EMI滤波电感设计

合集下载

EMI 滤 波 器 原 理 与 设 计 方 法 详 解

EMI 滤 波 器 原 理 与 设 计 方 法 详 解

EMI 滤 波 器 原 理 与 设 计 方 法 详 解输入端差模电感的选择输入端差模电感的选择::1. 差模choke 置于L 线或N 线上,同时与XCAP 共同作用F=1 / (2*π* L*C)2. 波器振荡频率要低于电源供给器的工作频率,一般要低于10kHz 。

3. L = N2AL (nH/N2)nH4. N = [L (nH )/AL(nH/N2)]1/2匝5. AL = L (nH )/ N2nH/N26. W =(NI )2AL / 2000µJ输入端共模电感的选择输入端共模电感的选择::共模电感为EMI 防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI 特性及温升,以同样尺寸的Common Choke 而言,线圈数愈多(相对的线径愈细),EMI 防制效果愈好,但温升可能较高。

传导干扰频率范围为0.15~30MHz ,电场辐射干扰频率范围为30~100MHz 。

开关电源所产生的干扰以共模干扰为主。

产生辐射干扰的主要元器件除了开关管和高频整流二极管还有脉冲变压器及滤波电感等。

注意:1. 避免电流过大而造成饱和。

2.Choke 温度系数要小,对高频阻抗要大。

3.感应电感要大,分布电容要小。

4.直流电阻要小。

B = L * I / (N * A) (B shall be less than 0.3)L = Choke inductance. I = Maximum current through choke. N = Number of turns on choke.A = Effective area of choke. (for drum core, can approximate with cross section area of center pole.)假设在50KHZ 有24DB 的衰减则,共模截止频率Fc = Fs*10Att/4 0 = 50*10-24/40=12.6KHZ 电感值L= (RL*0.707)/(∏*Fc) = (500.707)/(3.14*12.6) = 893uH使用磁芯和磁棒作滤波电感时应注意自身的阻抗,对于共模电感不能使用低阻抗的磁芯和磁棒,否则会造成炸机现象。

EMI滤波器方案 典型结构、元件选择、滤波电容、 滤波电感

EMI滤波器方案  典型结构、元件选择、滤波电容、 滤波电感

Ø 作用
Ø EMI滤波器的作用,主要体现在以下两个方面: Ø 3.1抑制高频干扰
Ø 抑制交流电网中的高频干扰对设备的影响;
Ø 3.2抑制设备干扰 Ø 抑制设备(尤其是高频开关电源)对交流电网的干扰。
ቤተ መጻሕፍቲ ባይዱ Ø EMI滤波器元件选择:
Ø EMI滤波器滤波电容
Ø 与一般的滤波器不同,EMI滤波器典型结构中电容使用了两种 下标,接于相线和中线之间,称为差模电容。
制约。 Ø 电容即跨接在相线或中线与安全地之间的电容。接地的电流主要就
是指流过共模电容的电流,由于流过电容的电流由电源电压,电源
频率和电容值共同决定。
Ø 由于漏电流的大小对于人生安全至关重要,不同国家对不同 电子设备接地漏电流都做了严格的规定。若对最大漏电流做
出了规定,则需求出最大允许接地电容值。
Ø 另外,要求电容在电气和机械安全方面有足够的余量,避免在极
端恶劣的条件下出现击穿短路的现象。因为这种电容要跟安全地
相连,而设备的机壳也要跟安全地相连,所以这种电容的耐压性 能对保护人生安全有至关重要的作用,一旦设备或装置的绝缘失
效,可能危及到人的生命安全。因此电容要进行1500-1700V
交流耐压测试1分钟。
Ø EMI滤波器滤波电感 Ø 电感的取值、材料的选取原则从以下几个方面考虑:第一,磁芯 材料的频率范围要宽,要保证最高频率在1GHz,即在很宽的频 率范围内有比较稳定的磁导率;第二,磁导率高,但是在实际中 很难满足这一要求,所以,磁导率往往是分段考虑的。磁芯材料 一般是铁氧体或者铁粉芯,更好的材料如微晶等。
象,不会 滤波电容示意图 滤波电容示意图 危及人身安全。
Ø 除了要承受电源相线与中线的电压之外,还要承受相线与中线

EMI滤波器电路原理及设计

EMI滤波器电路原理及设计

EMI滤波器电路原理及设计EMI滤波器(Electromagnetic Interference Filter)是一种用于抑制电磁干扰的电路。

电磁干扰是指电子设备之间相互干扰产生的电磁辐射或者干扰信号,会对设备的正常操作和性能产生负面影响。

EMI滤波器通过选择性地传递或者屏蔽指定频率范围内的信号,从而实现对电磁干扰的抑制。

一般来说,低通滤波器是指可以通过低于其中一特定频率的信号,而对高于该特定频率的信号进行滤波的电路。

低通滤波器常用于消除高频电磁干扰。

一个常见的低通滤波器电路是RC滤波器,由电容器和电阻器组成。

电容器对于高频信号具有很大的阻抗,从而将高频信号绕过电路,实现滤波作用。

选择合适的电容和电阻大小可以实现对于特定频率的信号滤波。

相比之下,高通滤波器是指可以通过高于其中一特定频率的信号,而对低于该特定频率的信号进行滤波的电路。

高通滤波器常用于消除低频电磁干扰。

一个常见的高通滤波器电路是RL滤波器,由电感器和电阻器组成。

电感器对于低频信号具有很大的阻抗,从而将低频信号绕过电路,实现滤波作用。

选择合适的电感和电阻大小可以实现对于特定频率的信号滤波。

除了RC和RL滤波器,还有其他各种类型的EMI滤波器电路,比如LC滤波器、二阶滤波器、传输线滤波器等,可以根据具体应用的需求进行选择和设计。

在EMI滤波器电路的设计中,首先需要确定需要滤波的频率范围,然后根据频率范围选择合适的滤波器类型。

其次,需要根据滤波器的阻抗特性和传输线的特性来选择适当的元件值。

还需要注意电路的功率和电流容量,以确保电路能够在正常工作范围内工作。

在实际应用中,EMI滤波器电路通常需要与其他电路结合使用,比如与电源、传输线路、信号线路等进行连接。

因此,需要特别注意电路的布局和接线,以减少电磁干扰的传播路径。

总之,EMI滤波器电路是一种用于抑制电磁干扰的重要电路,通过选择性地传递或者屏蔽指定频率范围内的信号,实现对电磁干扰的抑制。

在设计EMI滤波器电路时,需要根据具体应用需求选择合适的滤波器类型,并根据电路的阻抗特性和传输线的特性选择适当的元件值。

EMI滤波器电路原理及设计

EMI滤波器电路原理及设计

EMI滤波器电路原理及设计
EMI滤波器的原理是基于信号的频率特性和线路的阻抗匹配。

在设计EMI滤波器时,首先需要分析电路中的电磁干扰源,并根据干扰频率的不
同选择合适的滤波器类型。

常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

在滤波器的设计中,核心是选择合适的元件参数以及电路拓扑结构。

其中电感和电容是常用的滤波元件,它们的选择需要考虑滤波器的频率响
应特性。

一般来说,电感可用于低频段的滤波,而电容则适用于高频段的
滤波。

在滤波器的设计中还需要考虑元件的阻抗匹配,以提高滤波效果。

除了滤波器,EMI滤波器还包括抑制器。

抑制器通过增加抑制网络,
进一步提高滤波器对电磁干扰的抑制效果。

抑制网络一般包括与电磁干扰
源之间的串联电感和并联电容。

它们通过改变电路的阻抗特性,减少电磁
干扰信号的传输和辐射。

在设计EMI滤波器时,还需要考虑电路的输入和输出特性以及滤波器
的功率损耗。

输入和输出特性的分析包括电压、电流和功率的测量与计算,以保证滤波器在工作范围内的性能。

而功率损耗则是指滤波器对信号的能
量损耗,需要控制在合理的范围内,以避免对整体电路性能的影响。

总之,EMI滤波器的设计原理是基于信号的频率特性和线路的阻抗匹配。

通过选择合适的滤波器类型、元件参数和抑制网络,可以实现对电磁
干扰的抑制。

设计时需要考虑电路的输入和输出特性以及滤波器的功率损耗,以保证滤波器正常工作并提供良好的滤波效果。

EMI滤波器共模电感详解

EMI滤波器共模电感详解

EMI 滤波器共模电感详解
《开关电源:EMC 的分析与设计》我在课程中说到,如果对电子电路了解,懂得开关电源的基本原理;我的这个课程能保证电子设计师们都能解决90%的EMC 问题了!课程我讲实战方法,理论在我的公众号分析!!
电子产品的CLASSA &B 标准要求!
我们通过如下的框图结构知道,如果电子产品&设备开关电源系统如果不插入EMI 滤波器;其很难通过上述的CLASS A/B 的标准限值要求;
开关电源:EMC 的分析和设计&电子产品&设备:EMI 的分析与设计技
巧-中EMI-传导高效设计我的设计理论是150KHZ-10MHZ 我们快速使用
EMI 输入滤波器来搞定!!上图中EMI 滤波器中最为关键的设计为共模电感
的选择和设计;以下我将共模电感的特性进行理论分析!
1.目前推荐及常用的共模电感的结构
共模电感器等效电路:
共模电感器磁场分布特点:。

EMI滤波器电路原理及设计

EMI滤波器电路原理及设计

EMI滤波器电路原理及设计引言开关电源以其体积小、重量轻、效率高等长处被广泛应用于电力电子设备系统中,但是开关电源易受到电磁干扰,产生误动作,且自身旳高频信号也会引起大量旳噪声,会污染电网环境,干扰同一电网其她电子设备旳正常工作。

这样就对EMC提出了更高旳规定指标。

分类:开关电源中旳电磁干扰(EMI)重要有传导干扰和辐射干扰。

通过对旳旳屏蔽和接地系统设计可以得到有效旳控制,对于传导干扰来说,加装EMI滤波器,是一种比较经济有效旳措施,辐射干扰旳克制可以通过加装变压器屏蔽铜片。

EMI滤波器简介开关电源与交流电网相连,尽管开关电源是一种单端口网络,但具有相线(L),零线(N),地线(E)旳开关电源事实上形成了两个AC端口,因此噪声源在实际分析中可以将其分解为共模和差模噪声源。

火线(L)与零线(N)之间旳干扰叫做差模干扰(属于对称性干扰),火线(L)与地线(E)之间旳干扰叫做共模干扰(非对称性干扰)。

在一般状况下,差模干扰幅度小、频率低、所导致旳干扰较小;共模干扰幅度大、频率高,还可以通过导线产生辐射,所导致旳干扰较大。

开关电源旳EMI干扰源集中体目前功率开关管、整流二极管、高频变压器等,外部环境对开关电源旳干扰重要来自电网旳抖动、雷击、外界辐射等。

1.开关电源旳EMI干扰源开关电源旳EMI干扰源集中体目前功率开关管、整流二极管、高频变压器等,外部环境对开关电源旳干扰重要来自电网旳抖动、雷击、外界辐射等。

(1)功率开关管功率开关管工作在On-O ff迅速循环转换旳状态,dv/dt和di/dt都在急剧变换,因此,功率开关管既是电场耦合旳重要干扰源,也是磁场耦合旳重要干扰源。

(2)高频变压器高频变压器旳EMI来源集中体目前漏感相应旳di/dt迅速循环变换,因此高频变压器是磁场耦合旳重要干扰源。

(3)整流二极管整流二极管旳EMI来源集中体目前反向恢复特性上,反向恢复电流旳断续点会在电感(引线电感、杂散电感等)产生高 dv/dt,从而导致强电磁干扰。

emi储能滤波电感

emi储能滤波电感

emi储能滤波电感【最新版】目录1.EMI 储能滤波电感的定义和作用2.EMI 储能滤波电感的主要特点3.EMI 储能滤波电感的设计和应用4.EMI 储能滤波电感的未来发展趋势正文一、EMI 储能滤波电感的定义和作用EMI 储能滤波电感,全称为 Electromagnetic Interference(电磁干扰)储能滤波电感,是一种应用于电源系统中的电磁干扰抑制元件。

其主要作用是通过对电源信号进行滤波,降低电磁干扰对电源系统稳定性和电子设备性能的影响。

二、EMI 储能滤波电感的主要特点1.高频滤波性能:EMI 储能滤波电感具有较高的滤波频率,可以有效滤除高频电磁干扰信号。

2.低阻抗:在高频滤波时,EMI 储能滤波电感具有较低的阻抗,能够降低电磁干扰对电源系统的影响。

3.良好的温度稳定性:EMI 储能滤波电感具有较高的温度稳定性,能够在各种环境温度下保持良好的滤波性能。

4.小型化和轻量化:EMI 储能滤波电感采用先进的制造工艺,具有较小的体积和重量,便于安装和使用。

三、EMI 储能滤波电感的设计和应用1.设计:EMI 储能滤波电感的设计主要考虑滤波性能、阻抗、温度稳定性等因素。

通常采用多层绕线结构、磁芯材料和外壳设计等方面进行优化。

2.应用:EMI 储能滤波电感广泛应用于各种电子设备和电源系统中,如计算机、通信设备、家电产品等。

通过使用 EMI 储能滤波电感,可以提高电源系统的稳定性和电子设备的性能。

四、EMI 储能滤波电感的未来发展趋势随着电子技术的不断发展,EMI 储能滤波电感将面临更高的性能要求。

未来的发展趋势包括:1.滤波性能的进一步提升:通过采用新型磁芯材料、优化绕线结构等手段,提高滤波电感的滤波性能。

2.小型化和轻量化:继续研究和应用新型材料和制造工艺,实现 EMI 储能滤波电感的小型化和轻量化。

开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用来减少开关电源产生的电磁干扰(EMI)的一种装置。

EMI是指开关电源工作时产生的高频干扰信号,可能会对其他电子设备、无线通信和无线电接收产生干扰,影响它们的正常工作。

EMI滤波器通过合理设计,能有效地抑制开关电源产生的EMI信号,从而减少对其他设备的干扰。

EMI滤波器的原理是基于电流和电压的相位关系来实现的。

开关电源在工作时会产生高频电流脉冲,而这些电流脉冲会通过开关电源输入端的电容等元件,从而形成高频电流回路。

EMI滤波器通过给开关电源输入端加上一个电感元件,阻断高频电流回路的形成,从而减小EMI信号的辐射。

设计EMI滤波器时需要考虑以下几个因素:1.工作频率范围:EMI滤波器需要在开关电源产生EMI信号的频率范围内有效工作。

根据具体的应用环境和要求,选择合适的滤波器工作频率范围。

2.滤波特性:滤波器需要具有良好的滤波特性,对于较高频率的EMI信号能够有较好的抑制效果。

常用的滤波器类型有低通滤波器、带通滤波器和带阻滤波器等。

3.过渡区域:滤波器在过渡区域需要平衡阻抗和频率之间的变化。

过渡区域越宽,滤波器的性能越好。

过渡区域的宽度需要根据具体要求进行设计。

4.安全和可靠性:EMI滤波器需要满足安全和可靠性的要求。

在设计过程中,需要考虑电源参数范围、电流和电压的安全范围等因素,以确保滤波器的稳定性和可靠性。

设计EMI滤波器的方法有多种,可以根据需求选择不同的设计方法。

常见的方法包括线性滤波器设计、Pi型滤波器设计和C型滤波器设计等。

其中,Pi型滤波器是应用最广泛的一种,它由两个电感和一个电容组成,能够对高频信号进行抑制。

总之,开关电源EMI滤波器的原理和设计研究是为了降低开关电源产生的电磁干扰,保证其他设备的正常工作。

通过合理的滤波器设计和选择合适的滤波器类型,可以有效地减少EMI信号对其他设备的干扰,提高系统的抗干扰性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EMI滤波电感设计EMI滤波器正常工作的开关类电源(SMPS)会产生有害的高频噪声,它能影响连接到相同电源线上的电子设备像计算机、仪器和马达控制。

用一个EMI滤波器插入电源线和SMPS之间能消除这类干扰(图1)。

一个差模噪声滤波器和一个共模噪声滤波器能够串联或在许多情况下单独使用共模噪声滤波器。

图1 EMI滤波器的插入一、共模电感设计在一个共模滤波器内,电感的每一个绕阻和电源输入线中的任一根导线相串联。

(对于电源的输入线来讲)电感绕组的接法和相位是这样的,第一个绕组产生的磁通会与第二个绕组产生的磁通相削. 于是,除了泄漏阻抗的小损耗和绕组的直流电阻以外,电感至电源输入线的插入阻抗为另。

由于磁通的阻碍,SMPS 的输入电流需要功率,因此将通过滤波器,滤波器应没有任何明显的损耗。

共模噪声的定义是出现在电源输入线的一根或二根导线上的有害电流通过电感的地返回噪声源的噪声。

此电流要视共模电感的任何一个或二个绕组的全部阻抗,因为它不能被返回的电流所抵消。

共模噪声电压是电感绕组上的衰减,应从有害噪声中保持电源输入线的畅通。

1.1、选择电感材料开关电源正常工作频率20KHz以上,而电源产生的有害噪声比20KHz高,往往在100KHz~50MHz之间。

对于电感来讲,大多数选择适当和高效费比的铁氧体,因为在有害频带内能提供最高的阻抗。

当看到公共参数如磁导率和损耗系数就去识别材料是困难的。

图2给出铁氧体磁环J-42206-TC绕10匝后的阻抗ZS和频率的关系曲线。

图2铁氧体磁环的阻抗和频率的关系在1~10MHz之间绕组到达最大阻抗,串联感抗XS和串联电阻RS(材料磁导率和损耗系数的函数)共同产生总阻抗Zt。

图3所示为图2中铁氧体材料的磁导率和损耗系数与频率的函数关系。

由于感抗引起的下降,导致磁导率在750KHz以上的下降;由于电阻取决高频的源阻抗所以损耗系数随频率而增加。

图3铁氧体磁环的磁导率、损耗系数和频率的关系图4给出三种不同材料的总阻抗和频率的关系。

J材料在超过1~20MHz范围内具有高的总阻抗,它最广泛地应用于共模滤波器的扼流圈。

在1MHz,W材料阻抗比J材料高20-50%,当低频噪声是主要问题时经常应用J材料;K材料可用于2MHz以上,因为在此频率范围内它产生的阻抗比J材料高直至100%。

在2MHz以上或以下,对于滤波器所要求的规范,J或W是优先的。

图4三种不同材料的阻抗和频率的关系1.2、磁芯的形状对于共模噪声滤波器环形磁芯是最普及的,他们不贵、泄漏磁通也低。

环形磁芯必须用手绕制(或在独特的环形绕线机上绕制)。

正常情况要用一个非金属的分隔板放置在两个绕组之间,以及为了和PC板连接,这个绕制器件还需环氧化在印制板的头部。

具有附件的E形磁芯比环形磁芯贵,但组装成一个整体只需较小的代价。

绕制E 形磁芯的骨架相对便宜。

为了分隔两个绕组可购到有分隔板的骨架并可安装在PC板上。

E形磁芯有更多的泄漏电感,在共模滤波器中对于不同的滤波是有用的。

E形磁芯为了增加泄漏电感可以豁开缝隙,以便吸收有害的共模和差模噪声。

1.3、磁芯的选择下面给出环形磁芯的设计步骤,单层共模电感见图5。

为了尽量减小绕组电容和防止由于不对称绕组引起的磁芯饱和,单层设计是经常应用的。

步骤中假设两个相反的绕组之间的最小自由空间为30度。

图5单层共模电感的结构对于共模电感所需的基本参数是电流(I)、阻抗(ZS)、和频率(f)。

电流决定导线的尺寸。

一个保守的400A/cm2电流密度不会在导线上产生有效的热量。

而一个过分的800A/cm2电流密度会引起导线发热,这两个等级可用选择图表表示。

在所给频率上,规定一个最小的电感阻抗是正常的。

这个频率通常足够低并假设感抗XS能提供图2所示的阻抗。

随后电感可计算为:(2)(1)用已知的电感和电流乘积LI基础上的图6和图7能用于选择磁芯的尺寸,这里L是电感(mH)和I是电流(A)。

建立在电流密度(Cd)400或800 A/cm2基础上的导线尺寸(AWG)可用下式计算:(2)匝数可由磁芯的AL值决如下:(3)1.4、设计举例在10KHz阻抗为100Ω时,电流为3A,由式(1)计算得LS=1.59mH;用800 A/cm2电流密度时,LI乘积为4.77,为了选择材料可从图7查得磁芯尺寸。

在此例,选择W材料直至1MHz可以给出高的阻抗,见图4。

图7给出磁芯材料为W-41809-TC。

由表1可查得磁芯尺寸和AL值。

用AL=12200 mH /1000匝,式(3)给出N=12匝每边。

用800 A/cm2时, 式(2)给出AWG=21。

表1环形磁芯尺寸及其AL值二、整流电感设计典型的稳压器电路包含三个部分:晶体开关管、二极箝位管、和LC滤波器。

一个不稳压的直流电压加到通常工作在1~50KHz频率的晶体开关管。

当开关处在‘ON’状态时,输入电压Ein加到LC滤波器,结果导致通过电感的电流增大;当开关处在‘OFF’状态时,用储存在电感和电容内的过剩能量来保持输出功率。

通过调整‘ON’状态时的晶体开关管的导通时间ton和用来自输出端的反馈系统来获得稳压。

结果稳定的直流输出电压可表示为:Eout=Eintonf (4)图8典型的稳压器电路2.1、组件选择开关系统包含晶体管和来自稳压器输出的反馈。

晶体管的选择包含两个因素:(1)电压等级需大于最大的输入电压(2)为了保证有效地工作,截止频率特性必须高于实际的开关频率。

反馈电路通常包括运放和比较器。

对于二极箝位管的要求和晶体管的选择相同。

如果已知:(1)最大和最小的输入电压(2)要求的输出(3)最大允许的纹波电压(4)最大和最小的负载电流(5)想要的开关频率,那幺就可获得电感和电容的值。

LC滤波器的设计就容易完成。

首先晶体管的截止时间toff可计算为:toff=(1- Eout/Ein max)/f (5)当Ein减至它的最小值fmin=(1- Eout/Ein max)/ toff (6)用这些值,所需的电感和电容可以算得:通过电感所允许的纹波峰-峰电流(Δi)可由下式给出:Δi=2IO min (7)电感可用下式计算:L= Eouttoff/Δi(8)对于Δi的计算值是有点任意,不过对于电感可以调整以获得实际值。

最小的电容可由下式给出:C=Δi/8f minΔeO(9)最后,电容最大的等效串联电阻ESR是:ESR max =ΔeO/Δi(10)2.2、电感设计在高频下铁氧体E形和罐形磁芯能提供成本降低和低磁芯损耗的优点。

对于开关稳压器,F和P材料被推荐是因为他们的温度和直流偏置特性。

为避免饱和,可采用增加铁氧体型材气隙的办法使磁芯有效地使用。

对于开关稳压器的应用,这些磁芯的选择步骤能简化电感的设计。

假设绕组系数50%和导线载流容量为500园周面积(Circular Mils)/安培,我们能决定最小的磁芯尺寸。

设计应用的两个仅有参数必须知道:①电感需要用的直流偏置。

②直流电流。

(1)计算产品的LI2这里:L=具有直流偏置的所需电感I=最大直流输出电流 I =IO max+Δi (11)(2)将LI2值设置在铁氧体磁芯的选择图表中(P.4.15~4.18)。

跟踪与第一根磁芯尺寸曲线相交的座标,在Y轴上可读得最大额定电感AL,它表示最小的磁芯尺寸和最大的AL,在那一点饱和将被避免。

(3)若磁芯的AL较小于在座标上获得的最大值,那幺对于电感来说,任何磁芯尺寸线只要与LI2座标相交就表示是一个可使用的磁芯。

若可能,使用标准气隙的磁芯是可取的,这是由于他们的有效性。

这些在座标上用虚线表示,在此手册能找到。

(4)需要的电感L、磁芯尺寸、和磁芯的额定电感(AL)是已知的,那幺可用下式计算线圈的匝数:(12)N=103√L/ AL (12)这里L的单位是mH(5)在P5.9上用500园周面积(Circular Mils)/安培,从导线表可选择导线的尺寸。

(6)举例根据以下需求选择开关稳压器的磁芯:EO =5VΔeO =0.5VIO max =6AIO min =1AEin min =25VEin max =35Vf =20KHz①用等式(2)、(3)计算晶体开关管的截止时间和最小开关频率fmintoff=(1-5/35)/20,000=4.3×10-5Stmin=(1-5/25)/4.3×10-5=18,700Hz②用等式(4)让最大纹波电流Δi通过电感Δi=2(1)=2A③用等式(5)计算LL=5(4.3×10-5)/2=0.107mH④用等式(6)、(7)计算C和ESR maxC=2/8(18700)(0.5)=26.7μFESR max =0.5/2=0.25Ω⑤产品的LI2 LI2=(0.107)(8)2=6.9mJ⑥由于有许多铁氧体型材可以购到,所以可以有不同的选择,若最大AL没有被超过,那幺与任何磁芯尺寸相交的LI2值座标都能应用。

以下LI2值座标的选择是:(a)45224 EC 52 磁芯 AL315(b)45015 E 磁芯 AL250(c) 44229 实芯磁芯 AL315(d)43622 罐形磁芯 AL400(e)43230 PQ磁芯 AL250⑦给定AL,对要求电感所需的匝数AL 匝数250 21315 19400 17⑧用﹟14导线和(7)磁芯气隙的应用直流偏置数据(μe和H的关系曲线)的有关曲线表示点的轨迹,这个轨迹相当于有效导磁率保持常数。

由图9可见以安匝数表示的最大允许的直流偏置,没有使电感减小。

超过这个范围电感迅速下降。

图9有效磁导率与磁场强度的关系应用举例:求解:多少安匝数能支持R-42213-A-315罐形磁芯不使电感值减小?已知:由图查得最大允许的H=25奥斯特NImax=0.8×H× =62.4安匝或用图的顶部座标安匝/厘米 H=20A-T/cmNImax= A-T/cm× =20×3.12=62.4安匝其中:(13)Ae=有效磁芯截面积cm2、AL=电感/1000匝mH、μi=初始导磁率、 =气隙长度cm(8)附铁氧体磁芯直流偏置选择图表以上译自(美)MAGNETICS公司铁氧体磁芯手册3.1、磁材简介铁镍钼(Molybdenum Permalloy)、铁镍50(Hi-Flux)和铁硅铝(Super-MSS)功率磁芯可用磁导线绕制成变压器或电感。

对所给能量储存(电感和电流)或变换(电压和电流)值所允许的能量消耗,磁芯材料和尺寸的选择指导(在这里将会给出)。

能量消耗通常规定在最大上升温度期间内的最低效率或最低Q值(在电流的一个周期内,Q值是2p乘以峰值能量储存/能量消耗)当选择磁芯材料时应考虑以下问题:(1)铁镍钼(MPP)功率磁芯能提供最大Q值和最低磁芯损耗。

相关文档
最新文档