中数学第二章推理与证明2.2.1 直接证明导学案(无答案)苏教版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省兴化市高中数学第二章推理与证明2.2.1 直接证明导学案(无答案)苏教版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省兴化市高中数学第二章推理与证明2.2.1 直接证明导学案(无答案)苏教版选修2-2的全部内容。
直接证明班级姓名学号组别学习目标1. 结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;2. 了解综合法的思考过程和特点,会用综合法证明问题;2。
了解分析法的思考过程和特点;会用分析法证明问题;学习重点了解综合法、分析法的思考过程和特点,会运用这两种方法.学习难点分析法的思考特点的理解,综合法、分析法的应用。
学习过程※复习回顾在以往的学习中,你学过哪些证明的方法?这些方法是如何进行的呢?※预习检测I.阅读课本《选修2-2》P82—84内容。
II。
预习自测:1.什么是直接证明?综合法、分析法的思维过程你能用图示分别表示出来吗?2.设a b,为两个不相等的正数,且+=1a b,分别用分析法、综合法证明:14 a b+> 1.※问题提交(将你预习后的疑惑以及你还有的想法写在下面的“我思我疑”中) 我思我疑:※合作探究I 。
解决“预习自测"和“我思我疑”中的问题.II 。
解决下列问题问题1 已知,0a b >,求证:2222()()4a b c b c a abc +++≥.问题2 求证:3265->-。
问题3 设在四面体P ABC -中,90,,ABC PA PB PC ∠=︒==D 是AC 的中点。
高中数学苏教版选修2-2第二章《推理与证明》word导学案(含解析)
![高中数学苏教版选修2-2第二章《推理与证明》word导学案(含解析)](https://img.taocdn.com/s3/m/2a9193a108a1284ac85043a9.png)
第2章推理与证明第1课时合情推理——归纳推理教学过程一、问题情境学生讨论:上述案例中的推理各有什么特点?解从个别事实推演出一般性结论.二、数学建构问题1什么是推理?解从一个或几个已知命题得出另一个新命题的思维过程称为推理.问题2一般的推理由几个部分组成?解任何一个推理都包含前提和结论两个部分.前提是推理所依据的命题,它告诉我们已知的知识是什么;结论是根据前提推导得出的命题,它告诉我们推理的结论是什么.问题3推理的结论对吗?解推理的结论可能正确,也可能是错误的.问题4上述的推理有什么特点?解从个别事实推演出一般性结论.通过讨论,得出归纳推理的相关概念1.归纳推理:从个别事实中推演出一般性结论,像这样的推理通常称为归纳推理.2.归纳推理的思维规程大致为:概括、推广猜测一般性结论概念理解归纳推理的特点:(1)归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包含的范围;(2)由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验,因此,它不能作为数学证明的工具;(3)归纳推理是一种具有创造性的推理.通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.归纳推理基于观察和实验,和“瑞雪兆丰年”等谚语一样,是人们根据长期的实践经验进行归纳的结果.三、数学运用【例1】蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的,蛇、鳄鱼、海龟、蜥蜴都是爬行动物,由此我们猜想:.[3](见学生用书P33)[处理建议]题目简单,让学生自己解答.[规范板书]解所有的爬行动物都是用肺呼吸的.【例2】三角形的内角和是180°,凸四边形的内角和是360°,凸五边形的内角和是540°,由此我们猜想:(n-2)×180°.[4](见学生用书P33)[处理建议]先由学生讨论,说出推理的理由.[规范板书]解对于凸n边形,n=3时,内角和180°=180°×1;n=4时,内角和360°=180°×2;n=5时,内角和540°=180°×3;……由此我们猜想:凸n边形的内角和是(n-2)×180°.(2)<,<,<,…由此我们猜想:<(a,b,m均为正实数).[5][处理建议]先由学生讨论,说出推理的理由.[规范板书]解由此我们猜想:<(a,b,m均是正实数).或者:<(m>0).[题后反思]根据已知条件猜想的结论可能不止一个,只要猜想合理就可以.【例3】观察下列的图形中小正方形的个数,则第n个图中有个小正方形.[6](见学生用书P33)(例3)[处理建议]先由学生讨论,说出推理的理由.提示当n=1时,小正方形个数为1+2=3,当n=2时,小正方形个数为1+2+3=6,当n=3时,小正方形个数为1+2+3+4=10,当n=4时,小正方形个数为1+2+3+4+5=15,当n=5时,小正方形个数为1+2+3+4+5+6=21,由此我们猜想:第n个图中小正方形个数为1+2+3+…+(n+1)=.[题后反思]根据几个已知条件或现象探寻一般规律的方法通常可以从下面几个方面进行思考:(1)寻找它们的共同特征,如例1;(2)寻找它们的变化规律,如例2,边数每增加1个,内角和增加180°;(3)结合图形,观察图形的关系或变化特征,运用直观的方法去探求规律.所以,A类事物具有性质P.【例4】已知数列的每一项都是正数,a1=1,===+1(n=1,2,3,…),试归纳出数列{a n}的一个通项公式.(见学生用书P34)[处理建议]先由学生讨论,说出推理的理由,体会从特殊到一般的归纳过程.[规范板书]解当n=1时,a 1=1=;当n=2时,a2==;当n=3时,a3==;……由此我们猜想{a n}的一个通项公式为a n=.四、课堂练习1.(1)一元一次方程有1个实数根,一元二次方程最多有2个实数根,一元三次方程最多有3个实数根,由此我们猜想:一元n次方程最多有n个实数根.(2)先看下面的例子,试写出一般性结论.1+3=4,1+3+5=9,1+3+5+7=16,…1+3+5+…+(2n-1)=n2.2.对大于或等于2的自然数m的n次方幂,有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7,23=3+5,33=7+9+11,43=13+15+17+19.根据上述分解规律,有53=21+23+25+27+29;若m3(m∈N*)的分解中最小的数是73,则m的值为9.3.应用归纳推理猜测(n∈N*)的值.解当n=1时,=3,当n=2时,=33,当n=3时,=333,归纳发现:=.五、课堂小结1.归纳推理是从特殊到一般的推理,要会从几个特殊的个例中学会观察,有时候没有个例,要自己去寻找或设计个例.2.归纳推理基于观察和实验,一些创造发明往往来自于这些看似简单的活动,如“瑞雪兆丰年”等谚语,是人们根据长期的实践经验进行归纳的结果.要在平常的生活中养成观察和思考的习惯,培养创新思维能力.第2课时合情推理——类比推理教学过程一、问题情境模仿鲁班发明锯子,在我们以前学过的知识和方法中,哪些知识板块可以放在一起进行类比呢?学生活动:等式与不等式,平面上的圆与空间中的球,等差与等比数列,平面几何与立体几何,椭圆与双曲线,空间向量与平面向量,等等.大家根据自己的直觉提出了这么多可以进行类比的知识,那我们就选几个板块,来看看它们为什么可以进行类比,以及具体怎样类比.1.试根据等式的性质猜想不等式的性质.[2]等式的性质:猜想不等式的性质:等式不等式(1)加法法则:a=b∈a+c=b+c(2)减法法则:a=b∈a-c=b-c(3)乘法法则:a=b∈ac=bc(4)除法法则:a=b∈a÷c=b÷c(c≠0)(5)平方法则:a=b∈a2=b2教师以问题组的形式让学生自然地建构概念.问题1等式与不等式之间为什么可以进行类比呢?它们在什么方面是相似的?教师启发:“3=3”描述的是相等关系,“4>3”描述的是不等关系,都是衡量数的大小关系,所以它们有不少的相似性质.问题2如何开展类比呢?学生活动模仿就可以.问题3大家通过等式的运算律猜想了不等式的运算律,得到了新知,那这些结论是否一定正确呢?说明什么?学生活动说明用类比的方式得来的结论不一定正确,需要通过严格的证明来确认.2.试将平面上的圆与空间的球进行类比.[3][处理建议]结合“锯子”实例引导学生分析、讨论,教师分析判断,理解类比的实质.解圆的定义:平面内到一个定点的距离等于定长的点的集合.球的定义:空间内到一个定点的距离等于定长的点的集合.圆球弦截面圆直径大圆周长表面积圆面积球体积圆的性质球的性质圆心与弦(不是直径)的中球心与截面圆(不是大圆)的圆点的连线垂直于截面圆点的连线垂直于弦与圆心距离相等的两弦相与球心距离相等的两截面圆相等;与球心距离不等的两截面圆不等,距球心较近的截面圆较大等;与圆心距离不等的两弦不等,距圆心较近的弦较长圆的切线垂直于过切点的球的切面垂直于过切点的半径;经过球心且垂直于切面的直线必经过切点半径;经过圆心且垂直于切线的直线必经过切点经过切点且垂直于切线的经过切点且垂直于切面的直线必经过球心直线必经过圆心以点(x0,y0)为圆心、以r为半径的圆的方程为(x-以点(x0,y0,z0)为球心、以r为半径的球的方程为(x-x0)2+(y-y0)2+(z-z0)2=r2x0)2+(y-y0)2=r2在教学的过程中,模仿第1题的方式.问题1平面上的圆与空间的球之间为什么可以进行类比呢,它们在什么方面是相似的?学生活动它们的定义是相似的:圆的定义:平面内到一个定点的距离等于定长的点的集合.球的定义:空间内到一个定点的距离等于定长的点的集合.它们的形状也是相似的:一个是二维的,平面的;一个是三维的,空间的.圆绕着一条直径旋转一周就形成了球.问题2如何展开类比?学生活动因为圆绕着一条直径旋转一周就形成了球,所以圆的弦、直径、周长、面积类比球中的截面圆、大圆、表面积、体积,只要将圆中的概念改成球中相应的概念就可以.点对应线,线对应面也要注意.它们属于叙述方式上的类比.问题3类比的前提是什么?它的一般步骤是什么?[4]解进行类比推理时,首先,要找出两类对象之间可以确切表述的相似性或一致性;然后,再用一类对象的性质去推测另一类对象的性质,从而得出一个猜想;最后,检验这个猜想.二、数学建构概念理解由两个(两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同;或由其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.类比推理和归纳推理都是合情推理的一种.类比推理的一般步骤:(1)找出两类对象之间可以确切表述的相似特征;(2)用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;(3)检验猜想.即观察、比较联想、类推猜测新的结论三、数学运用【例1】类比实数的加法与乘法,并列出它们的类似的性质.[5](见学生用书P35)[处理建议]可以先启发学生讨论交流,了解类比的一般思路,体会类比的实质.[规范板书]解在实数的加法与乘法之间,可以建立如下的对应关系:加(+) ↔ 乘(×)加数、被加数↔ 乘数、被乘数和↔ 积等等,它们具有下列类似的性质加法的性质乘法的性质a+b=b+a ab=ba(a+b)+c=a+(b+c)(ab)c=a(bc)a+(-a)=0a·=1a+0=a a·0=0[题后反思]为什么实数的加法和乘法之间有这么多相似之处?当加数相同时,加法运算就可以用乘法来表示.加法和乘法运算可以类比,你想想,还有其他的运算可以类比吗?(a,b,c与a',b',c'相似或相同)所以B类事物具有性质d'.【例2】试找出等差与等比数列的类比知识.[处理建议]以学生活动为主,合作交流,将全班的同学分为两组,第一组的同学提出等差数列的性质,第二组的同学类比等比数列的性质,第一组的同学再判断类比的方式是否正确.[规范板书]解(1)定义:a n+1-a n=d ↔ =q.(2)通项公式:a n=a1+(n-1)d ↔ b n=b1q n-1;a n=a m+(n-m)d ↔b n=b m q n-m.(3)等差中项:2a n+1=a n+a n+2 ↔ =b n·b n+2.(4)若m+n=p+q,且m,n,p,q∈N*,则a m+a n=a p+a q ↔ b m b n=b p b q.变式在等差数列{a n}中,若a10=0,则有等式a1+a2+…+a n=a1+a2+…+a19-n(n<19,n∈N*)成立.类比上述性质,相应地:在等比数列中,若b 9=1,则有等式b1b2…b n=b1b2…b17-n(n<17,n∈N*)成立.提示本题考查等差数列与等比数列的类比.一种较本质的认识是:等差数列→用减法定义→性质用加法表述.例如,若m,n,p,q∈N*,且m+n=p+q,则a m+a n=a p+a q;等比数列→用除法定义→性质用乘法表述.例如,若m,n,p,q∈N*,且m+n=p+q,则a m·a n=a p·a q.由此,猜测本题的答案为:b1b2…b n=b1b2…b17-n(n<17,n∈N*).[题后反思](1)等差数列的通项公式是a n=a1+(n-1)d,等比数列的通项公式是a n=a1q n-1.两组公式形式上的变化主要体现在“a1+”换成了“a1×”,“(n-1)·d”换成了“q n-1”,即出现了四则运算中“加法升级为乘法、乘法升级为乘方”这样的对应的升级运算.而这也恰好体现在了等差数列与等比数列这两个数列的名称(或定义)之中:差(-)↔比(÷).(2)解题的过程中一些基本的方法是:+↔×,-↔÷,乘法↔乘方,除法↔开方,但这不是绝对的.(3)类比推理不能仅把类比停留在叙述方式或数学结构等外层表象之上,还需要对数学结论的运算、推理过程等内在联系进行类比分析,从解题的思想方法、思维策略等层面寻求内在的关系.四、课堂练习1.(1)已知正方形面积为边长的平方,那么在立体几何中,与之类比图形是什么?结论是什么?(2)圆有切线,切线与圆切于1点,切点到圆心的距离等于半径.由此结论,如何类比到球?(3)平面内不共线的3点确定1个圆.由此结论,如何类比得到空间的结论?解(1)类比图形是正方体,结论是正方体的体积为棱长的立方.(2)球有切面,切面与球切于1点,切点到球心的距离等于球的半径.(3)空间不共面的4点确定一个球.2.已知梯形的上底边长为a,下底边长为b,中位线长为m,则m=.若棱台的上底面积为,下底面积为S2,中截面面积为S0,类比梯形的中位线结论,猜想棱台中截面面积满足什么关系.解若棱台的上底面积为,下底面积为S 2,则中截面面积S0=.3.等差数列{a n}中,a1+a2+a3,a4+a5+a6,a7+a8+a9,…成等差数列,类比等差数列的结论,猜想等比数列有怎样的结论?结论正确吗?解等比数列{a n}中,a1a2a3,a4a5a6,a7a8a9,…成等比数列,结论正确.五、课堂小结1.类比推理的步骤与方法:第一步,找出两类对象之间可以确切表述的相似性(或一致性);第二步,用一类对象的性质去推测另一类对象的性质,从而得出一个猜想;第三步,用特例验证猜想或证明猜想.2.数学中常见的一些类比推理问题:(1)立体几何与平面几何问题(类比是一个伟大的引路人,求解立体几何往往有赖于平面几何的类比问题.——数学家G.波利亚);(2)等差数列与等比数列问题;(3)加、减、乘、除运算问题;(4)进制问题等.第3课时演绎推理教学过程一、问题情境问题1类比上面的推理方法,写出你的结论.(1)所有的金属都能导电,铜是金属,所以,.(2)在学习整数时,有下面的推理:个位数字是0或5的正整数必是5的倍数,2375的个位数是5,所以.二、数学建构问题2说说上述推理的特点.解由两个前提和一个结论组成.问题3上述推理的结论对吗?解只要两个前提是正确的,推理的形式是正确的,那么结论也必定是正确的.通过讨论,给出演绎推理的定义.在数学学习中,除了归纳推理、类比推理,我们更多使用的是一种由一般的命题推演出特殊命题的推理方法,例如上述推理“铜能导电”“2375是5的倍数”,像这样的推理通常称为演绎推理.三段论式推理是演绎推理的主要形式,常用的格式为:M—P(M是P)S—M(S是M)S—P(S是P)概念理解(1)在演绎推理过程中,M起着联系S和P的中介作用,因而M也称为中项.(2)三段论中包含了3个命题,第一个命题称为大前提,它提供了一个一般性的原理;第二个命题称为小前提,它指出了一个特殊对象,这两个判断结合起来,揭示了一般原理与特殊对象的内在联系,从而得到第三个命题——结论.(3)为了方便,在运用三段论推理时,常常采用省略大前提或小前提的表述方式.如前面的两个推理,可以分别写成“因为铜是金属,所以铜能导电”,“因为2375的个位数字是5,所以2375是5的倍数”.对于复杂的论证,常常采用一连串的三段论,并把前一个三段论的结论作为下一个三段论的前提.三、数学运用【例1】(教材第71页例1)如图,D,E,F分别是BC,CA,AB上的点,∈BFD=∈A,DE∈BA,求证:ED=AF.[2](见学生用书P37)(例1)[处理建议]先让学生证明,再用三段论形式来表示,以加深对演绎推理的理解.[规范板书]证明(1)同位角相等,两直线平行, (大前提)∈BFD与∈A是同位角,且∈BFD=∈ A,(小前提)所以,DF∈EA.(结论)(2)两组对边分别平行的四边形是平行四边形,(大前提)DE∈BA且DF∈EA,(小前提)所以,四边形AFDE是平行四边形.(结论)(3)平行四边形的对边相等,(大前提)ED和AF为平行四边形的对边,(小前提)所以,ED=AF.(结论)[题后反思]在初中阶段证明平面几何问题时,要在括号内注明理由,这是为什么?【例2】(教材第71页例2)已知a,b,m均为正实数,b<a,求证:<.[3](见学生用书P37) [处理建议]先让学生证明,再用三段论形式来分析表示,以加深对演绎推理的理解.[规范板书]证明(1)不等式两边乘以同一个正数,不等式仍成立,(大前提)b<a,m>0,(小前提)所以mb<ma.(结论)(2)不等式两边加上同一个数,不等式仍成立,(大前提)mb<ma,ab=ab,(小前提)所以ab+mb<ab+ma,即b(a+m)<a(b+m).(结论)(3)不等式两边除以同一个正数,不等式仍成立,(大前提)b(a+m)<a(b+m),a(a+m)>0,(小前提)所以<,即<.(结论)例2的证明通常简略地表述为:∈mb<ma∈ab+mb<ab+ma∈<∈<.[题后反思]在日常做证明题时,虽然不要求严格按照三段论形式来书写,但是三段论已经隐含其中,证明的过程是否正确,其检验标准就是证明的每一步能否用三段论形式来推敲.【例3】用三段论形式写出下题的计算过程.已知lg2=m,计算lg0.8.[4](见学生用书P38)[处理建议]先让学生书写,再用三段论形式来表示,以加深对演绎推理的理解.[规范板书]解(1) lg a n=n lg a(a>0),(大前提)lg8=lg23,(小前提)所以lg8=3lg2.(结论)(2) lg=lg a-lg b(a>0,b>0), (大前提)lg0.8=lg,(小前提)所以lg0.8=lg8-1=3lg2-1=3m-1.(结论)四、课堂练习1. “若四边形ABCD是矩形,则四边形ABCD的对角线相等”,此推理的大前提是矩形的对角线相等.2.(教材第72页练习第3题)把下列推理恢复成完整的三段论:(1)因为∈ABC三边长依次为3,4,5,所以∈ABC是直角三角形;(2)函数y=2x+5的图象是一条直线.解(1)如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形, (大前提)∈ABC三边长为3,4,5,满足32+42=52,(小前提)∈ABC是直角三角形.(结论) (2)一次函数的图象是一条直线, (大前提)函数y=2x+5是一次函数,(小前提)函数y=2x+5的图象是一条直线.(结论) 3.(教材第72页练习第4题)指出下列推理中的错误,并分析产生错误的原因.(1)整数是自然数,-3是整数,-3是自然数.(2)无理数是无限小数,是无限小数,是无理数.解(1)大前提错误.(2)不符合三段论推理的形式.4.有下列说法:①演绎推理是由一般到特殊的推理;①演绎推理得到的结论一定是正确的;①演绎推理一般模式是“三段论”形式;①演绎推理的结论的正误与大前提、小前提和推理形式有关.上面说法正确的有①①①.(填序号)五、课堂小结1.演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等),按照严格的逻辑法则得到新结论的推导过程.2.演绎推理具有如下特点:(1)演绎的前提是一般性原理,演绎所得到的结论是蕴涵于前提之中的个别、特殊事实,结论完全蕴涵于前提之中.(2)在演绎推理中,前提与结论之间存在必然的联系.只要前提是事实的,推理的形式是正确的,那么结论也必定是正确的,因而演绎推理是数学中严格证明的工具.(3)演绎推理是一种收敛性的思维方法,它缺少创造性,但却具有条理清晰、令人信服的论证作用,有助于科学的理论化和系统化.3.演绎推理不仅仅在证明题中常用,在计算题、解答题甚至日常说话中也是经常使用的.这是一种严谨的逻辑思维形式,我们要养成一种认真、严谨的好习惯.第4课时推理案例赏析教学过程一、问题情境在前两节中,我们分别对合情推理和演绎推理的特点与思维过程进行了考察.那么合情推理和演绎推理之间具有怎样的联系和差异?合情推理和演绎推理是怎样推进数学发现活动的?二、数学建构正整数平方和公式的推导.[3][处理建议]本题宜采用师生共同参与、共同讨论的合作交流形式,尽可能让学生发言、交流各自思路,尝试不同方法,体验归纳推理的过程,教师在这个过程中注意调控和引导,避免学生走一些不必要的弯路.提出问题我们已经知道前n个正整数的和为S1(n)=1+2+3+…+n=n(n+1),①那么,前n个正整数的平方和S2(n)=12+22+32+…+n2=?①问题1如何用你已经掌握的方法来求S2(n)呢?先由学生讨论教师引导思路1(归纳的方案)如下表1所示,列举出S2(n)的前几项,希望从中归纳出一般的结论.表1n123456…S2(n)1514305591…但是,从表1的数据中并没有发现明显的关系.这时我们可能会产生一个念头:S1(n)与S2(n)会不会有某种联系?如下表2所示,进一步列举出S1(n)的值,比较S1(n)与S2(n),希望能有所发现.表2n123456…S1(n)136101521…S2(n)1514305591…问题2观察S1(n)与S2(n)的相应数据,并没有发现明显的联系.怎么办呢?教师引导尝试计算.终于在计算S1(n)和S2(n)的比时,发现“规律”了.表3n123456…S1(n)136101521…S2(n)1514305591……从表3中发现=,于是猜想S2(n)=.①公式①的正确性还需要证明.[题后反思]上面的数学活动是由那些环节构成的?在这个过程中提出了哪些猜想?提出猜想时使用了哪些推理方法?合情推理和演绎推理分别发挥了什么作用?思路2(演绎的方案)尝试用直接相加的方法求出正整数的平方和.(1)把正整数的平方表示出来,有12=1,22=(1+1)2=12+2×1+1,32=(2+1)2=22+2×2+1,42=(3+1)2=32+2×3+1,…,n2=(n-1)2+2(n-1)+1,左右两边相加,得S2(n)=[S2(n)-n2]+[2S1(n)-2n]+n,等号两边的S2(n)被消去了,所以无法从中求出S2(n)的值,尝试失败了!(2)从失败中汲取有用信息,进行新的尝试.前面的失败尝试还是有意义的,因为尽管我们没有求出S2(n),但是却求出了S1(n)的表达式,即S1(n)==n(n+1),它启示我们:既然能用上面方法求出S1(n),那么我们也应该可以用类似的方法求出S2(n).(3)尝试把两项和的平方公式改为两项和的立方公式.具体方法如下:13=1,23=(1+1)3=13+3×12+3×1+1,33=(2+1)3=23+3×22+3×2+1,…,n3=(n-1)3+3(n-1)2+3(n-1)+1.左右两边分别相加,得S3(n)=[S3(n)-n3]+3[S2(n)-n2]+3[S1(n)-n]+n.由此知S2(n)===,终于导出了公式.[题后反思]上面的数学活动是由哪些环节构成的?在这个过程中提出了哪些猜想?提出猜想时使用了哪些推理方法?合情推理和演绎推理分别发挥了什么作用?三、数学运用【例1】(教材第77页例2)棱台体积公式的推导.[4](见学生用书P39)[处理建议]本题宜采用师生共同参与、共同讨论的合作交流形式,尽可能让学生讨论、交流各自思路,尝试不同方法,体验类比推理的过程,教师在这过程中注意调控和引导.[提出问题]问题1怎样求棱台的体积?联系所学推理方法,有什么启发?问题2能通过类比推导出棱台的体积公式吗?问题3什么知识可以和棱台进行类比?问题4怎样对梯形和四棱台作比较?思路以四棱台为例,通过和梯形的类比推导公式.(1)确定类比对象,对梯形和四棱台作比较,列表找出相似之处.梯形棱台(四棱台)上、下底平行上、下底面平行另外两边不平行另外4个面不平行两腰延长后交于一点4个侧面伸展后交于一点中位线平行于上、下底中截面平行于上、下底面(2)对类比对象的进一步分析.梯形可以认为是用平行于三角形一边的直线截去一个小三角形后得到的,而棱台则可认为是用平行于棱锥底面的平面截去一个小棱锥后得到的.据此,应该有如下的对应关系:直线↔ 平面三角形↔ 棱锥梯形↔ 棱台进而有梯形底边长↔ 棱台底面积三角形面积↔ 棱锥体积梯形面积↔ 棱台体积(3)通过类比推理,建立猜想.求棱台的体积的方法与求梯形面积的方法是类似的,棱台的体积公式与梯形的面积公式是类似的.已知梯形的面积公式为S梯形=h(a+b),①其中a,b分别表示梯形上、下底的长度,h表示高.猜想棱台的体积公式可能具有如下的形式: V棱台=h(S上+S下),①其中S上,S下分别表示棱台的上、下底面积,h表示棱台的高.(4)验证猜想.①式的正确性要通过严格的证明来确认.在作出正式的证明之前,可以先通过具体的例子来加以验证.把棱锥看成棱台的特例,此时,公式①中的S上=0,因此有V棱台=hS下,这与实际结果hS下不符,这表明,猜想①是错误的,需要修正.于是设想公式具有V棱台=h(S上+S0+S下)①的形式,其中S0应该是表示面积的量,它究竟是多少还有待进一步确定.与①式相比,公式①的分母从2变为3,相应的分子由2项变成3项,这些都恰如其分地反映了2维和3维的差异.因此,公式①从整体结构上就给人一种协调的美感.应该说,公式①比公式①更合理.既然①式被认为是合理的,那么下一步的行动就是要具体的确定公式中S0的意义和大小了.容易看出:第一,由于从棱锥的体积公式可知,当S上=0时,S0=0,因此,S0应含有S上的因子.第二,棱台的上底和下底具有同等地位,因此,S上和S下在公式中应该具有同等地位,据此,我们可以猜想S0具有k的形式.第三,进一步确定k的值.仍然使用特殊化的方法,当S上=S下时,棱台变为棱柱,则V棱台==h(S上+k=+S下)=hS0.此时S上=S下=S0,所以有k=1,因此,S0= ,①式即为V棱台=h(S上++S下).四、课堂练习1.在数学考试中,甲同学觉得有一道题和他平时做的题类似,于是他就用相同的方法来解决考试题目,他的想法用的是类比推理.2.数列{a n}的前4项分别是,3,,,有些同学说,数列{a n}的通项公式a n=,他们的说法用的是归纳推理.3.已知数列,,,,…,由此猜想第n个数为.。
高中数学 第2章 推理与证明 第2节 直接证明与间接证明学案 理 苏教版选修2-2
![高中数学 第2章 推理与证明 第2节 直接证明与间接证明学案 理 苏教版选修2-2](https://img.taocdn.com/s3/m/c89030f558f5f61fb73666a8.png)
—————————— 新学期 新成绩 新目标 新方向 ——————————第2节直接证明与间接证明一、学习目标:1. 了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。
2. 了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。
二、重点、难点重点:了解分析法和综合法的思考过程、特点。
难点:运用分析法、综合法提高分析问题和解决问题的能力。
三、考点分析:对两种直接证明方法的考查在选择题、填空题和解答题中都有出现,单纯的考查并不常见,作为解决问题的工具,与其他知识综合运用的特点比较突出。
它可以和很多知识,如函数、数列、三角函数、导数等相联系,证明时不仅要用到不等式的相关知识,还要用到其他数学知识、技能和技巧,而且还考查了运算能力,分析问题和解决问题的能力。
对于反证法很少单独命题,但是运用反证法分析问题、进行证题思路的判断则经常用到,有独到之处。
三种证明方法的定义与步骤:1. 综合法是由原因推导到结果的证明方法,它是利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法。
2. 分析法是从要证明的结论出发,逐步寻求推证过程中,使每一步结论成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、公理、定理等)为止的证明方法。
3. 假设原命题的结论不成立,经过正确的推理,最后得出矛盾,由此说明假设错误,从而证明了原命题成立,这样的方法叫反证法;它是一种间接的证明方法。
用这种方法证明一个命题的一般步骤:(1)假设命题的结论不成立;(2)根据假设进行推理,直到推理中导出矛盾为止;(3)断言假设不成立;(4)肯定原命题的结论成立。
知识点一:综合法例1 对于定义域为[]0,1的函数()f x ,如果同时满足以下三个条件:①对任意的[]0,1x ∈,总有()0f x ≥;②(1)1f =;③若12120,0,1x x x x ≥≥+≤,都有1212()()()f x x f x f x +≥+成立,则称函数()f x 为理想函数。
高中数学 第二章 推理与证明 2.2.1 直接证明学案 苏教版选修1-2-苏教版高二选修1-2数学学
![高中数学 第二章 推理与证明 2.2.1 直接证明学案 苏教版选修1-2-苏教版高二选修1-2数学学](https://img.taocdn.com/s3/m/664ab0e6650e52ea54189807.png)
2.2.1 直接证明学习目标 1.了解直接证明的特点.2.掌握综合法、分析法的思维特点.3.会用综合法、分析法解决问题.知识点一 直接证明思考 阅读下列证明过程,总结此证明方法有何特点? 已知a ,b >0,求证:a (b 2+c 2)+b (c 2+a 2)≥4abc . 证明:因为b 2+c 2≥2bc ,a >0,所以a (b 2+c 2)≥2abc . 又因为c 2+a 2≥2ac ,b >0,所以b (c 2+a 2)≥2abc . 因此a (b 2+c 2)+b (c 2+a 2)≥4abc .答案 利用已知条件a >0,b >0和基本不等式,最后推导出所要证明的结论. 梳理 (1)直接从原命题的条件逐步推得命题成立,这种证明通常称为直接证明. (2)直接证明的一般形式⎭⎪⎬⎪⎫本题条件已知定义已知公理已知定理⇒…⇒本题结论.知识点二 分析法和综合法思考 阅读证明基本不等式的过程,试分析两种证明过程有何不同特点? 已知a ,b >0,求证:a +b2≥ab .证明:方法一 ∵a ,b >0,(a -b )2≥0, ∴(a )2+(b )2-2ab ≥0, ∴a +b ≥2ab , ∴a +b2≥ab .方法二 要证a +b2≥ab ,只需证a +b ≥2ab , 只需证a +b -2ab ≥0,又a ,b >0,只需证(a -b )2≥0,∵(a -b )2≥0显然成立,∴原不等式成立.答案 方法一从已知条件出发推出结论;方法二从结论出发,追溯导致结论成立的条件. 梳理 综合法和分析法定义比较 直接证明定义推证过程综合法从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.这种证明方法称为综合法 已知条件⇒…⇒…⇒结论分析法从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法称为分析法结论⇐…⇐…⇐已知条件1.综合法是执果索因的逆推证法.( × ) 2.综合法证明的依据是三段论.( √ )3.综合法的推理过程实际上是寻找它的必要条件.( √ )4.分析法与综合法证明同一个问题时,一般思路恰好相反,过程相逆.( √ )类型一 综合法的应用例1 在△ABC 中,三边a ,b ,c 成等比数列.求证:a cos 2C 2+c cos 2A 2≥32b .考点 综合法及应用题点 利用综合法解决不等式问题证明 因为a ,b ,c 成等比数列,所以b 2=ac . 因为左边=a (1+cos C )2+c (1+cos A )2=12(a +c )+12(a cos C +c cos A ) =12(a +c )+12⎝ ⎛⎭⎪⎫a ·a 2+b 2-c22ab +c ·b 2+c 2-a 22bc=12(a +c )+12b ≥ac +b 2=b +b 2=32b =右边,所以a cos 2C 2+c cos 2A 2≥32b .反思与感悟 综合法证明问题的步骤第一步:分析条件,选择方向.仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题思路. 第二步:转化条件、组织过程,把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路. 第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,有些语言可做适当的修饰,反思总结解题方法的选取. 跟踪训练1 已知a ,b ,c 为不全相等的正实数. 求证:b +c -a a +c +a -b b +a +b -cc>3. 考点 综合法及应用题点 利用综合法解决不等式问题 证明 因为b +c -a a +c +a -b b +a +b -cc=b a +a b +c b +b c +a c +ca-3, 又a ,b ,c 为不全相等的正实数, 而b a +a b ≥2,c b +b c ≥2,a c +c a≥2, 且上述三式等号不能同时成立, 所以b a +a b +c b +b c +a c +c a-3>6-3=3,即b +c -a a +c +a -b b +a +b -cc>3. 类型二 分析法的应用例2 已知a ,b ,c 都为正实数,求证:a 2+b 2+c 23≥a +b +c3.考点 分析法及应用题点 分析法解决不等式问题 证明 要证a 2+b 2+c 23≥a +b +c3,只需证a 2+b 2+c 23≥⎝⎛⎭⎪⎫a +b +c 32, 只需证3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2bc +2ca , 只需证2(a 2+b 2+c 2)≥2ab +2bc +2ca ,只需证(a -b )2+(b -c )2+(c -a )2≥0,而这是显然成立的, 所以a 2+b 2+c 23≥a +b +c3成立.反思与感悟 分析法格式与综合法正好相反,它是从要求证的结论出发,倒着分析,由未知想需知,由需知逐渐地靠近已知(已知条件、已经学过的定义、定理、公理、公式、法则等).这种证明的方法关键在于需保证分析过程的每一步都是可以逆推的.它的常见书写表达式是“要证……只需……”或“⇐”.跟踪训练2 已知非零向量a ,b ,且a ⊥b , 求证:|a |+|b ||a +b |≤ 2.考点 分析法及应用 题点 分析法解决不等式问题 证明 a ⊥b ⇔a ·b =0,要证|a |+|b ||a +b |≤2,只需证|a |+|b |≤2|a +b |,只需证|a |2+2|a ||b |+|b |2≤2(a 2+2a ·b +b 2), 只需证|a |2+2|a ||b |+|b |2≤2a 2+2b 2, 只需证|a |2+|b |2-2|a ||b |≥0, 即证(|a |-|b |)2≥0,上式显然成立,故原不等式得证. 类型三 分析法与综合法的综合应用例3 已知△ABC 中,A ∶B ∶C =1∶2∶6.求证:a b =a +ba +b +c.证明 要证a b =a +ba +b +c,只需证a 2+ab +ac =ab +b 2,即证a (a +c )=b 2.由正弦定理,只需证sin A (sin A +sin C )=sin 2B . ∵A ∶B ∶C =1∶2∶6, ∴A =π9,B =29π,C =69π,即sin π9⎝ ⎛⎭⎪⎫sin π9+sin 69π=sin 229π,即sin π9⎝ ⎛⎭⎪⎫sin π9+sin 39π=sin 229π,即sin π9·2sin 2π9cos π9=sin 229π,即2sin π9cos π9=sin 29π,显然成立.∴a b =a +ba +b +c成立.反思与感悟 综合法由因导果,分析法执果索因,因此在实际解题时,常常把分析法和综合法结合起来使用,即先利用分析法寻找解题思路,再利用综合法有条理地表述解答过程. 跟踪训练3 已知a ,b ,c 是不全相等的正数,且0<x <1. 求证:log xa +b2+log xb +c2+log xa +c2<log x a +log x b +log x c .考点 分析法和综合法的综合应用 题点 分析法和综合法的综合应用 证明 要证log x a +b2+log xb +c2+log xa +c2<log x a +log x b +log x c ,只需证 log x ⎝⎛⎭⎪⎫a +b 2·b +c 2·a +c 2<log x(abc ),由已知0<x <1,只需证a +b 2·b +c 2·a +c2>abc ,由公式a +b2≥ab >0,b +c2≥bc >0,a +c2≥ac >0.又∵a ,b ,c 是不全相等的正数, ∴a +b 2·b +c 2·a +c2>a 2b 2c 2=abc .即a +b 2·b +c 2·a +c2>abc 成立.∴log x a +b2+log xb +c2+log xa +c2<log x a +log x b +log x c 成立.1.设a =lg2+lg5,b =e x(x <0),则a 与b 的大小关系为________. 答案 a >b解析 ∵a =lg2+lg5=lg10=1,b =e x <e 0=1,∴a >b .2.设0<x <1,则a =2x ,b =x +1,c =11-x 中最大的是________.答案 c解析 ∵0<x <1,∴b =x +1>2x >2x =a , ∵11-x -(x +1)=1-(1-x 2)1-x =x 21-x>0,∴c >b >a . 3.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,且a 2+b 2-c 2=ab ,则角C 的值为________. 考点 综合法及应用题点 利用综合法解决三角形问题 答案π3解析 cos C =a 2+b 2-c 22ab =ab 2ab =12,∵0<C <π,∴C =π3.4.欲证2-3<6-7成立,只需证下列各式中的________.(填序号) ①(2-3)2<(6-7)2; ②(2-6)2<(3-7)2; ③(2+7)2<(3+6)2; ④(2-3-6)2<(-7)2. 答案 ③解析 根据不等式性质,当a >b >0时,才有a 2>b 2, ∴只需证2+7<6+3,即证(2+7)2<(3+6)2.5.设x ,y 是正实数,且x +y =1,求证:⎝⎛⎭⎪⎫1+1x ⎝⎛⎭⎪⎫1+1y ≥9.证明 方法一 (综合法) 左边=⎝ ⎛⎭⎪⎫1+x +y x ⎝ ⎛⎭⎪⎫1+x +y y =⎝ ⎛⎭⎪⎫2+y x ⎝ ⎛⎭⎪⎫2+x y =4+2⎝⎛⎭⎪⎫y x +xy+1≥5+4=9, 当且仅当y x =x y ,即x =y =12时等号成立.原不等式得证.方法二 (分析法)要证⎝⎛⎭⎪⎫1+1x ⎝⎛⎭⎪⎫1+1y ≥9成立,∵x ,y 是正实数,且x +y =1,∴y =1-x , 只需证明⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+11-x ≥9,即证(1+x )(1-x +1)≥9x (1-x ), 即证2+x -x 2≥9x -9x 2, 即证4x 2-4x +1≥0,即证(2x -1)2≥0,此式显然成立. ∴原不等式成立.1.综合法证题是从条件出发,由因导果;分析法是从结论出发,执果索因. 2.分析法证题时,一定要恰当地运用“要证”、“只需证”、“即证”等词语. 3.在解题时,往往把综合法和分析法结合起来使用.一、填空题 1.a 2+2+2a 2+2与22的大小关系是________________. 答案 a 2+2+2a 2+2>2 2 2.已知x >0,y >0,且x 3+y4=1,则xy 的最大值为____.答案 3解析 ∵1=x 3+y 4≥2xy12=xy3,∴xy ≤3,当且仅当x =32,y =2时等号成立.3.已知函数f (x )=lg 1-x1+x ,若f (a )=b ,则f (-a )=________.答案 -b解析 函数f (x )的定义域为{x |-1<x <1},且f (-x )=-f (x ),∴函数f (x )为奇函数,∴f (-a )=-f (a )=-b .4.若P=a+a+7,Q=a+3+a+4 (a≥0),则P与Q的大小关系为________.答案P<Q解析∵P2=2a+7+2a2+7a,Q2=2a+7+2a2+7a+12,∴P2<Q2,又∵P>0,Q>0,∴P<Q.5.若A,B为△ABC的内角,则A>B是sin A>sin B的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)答案充要解析由正弦定理知asin A=bsin B=2R,又A,B为三角形的内角,∴sin A>0,sin B>0,∴sin A>sin B⇔2R sin A>2R sin B⇔a>b⇔A>B.6.设n∈N,则n+4-n+3________n+2-n+1.(填“>”“<”“=”)答案<解析要证n+4-n+3<n+2-n+1,只需证n+4+n+1<n+3+n+2,只需证(n+4+n+1)2<(n+2+n+3)2,即2n+5+2(n+4)(n+1)<2n+5+2(n+2)(n+3).只需证(n+1)(n+4)<(n+2)(n+3),只需证(n+1)(n+4)<(n+2)(n+3),即n2+5n+4<n2+5n+6,即4<6即可.而4<6显然成立,故n+4-n+3<n+2-n+1.7.若三棱锥S-ABC中,SA⊥BC,SB⊥AC,则S在底面ABC上的射影为△ABC的________.(填重心、垂心、内心、外心之一)答案垂心解析如图,设S在底面ABC上的射影为点O,∴SO ⊥平面ABC ,连结AO ,BO . ∵SA ⊥BC ,SO ⊥BC ,SA ∩SO =S , ∴BC ⊥平面SAO ,∴BC ⊥AO . 同理可证,AC ⊥BO . ∴O 为△ABC 的垂心.8.如果a a +b b >a b +b a ,则实数a ,b 应满足的条件是________. 答案 a ≥0,b ≥0且a ≠b解析 a a +b b >a b +b a ⇔a a -a b >b a -b b ⇔a (a -b )>b (a -b )⇔(a -b )(a -b )>0 ⇔(a +b )(a -b )2>0,故只需a ≠b ,且a ,b 都不小于零即可. 9.已知函数f (x )=2x,a ,b ∈(0,+∞).A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f ()ab ,C =f ⎝ ⎛⎭⎪⎫2ab a +b ,且a ≠b ,则A ,B ,C 从小到大排列为______________. 答案 C <B <A 解析 ∵a +b2>ab >2aba +b, 又∵f (x )=2x在R 上为增函数, ∴A >B >C .10.比较大小:设a >0,b >0,则lg(1+ab )________12[lg(1+a )+lg(1+b )].答案 ≤解析 ∵(1+ab )2-(1+a )(1+b ) =2ab -(a +b )≤0, ∴(1+ab )2≤(1+a )(1+b ), 则lg(1+ab )2≤lg[(1+a )(1+b )], 即lg(1+ab )≤12[lg(1+a )+lg(1+b )].11.在△ABC 中,∠C =60°,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,则ab +c +bc +a=________.答案 1解析 由余弦定理知,c 2=a 2+b 2-2ab cos C ,∴c 2=a 2+b 2-ab ,① a b +c +ba +c =a 2+ac +b 2+bc (b +c )(a +c )=a 2+b 2+ac +bc ab +ac +bc +c 2,② 将①式代入②式,得a b +c +b a +c =1. 二、解答题12.已知a >0,b >0且a +b =1,求证:a +12+b +12≤2. 证明 要证a +12+b +12≤2, 只需证a +12+b +12+2⎝ ⎛⎭⎪⎫a +12⎝ ⎛⎭⎪⎫b +12≤4, 又a +b =1, 即只需证明⎝ ⎛⎭⎪⎫a +12⎝ ⎛⎭⎪⎫b +12≤1. 而⎝ ⎛⎭⎪⎫a +12⎝ ⎛⎭⎪⎫b +12≤⎝ ⎛⎭⎪⎫a +12+⎝ ⎛⎭⎪⎫b +122 =1+12+122=1成立, 当且仅当a =b =12时等号成立. 所以a +12+b +12≤2成立. 13.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,求证:△ABC 为等边三角形.证明 由A ,B ,C 成等差数列,有2B =A +C .①由于A ,B ,C 为△ABC 的三个内角,所以A +B +C =π.②由①②,得B =π3.③ 由a ,b ,c 成等比数列,得b 2=ac ,④由余弦定理及③,可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,再由④,得a 2+c 2-ac =ac ,即(a -c )2=0, 从而a =c ,所以A =C .⑤由②③⑤,得A =B =C =π3, 所以△ABC 为等边三角形.三、探究与拓展14.如图所示,在直四棱柱A 1B 1C 1D 1-ABCD 中,当底面四边形ABCD 满足条件________时,有A 1C ⊥B 1D 1(注:填上你认为正确的一个条件即可,不必考虑所有可能的情形).答案 AC ⊥BD (答案不唯一)解析 要证A 1C ⊥B 1D 1,只需证B 1D 1垂直于A 1C 所在的平面A 1CC 1, 因为该四棱柱为直四棱柱,所以B 1D 1⊥CC 1, 故只需证B 1D 1⊥A 1C 1即可.即当BD ⊥AC 时,有A 1C ⊥B 1D 1.15.设数列{a n }的前n 项和为S n ,已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *.(1)求a 2的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <74.考点 综合法及应用题点 利用综合法解决数列问题(1)解 当n =1时,2S 11=2a 1=a 2-13-1-23=2,解得a 2=4.(2)解 2S n =na n +1-13n 3-n 2-23n ,①当n ≥2时,2S n -1=(n -1)a n -13(n -1)3-(n -1)2-23(n -1),② ①-②,得2a n =na n +1-(n -1)a n -n 2-n , 整理,得na n +1=(n +1)a n +n (n +1),即a n +1n +1=a n n +1,a n +1n +1-a n n =1,当n =1时,a 22-a 11=2-1=1.所以数列⎩⎨⎧⎭⎬⎫a n n 是以1为首项,1为公差的等差数列, 所以a n n =n ,即a n =n 2.所以数列{a n }的通项公式为a n =n 2,n ∈N *.(3)证明 因为1a n =1n 2<1(n -1)n =1n -1-1n (n ≥2), 所以1a 1+1a 2+…+1a n =112+122+132+…+1n 2 <1+14+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n =1+14+12-1n =74-1n <74.。
高中数学 第二章 推理与证明教案 苏教版选修22
![高中数学 第二章 推理与证明教案 苏教版选修22](https://img.taocdn.com/s3/m/9f52dff101f69e31433294d0.png)
第二章推理与证明2.1合情推理与演绎推理2.1.1 合情推理第1课时归纳推理(教师用书独具)●三维目标1.知识与技能了解合情推理的含义,认识归纳推理的基本方法与步骤,能利用归纳推理进行简单的推理应用.2.过程与方法通过学生的积极参与,经历归纳推理概念的获得过程,了解归纳推理的含义.让学生通过欣赏一些伟大猜想产生的过程,体会如何利用归纳去猜测和发现一些新的结论,培养学生归纳推理的思维方式.3.情感、态度与价值观正确认识合情推理在数学中的重要作用,并体会归纳推理在日常活动和科学发现中的作用.学生通过主动探究、合作学习,激发学习兴趣,认识数学的科学价值、应用价值和文化价值,养成认真观察事物、发现探索新知识的良好思维品质.●重点难点重点:归纳推理的含义与特点,能进行简单的归纳推理.难点:运用归纳推理得到一般性的结论,做出猜想.归纳推理是“推理与证明”一章中的重要组成部分,具有猜测和发现结论,探索和提供思路的作用,有利于创新意识的培养,突出体现数学的人文价值和实际应用价值,因此,在高中数学的模块中,归纳推理就显得格外的举足轻重了.为了突破难点,引导学生合作交流,发现特殊实例的共性,抓住本质特征,作出合理猜想.(教师用书独具)●教学建议关于归纳推理的教学,建议以学生熟悉的实例为载体,创设问题情境.例如“猜职业”、“哥德巴赫猜想”等引导学生进行观察、分析、归纳推理,并借助例题具体说明在数学发现的过程中归纳猜想的作用、采取合作交流,培养学生合作学习的意识与数学思维能力.在课堂上渗透数学文化教育,让学生通过数学文化的学习,了解数学发展中起重大作用的历史事件和人物,激发学习数学的兴趣.●教学流程创设问题情境,引导学生得出归纳推理的意义和特点.⇒通过例1及其变式训练,使学生掌握数、式中归纳推理的一般规律.⇒通过例2及其变式训练,使学生掌握图形中归纳推理的特点与思路.⇒学习例3及其变式训练,求解简单实际问题的归纳推理并体会应用的广泛性.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈、矫正.课标解读1.了解归纳推理的含义,能用归纳推理进行简单的推理(重点、难点).2.体会归纳推理在数学发现中的作用,归纳推理结论的真假(易错点).归纳推理【问题导思】1.(1)若a1=1,a2=2,a3=3,a4=2,…你能猜想出数列{a n}的通项公式吗?(2)直角三角形、等腰三角形、等边三角形的内角和都是180°,你能猜想出什么结论?【提示】(1)a n=n(n∈N*);(2)三角形的内角和都是180°.2.在解决上述问题时,经历了怎样的思维过程?【提示】列出部分→归纳现象→得出结论.1.推理从一个或几个已知命题得出另一个新命题的思维过程称为推理.2.归纳推理(1)归纳推理的定义:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理.(2)归纳推理的思维过程如图:实验、观察―→概括、推广―→猜测一般性结论.3.归纳推理的特点(1)归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包容的范围.(2)由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验.(3)归纳推理是一种具有创造性的推理.代数中有关数、式的归纳推理已知数列{a n}满足a1=1,a n+1=2a n+1(n∈N*).(1)求a2,a3,a4;(2)归纳猜想数列通项公式a n,并证明结论的正确性.【思路探究】由a1=1求a2的值,进而求a3,a4→分析a1,a2,a3,a4的特征→猜想a n→数学证明【自主解答】(1)由a1=1,且a n+1=2a n+1(n∈N*),令n=1,得a2=3,令n=2,n=3,进而得a3=7,a4=15,(2)由a1=21-1,a2=22-1,a3=23-1,a4=24-1.可归纳猜想,得a n=2n-1(n∈N*).证明如下:由a n+1=2a n+1,得a n+1+1=2(a n+1).∴{a n+1}是以2为首项,公比为2的等比数列.∴a n+1=2·2n-1=2n,因此a n=2n-1.1.在数列中,常用归纳推理猜测通项公式或前n 项和公式;要认真观察数列中各项数字间的规律,分析每一项与对应的项数(序号n)之间的关系,这是解题的关键.2.归纳推理具有由特殊到一般,由具体到抽象的认知功能,归纳推理的一般步骤: (1)通过观察个别情况发现某些共同的特征;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).已知:1>12;1+12+13>1;1+12+13+14+15+16+17>32;1+12+13+…+115>2;…根据以上不等式的结构特点,请你归纳一般结论. 【解】 1=21-1,3=22-1,7=23-1,15=24-1,…猜想不等式的左边共有2n -1项,最后一项的分母为2n-1,右边为n 2,由此可得一般性结论.1+12+13+…+12n -1> n 2(n∈N *).几何图形、图表中的归纳推理数一数图2-1-1中的凸多面体的面数F 、顶点数V 和棱数E ,然后用归纳推理得出它们之间的关系.图2-1-1【思路探究】 先找出凸多面体的面数、顶点数和棱数,观察它们之间有什么关系,再归纳出一般性的结论.【自主解答】正方体:F=6 V=8 E=12;三棱柱:F=5 V=6 E=9;五棱柱:F=7 V=10 E=15;四棱锥:F=5 V=5 E=8;两个同底面的四棱锥组成的组合体:F=8 V=6 E=12;通过以上观察发现F,V,E满足F+V-E=2.所以归纳得:在凸多面体中,面数F、顶点数V和棱数E满足以下关系:F+V-E=2.1.在几何中随点、线、面等元素的增加,探究点数、线数、面数等满足的关系及相应的线段、交点、区域部分图形等的增加情况常用归纳推理解决,通过比较,寻找规律是解决该类问题的关键.2.应用归纳推理,注意两点:(1)从图形的数量规律入手,寻找数值变化与数量关系;(2)从图形的结构变化规律入手,找到图形的结构每发生一次变化后,与上一次比较,数值发生了怎样的变化.有两种花色的正六边形地面砖,按如图2-1-2所示的规律拼成若干个图案,则第6个图案中有条纹的正六边形的个数是多少?图2-1-2【解】法一有菱形纹的正六边形个数如下表:图案 1 2 3 …个数 6 11 16 …由上表可以看出有条纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第6个图案中有条纹的正六边形的个数是6+5×(6-1)=31.法二由图案的排列规律可知,除第一块无纹正六边形需6个有纹正六边形围绕(图案1)外,每增加一块无纹正六边形,只需增加5块菱形纹正六边形(每两块相邻的无纹正六边形之间有一块“公共”的菱形纹正六边形).故第6个图案中有菱形纹的正六边形的个数为:6+5×(6-1)=31.实际问题中的归纳推理蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形.如图2-1-3所示,为一组蜂巢的截面图,其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n个图的蜂巢总数.图2-1-3试给出f(4),f(5)的值,并求f(n)的表达式.(不要求证明) 【思路探究】 根据前三个图形,找出正六边形增加的规律.【自主解答】 由图形可知:每个图形最外面有6×(n-1)个正六边形:f(4)=f(3)+18=19+18=37,f(5)=f(4)+24=37+24=61, 因为f(2)-f(1)=7-1=6, f(3)-f(2)=19-7=2×6, f(4)-f(3)=37-19=3×6, f(5)-f(4)=61-37=4×6, … …所以当n≥2时,有f(n)-f(n -1)=6(n -1). 以上各式相加,当n≥2时,f(n)-f(1)=6[1+2+3+…+(n -1)], ∴f(n)=f(1)+6×(n -1)n 2=3n 2-3n +1.1.在本例中,应注意两点:(1)图形的特点,每个图形从宏观上看均为一大正六边形,每一边上均有n 个小正六边形,(2)式的变化,通过式子,寻求f(n)与f(n -1)的关系,转化成数列问题.2.利用归纳推理,可以使我们对许多实际问题总结出一般性的结论,掌握事物的本质规律.意大利数学家斐波那契在他的1228年版的《算经》一书中记述了有趣的兔子问题:假定每对大兔子每月能生一对小兔子,而每对小兔子过了一个月就可以长成大兔子,如果不发生死亡,那么由一对大兔子开始,一年后能有多少对大兔子呢?我们依次给出各个月的大兔子对数,并一直推算下去到无尽的月数,可得数列:1,1,2,3,5,8,13,21,34,55,89,144,233,…这就是斐波那契数列.此数列中,a1=a2=1,当n≥3时,请归纳出a n与a n-1间的递推关系式.【解】因为2=1+1,3=1+2,5=2+3,8=3+5,…逐项观察分析每项与其前几项的关系易得:从第三项起,它的每一项等于它的前面两项之和,即a n=a n-1+a n-2(n≥3,n ∈N*).归纳不完整致误对任意的正整数n,猜想2n与n2的大小关系.【错解】当n=1时,21>12;当n=2时,22=22;当n=3时,23<32.归纳猜想:当n=1时,2n>n2;当n≥2时,2n≤n2.【错因分析】对于2n与n2,n仅取1,2,3来判断它们的大小关系,这不具有代表性,忽略了对n>3时情形的归纳.【防范措施】进行归纳推理时,防止归纳的局限性,可多考查一些特殊情形,从中寻找规律,发现一般性的结论.【正解】当n=1时,21>12;当n=2时,22=22;当n=3时,23<32;当n=4时,24=42;当n=5时,25>52;当n=6时,26>62.归纳猜想:当n=1或n≥5时,2n>n2;当n=2或4时,2n=n2;当n=3时,2n<n2.1.归纳推理是从个别事实中推演出一般性结论的推理方法,应用归纳推理可以发现新事实,获得新结论,为学习研究提供方向.2.我们在进行归纳和猜想时,要善于从变化的特殊性中寻找出不变的本质和规律.通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.1.由数列1,10,100,1 000,…,猜测该数列的第n项可能是________.【解析】该数列可整理为100,101,102,103….【答案】10n-12.如图2-1-4所示的是由火柴杆拼成的一列图形,第n 个图形由n 个正方形组成. 通过观察可以发现:第4个图形中,火柴杆有________根;第n 个图形中,火柴杆有________根.图2-1-4【解析】 设a n 表示第n 个图形中的火柴杆数,易知a 1=4,a 2=4+3=7,a 3=7+3=10,a 4=10+3=13….∴a n =3n +1. 【答案】 13 3n +13.(2013·陕西高考)观察下列等式: 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, …,照此规律,第n 个等式可为________ 【解析】 12=1, 12-22=-(1+2), 12-22+32=1+2+3,12-22+32-42=-(1+2+3+4), …,12-22+32-42+…+(-1)n +1n 2=(-1)n +1(1+2+…+n)=(-1)n +1n (n +1)2.【答案】 12-22+32-42+…+(-1)n +1n 2=(-1)n +1n (n +1)24.已知数列{a n }的首项a 1=1,且a n +1=a n1+a n(n =1,2,3,…),试用归纳法归纳出这个数列的通项公式.【解】 当n =1时,a 1=1; 当n =2时,a 2=11+1=12;a 3=a 21+a 2=13;a 4=a 31+a 3=14.归纳可得,数列{a n }的前四项都等于相应序号的倒数,由此可以猜测,这个数列的通项公式为a n =1n(n =1,2,3,…).一、填空题图2-1-51.如图2-1-5所示的是一串白黑相间排列的珠子,按这种规律往下排,那么第36颗珠子的颜色是________色.【解析】通过观察发现,每5颗珠子为一组,前3颗为白色,后2颗为黑色,所以36=35+1=5×7+1.得第36颗珠子一定为白色的.【答案】白2.(2013·无锡高二检测)如图2-1-6所示,第n个图形中,小正六边形的个数为________.图2-1-6【解析】a1=7,a2=7+5=12,a3=12+5=17,∴a n=7+5(n-1)=5n+2.【答案】5n+23.正整数按下表的规律排列,则上起第2 005行,左起第2 006列的数应为________.【解析】第2 006行的第一个数为2 0062,第2 005行的第2 006列的数是以2 0062为首项,-1为公差的等差数列的第2 007项,∴该数为2 0062+(-1)×2 006=2 005×2 006.【答案】 2 005×2 0064.(2012·江西高考改编)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=________.【解析】从给出的式子特点观察可推知等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123.【答案】1235.根据给出的数塔猜测123 456×9+7等于________.1×9+2=1112×9+3=111123×9+4=1 1111 234×9+5=11 11112 345×9+6=111 111【解析】等号右边应为n+1个“1”.【答案】 1 111 1116.定义A*B,B*C,C*D,D*B分别对应下列图形图2-1-7那么下列图形中,图2-1-8可以表示A*D,A*C的分别是________.【解析】由已知图形,抓共性不难总结出:A“|”,B“□”(大),C“—”,D“□”(小).故A*D为(2),A*C为(4).【答案】(2),(4)7.经计算发现下列不等式:2+18<210, 4.5+15.5<210,3+2+17-2<210,…根据以上不等式的规律,试写出一个对正实数a,b都成立的条件不等式:________.【解析】 ∵2+182=10,4.5+15.52=10,3+2+17-22=10, ∴不难得出,若a +b =20,a +b <210. 【答案】 若a +b =20,则a +b <2108.(2013·镇江高二检测)设函数f(x)=x x +2(x >0),观察:f 1(x)=f(x)=xx +2,f 2(x)=f(f 1(x))=x3x +4,f 3(x)=f(f 2(x))=x7x +8,f 4(x)=f(f 3(x))=x15x +16,……根据以上事实,由归纳推理可得:当n∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________.【解析】 函数结果的分母中x 项系数所组成数列的通项公式,由1,3,7,15,…,可推知该数列的通项公式为a n =2n-1.分母中常数项依次为2,4,8,16,…,其通项为2n. 又函数中,分子都是x .∴当n ≥2时,f n (x )=f (f n -1(x ))=x(2n-1)x +2n.【答案】x(2n-1)x +2n二、解答题9.在△ABC 中,不等式1A +1B +1C ≥9π成立,在四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立,在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立,猜想在n 边形A 1A 2…A n 中的不等式,为什么?【解】 不等式左边和式个数分别为3,4,5,…时,不等式右边的数依次为9π,162π,253π,…,其分子依次为32,42,52,…,分母依次为(3-2)π,(4-2)π,(5-2)π,…. 故当不等式左边和式个数为n 个时,归纳猜想右边应为n 2(n -2)π(n≥3,n ∈N *),故所求为1A 1+1A 2+…+1A n≥n 2(n -2)π(n ≥3,n ∈N *).10.已知数列{a n }的前n 项和为S n ,a 1=1且S n -1+1S n+2=0(n≥2),计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.【解】 当n =1时,S 1=a 1=1;当n =2时,1S 2=-2-S 1=-3,∴S 2=-13;当n =3时,1S 3=-2-S 2=-53,∴S 3=-35;当n =4时,1S 4=-2-S 3=-75,∴S 4=-57.猜想:S n =-2n -32n -1(n∈N *).11.观察下列等式: ①cos 2α=2cos 2α-1;②cos 4α=8cos 4α-8cos 2α+1;③cos 6α=32cos 6α-48cos 4α+18cos 2α-1;④cos 8α=128cos 8α-256cos 6α+160cos 4α-32cos 2α+1;⑤cos 10α=m cos 10α-1 280cos 8α+1 120cos 6α+n cos 4α+p cos 2α-1. 求m -n +p 的值.【解】 观察等式可知,cos α的最高次项的系数:2,8,32,128构成了公式比为4的等式数列,故m =128×4=512;取α=0,则cos α=1,cos 10α=1,代入等式⑤,得 1=m -1 280+1 120+n +p -1,即n +p =-350.(1)取α=π3,则cos α=12,cos 10α=-12,代入等式⑤,得-12=m(12)10-1 280×(12)8+1 120×(12)6+n ×(12)4+p×(12)2-1,即n +4p =-200.(2) 联立(1)(2), 得n =-400,p =50.故m -n +p =512-(-400)+50=962.(教师用书独具)古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:图1 图2他们研究过图1中所示的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中所示的1,4,9,16,…,这样的数为正方形数.则289,1 024,1 225,1 378中既是三角形数又是正方形数的是________.【自主解答】 记三角形数构成的数列为{a n },则a 1=1,a 2=3=1+2,a 3=6=1+2+3,a 4=10=1+2+3+4,可得通项公式为a n =1+2+3+…+n =n (n +1)2.同理可得正方形数构成的数列{b n }的通项公式为b n =n 2. 将289,1 024,1 225,1 378分别代入上述两个通项公 式,可得使n 都为正整数的只有1 225. 【答案】 1 225设n≥2,n ∈N ,(2x +12)n -(3x +13)n =a 0+a 1x +a 2x 2+…+a n x n,将|a k |(0≤k ≤n )的最小值记为T n ,则T 2=0,T 3=123-133,T 4=0,T 5=125-135,…,T n ,…,其中T n =________.【解析】 由T 2=0,T 4=0,…猜想T n =0(n 为偶数).T 3=123-133,T 5=125-135,…猜想T n =12n -13n (n 为奇数),因此可得T n =⎩⎪⎨⎪⎧0,n 为偶数,12n -13n ,n 为奇数【答案】 T n =⎩⎪⎨⎪⎧0,n 为偶数,12n -13n ,n 为奇数第2课时 类比推理(教师用书独具)●三维目标 1.知识与技能通过对已学知识的回顾,认识类比推理这一种合情推理的基本方法,并把它用于对问题的发现中去.2.过程与方法正确认识合情推理在数学中的重要作用,养成从小开始认真观察事物、分析问题、发现事物之间的质的联系的良好个性品质,善于发现问题,探求新知识.3.情感、态度与价值观认识数学在日常生产生活中的重要作用,培养学生学数学,用数学,完善数学的正确数学意识.●重点难点重点:了解合情推理的含义,理解类比推理的含义,能利用类比进行简单的推理.难点:类比时寻求合适的类比对象;培养学生“发现—猜想—证明”的推理能力.(教师用书独具)●教学建议本节教材内容要求学生结合已学过的数学实例和生活中的实例,对合情推理——类比推理进行了概括和总结,让学生在学习过程中体会类比推理在数学结论的发现、证明与数学体系构建中的作用.(1)创设恰当的教学问题情境,如鲁班锯的发现、物理学家惠更斯提出了光波这一科学概念,从而提炼出类比推理的一般过程,概括出类比推理的含义.(2)分组交流,合作学习,讲练结合,将班上同学分成六个小组,分组讨论.从具体问题出发——观察、分析比较、联想——归纳,类比——提出猜想,让学生充分感受和体验类比推理的过程.●教学流程创设问题情境,引导学生提炼类比推理的一般过程和含义.⇒借助例1及其变式训练,使学生掌握数列中定义、性质公式的类比.⇒通过例2及其变式训练,使学生掌握平面图形和空间图形的类比规律.⇒通过例3及其变式训练,理解合情推理的应用广泛性并体会其作用.⇒归纳整理,进行课堂小结,整体认识本节课所学知识与思想方法.⇒完成当堂双基达标,巩固所学知识并进行学后反馈、矫正.课标解读 1.结合实例,理解类比推理的含义,能利用类比进行简单的推理(重点、难点). 2.区别归纳推理与类比推理,了解合情推理的合理性(易混点).类比推理【问题导思】已知三角形的如下性质: (1)三角形的两边之和大于第三边; (2)三角形的面积等于高与底积的12.1.试根据上述三角形的性质推测空间四面体的性质. 【提示】 (1)四面体任意三个面的面积大于第四个面的面积. (2)四面体的体积等于底面积与高乘积的13.2.上述两个推理是从特殊到一般的推理吗?【提示】不是.是从三角形的特征推出四面体的特征,两个推理是从特殊到特殊的推理.1.类比推理根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,像这样的推理通常称为类比推理,简称类比法.其思维过程为:观察、比较→联想、类推→猜测新的结论2.类比推理的特征(1)类比推理是两类事物之间的特殊到特殊的推理;(2)类比推理的结果是猜测性的,不一定可靠.合情推理【问题导思】类比推理与归纳推理有何本质的不同?【提示】类比推理是由特殊到特殊的推理,而归纳推理是由部分到整体,由个别到一般的推理.1.合情推理的含义根据已有的事实、正确的结论、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程称为合情推理.归纳推理和类比推理都是数学活动中常用的合情推理.2.合情推理的特点(1)合情推理的结论超越了前提所包容的范围,带有猜想的成分,因此推理所得的结论未必正确;(2)合情推理具有猜测和发现结论,探索和提供证明的思路和方向的作用.数列中的类比推理设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列.【思路探究】 等差数列的性质结论多与和、差有关,等比数列的性质结论多与积、商有关,注意到类比结论中出现T 16T 12这一形式与S 16-S 12对应,易得答案.【自主解答】 等比数列类比等差数列,其中积类比和,除法类比减法,于是可得类比结论为:设等比数列{b n }的前n 项积为T n ,则T 4,T 8T 4,T 12T 8,T 16T 12成等比数列.【答案】 T 8T 4 T 12T 81.运用类比推理必须寻找合适的类比对象,从等差、等比数列的定义、性质、通项公式与前n 项和公式探求,充分挖掘事物的本质及内在联系.2.类比推理的一般步骤为:(1)找出两类对象之间可以确切表述的相似性(或一致性).(2)用一类对象的性质去推测另一类对象的性质,从而得出一个猜想.(3)检验这个猜想.已知命题:若数列{a n }为等差数列,且a m =a ,a n =b(m≠n,m ,n ∈N *),则a m +n =bn -amn -m.现已知等比数列{b n }(b n >0,n ∈N *),且b m =a ,b n =b (m ,n ∈N *且m ≠n ).类比上述结论,求b m +n ,并说明理由.【解】 类比得b m +n =n -m b na m.理由如下:设等比数列{b n }的公比为q , 则b m +n =b m q n.又b m b n =b 1q m -1b 1q n -1=q m -n =a b . ∴q =(ab)1m -n .因此b m +n =b m q n=a (a b )n m -n =(b na m )1n -m =n -mb na m.几何中的类比推理在平面几何里,有勾股定理:设△ABC的两条边BC ,AC 互相垂直,则BC 2+AC 2=AB 2.拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积和底面积的关系,可以得出的正确结论是________.【思路探究】三角形是由直线段围成的封闭图形,三棱锥(四面体)是由三角形围成的封闭图形,因此三角形的边长之间的关系类比到空间为三棱锥的面的面积之间的关系.【自主解答】考虑到直角三角形的两条边互相垂直,所以我们可以选取有3个侧面两两垂直的三棱锥,作为直角三角形的类比对象.直角三角形3个侧面两两垂直的三棱锥∠C=90°∠PDF=∠PDE=∠EDF=90°3条边的长度分别为a,b,c 4个面的面积分别为S1,S2,S3和S2条直角边a,b和1条斜边c 3个“直角面”S1,S2,S3和1个“斜面”S 类比勾股定理的结构,猜想在三棱锥中,S2=S21+S22+S23.1.解决此类问题,从几何元素的数目、位置关系、度量等方面入手,将平面几何的相关结论类比到立体几何中.2.类比与归纳推理虽然不一定正确,但都是经过观察、分析、比较、联想,再进行归纳、类比,然后提出合理猜想的推理,为研究学习提供了一盏明灯.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M(x 0,y 0)的切线方程为xx 0+yy 0=r 2.类比上述性质,可以得到椭圆x 2a 2+y2b2=1类似的性质为________.【解析】 圆的性质中,经过圆上一点M(x 0,y 0)的切线方程就是将圆的方程中的一个x 与y 分别用M(x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y2b2=1类似的性质为:过椭圆x 2a 2+y 2b 2=1上一点P(x 0,y 0)的切线方程为x 0x a 2+y 0yb2=1.【答案】 过椭圆x 2a 2+y 2b 2=1上一点P(x 0,y 0)的切线方程为x 0x a 2+y 0y b 2=1合情推理的创新应用我们已经学过了等差数列,你是否想过有没有等和数列呢?(1)类比“等差数列”给出“等和数列”的定义;(2)探索等和数列{a n}的奇数项和偶数项各有什么特点?并加以说明.(3)在第(2)问中,若a1=2,公和为5,求a18和S21.【思路探究】先根据等差数列的定义类比出“等和数列”的定义,然后再根据此定义探索等和数列的奇数项、偶数项及其前n项的和.【自主解答】(1)如果一个数列从第2项起,每一项与它的前一项的和等于同一个常数,那么这个数列就叫做等和数列.(2)由(1)知a n+a n+1=a n+1+a n+2,所以a n+2=a n.所以等和数列的奇数项相等,偶数项也相等.(3)由“等和数列”的定义,知a1=a3=a5=…=a19=a21=2.a2=a4=a6=…=a18=a20=3.因此a18=3.S21=(a1+a2)+(a3+a4)+…+(a19+a20)+a21=5×10+2=52.1.本题通过对等差数列定义及性质的理解,类比出等和数列的定义和性质,考查学生的类比应用能力.2.从类比出新数列的定义出发,由特殊到一般,归纳出数列规律,类比是一个伟大的引路人,在探求知识的过程中,我们要充分运用类比的方法,由已知探究未知.设f(x)=12x+2,利用课本中推导等差数列前n项和公式的方法,可求得f(-5)+f(-4)+…+f(0)+f(1)+…+f(5)+f(6)的值是________.【解析】等差数列运用“倒序相加”求和.令t=f(-5)+f(-4)+…+f(0)+f(1)+…+f(5)+f(6)①则t=f(6)+f(5)+…+f(1)+f(0)+…+f(-4)+f(-5).②∵f(x)=12x+2,∴f(1-x)=121-x+2=2x2+2·2x=2x2(2x+2),因此f(x)+f(1-x)=12x+2+2x2(2x+2)=12=22,故①+②,得2t=12×22=62,∴t=3 2.【答案】3 2误将类比所得结论作为推理依据致误已知a1,b1,c1,a2,b2,c2都是非零实数,不等式a 1x 2+b 1x +c 1<0,a 2x 2+b 2x +c 2<0的解集分别为M ,N ,则“a 1a 2=b 1b 2=c 1c 2”是“M=N”成立的________条件.【错解】 在方程a 1x 2+b 1x +c 1=0与a 2x 2+b 2x +c 2=0中,若“a 1a 2=b 1b 2=c 1c 2”,则两个方程同解.由a 1a 2=b 1b 2=c 1c 2知两个不等式同解,故“a 1a 2=b 1b 2=c 1c 2”是“M=N”成立的充要条件.【答案】 充要【错因分析】 错解将方程的同解原理类比到不等式中,忽略了不等式与等式的本质区别.【防范措施】 类比推理是不严格的,所得结论的正确与否有待用实践来证明,解题时若直接使用类比所得结论进行推理则容易出现错误,因此要理解好类比对象的本质,忌盲目类比.【正解】 当a 1a 2=b 1b 2=c 1c 2时,可取a 1=b 1=c 1=1,a 2=b 2=c 2=-1,则M =∅,N =R ,即a 1a 2=b 1b 2=c 1c 2D /⇒M =N ;当M =N =∅时,可取a 1=b 1=c 1=1,a 2=1,b 2=2,c 2=3,则a 1a 2≠b 1b 2≠c 1c 2, 即M =ND /⇒a 1a 2=b 1b 2=c 1c 2.综上知“a 1a 2=b 1b 2=c 1c 2”是“M =N ”成立的既不充分也不必要条件. 【答案】 既不充分也不必要1.进行类比推理时,要尽量从本质上思考,不要被表面现象所迷惑,否则,只抓住一点表面的相似甚至假象就去类比,就会犯机械类比的错误.2.类比推理的特点:(1)类比是由已经解决的问题和已经获得的知识出发,推测正在研究的事物的属性,提出新问题作出新发现.(2)类比的结果是猜测性的,不一定可靠,但它有发现功能.3.要熟练掌握一些常见的类比推理,如等式与不等式、椭圆与双曲线的类比,特别是等差数列与等比数列的类比和平面几何与立体几何(包括三角形与四面体、矩形与长方体、圆与球)的类比,需掌握它们的类比特点与一些常用结论.1.若数列{a n }是等差数列,则通项为b n =a 1+a 2+…+a n n 的数列{b n }(n∈N *)也是等差数列.类比上述性质,相应地,若数列{c n }是等比数列,且c n >0(n ∈N *),则有通项为d n =________的数列{d n }(n ∈N *)也是等比数列.【解析】 “和”变“积”,“商”变“开方”. 【答案】nc 1·c 1·…c n2.下面使用类比推理恰当的序号是________.①“若a·3=b·3,则a =b”类推出“a ·c =b ·c ,则a =b ”; ②“(a ·b )·c =a ·(b ·c )”类推出“(a ·b )·c =a ·(b ·c )”; ③“(a +b )c =ac +bc ”类推出“a +bc =a c +bc(c ≠0)”;④“(ab)n=a n b n”类推出“(a+b)n=a n+b n”.【解析】①②④均错.【答案】③3.在平面直角坐标系O—xy中,二元一次方程Ax+By=0(A,B不同时为0)表示过原点的直线.类似地:在空间直角坐标系O—xyz中,三元一次方程Ax+By+Cz=0(A,B,C 不同时为0)表示________.【解析】平面几何中的直线类比到立体几何中应为平面,“过原点”类比仍为“过原点”,因此应得到:在空间直角坐标系O—xyz中,三元一次方程Ax+By+Cz=0(A,B,C 不同时为0)表示过原点的平面.【答案】过原点的平面4.类比圆的下列特征,找出球的相关特征.(1)平面内与定点距离等于定长的点的集合是圆;(2)平面内不共线的3个点确定一个圆;(3)圆的周长和面积可求.【解】(1)在空间中与定点距离等于定长的点的集合是球面;(2)空间中不共面的4个点确定一个球;(3)球的表面积与体积可求.一、填空题1.对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面各正三角形的________.【解析】“边的中点”类比为“各面的中心”.【答案】中心2.已知{b n}为等比数列,b5=2,则b1b2b3…b9=29.若{a n}为等差数列,a5=2,则{a n}的类似结论为________.【解析】乘积类比和,幂类比积.∴a1+a2+a3+…+a9=2×9.【答案】a1+a2+a3+…+a9=2×93.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间内,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.【解析】若两个正四面体的棱长的比为1∶2,则它们的体积比为1∶8.事实上,由平面几何和立体几何的知识,可知很多比值在平面上成平方关系,在空间内成立方关系.【答案】1∶84.在圆中,连结圆心和弦的中点的直线垂直于弦,类比圆的上述结论写出球的相应结论为________.【解析】平面图形中的点线关系类比到空间为线面关系,对应得出球的相应结论:在球中,连结球心和截面圆的圆心的直线垂直于截面.【答案】在球中,连结球心和截面圆的圆心的直线垂直于截面5.由代数式的乘法法则类比推导向量的数量积的运算法则:(1)“mn=nm”类比得“a·b=b·a”;。
2018年高中数学第2章推理与证明2.2直接证明与间接证明学案苏教版选修1-2
![2018年高中数学第2章推理与证明2.2直接证明与间接证明学案苏教版选修1-2](https://img.taocdn.com/s3/m/35281ee38ad63186bceb19e8b8f67c1cfbd6ee42.png)
2.2 直接证明与间接证明第1课时直接证明1.若实数a,b满足a+b=3,证明:2a+2b≥4 2.证明:因为2a+2b≥22a·2b=22a+b,又a+b=3,所以2a+2b≥223=4 2.故2a+2b≥42成立.问题1:本题利用什么公式?提示:基本不等式.问题2:本题证明顺序是什么?提示:从已知到结论.2.求证:3+22<2+7.证明:要证明3+22<2+7,由于3+22>0,2+7>0,只需证明(3+22)2<(2+7)2,展开得11+46<11+47,只需证明6<7,显然6<7成立.所以3+22<2+7成立.问题1:本题证明从哪里开始?提示:从结论开始.问题2:证题思路是什么?提示:寻求上一步成立的充分条件.1.直接证明(1)直接从原命题的条件逐步推得命题成立,这种证明通常称为直接证明.(2)直接证明的一般形式本题条件已知定义已知公理已知定理…?本题结论.2.综合法和分析法直接证明定义推证过程综合法从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.这种证明方法称为综合法已知条件?…?…?结论分析法从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止,这种证明方法称为分析法结论?…?…?已知条件1.综合法是从“已知”看“可知”逐步推向未知,由因导果通过逐步推理寻找问题成立的必要条件.它的证明格式为:因为×××,所以×××,所以×××……所以×××成立.2.分析法证明问题时,是从“未知”看“需知”,执果索因逐步靠拢“已知”,通过逐步探索,寻找问题成立的充分条件.它的证明格式:要证×××,只需证×××,只需证×××……因为×××成立,所以×××成立.[例1] 已知a,b,c∈R,且a+b+c=1,求证:a2+b2+c2≥1 3 .[思路点拨] 从已知条件出发,结合基本不等式,即可得出结论.[精解详析] ∵a2+19≥2a3,b2+19≥2b3,c2+19≥2c3,∴a2+19+b2+19+c2+19≥23a+23b+23c=23(a+b+c)=23.∴a2+b2+c2≥1 3 .[一点通] 综合法证明问题的步骤第一步:分析条件,选择方向.仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题思路.第二步:转化条件、组织过程,把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,有些语言可做适当的修饰,反思总结解题方法的选取.1.设a,b,c为不全相等的正数,且abc=1,求证:1a+1b+1c>a+b+c.证明:∵a>0,b>0,c>0,且abc=1,∴1a+1b+1c=bc+ca+ab.又bc+ca≥2bc·ca=2abc2=2c,同理bc+ab≥2b,ca+ab≥2a.∵a、b、c不全相等.∴上述三个不等式中的“=”不能同时成立.∴2(bc+ca+ab)>2(c+a+b),即bc+ca+ab>a+b+c,故1a+1b+1c>a+b+c.2.(1)如图,证明命题“a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥b,则a⊥c”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明).解:(1)证明:法一:如图,过直线b上任一点作平面π的垂线n,设直线a,b,c,n的方向向量分别是a,b,c,n,则b,c,n共面.根据平面向量基本定理,存在实数λ,μ使得c=λb+μn,则a·c=a·(λb+μn)=λ(a·b)+μ(a·n),因为a⊥b,所以a·b=0,又因为aπ,n⊥π,所以a·n=0,故a·c=0,从而a⊥c.法二:如图,记c∩b=A,P为直线b上异于点A的任意一点,过P作PO⊥π,垂足为O,则O∈c.∵PO⊥π,aπ,∴直线PO⊥a.又a⊥b,b平面PAO,PO∩b=P,∴a⊥平面PAO.又c平面PAO,∴a⊥c.(2)逆命题为:a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c 是直线b在π上的投影,若a⊥c,则a⊥b.逆命题为真命题.[例2] 已知a>b>0,求证:(a-b)28a<a+b2-ab<(a-b)28b.[思路点拨] 本题条件较为简单,结论比较复杂,我们可以从要证的结论入手,一步步探求结论成立的充分条件,即用分析法.[精解详析] 要证明(a-b)28a<a+b2-ab<(a-b)28b成立,只需证(a-b)24a<a+b-2ab<(a-b)24b成立,即证(a-b)24a<(a-b)2<(a-b)24b成立.只需证a-b2a<a-b<a-b2b成立.只需证a+b2a<1<a+b2b成立,即证a+b<2a且a+b>2b,即b<a.∵a>b>0,∴b<a成立.∴(a-b)28a<a+b2-ab<(a-b)28b成立.[一点通] 在已知条件较为简单,所要证的问题较为复杂,无从入手的情况下,我们可从结论入手逆推,执果索因,找到结论成立的条件,注明必要的文字说明,再用综合法写出步骤.3.若P=a+a+7,Q=a+3+a+4,a≥0,求证:P<Q.证明:要证P<Q,主要证P2<Q2,只要证2a+7+2a(a+7)<2a+7+2(a+3)(a+4),即证a2+7a<a2+7a+12,即证0<12.因为0<12成立,所以P<Q成立.4.已知a、b是正实数,求证:ab+ba≥ a+b.证明:要证ab+ba≥ a+b,只需证a a+b b≥ab(a+b).即证(a+b-ab)(a+b)≥ab(a+b),即证a+b-ab≥ab.也就是要证a+b≥2ab.因为a,b为正实数,所以a+b≥2ab成立,所以ab+ba≥ a+b.[例3] 已知0<a≤1,0<b≤1,0<c≤1,求证:1+ab+bc+caa+b+c+abc≥1.[思路点拨] 因为0<a≤1,0<b≤1,0<c≤1,所以要证明1+ab+bc+caa+b+c+abc≥1成立,可转化为证明1+ab+bc+ca≥a+b+c+abc成立.[精解详析] ∵a>0,b>0,c>0,∴要证1+ab+bc+caa+b+c+abc≥1,只需证1+ab+bc+ca≥a+b+c+abc,即证1+ab+bc+ca-(a+b+c+abc)≥0.∵1+ab+bc+ca-(a+b+c+abc)=(1-a)+b(a-1)+c(a-1)+bc(1-a)=(1-a)(1-b-c+bc)=(1-a)(1-b)(1-c),又a≤1,b≤1,c≤1,∴(1-a)(1-b)(1-c)≥0,∴1+ab+bc+ca-(a+b+c+abc)≥0成立,即证明了1+ab+bc+caa+b+c+abc≥1.[一点通] (1)较为复杂问题的证明如单纯利用分析法和综合法证明较困难,这时可考虑分析法、综合法轮流使用以达到证题目的.(2)综合法和分析法的综合应用过程既可先用分析法再用综合法,也可先用综合法再用分析法,一般无具体要求,只要达到证题的目的即可.5.在△ABC中,三个内角A、B、C成等差数列.求证:1a+b+1b+c=3a+b+c.证明:要证1a+b+1b+c=3a+b+c,只需证a+b+ca+b+a+b+cb+c=3,即ca+b+ab+c=1,只需证c(b+c)+a(a+b)(a+b)(b+c)=1,即a2+c2+ab+bcb2+ab+ac+bc=1.下面证明:a2+c2+ab+bcb2+ab+ac+bc=1.∵A+C=2B,A+B+C=180°,∴B=60°. ∴b2=a2+c2-ac.∴a2+c2+ab+bcb2+ab+ac+bc=a2+c2+ab+bca2+c2-ac+ab+ac+bc=1.故原等式成立.6.若a,b,c是不全相等的正数.求证:lg a+b2+lgb+c2+lgc+a2>lg a+lg b+lg c.证明:要证lg a+b2+lgb+c2+lgc+a2>lg a+lg b+lg c成立,即证lg a+b2·b+c2·c+a2>lg(abc)成立,只需证a+b2·b+c2·c+a2>abc成立,∵a+b2≥ab>0,b+c2≥bc>0,c+a2≥ca>0,∴a+b2·b+c2·c+a2≥abc>0,(*)又∵a,b,c是不全相等的正数,∴(*)式等号不成立,∴原不等式成立.1.综合法:由因导果,步骤严谨,逐层递进、步步为营,书写表达过程是条理清晰、形式简洁,宜于表达推理的思维轨迹、缺点是探路艰难,不易达到所要证明的结论.2.分析法:执果索因,方向明确、利于思考,便于寻找解题思路.缺点是思路逆行、叙述繁琐、表述易出错.3.在解决一个问题时,我们常常把综合法和分析法结合起来使用.根据条件的结构特点去转化结论,得到中间结论P1;根据原结论的特点去寻求使结论成立的条件,寻找到条件P2;当由P1可以推出P2时,结论得证.一、填空题1.在△ABC中,A>B是sin A>sin B的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).解析:在△ABC中,由正弦定理得asin A=bsin B.又∵A>B,∴a>b,∴sin A>sin B反之,若sin A>sin B,则a>b,∴A>B∴A>B是sin A>sin B的充要条件.答案:充要2.设n∈N,则n+4-n+3________n+2-n+1(判断大小).解析:要证n+4-n+3<n+2-n+1,只需证n+4+n+1<n+3+n+2,只需证(n+4+n+1)2<(n+2+n+3)2,即2n+5+2(n+4)(n+1)<2n+5+2(n+2)(n+3).只需证(n+1)(n+4)<(n+2)(n+3),只需证(n+1)(n+4)<(n+2)(n+3),即n2+5n+4<n2+5n+6,即4<6即可.而4<6成立,故n+4-n+3<n+2-n+1.答案:<3.如果a a+b b>a b+b a,则实数a,b应满足的条件是____________________.解析:a a+b b>a b+b a?a a-a b>b a-b ba(a-b)>b(a-b)?(a-b)(a-b)>0(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b4.若三棱锥S-ABC中,SA⊥BC,SB⊥AC,则S在底面ABC上的射影为△ABC的________.(填重心、垂心、内心、外心之一)解析:如图,设S在底面ABC上的射影为点O,∴SO⊥平面ABC,连接AO,BO,∵SA⊥BC,SO⊥BC,∴BC⊥平面SAO,∴BC⊥AO.同理可证,AC⊥BO.∴O为△ABC的垂心.答案:垂心5.已知函数f(x)=10x,a>0,b>0,A=f a+b2,B=f()ab,C=f2aba+b,则A,B,C的大小关系为____________________.解析:由a+b2≥ab≥2aba+b,又f(x)=10x在R上是单调增函数,所以fa+b2≥f()ab≥f 2aba+b,即A≥B≥C.答案:A≥B≥C二、解答题6.已知函数f(x)=log2(x+2),a,b,c是两两不相等的正数,且a,b,c成等比数列,试判断f(a)+f(c)与2f(b)的大小关系,并证明你的结论.解:f(a)+f(c)>2f(b).证明如下:因为a,b,c是两两不相等的正数,所以a+c>2ac.因为b2=ac,所以ac+2(a+c)>b2+4b,即ac+2(a+c)+4>b2+4b+4,从而(a+2)(c+2)>(b+2)2.因为f(x)=log2(x+2)是增函数,所以log2(a+2)(c+2)>log2(b+2)2,即log2(a+2)+log2(c+2)>2log2(b+2).故f(a)+f(c)>2f(b).7.已知a>0,用分析法证明:a2+1a2-2>a+1a-2.证明:要证a2+1a2-2≥a+1a-2,只需证a2+1a2+2≥a+1a+ 2.因为a>0,故只需证a2+1a2+22≥a+1a+22,即a2+1a2+4 a2+1a2+4≥a2+2+1a2+2 2a+1a+2,从而只需证2a2+1a2≥2a+1a,只需证4a2+1a2≥2a2+2+1a2,即a2+1a2≥2,而上述不等式显然成立,故原不等式成立.8.(江苏高考改编)设{a n}是首项为a,公差为d的等差数列(d≠0),S n是其前n项的和.记b n=nS nn2+c,n∈N*,其中c为实数.若c=0,且b1,b2,b4成等比数列,证明:S nk=n2S k(k,n∈N*).证明:由c=0,得b n=S nn=a+n-12d.又b1,b2,b4成等比数列,所以b22=b1b4,即a+d22=a a+32d,化简得d2-2ad=0.因为d≠0,所以d=2a.因此,对于所有的m∈N*,有S m=m2a.从而对于所有的k,n∈N*,有S nk=(nk)2a=n2k2a=n2S k.第2课时间接证明1.问题:在今天商品大战中,广告成了电视节目中的一道美丽的风景线,几乎所有的广告商都熟谙这样的命题变换艺术.如宣传某种食品,其广告词为:“拥有的人们都幸福,幸福的人们都拥有”.该广告词实际说明了什么?提示:说的是:“不拥有的人们不幸福”.2.已知正整数a,b,c满足a2+b2=c2.求证:a,b,c不可能都是奇数.问题1:你能利用综合法和分析法给出证明吗?提示:不能.问题2:a、b、c不可能都是奇数的反面是什么?还满足条件a2+b2=c2吗?提示:都是奇数.若a、b、c都是奇数,则不能满足条件a2+b2=c2.1.间接证明不是直接从原命题的条件逐步推得命题成立,这种不是直接证明的方法通常称为间接证明.反证法就是一种常用的间接证明方法,间接证明还有同一法、枚举法等.2.反证法(1)反证法证明过程反证法证明时,要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题),用反证法证明命题“若p则q”的过程可以用下面的框图表示:肯定条件p否定结论q→导致逻辑矛盾→“p且q”为假→“若p则q”为真(2)反证法证明命题“若p则q”的步骤①反设——假设命题的结论不成立,即假定原结论的反面为真.②归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果.③存真——由矛盾结果,断定反设不真,从而肯定原结论成立.1.反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法.2.可能出现矛盾的四种情况:(1)与题设矛盾;(2)与反设矛盾;(3)与公理、定理或已被证明了的结论矛盾;(4)在证明过程中,推出自相矛盾的结论.[例1] 已知平面上四点,没有三点共线,求证:以每三点为顶点的三角形不可能都是锐角三角形.[思路点拨] 本题证明的命题是否定性命题,解答时先假设四个三角形都是锐角三角形,再分情况去推出矛盾.[精解详析] 假设以每三点为顶点的四个三角形都是锐角三角形,记这四个点为A、B、C、D,考虑△ABC,点D的位置分为在△ABC之内或之外两种情况.(1)如果点D在△ABC之内(如图(1)),根据假设围绕点D的三个角都是锐角,其和小于270°,这与一个周角等于360°矛盾.(2)如果点D在△ABC之外(如图(2)),根据假设∠A,∠B,∠C,∠D都小于90°,这和四边形内角之和等于360°矛盾.综上所述.原结论成立.[一点通] (1)结论中含有“不”、“不是”、“不可能”、“不存在”等词语的命题称为否定性命题,此类问题正面比较模糊,而反面比较具体,适于应用反证法.(2)反证法属于逻辑方法范畴,它的严谨体现在它的原理上,即“否定之否定等于肯定”,其中:第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定了假设”.反证法属“间接解题方法”.1.实数a、b、c不全为0等价于________(填序号).①a,b,c全不为0;②a,b,c中最多只有一个为0;③a,b,c中只有一个不为0;④a,b,c中至少有一个不为0.解析:“不全为0”等价于“至少有一个不为0”.答案:④2.如图,正方体ABCD-A1B1C1D1中,点M是A1D1的中点,点N是CD的中点,用反证法证明直线BM与直线A1N是两条异面直线.解:假设直线BM与A1N共面.则A1D1?平面A1BND1,且平面A1BND1∩平面ABCD=BN,由正方体特征知A1D1∥平面ABCD,故A1D1∥BN,又A1D1∥BC,所以BN∥BC.这与BN∩BC=B矛盾,故假设不成立.所以直线BM与直线A1N是两条异面直线.3.已知三个正数a,b,c成等比数列,但不成等差数列,求证:a,b,c不成等差数列.证明:假设a,b,c成等差数列,则a+c=2b,即a+c+2ac=4b,而b2=ac,即b=ac,∴a+c+2ac=4ac,所以(a-c)2=0.即a=c,从而a=b=c,与a,b,c不成等差数列矛盾,故a,b,c不成等差数列.[例2] 求证:两条相交直线有且只有一个交点.[思路点拨] “有且只有一个”的否定分两种情况:“至少有两个”、“一个也没有”.[精解详析] 假设结论不成立,则有两种可能:无交点或不只有一个交点.若直线a,b无交点,则a∥b或a,b是异面直线,与已知矛盾.若直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.[一点通] 证明“有且只有一个”的问题,需要证明两个命题,即存在性和惟一性.当证明结论以“有且只有”“只有一个”“惟一存在”等形式出现的命题时,由于反设结论易于导出矛盾,所以用反证法证其惟一性就较为简单明了.4.证明方程2x=3有且仅有一个根.证明:∵2x=3,∴x=log23,这说明方程有一个根.下面用反证法证明方程2x=3的根是惟一的,假设方程2x=3有两个根b1、b2(b1≠b2),则2b1=3,2b2=3.两式相除得:2b1-b2=1.如果b1-b2>0,则2b1-b2>1,这与2b1-b2=1相矛盾.如果b1-b2<0,则2b1-b2<1,这与2b1-b2=1相矛盾.因此b1-b2=0,则b1=b2,这就同b1≠b2相矛盾.如果方程的根多于两个,同样可推出矛盾.故2x=3有且仅有一个根.5.求证:过平面外一点有且只有一条直线和这个平面垂直.解:已知P?平面α.求证:过点P和平面α垂直的直线b有且只有一条.证明:(1)存在性:∵P?平面α,由立体几何知识知:过点P能作出一条直线与平面α垂直,故直线b存在.(2)惟一性:假设过点P还有一条直线c与平面α垂直.由b⊥α,c⊥α,得b∥c,这与b∩c=P矛盾,故假设不存在,因此直线b惟一.综上所述,过平面外一点有且只有一条直线和这个平面垂直.[例3] 已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1.求证:a,b,c,d中至少有一个是负数.[思路点拨] 本题要证a、b、c、d中至少有一个是负数,具体有一个负数?两个负数?三个负数?还是四个负数?都有可能,谁是负数也都有可能.所以正面证明很复杂,可考虑用反证法.[精解详析] 假设a、b、c、d都不是负数,即a≥0,b≥0,c≥0,d≥0.∵a+b=c+d=1,∴b=1-a≥0,d=1-c≥0.∴ac+bd=ac+(1-a)(1-c)=2ac-(a+c)+1=(ac-a)+(ac-c)+1=a(c-1)+c(a-1)+1.∵a(c-1)≤0,c(a-1)≤0.∴a(c-1)+c(a-1)+1≤1,即ac+bd≤1.与ac+bd>1相矛盾.∴假设不成立.∴a、b、c、d中至少有一个是负数.[一点通] (1)对于否定性命题或结论中出现“至多”“至少”“不可能”等字样时,常用反证法.(2)常用的“原结论词”与“反设词”归纳如下表:原结论词至少有一个至多有一个至少有n个至多有n个反设词一个也没有(不存在)至少有两个至多有n-1个至少有n+1个6.已知a,b,c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a不能都大于1 4 .证明:假设(1-a)b,(1-b)c,(1-c)a都大于1 4 .∵a,b,c∈(0,1),∴1-a>0,1-b>0,1-c>0,∴(1-a)+b2≥(1-a)b>14=12.同理(1-b)+c2>12,(1-c)+a2>12.三式相加,得(1-a)+b2+(1-b)+c2+(1-c)+a2>32,即32>32,矛盾.所以(1-a)b,(1-b)c,(1-c)a不能都大于1 4 .7.用反证法证明:若函数f(x)在区间[a,b]上是增函数,那么方程f(x)=0在区间[a,b]上至多只有一个实数根.证明:假设方程f(x)=0在区间[a,b]上至少有两个根,设α,β为其中的两个实根.因为α≠β,不妨设α<β,又因为函数f(x)在区间[a,b]上是增函数,所以f(α)<f(β).这与f(α)=0=f(β)矛盾.所以方程f(x)=0在区间 [a,b]上至多只有一个实根.1.反证法证明的适用情形(1)一些基本命题、基本定理;(2)易导出与已知矛盾的命题;(3)“否定性”命题;(4)“惟一性”命题;(5)“必然性”命题;(6)“至多”“至少”类命题;(7)涉及“无限”结论的命题.2.用反证法证明问题的三个注意点(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必然罗列出各种可能结论,缺少任何一种可能,反证都是不完全的;(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与事实矛盾等,推导出的矛盾必须是明显的.一、填空题1.命题“1+ba,1+ab中至多有一个小于2”的反设为__________________.答案:1+ba,1+ab都小于 22.(山东高考改编)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是____________________.解析:至少有一个实根的否定是没有实根.答案:方程x3+ax+b=0没有实根3.用反证法证明命题“若a2+b2=0,则a,b全为0(a、b为实数)”,其反设为____________________.解析:“a,b全为0”即是“a=0且b=0”,因此它的反设为“a≠0或b≠0”.答案:a,b不全为04.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,故假设错误.②所以一个三角形不能有两个直角.③假设△ABC中有两个直角,不妨设∠A=90°,∠B=90°.上述步骤的正确顺序为________.解析:由反证法的一般步骤可知,正确的顺序应为③①②.答案:③①②5.用反证法证明命题“若x2-(a+b)x+ab≠0,则x≠a且x≠b”时,应假设为______________________.解析:对“且”的否定应为“或”,所以“x≠a且x≠b”的否定应为“x=a或x=b”.答案:x=a或x=b二、解答题6.(陕西高考)设{a n}是公比为q的等比数列.(1)推导{a n}的前n项和公式;(2)设q≠1,证明数列{a n+1}不是等比数列.解:(1)设{a n}的前n项和为S n,当q=1时,S n=a1+a1+…+a1=na1;当q≠1时,S n=a1+a1q+a1q2+…+a1q n-1,①qS n=a1q+a1q2+…+a1q n,②①-②得,(1-q)S n=a1-a1q n,∴S n=a1(1-q n)1-q,∴S n=na1,q=1,a1(1-q n)1-q,q≠1.(2)证明:假设{a n+1}是等比数列,则对任意的k∈N*,(a k+1+1)2=(a k+1)(a k+2+1),a2k+1+2a k+1+1=a k a k+2+a k+a k+2+1,a21q2k+2a1q k=a1q k-1·a1q k+1+a1q k-1+a1q k+1,∵a1≠0,∴2q k=q k-1+q k+1.∵q≠0,∴q2-2q+1=0,∴q=1,这与已知矛盾.∴假设不成立,故{a n+1}不是等比数列.7.设f(x)=x2+ax+b,求证:|f(1)|,|f(2)|,|f(3)|中至少有一个不小于1 2 .证明:假设|f(1)|<12,|f(2)|<12,|f(3)|<12,则有-12<1+a+b<12,-12<4+2a+b<12,-12<9+3a+b<12.于是有-32<a+b<-12,①-92<2a+b<-72,②-192<3a+b<-172. ③由①、②得-4<a<-2,④由②、③得-6<a<-4.⑤④、⑤显然相互矛盾,所以假设不成立,所以原命题正确.8.已知P?直线a.求证:过点P和直线a平行的直线b有且只有一条.证明:(1)存在性:∵P?直线a,∴点P和直线a确定一个平面α.由平面几何知识知:在平面α内过点P能作出一条直线与直线a平行,故直线b存在.(2)惟一性:假设过点P还有一条直线c与a平行.∵a∥b,a∥c,∴b∥c,这与直线b、c有共点P矛盾.故假设不存在,因此直线b惟一.综上所述,过直线外一点有且只有一条直线和这条直线平形.。
高中数学第2章推理与证明2.2.1直接证明学案苏教版选修
![高中数学第2章推理与证明2.2.1直接证明学案苏教版选修](https://img.taocdn.com/s3/m/2adf9254763231126edb1168.png)
高中数学第2章推理与证明2.2.1直接证明学案苏教版选修2、2、1 直接证明1、了解直接证明的两种基本方法分析法和综合法的证明思路与步骤、(重点)2、会用综合法、分析法证明一些数学问题、(重点、难点)3、综合法、分析法的格式区别、(易混点)[基础初探]教材整理直接证明阅读教材P46~P48“练习”以上部分,完成下列问题、直接证明直接从原命题的条件逐步推得命题成立,这种证明通常称为直接证明、1、综合法(1)定义:从已知条件出发,以已知的定义、公理、定理为依据逐步下推,直到推出要证明的结论为止,这种证明方法常称为综合法、(2)推证过程:⇒…⇒…⇒、2、分析法(1)定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止、这种证明方法常称为分析法、(2)推证过程:⇐…⇐…⇐、1、判断正误:(1)综合法是直接证明,分析法的过程是演绎推理、()(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件、()(3)证明不等式“+<+”最合适的方法是分析法、()(4)在解决问题时,可用分析法寻找解题思路,再用综合法展现解题过程、()【答案】(1)√(2) (3)√(4)√2、命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的证明过程“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=-=cos2θ”应用了________(填“综合法”或“分析法”)、【解析】从证明的过程可知,本题是从已知条件出发证得结果,故为综合法、【答案】综合法3、在不等边三角形中,a为最大边,要想得到∠A为钝角的结论,三边a,b,c应满足的条件为________、【导学号:】【解析】要证∠A为钝角,只需证cos A=<0即可,也就是b2+c2<a2、【答案】b2+c2<a2[质疑手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]综合法的应用(1)在△ABC中,已知cos Acos B>sin Asin B,则△ABC的形状一定是__________、(2)已知方程(x2-mx+2)(x2-nx+2)=0的四个根组成一个首项为的等比数列,则|m-n|=__________、(3)下面的四个不等式:①a2+b2+3≥ab+(a+b);②a(1-a)≤;③+≥2;④(a2+b2)(c2+d2)≥(ac+bd)2、其中恒成立的有__________、【自主解答】(1)∵cos Acos B>sin Asin B,∴cos Acos B-sin AsinB>0,∴cos(A+B)>0,即cos(π-C)>0,∴cos C<0,又0<C<π,∴<C<π,所以△ABC是钝角三角形、(2)设方程的四个根分别为x1,x2,x3,x4,则由题意可知,x1=,x1x4=x2x3=2,∴x4=4、设公比为q,则x4=x1q3,∴4=q3,∴q=2,∴x2=1,x3=2,由根与系数的关系可得,m=x1+x4=,n=x2+x3=3,∴|m-n|=、(3)①a2+b2+3=+++++≥2+2+2=ab+(a+b)(当且仅当a2=b2=3时,等号成立)、②a(1-a)=-a2+a=-2+≤、③当a与b异号时,不成立、④∵a2d2+b2c2≥2abcd,∴(ac+bd)2=a2c2+b2d2+2abcd≤a2c2+a2d2+b2c2+b2d2=(a2+b2)(c2+d2),故不等式恒成立,所以①②④恒成立、【答案】(1)钝角三角形(2) (3)①②④1、综合法处理问题的三个步骤→ ↓→ ↓→2、用综合法证明不等式时常用的结论(1)ab≤2≤(a,b∈R);(2)a+b≥2(a≥0,b≥0)、[再练一题]1、综合法是()A、执果索因的逆推证法B、由因导果的顺推证法C、因果分别互推的两头凑法D、原命题的证明方法【答案】B分析法的应用设a,b为实数,求证:≥(a+b)、【精彩点拨】待证不等式中含有根号,用平方法去根号是关键、【自主解答】当a+b≤0时,∵≥0,∴≥(a+b)成立、当a+b>0时,用分析法证明如下:要证≥(a+b),只需证()2≥2,即证a2+b2≥(a2+b2+2ab),即证a2+b2≥2ab、∵a2+b2≥2ab对一切实数恒成立,∴≥(a+b)成立、综上所述,不等式成立、1、当已知条件简单而证明的结论比较复杂时,一般采用分析法,在叙述过程中“要证”“只需证”“即要证”这些词语必不可少,否则会出现错误、2、逆向思考是用分析法证题的主题思想,通过反推,逐步寻找使结论成立的充分条件,正确把握转化方向,使问题顺利获解、[再练一题]2、已知a>0,->1,求证:>、【证明】由已知->1及a>0可知0<b<1,要证>,只需证>1,只需证1+a-b-ab>1,只需证a-b-ab>0,即>1,即->1,这是已知条件,所以原不等式得证、[探究共研型]综合法与分析法的综合应用探究1 综合法与分析法的推理过程是合情推理还是演绎推理?【提示】综合法与分析法的推理过程是演绎推理,它们的每一步推理都是严密的逻辑推理,从而得到的每一个结论都是正确的,不同于合情推理中的“猜想”、探究2 综合法与分析法有什么区别?【提示】综合法是从已知条件出发,逐步寻找的是必要条件,即由因导果;分析法是从待求结论出发,逐步寻找的是充分条件,即执果索因、已知△ABC的三个内角A,B,C为等差数列,且a,b,c分别为角A,B,C的对边,求证:(a+b)-1+(b+c)-1=3(a +b+c)-1、【精彩点拨】先求出角B,然后利用余弦定理转化为边之间的关系解决、【自主解答】法一:(分析法)要证(a+b)-1+(b+c)-1=3(a+b+c)-1,即证+=,只需证+=3,化简,得+=1,即c(b+c)+(a+b)a =(a+b)(b+c),所以只需证c2+a2=b2+ac、因为△ABC的三个内角A,B,C成等差数列,所以B=60,所以cos B==,即a2+c2-b2=ac成立、∴(a+b)-1+(b+c)-1=3(a+b+c)-1成立、法二:(综合法)因为△ABC的三内角A,B,C成等差数列,所以B=60、由余弦定理,有b2=c2+a2-2accos60、所以c2+a2=ac+b2,两边加ab+bc,得c(b+c)+a(a +b)=(a+b)(b+c),两边同时除以(a+b)(b+c),得+=1,所以+=3,即+=,所以(a+b)-1+(b+c)-1=3(a+b+c)-1、综合法由因导果,分析法执果索因,因此在实际解题时,常常把分析法和综合法结合起来使用,即先利用分析法寻找解题思路,再利用综合法有条理地表述解答过程、[再练一题]3、设x≥1,y≥1,证明:x+y+≤++xy、【证明】因为x≥1,y≥1,所以要证明x+y+≤++xy,只需证明xy(x+y)+1≤y+x+(xy)2、将上式中的右式减左式,得[y+x+(xy)2]-[xy(x+y)+1]=[(xy)2-1]-[xy(x+y)-(x+y)]=(xy+1)(xy-1)-(x+y)(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1)、因为x≥1,y≥1,所以(xy-1)(x-1)(y-1)≥0,从而可得不等式x+y+≤++xy成立、[构建体系]—1、已知x>0,y>0,且+=1,则xy的最大值为______________、【解析】∵1=+≥2=、∴xy≤3,当且仅当x=,y=2时等号成立、【答案】32、如果a>b,则实数a,b应满足的条件是__________、【导学号:】【解析】要使a>b,只需使a>0,b>0,(a)2>(b)2,即a>b>0、【答案】a>b>03、将下面用分析法证明≥ab的步骤补充完整:要证≥ab,只需证a2+b2≥2ab,也就是证__________,即证__________、由于__________显然成立,因此原不等式成立、【解析】用分析法证明≥ab的步骤为:要证≥ab成立,只需证a2+b2≥2ab,也就是证a2+b2-2ab≥0,即证(a-b)2≥0、由于(a-b)2≥0显然成立,所以原不等式成立、【答案】a2+b2-2ab≥0(a-b)2≥0(a-b)2≥04、设a>0,b>0,c>0,若a+b+c=1,则++的最小值为________、【解析】因为a+b+c=1,且a>0,b>0,c>0,所以++=++=3++++++≥3+2+2+2=3+6=9、当且仅当a=b=c时等号成立、【答案】95、已知a>0,b>0,试用分析法证明不等式+≥+、【证明】要证原不等式成立只需证:a+b≥(+),即只需证()3+()3≥(+),只需证(+)(a-+b)≥(+),只需证a-+b≥,即(-)2≥0,而上式显然成立,故原不等式得证、我还有这些不足:(1)(2)我的课下提升方案:(1)(2)。
2019最新高中数学 第2章 推理与证明 2.2 直接证明与间接证明学案 苏教版选修1-2
![2019最新高中数学 第2章 推理与证明 2.2 直接证明与间接证明学案 苏教版选修1-2](https://img.taocdn.com/s3/m/50c642230b4e767f5acfcec4.png)
2.2 直接证明与间接证明第1课时直接证明1.若实数a,b满足a+b=3,证明:2a+2b≥4 2.证明:因为2a+2b≥22a·2b=22a+b,又a+b=3,所以2a+2b≥223=4 2.故2a+2b≥42成立.问题1:本题利用什么公式?提示:基本不等式.问题2:本题证明顺序是什么?提示:从已知到结论.2.求证:3+22<2+7.证明:要证明3+22<2+7,由于3+22>0,2+7>0,只需证明(3+22)2<(2+7)2,展开得11+46<11+47,只需证明6<7,显然6<7成立.所以3+22<2+7成立.问题1:本题证明从哪里开始?提示:从结论开始.问题2:证题思路是什么?提示:寻求上一步成立的充分条件.1.直接证明(1)直接从原命题的条件逐步推得命题成立,这种证明通常称为直接证明.(2)直接证明的一般形式⎭⎪⎬⎪⎫本题条件已知定义已知公理已知定理⇒…⇒本题结论.2.综合法和分析法1.综合法是从“已知”看“可知”逐步推向未知,由因导果通过逐步推理寻找问题成立的必要条件.它的证明格式为:因为×××,所以×××,所以×××……所以×××成立.2.分析法证明问题时,是从“未知”看“需知”,执果索因逐步靠拢“已知”,通过逐步探索,寻找问题成立的充分条件.它的证明格式:要证×××,只需证×××,只需证×××……因为×××成立,所以×××成立.[例1] 已知a ,b ,c ∈R ,且a +b +c =1,求证:a 2+b 2+c 2≥13.[思路点拨] 从已知条件出发,结合基本不等式,即可得出结论. [精解详析] ∵a 2+19≥2a 3,b 2+19≥2b 3,c 2+19≥2c 3,∴⎝⎛⎭⎪⎫a 2+19+⎝ ⎛⎭⎪⎫b 2+19+⎝ ⎛⎭⎪⎫c 2+19≥23a +23b +23c=23(a +b +c )=23. ∴a 2+b 2+c 2≥13.[一点通] 综合法证明问题的步骤第一步:分析条件,选择方向.仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题思路.第二步:转化条件、组织过程,把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,有些语言可做适当的修饰,反思总结解题方法的选取.1.设a ,b ,c 为不全相等的正数,且abc =1, 求证:1a +1b +1c>a +b +c .证明:∵a >0,b >0,c >0,且abc =1, ∴1a +1b +1c=bc +ca +ab .又bc +ca ≥2bc ·ca =2abc 2=2c , 同理bc +ab ≥2b ,ca +ab ≥2a . ∵a 、b 、c 不全相等.∴上述三个不等式中的“=”不能同时成立. ∴2(bc +ca +ab )>2(c +a +b ),即bc +ca +ab >a +b +c ,故1a +1b +1c>a +b +c .2.(1)如图,证明命题“a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥b ,则a ⊥c ”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明). 解:(1)证明:法一:如图,过直线b 上任一点作平面π的垂线n ,设直线a ,b ,c ,n 的方向向量分别是a ,b ,c ,n ,则b ,c ,n 共面.根据平面向量基本定理,存在实数λ,μ使得c =λb +μn ,则a·c =a·(λb +μn )=λ(a·b )+μ(a·n ),因为a ⊥b ,所以a·b =0,又因为a π,n ⊥π,所以a·n =0, 故a·c =0,从而a ⊥c . 法二:如图,记c ∩b =A ,P 为直线b 上异于点A 的任意一点,过P 作PO ⊥π,垂足为O ,则O ∈c .∵PO ⊥π,a π,∴直线PO ⊥a . 又a ⊥b ,b 平面PAO ,PO ∩b =P , ∴a ⊥平面PAO .又c 平面PAO ,∴a ⊥c .(2)逆命题为:a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥c ,则a ⊥b .逆命题为真命题.[例2] 已知a >b >0,求证:(a -b )28a <a +b 2-ab <(a -b )28b.[思路点拨] 本题条件较为简单,结论比较复杂,我们可以从要证的结论入手,一步步探求结论成立的充分条件,即用分析法.[精解详析] 要证明(a -b )28a <a +b 2-ab <(a -b )28b 成立,只需证(a -b )24a <a +b -2ab <(a -b )24b成立,即证(a -b )24a <(a -b )2<(a -b )24b 成立.只需证a -b 2a <a -b <a -b 2b 成立. 只需证a +b 2a <1<a +b2b成立, 即证a +b <2a 且a +b >2b , 即b <a .∵a >b >0,∴b <a 成立.∴(a -b )28a <a +b 2-ab <(a -b )28b成立.[一点通] 在已知条件较为简单,所要证的问题较为复杂,无从入手的情况下,我们可从结论入手逆推,执果索因,找到结论成立的条件,注明必要的文字说明,再用综合法写出步骤.3.若P =a +a +7,Q =a +3+a +4,a ≥0,求证:P <Q . 证明:要证P <Q ,主要证P 2<Q 2,只要证2a +7+2a (a +7)<2a +7+2(a +3)(a +4), 即证a 2+7a <a 2+7a +12, 即证0<12.因为0<12成立,所以P <Q 成立. 4.已知a 、b 是正实数,求证:a b +ba≥ a +b . 证明:要证a b +ba≥ a +b , 只需证a a +b b ≥ab (a +b ).即证(a +b -ab )(a +b )≥ab (a +b ), 即证a +b -ab ≥ab . 也就是要证a +b ≥2ab .因为a ,b 为正实数,所以a +b ≥2ab 成立, 所以a b +ba≥ a +b .[例3] 已知0<a ≤1,0<b ≤1,0<c ≤1, 求证:1+ab +bc +ca a +b +c +abc≥1.[思路点拨] 因为0<a ≤1,0<b ≤1,0<c ≤1,所以要证明1+ab +bc +caa +b +c +abc ≥1成立,可转化为证明1+ab +bc +ca ≥a +b +c +abc 成立.[精解详析] ∵a >0,b >0,c >0, ∴要证1+ab +bc +ca a +b +c +abc≥1,只需证1+ab +bc +ca ≥a +b +c +abc , 即证1+ab +bc +ca -(a +b +c +abc )≥0. ∵1+ab +bc +ca -(a +b +c +abc ) =(1-a )+b (a -1)+c (a -1)+bc (1-a ) =(1-a )(1-b -c +bc )=(1-a )(1-b )(1-c ), 又a ≤1,b ≤1,c ≤1, ∴(1-a )(1-b )(1-c )≥0,∴1+ab +bc +ca -(a +b +c +abc )≥0成立, 即证明了1+ab +bc +caa +b +c +abc≥1.[一点通] (1)较为复杂问题的证明如单纯利用分析法和综合法证明较困难,这时可考虑分析法、综合法轮流使用以达到证题目的.(2)综合法和分析法的综合应用过程既可先用分析法再用综合法,也可先用综合法再用分析法,一般无具体要求,只要达到证题的目的即可.5.在△ABC 中,三个内角A 、B 、C 成等差数列. 求证:1a +b +1b +c =3a +b +c. 证明:要证1a +b +1b +c =3a +b +c, 只需证a +b +c a +b +a +b +c b +c =3,即c a +b +ab +c=1, 只需证c (b +c )+a (a +b )(a +b )(b +c )=1,即a 2+c 2+ab +bcb 2+ab +ac +bc=1.下面证明:a 2+c 2+ab +bcb 2+ab +ac +bc=1.∵A +C =2B ,A +B +C =180°,∴B =60°. ∴b 2=a 2+c 2-ac .∴a 2+c 2+ab +bc b 2+ab +ac +bc =a 2+c 2+ab +bc a 2+c 2-ac +ab +ac +bc=1. 故原等式成立.6.若a ,b ,c 是不全相等的正数. 求证:lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c . 证明:要证lg a +b2+lgb +c2+lgc +a2>lg a +lg b +lg c 成立,即证lg ⎝⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(abc )成立,只需证a +b 2·b +c 2·c +a2>abc 成立,∵a +b2≥ab >0,b +c2≥bc >0,c +a2≥ca >0,∴a +b 2·b +c 2·c +a2≥abc >0,(*)又∵a ,b ,c 是不全相等的正数,∴(*)式等号不成立, ∴原不等式成立.1.综合法:由因导果,步骤严谨,逐层递进、步步为营,书写表达过程是条理清晰、形式简洁,宜于表达推理的思维轨迹、缺点是探路艰难,不易达到所要证明的结论.2.分析法:执果索因,方向明确、利于思考,便于寻找解题思路.缺点是思路逆行、叙述繁琐、表述易出错.3.在解决一个问题时,我们常常把综合法和分析法结合起来使用.根据条件的结构特点去转化结论,得到中间结论P 1;根据原结论的特点去寻求使结论成立的条件,寻找到条件P 2;当由P 1可以推出P 2时,结论得证.一、填空题1.在△ABC 中,A >B 是sin A >sin B 的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).解析:在△ABC 中,由正弦定理得a sin A =bsin B .又∵A >B ,∴a >b ,∴sin A >sin B 反之,若sin A >sin B ,则a >b ,∴A >B ∴A >B 是sin A >sin B 的充要条件. 答案:充要2.设n ∈N ,则n +4-n +3________n +2-n +1(判断大小). 解析:要证n +4-n +3<n +2-n +1, 只需证n +4+n +1<n +3+n +2, 只需证(n +4+n +1)2<(n +2+n +3)2,即2n +5+2(n +4)(n +1)<2n +5+2(n +2)(n +3). 只需证(n +1)(n +4)<(n +2)(n +3), 只需证(n +1)(n +4)<(n +2)(n +3), 即n 2+5n +4<n 2+5n +6,即4<6即可. 而4<6成立,故n +4-n +3<n +2-n +1. 答案:<3.如果a a +b b >a b +b a ,则实数a ,b 应满足的条件是____________________. 解析:a a +b b >a b +b a ⇔a a -a b >b a -b b ⇔a (a -b )>b (a -b )⇔(a -b )(a -b )>0 ⇔(a +b )(a -b )2>0,故只需a ≠b 且a ,b 都不小于零即可. 答案:a ≥0,b ≥0且a ≠b4.若三棱锥S ABC 中,SA ⊥BC ,SB ⊥AC ,则S 在底面ABC 上的射影为△ABC 的________.(填重心、垂心、内心、外心之一)解析:如图,设S 在底面ABC 上的射影为点O , ∴SO ⊥平面ABC ,连接AO ,BO , ∵SA ⊥BC ,SO ⊥BC , ∴BC ⊥平面SAO ,∴BC ⊥AO .同理可证,AC ⊥BO .∴O 为△ABC 的垂心. 答案:垂心5.已知函数f (x )=10x,a >0,b >0,A =f ⎝⎛⎭⎪⎫a +b 2,B =f ()ab ,C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为____________________.解析:由a +b2≥ab ≥2ab a +b ,又f (x )=10x在R 上是单调增函数,所以f ⎝ ⎛⎭⎪⎫a +b 2≥f ()ab ≥f ⎝⎛⎭⎪⎫2ab a +b ,即A ≥B ≥C . 答案:A ≥B ≥C 二、解答题6.已知函数f (x )=log 2(x +2),a ,b ,c 是两两不相等的正数,且a ,b ,c 成等比数列,试判断f (a )+f (c )与2f (b )的大小关系,并证明你的结论.解:f (a )+f (c )>2f (b ).证明如下:因为a ,b ,c 是两两不相等的正数, 所以a +c >2ac .因为b 2=ac ,所以ac +2(a +c )>b 2+4b , 即ac +2(a +c )+4>b 2+4b +4, 从而(a +2)(c +2)>(b +2)2. 因为f (x )=log 2(x +2)是增函数, 所以log 2(a +2)(c +2)>log 2(b +2)2,即log 2(a +2)+log 2(c +2)>2log 2(b +2). 故f (a )+f (c )>2f (b ). 7.已知a >0,用分析法证明: a 2+1a 2-2>a +1a-2.证明:要证 a 2+1a 2-2≥a +1a-2,只需证a 2+1a 2+2≥a +1a+ 2. 因为a >0,故只需证⎝⎛⎭⎪⎫a 2+1a 2+22≥⎝⎛⎭⎪⎫a +1a +22,即a 2+1a2+4a 2+1a 2+4≥a 2+2+1a 2+2 2⎝ ⎛⎭⎪⎫a +1a +2,从而只需证2a 2+1a 2≥ 2⎝ ⎛⎭⎪⎫a +1a , 只需证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a2,即a 2+1a2≥2,而上述不等式显然成立,故原不等式成立.8.(江苏高考改编)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项的和.记b n =nS nn 2+c ,n ∈N *,其中 c 为实数.若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *).证明:由c =0,得b n =S n n=a +n -12d .又b 1,b 2,b 4成等比数列, 所以b 22=b 1b 4,即⎝ ⎛⎭⎪⎫a +d 22=a ⎝ ⎛⎭⎪⎫a +32d , 化简得d 2-2ad =0.因为d ≠0, 所以d =2a .因此,对于所有的m ∈N *,有S m =m 2a .从而对于所有的k ,n ∈N *,有S nk =(nk )2a =n 2k 2a =n 2S k .第2课时 间 接 证 明1.问题:在今天商品大战中,广告成了电视节目中的一道美丽的风景线,几乎所有的广告商都熟谙这样的命题变换艺术.如宣传某种食品,其广告词为:“拥有的人们都幸福,幸福的人们都拥有”.该广告词实际说明了什么?提示:说的是:“不拥有的人们不幸福”.2.已知正整数a ,b ,c 满足a 2+b 2=c 2.求证:a ,b ,c 不可能都是奇数. 问题1:你能利用综合法和分析法给出证明吗? 提示:不能.问题2:a 、b 、c 不可能都是奇数的反面是什么?还满足条件a 2+b 2=c 2吗? 提示:都是奇数.若a 、b 、c 都是奇数,则不能满足条件a 2+b 2=c 2.1.间接证明不是直接从原命题的条件逐步推得命题成立,这种不是直接证明的方法通常称为间接证明.反证法就是一种常用的间接证明方法,间接证明还有同一法、枚举法等.2.反证法 (1)反证法证明过程反证法证明时,要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题),用反证法证明命题“若p 则q ”的过程可以用下面的框图表示:导致逻辑矛盾“若p 则q ”为真(2)反证法证明命题“若p 则q ”的步骤①反设——假设命题的结论不成立,即假定原结论的反面为真.②归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果. ③存真——由矛盾结果,断定反设不真,从而肯定原结论成立.1.反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法.2.可能出现矛盾的四种情况:(1)与题设矛盾;(2)与反设矛盾;(3)与公理、定理或已被证明了的结论矛盾;(4)在证明过程中,推出自相矛盾的结论.[例1] 已知平面上四点,没有三点共线,求证:以每三点为顶点的三角形不可能都是锐角三角形.[思路点拨] 本题证明的命题是否定性命题,解答时先假设四个三角形都是锐角三角形,再分情况去推出矛盾.[精解详析] 假设以每三点为顶点的四个三角形都是锐角三角形,记这四个点为A、B、C、D,考虑△ABC,点D的位置分为在△ABC之内或之外两种情况.(1)如果点D在△ABC之内(如图(1)),根据假设围绕点D的三个角都是锐角,其和小于270°,这与一个周角等于360°矛盾.(2)如果点D在△ABC之外(如图(2)),根据假设∠A,∠B,∠C,∠D都小于90°,这和四边形内角之和等于360°矛盾.综上所述.原结论成立.[一点通] (1)结论中含有“不”、“不是”、“不可能”、“不存在”等词语的命题称为否定性命题,此类问题正面比较模糊,而反面比较具体,适于应用反证法.(2)反证法属于逻辑方法范畴,它的严谨体现在它的原理上,即“否定之否定等于肯定”,其中:第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定了假设”.反证法属“间接解题方法”.1.实数a、b、c不全为0等价于________(填序号).①a,b,c全不为0;②a,b,c中最多只有一个为0;③a,b,c中只有一个不为0;④a,b,c中至少有一个不为0.解析:“不全为0”等价于“至少有一个不为0”.答案:④2.如图,正方体ABCD-A1B1C1D1中,点M是A1D1的中点,点N是CD的中点,用反证法证明直线BM与直线A1N是两条异面直线.解:假设直线BM与A1N共面.则A1D1⊂平面A1BND1,且平面A1BND1∩平面ABCD=BN,由正方体特征知A1D1∥平面ABCD,故A1D1∥BN,又A1D1∥BC,所以BN∥BC.这与BN∩BC=B矛盾,故假设不成立.所以直线BM与直线A1N是两条异面直线.3.已知三个正数a,b,c成等比数列,但不成等差数列,求证:a,b,c不成等差数列.证明:假设a,b,c成等差数列,则a+c=2b,即a+c+2ac=4b,而b2=ac,即b=ac,∴a+c+2ac=4ac,所以(a-c)2=0.即a=c,从而a=b=c,与a,b,c不成等差数列矛盾,故a,b,c不成等差数列.[例2] 求证:两条相交直线有且只有一个交点.[思路点拨] “有且只有一个”的否定分两种情况:“至少有两个”、“一个也没有”.[精解详析] 假设结论不成立,则有两种可能:无交点或不只有一个交点.若直线a,b无交点,则a∥b或a,b是异面直线,与已知矛盾.若直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.[一点通] 证明“有且只有一个”的问题,需要证明两个命题,即存在性和惟一性.当证明结论以“有且只有”“只有一个”“惟一存在”等形式出现的命题时,由于反设结论易于导出矛盾,所以用反证法证其惟一性就较为简单明了.4.证明方程2x=3有且仅有一个根.证明:∵2x=3,∴x=log23,这说明方程有一个根.下面用反证法证明方程2x=3的根是惟一的,假设方程2x=3有两个根b1、b2(b1≠b2),则2b1=3,2b2=3.两式相除得:2b1-b2=1.如果b1-b2>0,则2b1-b2>1,这与2b1-b2=1相矛盾.如果b1-b2<0,则2b1-b2<1,这与2b1-b2=1相矛盾.因此b1-b2=0,则b1=b2,这就同b1≠b2相矛盾.如果方程的根多于两个,同样可推出矛盾.故2x=3有且仅有一个根.5.求证:过平面外一点有且只有一条直线和这个平面垂直.解:已知P∉平面α.求证:过点P和平面α垂直的直线b有且只有一条.证明:(1)存在性:∵P∉平面α,由立体几何知识知:过点P能作出一条直线与平面α垂直,故直线b存在.(2)惟一性:假设过点P还有一条直线c与平面α垂直.由b⊥α,c⊥α,得b∥c,这与b∩c=P矛盾,故假设不存在,因此直线b惟一.综上所述,过平面外一点有且只有一条直线和这个平面垂直.[例3] 已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1.求证:a,b,c,d中至少有一个是负数.[思路点拨] 本题要证a、b、c、d中至少有一个是负数,具体有一个负数?两个负数?三个负数?还是四个负数?都有可能,谁是负数也都有可能.所以正面证明很复杂,可考虑用反证法.[精解详析] 假设a、b、c、d都不是负数,即a≥0,b≥0,c≥0,d≥0.∵a+b=c+d=1,∴b=1-a≥0,d=1-c≥0.∴ac+bd=ac+(1-a)(1-c)=2ac-(a+c)+1=(ac-a)+(ac-c)+1=a(c-1)+c(a-1)+1.∵a(c-1)≤0,c(a-1)≤0.∴a(c-1)+c(a-1)+1≤1,即ac+bd≤1.与ac+bd>1相矛盾.∴假设不成立.∴a 、b 、c 、d 中至少有一个是负数.[一点通] (1)对于否定性命题或结论中出现“至多”“至少”“不可能”等字样时,常用反证法.(2)常用的“原结论词”与“反设词”归纳如下表:6.已知a ,b ,c ∈(0,1),求证:(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.证明:假设(1-a )b ,(1-b )c ,(1-c )a 都大于14.∵a ,b ,c ∈(0,1),∴1-a >0,1-b >0,1-c >0, ∴(1-a )+b2≥(1-a )b > 14=12. 同理(1-b )+c 2>12,(1-c )+a 2>12.三式相加,得(1-a )+b 2+(1-b )+c 2+(1-c )+a 2>32,即32>32,矛盾. 所以(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.7.用反证法证明:若函数f (x )在区间[a ,b ]上是增函数,那么方程f (x )=0在区间[a ,b ]上至多只有一个实数根.证明:假设方程f (x )=0在区间[a ,b ]上至少有两个根, 设α,β为其中的两个实根. 因为α≠β,不妨设α<β,又因为函数f (x )在区间[a ,b ]上是增函数, 所以f (α)<f (β). 这与f (α)=0=f (β)矛盾.所以方程f (x )=0在区间 [a ,b ]上至多只有一个实根.1.反证法证明的适用情形(1)一些基本命题、基本定理;(2)易导出与已知矛盾的命题; (3)“否定性”命题;(4)“惟一性”命题; (5)“必然性”命题;(6)“至多”“至少”类命题; (7)涉及“无限”结论的命题. 2.用反证法证明问题的三个注意点(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必然罗列出各种可能结论,缺少任何一种可能,反证都是不完全的;(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与事实矛盾等,推导出的矛盾必须是明显的.一、填空题1.命题“1+b a ,1+ab中至多有一个小于2”的反设为__________________.答案:1+b a ,1+a b都小于22.(山东高考改编)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是____________________.解析:至少有一个实根的否定是没有实根. 答案:方程x 3+ax +b =0没有实根3.用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a 、b 为实数)”,其反设为____________________.解析:“a ,b 全为0”即是“a =0且b =0”,因此它的反设为“a ≠0或b ≠0”. 答案:a ,b 不全为04.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°矛盾,故假设错误.②所以一个三角形不能有两个直角.③假设△ABC 中有两个直角,不妨设∠A =90°,∠B =90°. 上述步骤的正确顺序为________.解析:由反证法的一般步骤可知,正确的顺序应为③①②. 答案:③①②5.用反证法证明命题“若x 2-(a +b )x +ab ≠0,则x ≠a 且x ≠b ”时,应假设为______________________.解析:对“且”的否定应为“或”,所以“x ≠a 且x ≠b ”的否定应为“x =a 或x =b ”. 答案:x =a 或x =b 二、解答题6.(陕西高考)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列. 解:(1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1qn -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n,∴S n =a 1(1-q n )1-q,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1.(2)证明:假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =qk -1+qk +1.∵q ≠0, ∴q 2-2q +1=0, ∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列.7.设f (x )=x 2+ax +b ,求证:|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.证明:假设|f (1)|<12,|f (2)|<12,|f (3)|<12,则有⎩⎪⎨⎪⎧-12<1+a +b <12,-12<4+2a +b <12,-12<9+3a +b <12.于是有⎩⎪⎨⎪⎧-32<a +b <-12, ①-92<2a +b <-72, ②-192<3a +b <-172. ③由①、②得-4<a <-2,④ 由②、③得-6<a <-4.⑤④、⑤显然相互矛盾,所以假设不成立,所以原命题正确.8.已知P ∉直线a .求证:过点P 和直线a 平行的直线b 有且只有一条. 证明:(1)存在性:∵P ∉直线a ,∴点P 和直线a 确定一个平面α.由平面几何知识知:在平面α内过点P 能作出一条直线与直线a 平行,故直线b 存在. (2)惟一性:假设过点P 还有一条直线c 与a 平行. ∵a ∥b ,a ∥c ,∴b ∥c ,这与直线b 、c 有共点P 矛盾. 故假设不存在,因此直线b 惟一.综上所述,过直线外一点有且只有一条直线和这条直线平形.。
近年高中数学第2章推理与证明2.2.1直接证明(二)学案苏教版选修1-2(2021年整理)
![近年高中数学第2章推理与证明2.2.1直接证明(二)学案苏教版选修1-2(2021年整理)](https://img.taocdn.com/s3/m/2b48111b8bd63186bdebbc6e.png)
2018高中数学第2章推理与证明2.2.1 直接证明(二)学案苏教版选修1-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高中数学第2章推理与证明2.2.1 直接证明(二)学案苏教版选修1-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高中数学第2章推理与证明2.2.1 直接证明(二)学案苏教版选修1-2的全部内容。
2.2。
1 直接证明(二)课时目标 1.进一步理解综合法和分析法.2。
利用综合法、分析法解决一些数学问题和简单的应用问题.1.综合法证题由因导果,分析法是____________.2.分析法解题方向较为明确,利于寻找解题思路,综合法条理清晰,重于表述.一、填空题1.已知a、b均为正数,且a+b=1-ab,则a+b的取值范围是________.2.设x>0,y>0,A=x+y1+x+y,B=错误!+错误!,则A与B的大小关系为____________.3.已知函数y=x+错误!在[2,+∞)上是增函数,则a的取值范围是__________.4.关于x的方程9-|x-2|-4·3-|x-2|-a=0有实根,则a的取值范围为________.5.若平面内有错误!+错误!+错误!=0,且|错误!|=|错误!|=|错误!|,则△P1P2P3一定是____________三角形.6.已知x>0,y〉0,且错误!+错误!=1,则xy的最大值为______.7.已知tan错误!=2,则错误!的值为________.8.已知函数f(x)=log a x+x-b(a>0,且a≠1).当2<a<3<b〈4时函数f(x)的零点x0∈(n,n+1) (n∈N*),则n=________.二、解答题9.如果3sin β=sin(2α+β).求证:tan(α+β)=2tan α.10.已知△ABC的三条边分别为a,b,c.用分析法证明:错误!<错误!。
高中数学 第二章 推理与证明 2.2 直接证明与间接证明 2.2.2 间接证明教学案 苏教版选修2-
![高中数学 第二章 推理与证明 2.2 直接证明与间接证明 2.2.2 间接证明教学案 苏教版选修2-](https://img.taocdn.com/s3/m/25d9bf12876fb84ae45c3b3567ec102de2bddfe0.png)
2.2.2 间接证明1.问题:在今天商品大战中,广告成了电视节目中的一道美丽的风景线,几乎所有的广告商都熟谙这样的命题变换艺术.如宣传某种食品,其广告词为:“拥有的人们都幸福,幸福的人们都拥有〞.该广告词实际说明了什么?提示:说的是:“不拥有的人们不幸福〞.2.正整数a,b,c满足a2+b2=c2.求证:a,b,c不可能都是奇数.问题1:你能利用综合法和分析法给出证明吗?提示:不能.问题2:a、b、c不可能都是奇数的反面是什么?还满足条件a2+b2=c2吗?提示:都是奇数.假设a、b、c都是奇数,那么不能满足条件a2+b2=c2.1.间接证明不是直接从原命题的条件逐步推得命题成立,这种不是直接证明的方法通常称为间接证明.反证法就是一种常用的间接证明方法,间接证明还有同一法、枚举法等.2.反证法(1)反证法证明过程反证法证明时,要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题),用反证法证明命题“假设p那么q〞的过程可以用下面的框图表示:肯定条件p 否定结论q →导致逻辑矛盾→“p且q〞为假→“假设p那么q〞为真(2)反证法证明命题“假设p那么q〞的步骤①反设——假设命题的结论不成立,即假定原结论的反面为真.②归谬——从反设和条件出发,经过一系列正确的逻辑推理,得出矛盾结果.③存真——由矛盾结果,断定反设不真,从而肯定原结论成立.1.反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法.2.可能出现矛盾的四种情况:(1)与题设矛盾;(2)与反设矛盾;(3)与公理、定理或已被证明了的结论矛盾;(4)在证明过程中,推出自相矛盾的结论.[对应学生用书P30]用反证法证明否定性命题[例1] 平面上四点,没有三点共线,求证:以每三点为顶点的三角形不可能都是锐角三角形.[思路点拨] 此题证明的命题是否定性命题,解答时先假设四个三角形都是锐角三角形,再分情况去推出矛盾.[精解详析] 假设以每三点为顶点的四个三角形都是锐角三角形,记这四个点为A、B、C、D,考虑△ABC,点D的位置分为在△ABC之内或之外两种情况.(1)如果点D在△ABC之内(如图(1)),根据假设围绕点D的三个角都是锐角,其和小于270°,这与一个周角等于360°矛盾.(2)如果点D在△ABC之外(如图(2)),根据假设∠A,∠B,∠C,∠D都小于90°,这和四边形内角之和等于360°矛盾.综上所述.原结论成立.[一点通] (1)结论中含有“不〞、“不是〞、“不可能〞、“不存在〞等词语的命题称为否定性命题,此类问题正面比较模糊,而反面比较具体,适于应用反证法.(2)反证法属于逻辑方法X畴,它的严谨表达在它的原理上,即“否定之否定等于肯定〞,其中:第一个否定是指“否定结论(假设)〞;第二个否定是指“逻辑推理结果否定了假设〞.反证法属“间接解题方法〞.1.实数a、b、c不全为0等价于________(填序号).①a,b,c全不为0;②a,b,c中最多只有一个为0;③a,b,c中只有一个不为0;④a,b,c中至少有一个不为0.解析:“不全为0〞等价于“至少有一个不为0〞.答案:④2.如图,正方体ABCD-A1B1C1D1中,点M是A1D1的中点,点N是CD的中点,用反证法证明直线BM与直线A1N是两条异面直线.解:假设直线BM与A1N共面.那么A1D1⊂平面A1BND1,且平面A1BND1∩平面ABCD=BN,由正方体特征知A1D1∥平面ABCD,故A1D1∥BN,又A1D1∥BC,所以BN∥BC.这与BN∩BC=B矛盾,故假设不成立.所以直线BM与直线A1N是两条异面直线.3.三个正数a,b,c成等比数列,但不成等差数列,求证:a,b,c不成等差数列.证明:假设a,b,c成等差数列,那么a+c=2b,即a+c+2ac=4b,而b2=ac,即b=ac,∴a+c+2ac=4ac,所以(a-c)2=0.即a=c,从而a=b=c,与a,b,c不成等差数列矛盾,故a,b,c不成等差数列.用反证法证明惟一性命题[例2] 求证:两条相交直线有且只有一个交点.[思路点拨] “有且只有一个〞的否定分两种情况:“至少有两个〞、“一个也没有〞.[精解详析] 假设结论不成立,那么有两种可能:无交点或不只有一个交点.假设直线a,b无交点,那么a∥b或a,b是异面直线,与矛盾.假设直线a,b不只有一个交点,那么至少有两个交点A和B,这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线〞相矛盾.综上所述,两条相交直线有且只有一个交点.[一点通] 证明“有且只有一个〞的问题,需要证明两个命题,即存在性和惟一性.当证明结论以“有且只有〞“只有一个〞“惟一存在〞等形式出现的命题时,由于反设结论易于导出矛盾,所以用反证法证其惟一性就较为简单明了.4.证明方程2x=3有且仅有一个根.证明:∵2x=3,∴x=log23,这说明方程有一个根.下面用反证法证明方程2x=3的根是惟一的,假设方程2x=3有两个根b1、b2(b1≠b2),那么2b1=3,2b2=3.两式相除得:2b1-b2=1.如果b1-b2>0,那么2b1-b2>1,这与2b1-b2=1相矛盾.如果b1-b2<0,那么2b1-b2<1,这与2b1-b2=1相矛盾.因此b1-b2=0,那么b1=b2,这就同b1≠b2相矛盾.如果方程的根多于两个,同样可推出矛盾.故2x=3有且仅有一个根.5.求证:过平面外一点有且只有一条直线和这个平面垂直.解:P∉平面α.求证:过点P和平面α垂直的直线b有且只有一条.证明:(1)存在性:∵P∉平面α,由立体几何知识知:过点P能作出一条直线与平面α垂直,故直线b存在.(2)惟一性:假设过点P还有一条直线c与平面α垂直.由b⊥α,c⊥α,得b∥c,这与b∩c=P矛盾,故假设不存在,因此直线b惟一.综上所述,过平面外一点有且只有一条直线和这个平面垂直.用反证法证明“至多〞、“至少〞型命题[例3] a ,b ,c ,d ∈R ,且a +b =c +d =1,ac +bd >1. 求证:a ,b ,c ,d 中至少有一个是负数.[思路点拨] 此题要证a 、b 、c 、d 中至少有一个是负数,具体有一个负数?两个负数?三个负数?还是四个负数?都有可能,谁是负数也都有可能.所以正面证明很复杂,可考虑用反证法.[精解详析] 假设a 、b 、c 、d 都不是负数, 即a ≥0,b ≥0,c ≥0,d ≥0. ∵a +b =c +d =1, ∴b =1-a ≥0,d =1-c ≥0.∴ac +bd =ac +(1-a )(1-c )=2ac -(a +c )+1 =(ac -a )+(ac -c )+1=a (c -1)+c (a -1)+1. ∵a (c -1)≤0,c (a -1)≤0. ∴a (c -1)+c (a -1)+1≤1, 即ac +bd ≤1. 与ac +bd >1相矛盾.∴假设不成立.∴a 、b 、c 、d 中至少有一个是负数.[一点通] (1)对于否定性命题或结论中出现“至多〞“至少〞“不可能〞等字样时,常用反证法.(2)常用的“原结论词〞与“反设词〞归纳如下表: 原结论词 至少有一个 至多有一个至少有n 个至多有n 个反设词一个也没有(不存在)至少有两个 至多有n -1个 至少有n +1个6.a ,b ,c ∈(0,1),求证:(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.证明:假设(1-a )b ,(1-b )c ,(1-c )a 都大于14.∵a ,b ,c ∈(0,1),∴1-a >0,1-b >0,1-c >0, ∴1-a +b2≥1-a b >14=12. 同理1-b +c 2>12,1-c +a 2>12. 三式相加,得1-a +b2+1-b +c 2+1-c +a 2>32, 即32>32,矛盾. 所以(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.7.用反证法证明:假设函数f (x )在区间[a ,b ]上是增函数,那么方程f (x )=0在区间[a ,b ]上至多只有一个实数根.证明:假设方程f (x )=0在区间[a ,b ]上至少有两个根, 设α,β为其中的两个实根. 因为α≠β,不妨设α<β,又因为函数f (x )在区间[a ,b ]上是增函数, 所以f (α)<f (β). 这与f (α)=0=f (β)矛盾.所以方程f (x )=0在区间 [a ,b ]上至多只有一个实根.1.反证法证明的适用情形 (1)一些基本命题、基本定理; (2)易导出与矛盾的命题; (3)“否定性〞命题; (4)“惟一性〞命题; (5)“必然性〞命题; (6)“至多〞“至少〞类命题; (7)涉及“无限〞结论的命题.2.用反证法证明问题应注意以下三点(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必然罗列出各种可能结论,缺少任何一种可能,反证都是不完全的;(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否那么,仅否定结论,不从结论的反面出发进行推理,就不是反证法;(3)推导出的矛盾可能多种多样,有的与矛盾,有的与假设矛盾,有的与事实矛盾等,推导出的矛盾必须是明显的.[对应学生用书P32]一、填空题1.命题“1+b a ,1+ab中至多有一个小于2〞的反设为________.答案:1+b a ,1+a b都小于22.(某某高考改编)用反证法证明命题“设a ,b 为实数,那么方程x 3+ax +b =0至少有一个实根〞时,要做的假设是____________________.解析:至少有一个实根的否定是没有实根. 答案:方程x 3+ax +b =0没有实根1. 用反证法证明命题“假设a 2+b 2=0,那么a ,b 全为0(a 、b 为实数)〞,其反设为 ____________________.解析:“a ,b 全为0〞即是“a =0且b =0〞,因此它的反设为“a ≠0或b ≠0〞. 答案:a ,b 不全为04.用反证法证明“一个三角形不能有两个直角〞有三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°矛盾,故假设错误.②所以一个三角形不能有两个直角.③假设△ABC 中有两个直角,不妨设∠A =90°,∠B =90°.上述步骤的正确顺序为________.解析:由反证法的一般步骤可知,正确的顺序应为③①②. 答案:③①②5.用反证法证明命题“假设x 2-(a +b )x +ab ≠0,那么x ≠a 且x ≠b 〞时,应假设为________.解析:对“且〞的否定应为“或〞,所以“x ≠a 且x ≠b 〞的否定应为“x =a 或x =b 〞. 答案:x =a 或x =b 二、解答题6.(某某高考)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列. 解:(1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1qn -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n,∴S n =a 11-q n 1-q ,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q,q ≠1.(2)证明:假设{a n +1}是等比数列,那么对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =qk -1+qk +1.∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与矛盾.∴假设不成立,故{a n +1}不是等比数列.7.设f (x )=x 2+ax +b ,求证:|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.证明:假设|f (1)|<12,|f (2)|<12,|f (3)|<12,那么有⎩⎪⎨⎪⎧-12<1+a +b <12,-12<4+2a +b <12,-12<9+3a +b <12.于是有⎩⎪⎨⎪⎧-32<a +b <-12, ①-92<2a +b <-72, ②-192<3a +b <-172. ③由①、②得-4<a <-2,④ 由②、③得-6<a <-4.⑤④、⑤显然相互矛盾,所以假设不成立,所以原命题正确. 8.P ∉直线a .求证:过点P 和直线a 平行的直线b 有且只有一条. 证明:(1)存在性:∵P ∉直线a ,∴点P 和直线a 确定一个平面α.由平面几何知识知:在平面α内过点P 能作出一条直线与直线a 平行,故直线b 存在. (2)惟一性:假设过点P 还有一条直线c 与a 平行. ∵a ∥b ,a ∥c ,∴b ∥c ,这与直线b 、c 有共点P 矛盾. 故假设不存在,因此直线b 惟一.综上所述,过直线外一点有且只有一条直线和这条直线平行.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1 综合法和分析法
课堂导学
三点剖析
各个击破
一、利用综合法证明数学问题
【例1】如右图,在四棱锥P—ABCD中,底面ABCD是正方形,PA⊥底面ABCD,求证:PC⊥BD.
证明:(综合法)
因为PA是平面ABCD的垂线,P C是平面ABCD的斜线,
连结AC、BD,则AC是PC在底面ABCD内的射影.
又因为四边形ABCD为正方形.∴AC⊥BD. 故PC⊥BD.
温馨提示
本例图形具有很多性质,从不同的审视角度去分析,可以得到多个证明方法,如可以转化为线面垂直来证线线垂直,也可以用向量来证明(因为图形中有AB、AD、AP两两垂直的基向量)等等.
一般地,对于命题“若A则D”用综合法证明时,思考过程可表示为(如右图).
综合法的思考过程是由因导果的顺序,是从A推演达到D的途径,但由A推演出的中间结论未必唯一,如B、B1、B2等,可由B、B1、B2能推演出的进一步的中间结论则可能更多,如C、C1、C2、C3、C4等等.最终,能有一个(或多个)可推演出结论D即可.
类题演练1
用综合法证明,设a>0,b>0,a≠b.
证明:
2b
a
>ab.
证明:综合法
因为a≠b,所以a-b≠0,而(a-b)2>0,展开(a-b)2得:a2-2ab+b2>0.
两边加上4ab得:
a2+2ab+b2>4ab.
左边写成(a+b)2得:
(a+b)2>4ab.
由于a >0,b >0,两边取算术平方根得:
a+b >2ab .
两边除以2得:
ab b a >+2
. 变式提升 1
已知a >b >0,求证:b a -<b a -.
证明:∵a>b >0,∴b<ab ,即2b <2ab .
进而-2ab <-2b,
于是a-2ab +b <a+b-2b,
即0<(b a -)2<a-b, ∴b a b a -<-.
二、利用分析法证明数学问题
【例2】求证:72223+<+. 证法一:为了证明72223+<+, ∵072,0223>+>+,
∴只需证明(223+)2<(2+7)2,展开得11+64<11+74,只需证64<74,只需证6<7.显然6<7成立. ∴72223+<+成立.
证法二:为了证明72223+<+, 只要证明32722-<-, 只要证明321
7221
+<+. ∵37,222>>,∴.032722>+>+ ∴321
7221
+<+成立.∴72223+<+成立.
温馨提示
用分析法思考数学问题的顺序可表示为:(对于命题“若A 则D”)
如右图,分析法的思考顺序是执果索因的顺序,是从D 上溯寻其论据,如C 、C 1、C 2等,再寻求C 、C 1、C 2的论据,如B 、B 1、B 2、B 3、B 4等等,继而寻求B 、B 1、B 2、B 3、B 4的论据,如果其中之一B 的论据恰为已知条件,于是命题已经得证.
类题演练2
已知a 、b 、c 是不全相等的正数,且0<x <1.
求证:log x 2b a ++log x 2c b ++log x 2
c a +<log x a +log x b +log x c . 证明:要证明
log x 2b a ++log x 2
c b ++log x 2c a +<log x a+log x b+log x c, 只需要证明
log x [
2b a +·2
c b +·2c a +]<log x (abc). 由已知0<x <1,只需证明2b a +·2c b +·2c a +>abc. 由公式知
2b a +≥ab >0,2
c b +≥bc >0,2c a +≥ac >0. ∵a、b 、c 不全相等,上面三式相乘,
2b a +·2c b +·2c a +>222c b a =abc,即2b a +·2
c b +·2c a +>abc 成立, ∴log x 2b a ++log x 2
c b ++log x 2c a +<log x a+log x b+log x c 成立. 变式提升 2
设a ,b ∈R +,且a ≠b ,求证:a 3+b 3>a 2b +ab 2.
证明:要证a 3+b 3>a 2b+ab 2成立,
只需证(a+b )(a 2-ab+b 2)>ab(a+b)成立,
又因a+b >0,
只需证a 2-ab+b 2>ab 成立.
又需证a 2-2ab+b 2>0成立.
即需证(a-b)2>0成立.
而依题设a≠b,则(a-b )2>0显然成立.由此命题得证.
三、创新应用
【例3】设a 、b 、c 为任意三角形三边长,I=a +b +c ,S =ab +bc +ca ,试证3S ≤I 2<4S .
证明:I 2=(a +b +c )2=a 2+b 2+c 2+2(ab +bc +ca )=a 2+b 2+c 2+2S .
故要证3S ≤I 2<4S ,只需证3S ≤a 2+b 2+c 2+2S <4S ,即S ≤a 2+b 2+c 2<2S (这对于保证结论成
立是充分必要的).
欲证上左部分,只需证a 2+b 2+c 2-ab -bc -ca ≥0.即只需证(a 2+b 2-2ab )+(b 2+c 2-2bc )+(c 2+a 2-2ca )≥0(这对于保证前一定结论成立
也是充要的).要证上成立,可证三括号中子都不为负(这一条件对保证上结论成立是充分的,但它并不必要),注意
到:a 2+b 2-2ab =(a -b )2≥0,b 2+c 2-2bc =(b -c )2≥0,c 2+a 2-2ca =(c -a )2≥0,故结论真.
欲证上右部分,只需证:a 2+b 2+c 2-2ab -2bc -2ca <0,即要
证:(a 2-ab -ac )+(b 2-bc -ba )+(c 2-ca -cb )<0.
欲证上,则至少要证以上三个括号中子之一小于零(这一条件对保证上结论成立只是必
要的,但它并不充分),即要证a 2<ab +ac ,b 2<bc +ba ,c 2<ca +cb 之一真,也就是要证a <b +c ,b
<c +a ,c <a +b 之一真,它们显然都成立,因为三角形一边小于其他两边和.故原成立.
温馨提示
在本例中,我们既看到按结论成立的充分条件推演的步子,也看到按结论成立必要条件而推演的步子,同时也看到按结论成立的充要条件而推演的步子.
类题演练3
设实数a ≠0,且函数f (x )=a (x 2+1)-(2x +
a 1)有最小值-1. (1)求a 的值;
(2)设数列{a n }的前n 项和S n =f (n ),令b n =n
a a a n 242++ ,证明数列{
b n }是等差数列. (1)解:f (x )=a(x -
a 1)2+a-a
2, 由题设知f (a 1)=a-a 2=-1,且a >0, 解得a=1或a=-2(舍去).
(2)证明:由(1)得f (x )=x 2-2x ,
当S n =n 2-2n,a 1=S 1=-1.
当n≥2时,a n =S n -S n-1=n 2-2n-(n-1)2+2(n-1)=2n-3.
a 1满足上式,即a n =2n-3.
∴数列{a n }是首项为-1,公差为2的等差数列.
∴a 2+a 4+…+a 2n =2
)(22n a a n +=n(2n-1), 即b n =n
n n )12(-=2n-1. ∴b n+1-b n =2(n+1)-1-2n+1=2.
又b 1=1
2a =1, ∴{b n }是以1为首,2为公差的等差数列.。