《整式的乘法与因式分解》练习题

合集下载

整式乘法与因式分解500题(含答案解析)

整式乘法与因式分解500题(含答案解析)

一、整式的乘除(共73题)832.下列四个算式:①63+63;②(2×63)×(3×63);③(22×32)3;④(33)22364.下列运算中,正确的是()5.下面是一名学生所做的4道练习题:①(-3)0=1;②a3+a3=a6;③4m-4=;④(xy2)3=x3y6,他做对的个数是()9.下列运算正确的是()11.下列运算正确的是()18.下列计算正确的是()222.一个长方体的长、宽、高分别3a-4,2a,a,它的体积等于()23.2x2•(-3x3)=_______.24.(-2x2)•3x4=_______.25.(3x2y)(-x4y)=_______.26.2a3•(3a)3=_______.27.(-3x2y)•(xy2)=_______.28.-3x3•(-2x2y)=_______.29.3x2•(-2xy3)=_______.30.(-2a)(-3a)=_______.31.8b2(-a2b)=_______.32.8a3b3•(-2ab)3=_______.33.(-3a3)2•(-2a2)3=_______.34.(-8ab)()=_______.35.2x2•3xy=_______.36.3x4•2x3=_______.37.x2y•(-3xy3)2=_______.38.(2a2b)3c÷(3ab)3=_______.39.(-2a)3•b4÷12a3b2=_______.40.计算:(_______)•3ab2=9ab5;-12a3bc÷(_______)=4a2b;(4x2y-8x3)÷4x2=_______.41.若(a m+1b n+2)•(a2n-1b2m)=a5b3,则m+n的值为_______.42.若n为正整数,且a2n=3,则(3a3n)2÷(27a4n)的值为_______.43.利用形如a(b+c)=ab+ac的分配性质,求(3x+2)(x-5)的积的第一步骤是()44.下列多项式相乘的结果是a2-3a-4的是()45.下列多项式相乘结果为a2-3a-18的是()249.(-2a3+3a2-4a)(-5a5)=_______.50.(x-2)(x+3)=_______.51.(x-2y)(2x+y)=_______.52.3x(5x-2)-5x(1+3x)=_______.53.(x-a)(x2+ax+a2)=_______.54.5x(x2-2x+4)+x2(x+1)=_______.256.若(x+1)(2x-3)=2x2+mx+n,则m=_______,n=_______.57.若(x+4)(x-3)=x2+mx-n,则m=_______,n=_______.259.若(mx3)•(2x k)=-8x18,则适合此等式的m=_______,k=_______.60.若(x+1)(2x-3)=2x2+mx+n,则m=_______,n=_______.61.若(x-2)(x-n)=x2-mx+6,则m=_______,n=_______.62.若(x+p)与(x+2)的乘积中,不含x的一次项,则p的值是_______.64.计算(a+m)(a+)的结果中不含关于字母a的一次项,则m等于()65.如果(x+1)(x2-5ax+a)的乘积中不含x2项,则a为_______.66.已知(5-3x+mx2-6x3)(1-2x)的计算结果中不含x3的项,则m的值为_______.67.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是()68.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片_______张.69.已知m+n=2,mn=-2,则(1-m)(1-n)的值为()70.若2x(x-1)-x(2x+3)=15,则x=_______.71.已知a2-a+5=0,则(a-3)(a+2)的值是_______.72.按下列程序计算,最后输出的答案是_______.73.下列运算正确的是().(am+bm+cm)÷n=am÷n+bm÷n+cm÷n=.(-a3b-14a2+7a)÷7a=-7a2b-2a.(36x4y3-24x3y2+3x2y2)÷(-6x2y)=-6x2y+4x5y3-x4y3.(6a m+2b n-4a m+1b n+1+2a m b n+2)÷(-2a m b n)=-3a2+2ab-b n+1二、乘法公式(共150题)74.下列计算正确的是()75.在下列各式中,与(a-b)2一定相等的是()76.下列等式成立的是()77.下列计算正确的是()2222.-(-x)•(-x)=-x.(x-3y)(-x+3y)=x2-9y288.(a+1)2-(a-1)2=_______.89.化简(a+b)2-(a-b)2的结果是_______.90.(-4a-1)与(4a-1)的积等于()91.运算结果为2mn-m2-n2的是()92.下列各式是完全平方式的是().x2-x+B94.小明计算一个二项式的平方时,得到正确结果a2-10ab+■,但最后一项不.(a+b)(b-a).(x2-y)(x+y2)96.下列各式中,能用平方差公式计算的是()①(7ab-3b)(7ab+3b);②73×94;③(-8+a)(a-8);④(-15-x)(x-15).97.应用(a+b)(a-b)=a2-b2的公式计算(x+2y-1)(x-2y+1),则下列变.(x-y)(x+y)=x2-y2.(a+b)(a-b)=a2-b2.(3x2+5)(3x2-5)=9x4-2599.对于任意的整数n,能整除(n+3)(n-3)-(n+2)(n-2)的整数是()100.如果两个数互为倒数,那么这两个数的和的平方与它们的差的平方的差是()22107.下列等式恒成立的是()108.下列代数式中是完全平方式的是()42222222109.多项式有:①x2+xy+y2;②a2-a+;③m2+m+1;④x2-xy+y2;⑤m2+2mn+4n2;⑥a4b2-a2b+1.以上各式中,形如a2±2ab+b2的形式的.3x2-2x+1 D111.若m≠n,下列等式中正确的是()①(m-n)2=(n-m)2;②(m-n)2=-(n-m)3;③(m+n)(m-n)=(-m-n)(-m+n);④(-m-n)2=-(m-n)2.112.下列计算中:①x(2x2-x+1)=2x3-x2+1;②(a+b)2=a2+b2;③(x-4)2=x2-4x+16;④2222114.若等式(x-4)2=x2-8x+m2成立,则m的值是()115.计算(x-)2的结果是_______.116.与(-)2的结果一样的是().(x+y)2-xy B.(+)2+xy C.(x-y)2D.(x+y)2-xy 117.计算(x-3y)(x+3y)的结果是()118.计算:1232-124×122=_______.119.计算:a2-(a+1)(a-1)的结果是_______.24121.如果,,则xy的值是_______.4422123.下列各式中,运算结果为1-2xy2+x2y4的是()124.(x+y)2-_______=(x-y)2.125.填空,使等式成立:x2-x+_______=(x+_______)2126.若4x2+kx+25=(2x-5)2,那么k的值是_______.127.设(5a+3b)2=(5a-3b)2+A,则A=_______.128.若x2+ax+9=(x+3)2,则a的值为_______.129.如果x2+8x+m=(x+n)2,则m、n的值为()130.要使x2-6x+a成为形如(x-b)2的完全平方式,则a,b的值为()131.如果ax2+2x+=(2x+)2+m,则a,m的值分别是_______.132.如果(a-x)2=a2+ya+,则x、y的值分别为_______.133.若a满足(383-83)2=3832-83×a,则a值为_______.222135.已知(x+a)(x-a)=x2-16,则a的值是_______.136.4a2+2a要变为一个完全平方式,则需加上的常数是().-D.137.如果二次三项次x2-16x+m2是一个完全平方式,那么m的值是_______.22139.如果关于x的二次三项式x2-mx+16是一个完全平方式,那么m的值是140.已知x2+kxy+64y2是一个完全平方式,则k的值是_______.141.若9x2+mxy+16y2是一个完全平方式,则m的值为()142.若4a2+2abk+16b2是完全平方式,那么k的值是()143.当m=()时,x2+2(m-3)x+25是完全平方式.144.如果x2-2(m+1)x+m2+5是一个完全平方式,则m=_______.145.若要使4x2+mx+成为一个两数差的完全平方式,则m的值应为().B.C.D.146.若k-12xy+9x2是一个完全平方式,那么k应为()147.若4x2+pxy3+y6是完全平方式,则p等于_______.148.(x+b)2=x2+ax+121,则ab=_______.149.若改动9a2+12ab+b2中某一项,使它变成完全平方式,则改动的办法是()150.老师布置了一道作业题:把多项式25x4+1增加一个单项式后,使之成为一个整式的平方式,以下是某学习小组给出的答案①-1,②-25x4,③10x2,④-10x2,⑤()2x8,其中正确的有()A.5个B.4个C.3个D.2个151.若二项式x2+4加上一个单项式后成为一个完全平方式,则这样的单项式共有_______个.152.当x=-2时,代数式-x2+2x-1的值等于_______.153.若x=2-,则x2-4x+8=_______.154.当x=22005,y=(-2)2005时,代数式4x2-8xy+4y2的值为_______.155.(a+b-1)(a-b+1)=(_______)2-(_______)2.156.4a2-_______=(_______+3b)(_______-3b).158.(_______)+16x2=[(_______)+1][(_______)-1]159.(x-_______-3)(x+2y-_______)=[(_______)-2y][(_______)+2y] 160.(x-y)(x+y)(x2+y2)(x4+y4)…(x2n+y2n)=_______.22162.已知(a+b)2-2ab=5,则a2+b2的值为_______.163.已知a2+b2=12,且ab=-3,那么代数式(a+b)2的值是_______.164.若m2-n2=6,且m-n=3,则m+n=_______.165.若a+b=0,ab=11,则a2-ab+b2的值为_______.166.已知x+y=-5,xy=6,则x2+y2的值是_______.167.若m+n=7,mn=12,则m2-mn+n2的值是_______.168.已知a-b=3,a2-b2=9,则a=_______,b=_______.22.±D.1或170.已知x2+y2=25,x+y=7,且x>y,则x-y的值等于_______.171.已知(x+y)2=18,(x-y)2=6,则x2+y2=_______,xy=_______.172.若|x+y-5|+(xy-6)2=0,则x2+y2的值为_______.173.若x(y-1)-y(x-1)=4,则-xy=_______.174.若a-b=2,a-c=1,则(2a-b-c)2+(c-a)2的值是_______.175.已知a=2003,b=2002,则a2-2ab+b2-5a+5b+6的值为_______.176.若n满足(n-2006)2+(2007-n)2=1,则(2007-n)(n-2006)等于_______.177.已知(2009-a)(2008-a)=2007,那么(2009-a)2+(2008-a)2=_______.178.已知a=x+20,b=x+19,c=x+21,那么代数式a2+b2+c2-ab-bc-ac 的值是_______.179.如果a-b=2,a-c=,那么a2+b2+c2-ab-ac-bc等于_______.180.当a(a-1)-(a2-b)=-2时,则-ab的值为_______.181.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且x+1=2128,则n=_______.182.如果x-=3,那么x2+=_______.183.若a-=2,则a2+的值为_______.184.已知,则=_______.185.若x2+=7,则x+=_______.186.如果x+=2,则=_______.187.若(x+)2=,试求(x-)2的值为_______.188.已知x-=1,则=_______.189.已知a+b=3,a3+b3=9,则ab等于_______.190.a、b是任意实数,则下列各式的值一定为正数的是().191.已知a2-2a+1=0,则a2007=_______.192.如果1-+=0,那么=_______.22194.已知x2+y2+4x-6y+13=0,那么x y=_______.2196.已知x为任意有理数,则多项式-1+x-x2的值为()A.一定为负数B.不可能为正数197.若x=a2-2a+2,则对于所有的x值,一定有()198.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值()199.若M=3x2-8xy+9y2-4x+6y+13(x,y是实数),则M的值一定是()200.用简便方法计算:99×101×10 001=_______.201.用简便方法计算:20032-2003×8+16=_______.202.由m(a+b+c)=ma+mb+mc,可得:(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3,即(a+b)(a2-ab+b2)=a3+b3…①我们把等式①叫做多项式乘法的立方和公式.下列应用这个立方和公式进行的变形不正确的是()203.为了美化城市,经统一规划,将一正方形草坪的南北方向增加3m,东西204.某商品原价为100元,现有下列四种调价方案,其中0<n<m<100,.先涨价m%,再降价n% B.先涨价n%,再降价m%.行涨价%,再降价% D.先涨价%,再降价%205.图①是一个边长为(m+n)的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是()A.(m+n)2-(m-n)2=4mn B.(m+n)2-(m2+n2)=2mn206.如图所示,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为()207.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是()A.(a+b)(a-b)=a2-b2B.(a-b)2=a2-2ab+b2208.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2209.将边长分别为(a+b)和(a-b)的两个正方形摆放成如图所示的位置,则阴影部分的面积化简后的结果是_______.210.(m+n-p)(p-m-n)(m-p-n)4(p+n-m)2等于()211.若A=(2+1)(22+1)(24+1)(28+1),则A-2003的末位数字是()212.一个非零的自然数若能表示为两个非零自然数的平方差,则称这个自然数为“智慧数”,比如28=82-62,故28是一个“智慧数”.下列各数中,不是“智慧数”的是()213.设a>b>0,a2+b2-6ab=0,则的值等于_______.214.已知a-b=b-c=,a2+b2+c2=1,则ab+bc+ca的值等于_______.215.某校数学课外活动探究小组,在老师的引导下进一步研究了完全平方公式.结合实数的性质发现以下规律:对于任意正数a、b,都有a+b≥2成立.某同学在做一个面积为3 600cm2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来作对角线用的竹条至少需要准备xcm.则x的值是()A.120B.60C.120 D.60216.如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+_______a3b+_______a2b2+_______ab3+b4.217.三个连续自然数中,两个较大数的积与第三个数平方的差为188,那么这三个自然数为()218.设n为大于1的自然数,则下列四个式子的代数值一定不是完全平方数的是().C.D.220.如果自然数a是一个完全平方数,那么与a之差最小且比a大的一个完全.a+2+122222.已知实数x,y满足方程(x2+2x+3)(3y2+2y+1)=,则x+y=_______.223.如果对于不<8的自然数n,当3n+1是一个完全平方数时,n+1能表示成k个完全平方数的和,那么k的最小值为()三、因式分解(共277题)因式分解四个基本方法:提公因式法、公式法、十字相乘法、分组分解法提公因式法224.分解因式:a2+2a=_______.225.分解因式:ab-a=_______.226.分解因式:ax+ay=_______.227.分解因式:2mx-6my=_______.228.分解因式:3a2-6a=_______.229.分解因式:15a2b+5ab=_______.230.分解因式:x3-2x2y=_______.231.分解因式:-12a2b-16ab2=_______.232.分解因式:9x-3x3=_______.233.分解因式:-4x2y+6xy2-2xy=_______.234.分解因式:-6mn+18mnx+24mny=_______.235.分解因式:-4a3+16a2b-26ab2=_______.236.分解因式:-7ab-14a2bx+49ab2y=_______.237.分解因式:12x3y-18x2y2+24xy3=_______.238.分解因式:x3y-x2y2+2xy3=_______.239.分解因式:-4x2yz-12xy2z+4xyz=_______.240.分解因式:-6xy+18xym+24xym =_______.241.分解因式:6x3-18x2+3x=_______.242.分解因式:m(x-y)+n(y-x)=_______.243.分解因式:2x(x-3)-5(x-3)=_______.244.分解因式:(2x2+3x-1)(x+2)-(x+2)(x+1)=_______.245.分解因式:4b(x-y+z)+10b2(y-x-z)=_______.246.分解因式:2y(x-2)-x+2=_______.247.分解因式:(x+3y)2-(x+3y)=_______.248.分解因式:(a-b)2-(b-a)3=_______.249.分解因式:(1+a)mn-a-1=_______.250.分解因式:(a-b)2(x-y)-(b-a)(y-x)2=_______.251.分解因式:4a(x-y)2-6b(y-x)=_______.252.分解因式:16(x-y)2-24xy(y-x)=_______.253.分解因式:6ab(a+b)2-4a2b(a+b)=_______.254.分解因式:n(m-n)(p-q)-n(n-m)(p-q)=_______.255.分解因式:x2-4x+4+(2x-4)=_______.256.分解因式:m(m+n)3+m(m+n)2-m(m+n)(m-n)=_______.257.分解因式:-3a(1-x)-2b(x-1)+c(1-x)=_______.258.分解因式:x(x-y)-y(y-x)=_______.259.分解因式:xy(x-y)-y(y-x)2=_______.260.分解因式:a(x2+y2)+b(-x2-y2)=_______.261.分解因式:(a+b)(a+b-1)-a-b+1=_______.262.分解因式:21(a-b)3+35(b-a)2=_______.263.分解因式:3x3y4+12x2y=_______.264.分解因式:a n+a n+2+a2n=_______.265.分解因式:-31x m-155x m+2+93x m+3=_______.266.分解因式:3x m•y n+2+x m-1y n+1=_______.267.分解因式:x(a-b)2n+y(b-a)2n+1=_______.268.分解因式:mn2(x-y)3+m2n(x-y)4=_______.269.分解因式:a3(x-y)-3a2b(y-x)=_______.270.分解因式:-12xy2(x+y)+18x2y (x+y)=_______.271.分解因式:18(x-y)3-12y(y-x)2=_______.272.分解因式:a(m-n)3-b(n-m)3=_______.273.分解因式:x2y(x-y)2-2xy(y-x)3=_______.274.分解因式:3x(x-y)+2x(y-x)-y(x-y)=_______.275.分解因式:(x+y)2-3(x+y)=_______.276.分解因式:m2n(m-n)2-2mn(n-m)3=_______.277.分解因式:2(a-b)3-4(b-a)2=_______.278.分解因式:(a-b)2(a+b)+(a-b)(a+b)2=_______.279.分解因式:(x-y)2-(3x2-3xy+y2)=_______.280.分解因式:1+x+x(1+x)+x(1+x)2+…+x(1+x)1995=_______.23282.在下列多项式中,没有公因式可提取的是())287.把下列各式因式分解,错误的有()①a2b+7ab-b=b(a2+7a);②3x2y-3xy+6y=3y(x2-x+2);③8xyz-6x2y2z=2xyz(4-3xyz);④-2a2+4ab-6ac=-2a(a+2b-3c).2n n289.若多项式-6ab+18abx+24aby的一个因式是-6ab,那么另一个因式是32293.若要把多项式-12xy2(x+y)+18x2y(x+y)因式分解,则应提取的公因式为_______.294.利用分解因式计算:1.38×29-17×1.38+88×1.38=_______.295.若(p-q)2-(q-p)3=(q-p)2•E,则E是_______.296.若a,b互为相反数,则a(x-2y)-b(2y-x)的值为_______.297.若m、n互为相反数,则m(a-3b)-n(3b-a)=_______.298.若a2+a=0,则2a2+2a+20130的值为_______.299.已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a,b均为整数,则a+3b=_______,ab=_______.300.已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b=_______.301.已知a+b=3,ab=2,则a2b+2a2b2+ab2=_______.302.已知x2-xy=2,则x(2x-2y)-4=_______.303.已知m+n=1,mn=-,则m(m+n)(m-n)-m(m-n)2=_______.304.多项式4x3-2x2-2x+k能被2x整除,则常数项为_______.305.若(b+c)(c+a)(a+b)+abc有因式m(a2+b2+c2)+l(ab+ab+bc),则m=_______,l=_______.306.设x为满足x2002+20022001=x2001+20022002的整数,则x=_______.公式法2310.在有理数范围内,下列各多项式能用公式法进行因式分解的是().D..1-(x+2)=(x+1)(x+3).312.下列多项式中,不能运用平方差公式因式分解的是()313.下列多项式中能用平方差公式分解因式的是()314.下列多项式中能用公式进行因式分解的是().x2-x+D.B317.在多项式①x2+2xy-y2;②-x2-y2+2xy;③x2+xy+y2;④4x2+1+4x中,能用完全平方公式分解因式的有()318.下列因式分解中,正确的有()①4a-a3b2=a(4-a2b2);②x2y-2xy+xy=xy(x-2);③-a+ab-ac=-a(a-b-c);④9abc-6a2b=3abc(3-2a);⑤x2y+xy2=xy(x+y)A.0个B.1个C.2个D.5个319.下列多项式不能用平方差公式分解因式的是().m2-m+1 D.x2-xy+y2 321.下列多项式中,能运用完全平方公式因式分解的是()322.下列多项式中,能直接用完全平方式分解因式的是()..x2-x+B.-y2+6y-9 D326.下列各式中,不能用平方差公式分解因式的是()327.下列多项式中,能用公式法进行因式分解的是()328.下列各式中,能用平方差公式分解因式的有()①x2+y2;②x2-y2;③-x2+y2;④-x2-y2;⑤1-a2b2..a2b2-1 B.0.36x2-6D.(-x)2+ 331.下列各式中能进行因式分解的是()332.在多项式①+b2;②-m2+14mn+49n2;③a2-10a+25;2263333.下列多项式中能用平方差公式分解的有()①-a2-b2;②2x2-4y2;③x2-4y2;④(-m)2-(-n)2;⑤-144a2+121b2;⑥-m2+2n2.336.与(k-t2)之积等于t4-k2的因式为()338.下列各式中能用完全平方公式分解的是()2222222339.一次课堂练习,小明做了如下4道因式分解题,你认为小明做得不够完整341.在多项式①a2-b2+2ab;②1-a+a2;③-x+x2;④-4x2+12xy-9y2中能用完全平方公式分解的有()个.A.1B.2C.3D.4342.下列因式分解中正确的是().-a2+a-=-(2a-1)2.a4-b4=(a2+b2)(a2-b2)343.小明在抄分解因式的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是x□-4y2(“□”表示漏抄的指数),则这个指数可能的结果共有()344.分解因式:x2-1=_______.345.分解因式:a2-2ab+b2=_______.346.分解因式:x2-4x+4=_______.347.分解因式:9-x2=_______.348.分解因式:x2-4=_______.349.分解因式:a2-4a+4=_______.350.分解因式:2a2-4a+2=_______.351.分解因式:x2-y2=_______.352.分解因式:y2+4y+4=_______.353.分解因式:(x-1)2-9=_______.354.分解因式:x2-4x+4=_______.355.分解因式:4a2-b2=_______.356.分解因式:-1+0.04m2=_______.357.分解因式:1-(a-b)2=_______.358.分解因式:4x2-(y-z)2=_______.359.分解因式:x4-16=_______.360.分解因式:a4-2a2b2+b4=_______.361.分解因式:(a+b)2-100=_______.362.分解因式:4x2-12xy+9y2=_______.363.分解因式:2xy-x2-y2=_______.364.分解因式:(m-n)2+(m-n)+=_______.365.分解因式:(m-n)2-(m-n)+=_______.366.分解因式:(m-n)2-9n2(n-m)2=_______.367.分解因式:(4m+5)2-9=_______.368.分解因式:a3-4ab2=_______.369.分解因式:4a2-a2x2=_______.370.分解因式:x3-x=_______.371.分解因式:ab2-6ab+9a=_______.372.分解因式:ax2+2axy+ay2=_______.373.分解因式:ax3y+axy3-2ax2y2=_______.374.分解因式:-x3+2x2-x=_______.375.分解因式:3x3-12x2y+12xy2=_______.376.分解因式:x3-2x2+x=_______.377.分解因式:3x3-6x2y+3xy2=_______.378.分解因式:(x+2)(x+3)+x2-4=_______.379.分解因式:x9-x=_______.380.分解因式:x m+3-x m+1=_______.381.分解因式:9(x-y)2+12(x2-y2)+4(x+y)2=_______.382.分解因式:(x2+y2)2-8(x2+y2)+16=_______.十字相乘法384.49x2+_______+y2=(_______-y)2,t2+7t+12=_______.385.若对于一切实数x,等式x2-px+q=(x+1)(x-2)均成立,则p2-4q的值是_______.386.分解因式:x2+x-6=_______,x2-x-6=_______.387.分解因式:x2+5x-6=_______.388.分解因式:x2+x-12=_______.389.分解因式:x2+2x-15=_______.390.分解因式:x2-9x+14=_______.391.分解因式:x2-5x-14=_______.392.分解因式:x2+4x-21=_______.393.分解因式:x2-x-42=_______.394.若(x-3)•A=x2+2x-15,则A=_______.395.分解因式:2x2-4x-6=_______.396.分解因式:-2x2+4x+6=_______.397.分解因式:x3-2x2-3x=_______.398.分解因式:4a2b+12ab+8b=_______.400.分解因式:2x2-7x+3=_______.401.分解因式:3x2-5x-2=_______.402.分解因式:3x2-7x+2=_______.403.分解因式:6x2+7x-5=_______.404.若x+5是二次三项式x2-kx-15的一个因式,那么这个二次三项式的另一个因式是_______.405.x2-_______-20=(x+4)(_______).406.分解因式:(x-3)(x-5)-3=_______.407.分解因式:(x+2)(x-13)-16=_______.408.分解因式:(x-1)(x-2)-20=_______.409.分解因式:(a+3)(a-7)+25=_______.410.分解因式:x2-3x(x-3)-9=_______.411.已知5x2-xy-6y2=0,则的值为_______.412.分解因式:2x2+5xy-12y2=_______.413.分解因式:x2+7xy-18y2=_______.414.分解因式:a2+2ab-3b2=_______.415.分解因式:18ax2-21axy+5ay2=_______.416.分解因式:2003x2-(20032-1)x-2003=_______.417.用十字相乘法分解因式:a2x2+7ax-8=_______.418.分解因式:m4+2m2-3=_______.419.分解因式:(x+y)2+5(x+y)-6=_______.420.分解因式:(x-y)2-4(x-y)+3=_______.421.分解因式:(a-b)2+6(b-a)+9=_______.422.分解因式:(x+y)2-3x-3y-4=_______.423.若p是正整数,二次三项式x2-5x﹢p在整数范围内分解因式为(x-a)(x-b)的形式,则p的所有可能的值_______.424.已知a为整数,且代数式x2+ax+20可以在整数范围内进行分解因式,则符合条件的a有_______个.425.分解因式:2b2-2b+=_______.426.分解因式:x8+x4+1=_______.427.分解因式:(x2+3x)2-2(x2+3x)-8=_______.428.分解因式:(a2+3a)2-2(a2+3a)-8=_______.429.分解因式:(x2-2x)2-11(x2-2x)+24=_______.430.分解因式:x(x-1)(x+1)(x+2)-24=_______.431.分解因式:(x-3)(x-1)(x-2)(x+4)+24=_______.432.分解因式:(x2+5x+2)(x2+5x+3)-12=_______.433.分解因式:(x4+x2-4)(x4+x2+3)+10=_______.434.分解因式:(x+1)4+(x+3)4-272=_______.435.将x3-ax2-2ax+a2-1分解因式得_______.436.在有理数范围内分解因式:(x+y)4+(x2-y2)2+(x-y)4=_______.437.分解因式:x4+2500=_______.438.分解因式:(1-7t-7t2-3t3)(1-2t-2t2-t3)-(t+1)6=_______.分组分解法439.分解因式:ab+b2-ac-bc=(_______)-(ac+bc)=_______.440.分解因式:ax2+ax-b-bx=(ax2-bx)+(_______)=(_______)(_______).441.分解因式:2ax+4bx-ay-2by=(_______)+(_______)=(_______)(_______).442.分解因式:x2-a2-2ab-b2=(_______)-(_______)=(_______)(_______).443.分解因式:ax-ay+a2+bx-by+ab=_______.444.分解因式:ab-3ac+2ay-bx+3cx-2xy=_______.445.分解因式:(ax-by)2+(ay+bx)2=_______.446.分解因式:1-a2-b2+2ab=_______.447.分解因式:1-x2+2xy-y2=_______.448.分解因式:a2-b2+4a+2b+3=_______.449.分解因式:x2-4y2-9z2-12yz=_______.450.分解因式:a2-4b2+4bc-c2=_______.451.分解因式:-x3-2x2-x+4xy2=_______.452.分解因式:9-6a-6b+a2+2ab+b2=_______.453.分解因式:a2+4b2+9c2-4ab+6ac-12bc=_______.454.分解因式x3+(1-a)x2-2ax+a2=_______.455.已知p、q满足等式|p+2|+(q-4)2=0,分解因式:(x2+y2)-(pxy+q)=_______.456.已知,且x≠y,则=_______.457.分解因式:a4b-a2b3+a3b2-ab4=_______.458.分解因式:(x+y-2xy)(x+y-2)+(xy-1)2=_______.459.分解因式:a2+2b2+3c2+3ab+4ac+5bc=_______.460.分解因式:x2y+xy2-x2-y2-3xy+2x+2y-1=_______.461.分解因式:(1-x2)(1-y2)-4xy=_______.462.分解因式:ax3+x+a+1=_______.463.分解因式:(x2-1)(x4+x2+1)-(x3+1)2=_______.464.分解因式:x5+x3-x2-1=_______.465.分解因式:x3+x2+2xy+y2+y3=_______.466.分解因式:32ac2+15cx2-48ax2-10c3=_______.467.分解因式:x2(y-z)+y2(z-x)+z2(x-y)=_______.468.分解因式:(x+y-2xy)(x+y-2)+(1-xy)2=_______.469.分解因式:x4+x3+6x2+5x+5=_______.470.分解因式:bc(b+c)+ca(c-a)-ab(a+b)=_______.471.分解因式y2+xy-3x-y-6=_______472.分解因式:x2+5xy+x+3y+6y2=_______.473.分解因式:2x3+11x2+17x+6=_______.474.分解因式:x4+2x3-9x2-2x+8=_______.475.分解因式:2x2-xy-6y2+7x+7y+3=_______.476.分解因式:6x2+xy-15y2+4x-25y-10=_______.477.分解因式:(x2-1)(x+3)(x+5)+12=_______.478.分解因式:x3+6x2+5x-12=_______.479.分解因式:a4+2a3b+3a2b2+2ab3+b4=_______.480.分解因式:ab(a+b)2-(a+b)2+1=_______.481.分解因式:x4-5x2+4x=_______.482.分解因式:(x-1)3+(x-2)3+(3-2x)3=_______.483.分解因式:x3+(2a+1)x2+(a2+2a-1)x+(a2-1)=_______.因式分解的应用484.计算:(x2-2x+1-y2)÷(x+y-1)=_______.485.(a4-16b4)÷(a2+4b2)÷(2b-a)=_______.486.分解因式:①x3+(2a+1)x2+(a2+2a-1)x+(a2-1);②a4+b4+(a+b)4.487.将关于x的一元二次方程x2+px+q=0变形为x2=-px-q,就可将x2表示为关于x的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”,已知x2-x-1=0,可用“降次法”求得x4-3x+2014的值是_______.488.有理数的值等于_______.489.计算=_______.490.已知:,则abc=_______.491.设x*y=xy+2x+2y+2,x,y是任意实数,则=()A.14×1010﹣2 B.14×1010C.14×109﹣2 D.14×109492.设A=x2+y2+2x-2y+2,B=x2-5x+5,x,y均为正整数.若B A=1,则x 的所有可以取到的值为_______493.若a、b、c是三角形三边长,且a2+4ac+3c2-3ab-7bc+2b2=0,则a+c-2b=_______494.一个长方体的长、宽、高分别为正整数a,b,c,而且①ab-ca-bc=1,②ca=bc+1,试确定长方体的体积_______.495.如果实数a、b、c满足a+2b+3c=12,且a2+b2+c2=ab+ac+bc,则代数值a+b2+c3的值为_______.496.实数a、b、c满足,求(a-b)2+(b-c)2+(c-a)2的最大值是_______.497.若3x2+4y-10=0,则15x3+3x2y+20xy+4y2+3x2-50x-6y=_______.498.x3+y3=1000,且x2y-xy2=-496,则(x3-y3)+(4xy2-2x2y)-2(xy2-y2)=_______.499.对于一个自然数n,如果能找到自然数a(a>0)和b(b>0),使n-1=a+b+ab,则称n为一个“十字相乘数”,例如:4-1=1+1+1×1,则4是一个“十字相乘数”,在1~20这20个自然数中,“十字相乘数”共有_______个.500.分解因式:x2(y-z)3+y2(z-x)3+z2(x-y)3.一、整式的乘除(共73题)1.解:它工作3×103秒运算的次数为:(4×108)×(3×103)=(4×3)×(108×103)=12×1011=1.2×1012.故选B.2.解:①63+63=2×63;②(2×63)×(3×63)=6×66=67;③(22×32)3=(62)3=66;④(33)2×(22)3=36×26=66.所以③④两项的结果是66.故选D.3.解:A、应为6a-5a=a,故本选项错误;B、应为(a2)3=a2×3=a6,故本选项错误;C、3a2与2a3不是同类项,不能合并,故本选项错误;D、2a2•3a3=2×3a2•a3=6a5,正确.故选D.4.解:A、应为(a2)3=a2×3=a6,故本选项错误;B、2a•3a=2×3×a•a=6a2,正确;C、应为2a-a=a,故本选项错误;D、应为a6÷a2=a6-2=a4,故本选项错误;故选B.5.解:①根据零指数幂的性质,得(-3)0=1,故正确;②根据同底数的幂运算法则,得a3+a3=2a3,故错误;③根据负指数幂的运算法则,得4m-4=,故错误;④根据幂的乘方法则,得(xy2)3=x3y6,故正确.故选C.6.解:A、应为a2•a3=a2+3=a5,故A错误B、应为(2a)•(3a)=6a2,故B错误C、(a2)3=a2×3=a6,故C正确;D、应为a6÷a2=a6-2=a4.故D错误故选C.7.解:A、应为a3•a4=a7,故本选项错误;B、应为a3+a3=2a3,故本选项错误;C、应为a3÷a3=a0=1,错误;D、3x2•5x3=15x5,正确.故选D.8.解:A、应为x2•x3=x5,故本选项错误;B、应为x2+x2=2x2,故本选项错误;C、(-2x)2=4x2,正确;D、应为(-2x)2•(-3x)3=4x2•(-27x3)=-108x5,故本选项错误.故选C.9.解:A、应为(x2)3=x6,故本选项错误;B、应为3x2+4x2=7x2,故本选项错误;C、(-x)9÷(-x)3=x6正确.D、应为-x(x2-x+1)=-x3+x2-x,故本选项错误;故选C.10.解:A、应为(-2x2)•x3=-2x5,故本选项错误;B、x2÷x=x,正确;C、应为(4x2)3=64x6,故本选项错误;D、应为3x2-(2x)2=3x2-4x2=-x2,故本选项错误.故选B.11.解:A、a2与2a3不是同类项,不能合并,故本选项错误;B、应为(2b2)3=8b6,故本选项错误;C、应为(3ab)2÷(ab)=9ab,故本选项错误;D、2a•3a5=6a6,正确.故选D.12.解:A、应为a+a=2a,故本选项错误;B、应为a×a=a2,故本选项错误;C、3a3与2a2不是同类项,不能合并,故本选项错误;D、2a×3a2=2×3a•a2=6a3,正确.故选D.13.解:A、应为a4×a5=a9,故本选项错误;B、a2×2a2=2a4,正确;C、应为(-a2b3)2=a4b6,故本选项错误;D、应为a4÷a=a3,故本选项错误;故选B.14.解:A、a5与a2不是同类项,不能合并,故本选项错误;B、|a+b|≤|a|+|b|,故本选项错误;C、应为(-3a2)•2a3=-6a5,故本选项错误;D、正确.故选D.15.解:A、应为a2•a3=a5,故本选项错误;B、应为(-2a)3=-8a3,故本选项错误;C、a与a4不是同类项,不能合并,故本选项错误;D、-2x2•3x=-2×3x2•x=-6x3,正确;故选D.16.解:A、应为2x3•3x4=6x7,故本选项错误;B、应为3x3•4x3=12x6,故本选项错误;C、应为2a3+3a3=5a3,故本选项错误;D、4a3•2a2=4×2×a3•a2=8a5,正确.故选D.17.解:A、(a5)2=a10,故正确;B、2a2•(-3a3)=2×(-3)a2•a3=-6a5,正确;C、b•b3=b4,故正确;D、b5•b5=b10,故错误.故选D.18.解:A、应为x2+2x2=3x2;B、a3•(-2a2)=-2a5,正确;C、应为(-2x2)3=-8x6;D、应为3a•(-b)2=3ab2.故选B.19.解:A、应为(2x3)•(3x)2=(2x3)•(9x2)=18x5,故本选项错误;B、(-3x4)•(-4x3)=(-3)×(-4)x4•x3=12x7,正确;C、应为(3x4)•(5x3)=3×5x4•x3=15x7,故本选项错误;D、应为(-x)•(-2x)3•(-3x)2,=(-x)•(-8x3)•(9x2),=(-1)×(-8)×9x•x3•x2,=72x6,故本选项错误.故选B.20.解:3x2y•(-2xy)=-6x3y2,故选B.21.解:A、a+a=a2,很明显错误,应该为a+a=2a,故本选项错误;B、a•a2=a3,利用同底数幂的乘法,故本选项正确;C、应为(a2)3=a6,故本选项错误;D、a2(a+1)=a3+a2,故本选项错误.故选B.22.解:由题意知,V长方体=(3a-4)•2a•a=6a3-8a2.故选C.23.解:2x2•(-3x3)=2×(-3)•(x2•x3)=-6x5.24.解:(-2x2)•3x4=-2×3x2•x4=-6x6.25.解:(3x2y)(-x4y)=3×(-)x2+4y2=-4x6y2.26.解:2a3•(3a)3=2a3•(27a3)=54a3+3=54a6.27.解:(-3x2y)•(xy2)=(-3)××x2•x•y•y2=-x2+1•y1+2=-x3y3.28.解:-3x3•(-2x2y)=-3×(-2)•x3x2•y=6x5y.29.解:3x2•(-2xy3)=3×(-2)•(x2•x)y3=-6x3y3.30.解:(-2a)(-3a)=(-2)×(-3)a•a=6a2.31.解:8b2(-a2b)=-8a2b3.32.解:8a3b3•(-2ab)3=8a3b3•(-8a3b3)=-64a6b6.33.解:(-3a3)2•(-2a2)3=9a6•(-8a6)=-72a12.34.解:(-8ab)()=-8×a3b2=-6a3b2.35.解:2x2•3xy=2×3x2•x•y=6x3y.36.解:3x4•2x3=3×2•x4•x3=6x7.37.解:x2y•(-3xy3)2=x2y•(-3)2x2y6=9x2+2y1+6=9x4y7.38.解:(2a2b)3c÷(3ab)3=8a6b3c÷(27a3b3)=a3c.39.解:(-2a)3•b4÷12a3b2=-8a3b4÷12a3b2=-b2.40.解:(9ab5)÷(3ab2)=3b3;(4a2b)÷(-12a3bc)=-3ac;(4x2y-8x3)÷4x2=y-2x.41.解:(a m+1b n+2)•(a2n-1b2m),=a m+1+2n-1•b n+2+2m,=a m+2n•b n+2m+2,=a5b3,∴,两式相加,得3m+3n=6,解得m+n=2.42.解:(3a3n)2÷(27a4n)=9a6n÷(27a4n)=a2n,当a2n=3时,原式=×3=1.43.解:(3x+2)(x-5)的积的第一步骤是(3x+2)x+(3x+2)(-5).故选A.44.解:A、(a-2)(a+2)=a2-4,不符合题意;B、(a+1)(a-4)=a2-3a-4,符合题意;C、(a-1)(a+4)=a2+3a-4,不符合题意;D、(a+2)(a+2)=a2+4a+4,不符合题意.故选B.45.解:A、(a-2)(a+9)=a2+7a-18,故本选项错误;B、(a+2)(a-9)=a2-7a-18,故本选项错误;C、(a+3)(a-6)=a2-3a-18,正确;D、(a-3)(a+6)=a2+3a-18,故本选项错误.故选C.46.解:A、(3x+2)(x+5)=3x2+17x+10;B、(3x-2)(x-5)=3x2-17x+10;C、(3x-2)(x+5)=3x2+13x-10;D、(x-2)(3x+5)=3x2-x-10.故选C.47.解:A、应为(-2a)•(3ab-2a2b)=-6a2b+4a3b,故本选项错误;B、应为(2ab2)•(-a2+2b2-1)=-2a3b2+4ab4-2ab2,故本选项错误;C、应为(abc)•(3a2b-2ab2)=3a3b2c-2a2b3c,故本选项错误;D、(ab)2•(3ab2-c)=3a3b4-a2b2c,正确.故选D.48.解:A、应为2ac(5b2+3c)=10ab2c+6ac2,故本选项错误;B、应为(a-b)2(a-b+1)=(a-b)3+(b-a)2,故本选项错误;C、应为(b+c-a)(x+y+1)=x(b+c-a)-y(a-b-c)-a-b-c,故本选项错误;D、(a-2b)(11b-2a)=(a-2b)(3a+b)-5(2b-a)2.故选D.49.解:(-2a3+3a2-4a)(-5a5)=10a8-15a7+20a6.50.解:(x-2)(x+3)=x2+x-6.51.解:(x-2y)(2x+y)=2x2+xy-4xy-2y2=2x2-3xy-2y2.52.解:3x(5x-2)-5x(1+3x)=15x2-6x-(5x+15x2)=15x2-6x-5x-15x2=-11x.53.解:(x-a)(x2+ax+a2)=x3+ax2+a2x-ax2-a2x-a3=x3-a3.54.解:5x(x2-2x+4)+x2(x+1)=5x3-10x2+20x+x3+x2=6x3-9x2+20x.55.解:∵(x-1)(x+3)=x2+2x-3=x2+mx+n,∴m=2,n=-3.故选C.56.解:∵(x+1)(2x-3)=2x2-3x+2x-3=2x2+(2-3)x-3,又∵(x+1)(2x-3)=2x2+mx+n,∴m=-1,n=-3.57.解:∵(x+4)(x-3)=x2+x-12,而(x+4)(x-3)=x2+mx-n,∴x2+x-12=x2+mx-n,∴m=1,n=12.58.解:(x+a)(x+b)=x2+(a+b)x+ab,又∵(x+a)(x+b)=x2-13x+36,所以a+b=-13.59.解:∵(mx3)•(2x k)=(m×2)x3+k=-8x18,∴2m=-8,3+k=18,解得m=-4,k=15.60.解:∵(x+1)(2x-3)=2x2-3x+2x-3=2x2+(2-3)x-3,又∵(x+1)(2x-3)=2x2+mx+n,∴m=-1,n=-3.61.解:∵(x-2)(x-n)=x2-(n+2)x+2n=x2-mx+6,∴n+2=m,2n=6,解得m=5,n=3.62.解:(x+p)(x+2)=x2+2x+px+2p=x2+(2+p)x+2p,由题意可得,2+p=0,解得p=-2.63.解:∵(x+a)(x+b)=x2+ax+bx+ab=x2+(a+b)x+ab.又∵结果中不含x的一次项,∴a+b=0,即a=-b.故选C.64.解:∵(a+m)(a+)=a2+(m+)a+m,又∵不含关于字母a的一次项,∴m+=0,∴m=-.65.解:原式=x3-5ax2+ax+x2-5ax+a=x3+(1-5a)x2-4ax+a,∵不含x2项,∴1-5a=0,解得a=.66.解:∵(5-3x+mx2-6x3)(1-2x)=5-13x+(m+6)x2+(-6-2m)x3+12x4.又∵结果中不含x3的项,∴-2m-6=0,解得m=-3.67.解:长方形的面积等于:2a(a+b),也等于四个小图形的面积之和:a2+a2+ab+ab=2a2+2ab,即2a(a+b)=2a2+2ab.故选C.。

整式的乘法与因式分解测试题

整式的乘法与因式分解测试题

整式的乘法与因式分解测试题一、选择题(每题2分,共10分)1. 计算下列表达式的值:\( (3x - 2)^2 \)。

A. \( 9x^2 - 12x + 4 \)B. \( 9x^2 - 6x + 4 \)C. \( 9x^2 - 6x + 1 \)D. \( 9x^2 + 6x + 4 \)2. 哪个表达式不能通过因式分解简化?A. \( x^2 - 9 \)B. \( x^2 + 4x + 4 \)C. \( x^2 - 4x + 4 \)D. \( x^2 - 4 \)3. 以下哪个表达式是完全平方公式?A. \( a^2 - 2ab + b^2 \)B. \( a^2 + 2ab + b^2 \)C. \( a^2 - 2ab - b^2 \)D. \( a^2 + 3ab + b^2 \)4. 计算 \( (2x + 3)(2x - 3) \) 的结果。

A. \( 4x^2 - 9 \)B. \( 4x^2 + 9 \)C. \( 4x^2 + 6x - 9 \)D. \( 4x^2 - 6x + 9 \)5. 以下哪个表达式是多项式的乘法?A. \( (x - 1)(x + 1) \)B. \( x^2 - 1 \)C. \( x^2 + 2x + 1 \)D. \( x^2 - 2x + 1 \)二、填空题(每题2分,共10分)6. 将 \( (x + a)(x + b) \) 展开,结果为 \( ______ \)。

7. 计算 \( (x - 2)(x + 3) \) 的结果,并进行因式分解,结果为\( ______ \)。

8. 将 \( (x - 1)^2 \) 展开,结果为 \( ______ \)。

9. 利用平方差公式,将 \( x^2 - 49 \) 因式分解,结果为\( ______ \)。

10. 将 \( (3x - 1)^2 \) 展开,结果为 \( ______ \)。

整式的乘法与因式分解的练习题

整式的乘法与因式分解的练习题

整式的乘法与因式分解的练习题整式的乘除和因式分解选择题:1.正确的运算是B.(ab)3=a3b3.2.因式分解的变形是B.m3-n3=(m-n)(m2+mn+n2)。

3.完全平方式是C.a2+ab+b2.4.可以用平方差公式分解因式的是A.a2+(-b)2.5.m的值为B.3.填空题:7.(-a5)4·(-a2)3 = a26,可以在实数范围内分解因式a2-6.8.当x=4时,(x-4)=0.9.(-2002)-2 = 1/xxxxxxx。

1.5×2003÷12=125.253x-3y=3(2/3)-3(1/3)=19x^2+mxy+16y^2是完全平方式,当m=12时,可化为(3x+4y)^29xy-6xy+12xy=15xy,公因式为3xyx-9=(x-3)(x+3)x-4x+4=(x-2)^2xy+xy+4=2xy+4正方形的面积为(3x+y)^2,展开后可得9x^2+6xy+y^2,由于正方形的面积为9,故有9x^2+6xy+y^2=9,解得y=-3x+1或y=1-3x13.(8ab-5ab)/4ab=3/414.(x+2y-3)(x-2y+3)=x^2-4y^2-2x+6y-915.[(x-2y)^2+(x-2y)(2y+x)-2x(2x-y)]/2x=(x-2y+y-x)/2=-y/216.2a(x-y)-3b(y-x)=5a(x-y)17.-xy-2xy+35y=33y-3xy18.2xy-8xy+8y=-6xy+8y19.a(x-y)-4b(x-y)=(a-4b)(x-y)20.(x-1)-(x-1)(x+5)=17解得x=-3或x=2,代入可得ab+ab=-4a或4a21.2x-5+3x+1>13(x-10),解得x>23/322.a+2+b^2-2b+1=22,化简得b^2-2b+ab=10-a,再加上ab+ab,得b^2+ab-2b+2ab+11-a=0,由于a和b为实数,故有b^2+ab-2b+2ab+11-a=(b+a-1)^2+10>=10,即ab+ab>=-123.长方形的周长为2(3a+b),面积为(3a+b)(2a+b),由于周长为125.25米,故有2(3a+b)=125.25,解得a=20.75-0.5b,代入面积公式可得(3a+b)(2a+b)=83.5(41.5-b),扩展开后可得-3b^2+81b-1396=0,解得b=28或b=16/3,代入a=20.75-0.5b可得a=7.5或a=10.2524.设x=√(3y+2),则有x^2-3x-2=0,解得x=3或x=-1,代入可得y=1或y=0,故方程的解为(3,1)或(-1,0)25.设a=√(x+2),b=√(y-1),则有a^2-2=x,b^2+1=y,代入不等式可得(a^2-2)(b^2+1)>2,化简得a^2b^2-a^2-2b^2+3>0,即(a^2-2)(b^2-2)>1,代入可得(x-2)(y-1)>1,故不等式的解为{(x,y)|x>2,y>1,xy>1}阴影部分将要进行绿化,并在中间修建一座雕像。

中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案

中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案

中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案一、选择题1.下列计算正确的是()A.(3a)2=6a2B.(a2)3=a5C.a6÷a2=a3D.a2⋅a=a32.若8x=21,2y=3,则23x−y的值是()A.7 B.18 C.24 D.633.计算(−2ab)(ab−3a2−1)的结果是()A.−2a2b2+6a3b B.−2a2b2−6a3b−2abC.−2a2b2+6a3b+2ab D.−2a2b2+6a3b−14.若(x−1)(x+4)=x2+ax+b,则a、b的值分别为().A.a=5,b=4 B.a=3,b=−4 C.a=3,b=4 D.a=55.下列变形中正确的是()A.(x+y)(−x−y)=x2−y2B.x2−4x−4=(x−2)2C.x4−25=(x2+5)(x2−5)D.(−2x+3y)2=4x2+12xy+9y26.下列分解因式正确的是()A.x2+2xy−y2=(x−y)2B.3ax2−6ax=3(ax2−2ax)C.m3−m=m(m−1)(m+1)D.a2−4=(a−2)27.图(1)是一个长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,小长方形的长为a,宽为b(a>b),然后按图(2)拼成一个正方形,通过计算,用拼接前后两个图形中阴影部分的面积可以验证的等式是()A.a2b2=(ab)2B.(a+b)2=(a−b)2+4abC.(a+b)2=a2+b2+2ab D.a2−b2=(a+b)(a−b)8.若x−y=−3,xy=5则代数式2x3y−4x2y2+2xy3的值为()A.90 B.45 C.-15 D.-30二、填空题9.若27×3x=39,则x的值等于10.计算:(√3−√2)(√3+√2)=.11.在实数范围内分解因式2x2+3x−1=.12.要使(y2−ky+2y)⋅(−y)的展开式中不含y2项,则k的值是.13.已知4y2−my+9是完全平方式,则m的值为.三、解答题14.计算:(2a−1)(a+2)−6a3b÷3ab.15.把下列多项式分解因式:(1)a4−8a2b2+16b4(2)x2(y2−1)+2x(y2−1)+(y2−1)16.已知a+b=5,ab=−6,求:(1)a2b+ab2的值;(2)a2+b2的值;(3)a-b的值.17.下面是某同学对多项式(x2−4x+2)(x2−4x+6)+4进行因式分解的过程解:设x2−4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2−4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的____(填序号).A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.(3)请你模仿以上方法尝试对多项式(x2−2x)(x2−2x+2)+1进行因式分解.18.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式;(2)根据整式乘法的运算法则,通过计算验证上述等式;(3)若a+b+c=10,ab+ac+bc=35利用得到的结论,求a2+b2+c2的值.参考答案1.D2.A3.C4.B5.C6.C7.B8.A9.610.111.2(x −−3+√174)(x −−3−√174)12.213.±1214.解:原式=2a 2+4a −a −2−2a 2=3a −2.15.(1)解:a 4−8a 2b 2+16b 4=(a 2−4b 2)2=(a +2b)2(a −2b)2(2)解:x 2(y 2−1)+2x(y 2−1)+(y 2−1)=(x 2+2x +1)(y 2−1)=(x +1)2(y +1)(y −1)16.(1)解:∵a +b =5,ab =−6∴a 2b +ab 2=ab(a +b)=−30(2)解: a 2+b 2=(a +b)2−2ab=25+12=37(3)解: (a −b)2=a 2+b 2−2ab=37+12=49故a−b=±7 .17.(1)C(2)否;(x−2)4(3)解:设x2−2x+1=y原式=(y−1)(y+1)+1=y2−1+1=y2=(x2−2x+1)2=[(x−1)2]2=(x−1)4.18.(1)解:∵边长为(a+b+c)的正方形的面积为:(a+b+c)2,分部分来看的面积为a2+b2+c2+2ab+ 2bc+2ac∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)解:∵(a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ab+b2+bc+ac+bc+c2=a2+b2+c2+2ab+2bc+2ac∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(3)解:∵a+b+c=10∴a2+b2+c2=(a+b+c)2−2ab−2bc−2ac=102−2×35=30∴a2+b2+c2的值为30.。

整式乘法与因式分解500题

整式乘法与因式分解500题

D. a6÷a2=a3
5.下面是一名学生所做的 4 道练习题:①(-3)0=1;②a3+a3=a6;③4m-4= ;④(xy2)3=x3y6,他做对的个数是( )
A. 0
B. 1
C.2
D. 3
6.下列计算中,结果正确的是( )
A. a2•a3=a6
B. (2a)•(3a)=6a
C.(a2)3=a6 D.a6÷a2=a3
17.下列运算丌正确的是( )
A. (a5)2=a10
B. 2a2•(-3a3)=-6a5
C. b•b3=b4
D. b5•b5=b25
18.下列计算正确的是( )
A. x2+2x2=3x4
B. a3•(-2a2)=-2a5
C. (-2x2)3=-6x6
D. 3a•(-b)2=-3ab2
19.下列计算正确的是( ) A. (2x3)•(3x)2=6x6
2×(22)3 中,结果等于 66 的是( )
A. ①②③
B. ②③④
C.②③
D. ③④
3.下列运算正确的是( )
A. 6a-5a=1
B. (a2)3=a5
C.3a2+2a3=5a5 D.2a2•3a3=6a5
4.下列运算中,正确的是( ) A.(a2)3=a5 B.2a•3a=6a2
C. 2a-a=2
14.下列计算中正确的是( )
A. a5-a2=a3
B. |a+b|=|a|+|b|
C. (-3a2)•2a3=-6a6
D.a2m=(-am)2(其中 m 为正整数)
15.下列计算正确的是( )
A. a2•a3=a6
B.(-2a)3=8a3 C.a+a4=a5

《整式的乘法与因式分解》单元测试(带答案)

《整式的乘法与因式分解》单元测试(带答案)
[解析]
[分析]
先分别进行幂的乘方与积的乘方运算,然后再根据单项式乘除法的法则进行计算即可得.
[详解]原式=A6•A6B2÷A2B
=A12B2÷A2B
=A10B,
故答案 A10B.
[点睛]本题考查了单项式乘除混合运算,熟练掌握各运算的运算法则以及确定好运算顺序是解题的关键.
12.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米= 米,用科学记数法将16纳米表示为__________________米.
4.已知多项式2x2+Bx+C分解因式为2(x-3)(x+1),则B,C的值为().
A.B=3,C=-1B.B=-6,C=2
C.B=-6,C=-4D.B=-4,C=-6
[答案]D
[解析]
[分析]
利用整式的乘法计算出2(x-3)(x+1)的结果,与2x2+Bx+C对应找到一次项的系数和常数项即可解题.
考点:因式分解.
10.已知 则 的大小关系是()
A. B. C. D.
[答案]A
[解析]
[分析]
先把A,B,C化成以3为底数的幂的形式,再比较大小.
[详解]解:
故选A.
[点睛]此题重点考察学生对幂的大小比较,掌握同底数幂的大小比较方法是解题的关键.
二、填空题
11. =____________
[答案]
C.两数和的完全平方公式D.两数差的完全平方公式
(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.
(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.

整式的乘法与因式分解习题带答案精选全文完整版

整式的乘法与因式分解习题带答案精选全文完整版

可编辑修改精选全文完整版Array第十四章、整式乘除与因式分解14.1 整式的乘法(1)(-3x)2(x+1)(x+3)+4x(x-1)(x2+x+1),其中x=-1;解:原式=9x2(x2+3x+x+3)+4x(x3+x2+x-x2-x-1)=9x2(x2+4x+3)+4x(x3-1)=9x4+36x3+27x2+4x4-4x=13x4+36x3+27x2-4x当x=-1时原式=13×(-1)4+36×(-1)3+27×(-1)2-4×(-1)=13-36+27+4=8(2)y n(y n+3y-2)-3(3y n+1-4y n),其中y=-2,n=2.解:原式=y2n+3y n+1-2y n-9y n+1+12y n=y2n-6y n+1+10y n当y=-2,n=2时原式=(-2)2×2-6×(-2)2+1+10×(-2)2=16+48+40=10415、已知不论x、y为何值时(x+my)(x+ny)=x2+2xy-8y2恒成立.求(m+n)mn的值.解:x2+nxy+mxy+mny2=x2+2xy-8y2x2+(m+n)xy+mny2=x2+2xy-8y2∴m+n=2,mn=-8∴(m+n)mn=2×(-8)=-166、已知31=+a a,则221a a +=( B ) A .5 B .7 C .9 D .117、如果x 2+kx +81是一个完全平方式,则k 的值是( D )A .9B .-9C .±9D .±188、下列算式中不正确的有( C )①(3x 3-5)(3x 3+5)=9x 9-25②(a +b +c +d)(a +b -c -d)=(a +b)2-(c +d)2③22)31(5032493150-=⨯ ④2(2a -b)2·(4a +2b)2=(4a -2b)2(4a -2b)2=(16a 2-4b 2)2A .0个B .1个C .2个D .3个9、代数式2)(2y x +与代数式2)(2y x -的差是( A ) A .xy B .2xy C .2xy D .0 10、已知m 2+n 2-6m +10n +34=0,则m +n 的值是( A )A .-2B .2C .8D .-8二、解答题11、计算下列各题:(1)(2a +3b)(4a +5b)(2a -3b)(5b -4a)(2)(x +y)(x -y)+(y -z)(y +z)+(z -x)(z +x);(3)(3m 2+5)(-3m 2+5)-m 2(7m +8)(7m -8)-(8m)2(1) 解:原式=(2a +3b)(2a -3b)(4a +5b)(5b -4a)=(4a 2-9b 2)(25b 2-16a 2)=100a 2b 2-64a 4-225b 4+144a 2b 2=-64a 4+244a 2b 2-225b 4(2) 解:原式=x 2-y 2+y 2-z 2+z 2-x 2=0(3) 解:原式=25-9m 4-m 2(49m 2-64)-64m 2=-58m 4+2512、化简求值:(1)4x(x 2-2x -1)+x(2x +5)(5-2x),其中x =-1(2)(8x 2+4x +1)(8x 2+4x -1),其中x =21 (3)(3x +2y)(3x -2y)-(3x +2y)2+(3x -2y)2,其中x =31,y =-21 (1) 解:原式=4x 3-8x 2-4x +x(25-4x 2)=4x 3-8x 2-4x +25x -4x 3=-8x 2+21x当x =-1时原式=-8×(-1)2+21×(-1)=-8-21=-29(2) 解:原式=(8x 2+4x)2-1当x =时,原式=[8×()2+4×]2-1=(2+2)2-1=15(3) 解:原式=9x 2-4y 2-9x 2-12xy -4y 2+9x 2-12xy +4y 2=9x 2-24xy -4y 2当x =,y =-时原式=9×()2-24××(-)-4×(-)2=1+4-1=413、解下列方程:(1)(3x)2-(2x +1)2=5(x +2)(x -2)解:9x 2-4x 2-4x -1=5x 2-205x 2-4x -1=5x 2-204x =19∴x =419(2)6x +7(2x +3)(2x -3)-28(x -21)(x +21)=4解:6x +28x 2-63-28x 2+7=46x -56=46x =60∴x =1014、解不等式:(1-3x)2+(2x -1)2>13(x -1)(x +1)解:1-6x +9x 2+4x 2-4x +1>13x 2-1313x 2-10x +2>13x 2-13-10x>-15∴x<2315、若n 满足(n -2004)2+(2005-n)2=1,求(2005-n)(n -2004)的值.解:(n -2004)2+2·(n -2004)·(2005-n)+(2005-n)2=1+2(n -2004)(2005-n)(n -2004+2005-n)2=1+2(n -2004)(2005-n)1=1+2(2005-n)(n -2004)∴(2005-n)(n -2004)=014.3 因式分解一、选择题1、下列各式,从左到右的变形是因式分解的为( B )A .x 2-9+5x =(x +3)(x -3)+5xB .x 2-4x +4=(x -2)2C .(x -2)(x -3)=x 2-5x +6D .(x -5)(x +2)=(x +2)(x -5)2、把多项式x 2-mx -35分解因式为(x -5)(x +7),则m 的值是( B)A .2B .-2C .12D .-123、分解因式:x 2-2xy +y 2+x -y 的结果是( A )A .(x -y )(x -y +1)B .(x -y )(x -y -1)C .(x +y )(x -y +1)D .(x +y )(x -y -1)4、若9x 2-12xy +m 是一个完全平方公式,那么m 的值是( B )。

整式乘法与因式分解测试题及答案

整式乘法与因式分解测试题及答案

整式乘法与因式分解测试题及答案整式的乘法与因式分解一、选择题1.下列计算中正确的是().C.a2·a4=a8改写:a的二次方乘以a的四次方等于a的八次方。

2.(x-a)(x2+ax+a2)的计算结果是().B.x3-a3改写:将x的三次方减去a的三次方。

3.下面是某同学在一次测验中的计算摘录,其中正确的个数有().C.3个改写:有三个计算是正确的。

4.已知被除式是x3+2x2-1,商式是x,余式是-1,则除式是().D.x2-3x+1改写:将x的二次方减去3x再加1.5.下列各式是完全平方式的是().A.x2-x+1/4改写:将x的二次方减去x再加1/4.6.把多项式ax2-ax-2a分解因式,下列结果正确的是().A.a(x-2)(x+1)改写:将a乘以(x-2)和(x+1)。

7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为().B.3改写:将m加上3.8.若3x=15,3y=5,则3xy等于().C.15改写:将3乘以x和y再相乘。

二、填空题9.计算(-3x2y)·(1/2xy)=-3/2x3y2.10.计算:(m n)(m n)=m2-n2.11.计算:(x y)2=x2+2xy+y2.12.计算:(-a2)3+(-a3)2-a2·a4+2a9÷a3=-a6-a4+2a6+2a6=4a6-a4.13.当x=5时,(x-4)2=1.14.若多项式x2+ax+b分解因式的结果为(x+1)(x-2),则a+b的值为3.15.若|a-2|+b2-2b+1=0,则a=2,b=1.16.已知a+1/2a=3,则a2+1/4a2的值是27/4.三、解答题略。

17.1) 计算:$\frac{(ab^2)^2 \times (-a^3b)^3}{-5ab}$化简得:$\frac{a^2b^4 \times a^9b^3}{5ab}$再化简得:$a^{11}b^6 \times \frac{1}{5}$答案为:$\frac{a^{11}b^6}{5}$2) 计算:$x^2 - (x+2)(x-2) - (x+\frac{(3)((x+y)^2 - (x-y)^2)}{2xy})$化简得:$x^2 - (x^2 - 4) - (x+\frac{(3)(4xy)}{2xy})$再化简得:$x^2 - x^2 + 4 - \frac{6}{2}$答案为:$1$4.计算:$2009 \times 2007 - 218$化简得:$xxxxxxx - 218$答案为:$xxxxxxx$19.先化简:$2(x-3)(x+2) - (3+a)(3-a)$化简得:$2x^2 - 6x + 4 - 9 + a^2$再代入$a=-2$和$x=20$,得到:$2(20-3)(20+2) - (3-(-2))(3+(-2)) = 34$答案为:$34$20.已知:$x+y=16$,$x-y=4$解方程得到:$x=10$,$y=6$因此,$xy=60$答案为:$60$21.根据已知条件,化简得:$a^2+b^2=c^2$这是直角三角形的勾股定理,因此△ABC为直角三角形证明。

八年级整式的乘法与因式分解练习题及答案

八年级整式的乘法与因式分解练习题及答案

一、单选题1、已知x+y=﹣5,xy=3,则x2+y2=()A. 19B. ﹣19C. 25D. ﹣25参考答案: A【思路分析】本题考查的是完全平方公式。

仔细读题,获取题中已知条件,结合完全平方公式的相关知识,即可解答此题。

【解题过程】解:x2+y2=(x+y)2﹣2xy=(﹣5)2﹣2×3=25﹣6=19。

故选A。

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2、下列方程没有实数根的是()A. x2+4x=10B. 3x2+8x-3=0C. x2-2x+3=0D. (x-2)(x-3)=12参考答案: C【思路分析】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根【解题过程】解:A、方程变形为:x2+4x-10=0,△=42-4×1×(-10)=56>0,所以方程有两个不相等的实数根,故A选项不符合题意;B、△=82-4×3×(-3)=100>0,所以方程有两个不相等的实数根,故B选项不符合题意;C、△=(-2)2-4×1×3=-8<0,所以方程没有实数根,故C选项符合题意;D、方程变形为:x2-5x-6=0,△=52-4×1×(-6)=49>0,所以方程有两个不相等的实数根,故D选项不符合题意.故选:C。

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -3、如果多项式p=a2+2b2+2a+4b+2008,则p的最小值是()A. 2005B. 2006C. 2007D. 2008参考答案: A【思路分析】把p重新拆分组合,凑成完全平方式的形式,然后判断其最小值.【解题过程】解:p=a2+2b2+2a+4b+2008,=(a2+2a+1)+(2b2+4b+2)+2005,=(a+1)2+2(b+1)2+2005,当(a+1)2=0,(b+1)2=0时,p有最小值,最小值最小为2005.故选:A.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4、如果x=3m+1,y=2+9m,那么用x的代数式表示y为()A. y=2xB. y=x2C. y=(x−1)2+2D. y=x2+1参考答案: C【思路分析】根据移项,可得3m的形式,根据幂的运算,把3m代入,可得答案.【解题过程】解x=3m+1:,y=2+9m,3m=x−1,y=(x−1)2+2,故选:C.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -5、把x³-9x+8因式分解,正确的结果是()A. (x-1)(x+3)B. (x-1)(x2-x+8)C. (x-1)(x2+x-8)D. (x+1)(x2-x+8)参考答案: C【思路分析】本考点的主要内容是拆项法分解因式,在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,使多项式能用分组分解法进行因式分解。

整式的乘法与因式分解的练习题

整式的乘法与因式分解的练习题

整式的乘法与因式分解的练习题初中数学整式的乘除与因式分解一、选择题:1、下列运算中,正确的是()A.某2·某3=某6B.(ab)3=a3b3C.3a+2a=5a2D.(某³)²=某52、下列从左边到右边的变形,是因式分解的是()23322(A)(3某)(3某)9某(B)mn(mn)(mmnn)(C)(y1)(y3)(3y)(y1)2(D)4yz2yzz2y(2zyz)z3、下列各式是完全平方式的是()某2某A、4B、14某2C、a2abb2D、某22某14、下列多项式中能用平方差公式分解因式的是()22(A)a(b)(B)5m220mn22(C)某y(D)某295、如(某+m)与(某+3)的乘积中不含某的一次项,则m的值为()A.–3B.3C.0D.16、一个正方形的边长增加了2cm,面积相应增加了32cm2,则这个正方形的边长为(A、6cmB、5cmC、8cmD、7cm1、下列分解因式正确的是()A、2n2nmn2n(nm1)B、ab22ab3bb(ab2a3)C、某(某y)y(某y)(某y)2D、a2a2a(a1)22、下列各式中,能用平方差公式进行因式分解的是()A、某2-某y2B、-1+y2C、2y2+2D、某3-y33、下列各式能用完全平方公式分解因式的是()A、4某2+1B、4某2-4某-1C、某2+某y+y2D、某2-4某+44、若9某2k某y4y2是一个完全平方式,则k的值为()A、6B、±6C、12D、±125、若分解因式某2m某15(某3)(某n)则m的值为()A、-5B、5C、-2D、2二、填空题:a54a237、=_______。

在实数范围内分解因式a268、当某___________时,某4等于__________;220021.520039、3___________210、若3某=2,3y=3,则3某-y等于2211、若9某m某y16y是一个完全平方式,那么m的值是__________。

人教版八年级数学上册第十四章《整式的乘法与因式分解》 测试题(含答案)

人教版八年级数学上册第十四章《整式的乘法与因式分解》 测试题(含答案)

人教版八年级数学上册第十四章《整式的乘法与因式分解》测试题(含答案)一、单选题1.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A .a 2﹣b 2=(a +b )(a ﹣b )B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a 2+ab =a (a +b )2.在下列运算中,正确的是()A .236x x x ⋅=B .23x x x +=C .326()x x =D .933x x x ÷= 3.下列等式中,从左到右的变形是因式分解的是( )A .229(3)x x -=-B .22(1)21x x x +=++C .24(2)(2)x x x -=+-D .221x x x ⎛⎫+=+ ⎪⎝⎭4.已知23m m -的值为5,那么代数式2203026m m -+的值是( )A .2030B .2020C .2010D .20005.下列计算正确的是( )A .224a a a +=B .3252⋅=a a aC .235(2)312⋅=a a aD .21333⎛⎫+= ⎪⎝⎭a a a 6.如果25m m +=,那么代数式()()222m m m -++的值为( )A .-6B .-1C .9D .147.若多项式2(5)2x a x ++-中不含x 的一次项,则a 的值为( )A .0B .5C .5-D .5或5-8.若关于x 的多项式(x 2+2x +4)(x +k )展开后不含有一次项,则实数k 的值为( ) A .﹣1 B .2 C .3 D .﹣29.下列各式中,运算正确的是( )A .325a a a +=B .()()235a a a -⋅-= C .()325a a = D .325a a a ⋅= 10.下列算式中不能利用平方差公式计算的是( )A .()()x y x y +-B .()()x y x y ---C .()()x y x y --+D .()()x y y x +-二、填空题 11.若表示一种新的运算,其运算法则为2a bc d =+-,则的结果为________.12.如果二次三项式x 2+3x +a 是一个完全平方式,那么常数a 的值是 ___.13.已知a 是方程x 2-5x +1=0的一个根,则a 4+a -4的个位数字为_____.14.若多项式2(1)16x m x --+能用完全平方公式进行因式分解,则m =________.15.若2224(3)ax x b mx ++=-,则=a ________.16.因式分解:(1)22x y -+=___________;(2)222x xy y -+=___________;(3)24a a -=___________;(4)265m m -+=___________.17.若2x +3y ﹣2=0,则4x •8y =___.18.在实数范围内分解因式221x x +-=___.三、解答题19.先化简,再求值:x 2(﹣x +2)﹣(﹣x +1)(x 2+x ﹣3),其中x 满足2x 2+3=4x .20.((教材呈现)下图是华师版八年级上册数学教材第49页B 组的第12题和第13题.(例题讲解)老师讲解了第12题的两种方法:(方法运用)请你任选第12题的解法之一,解答教材第49页B 组的第13题.(拓展)如图,在ABC 中,90ACB ∠=︒,分别以AC 、BC 为边向其外部作正方形ACDE 和正方形BCFG .若6AC BC +=,正方形ACDE 和正方形BCFG 的面积和为18,求ABC 的面积.21.计算:(59x 3y )•(﹣3xy 2)3•(12x )2.22.33x y x y .23.先化简,再求值:()2232()()a b ab b b a b b a --÷++-,其中12021a =-,2021b =.24.某校“数学社团”活动中,小亮对多项式进行因式分解,m 2-mn +2m -2n =(m 2-mn )+(2m -2n )=m (m -n )+2(m -n ) =(m -n )(m +2).以上分解因式的方法叫做“分组分解法”,请你在小亮解法的启发下,解决下面问题:(1)因式分解a 3-3a 2-9a +27;(2)因式分解x 2+4y 2-4xy -16;(3)已知a ,b ,c 是ABC 的三边,且满足222a ab c ac bc -+=-,判断ABC 的形状并说明理由.参考答案1.A【详解】解:大正方形的面积﹣小正方形的面积=a 2﹣b 2,矩形的面积=(a +b )(a ﹣b ),故a 2﹣b 2=(a +b )(a ﹣b ),故选:A .2.C【详解】解:A 、235x x x ,故错误,不符合题意;B . 2x x +不是同类项,不能合并,故错误,不符合题意;C . 326()x x =,故正确,符合题意;D . 936x x x ÷=,故错误,不符合题意;3.C【详解】解:A 、29(3)(3)x x x -=+-,则原等式不成立,此项不符题意;B 、22(1)21x x x +=++等式的右边不是乘积的形式,则此项不符题意;C 、24(2)(2)x x x -=+-是因式分解,此项符合题意;D 、221x x x ⎛⎫+=+ ⎪⎝⎭等式右边中的2x 不是整式,则此项不符题意; 4.B【详解】解:∵2220302620302(3)m m m m -+=--,把235m m -=代入,原式=2030252020-⨯=,故选B .5.C【详解】A. ∵2a 和2a 是同类项,∵22242a a a a +=≠,故选项A 错误;B. 532522a a a a ⋅≠=,故选项B 错误;C. 52323(32)3412a a a a a ⋅==,故选项C 正确;D. 2213333a a a a a ⎛⎫+=+⎭≠ ⎪⎝,故选项D 错误. 6.D【详解】解:()()222m m m -++, 22244m m m m =-+++,2224m m =++,由25m m +=得:22210m m +=,则原式10414=+=,故选:D .7.C【详解】解:∵多项式2(5)2x a x ++-中不含x 的一次项,∵5+a =0,解得a =-5,故选:C .8.D【详解】解:(x 2+2x +4)(x +k )=x 3+kx 2+2x 2+2kx +4x +4k=x 3+(k +2)x 2+(2k +4)x +4k ,∵关于x 的多项式乘多项式(x 2+2x +4)(x +k )的结果中不含有x 的一次项, ∵2k +4=0,解得,k =−2,9.D【详解】A .3a 和2a 不是同类项,不能合并,此选项错误;B .2355()()()a a a a -⋅-=-=-,此选项错误;C . ()326a a =,此选项错误; D .235a a a ⋅=,此选项正确,故选:D .10.C【详解】解:A 、()()22x y x y x y +-=-,故A 不符合题意;B 、()()22()x y x y y x ---=--,故B 不符合题意;C 、()()x y x y --+不能利用平方差公式计算,故C 符合题意;D 、()()22x y y x y x +-=-,故D 不符合题意;11.223m m n +【详解】解:由题意得,=2222(2)3m m n n m -+-,=223243m m n m +-=223m m n +,故答案为:223m m n +.12.94【详解】解:∵二次三项式x 2+3x +a 是一个完全平方式,∵x 2+3x +a =x 2+2•x •32+(32)2, ∵a =94, 故答案为:94. 13.7【详解】解:由题意可得:2510a a ,0a ≠, ∵15a a +=, ∵22211223a a a a ⎛⎫+=+-= ⎪⎝⎭, ∵24242112527a a a a ⎛⎫+=+-= ⎪⎝⎭, ∵个位数字是7;故答案是7.14.9或-7或9【详解】解:∵多项式x 2-(m -1)x +16能用完全平方公式进行因式分解, ∵m -1=±8,解得:m =9或m =-7,故答案为:9或-715.16【详解】解:∵222(3)9=6mx x x m m --+,2224(3)ax x b mx ++=- ∵m 2=a ;-6m =24∵m =-4,a =16故答案为:1616.()()y x y x +- 2()x y - (4)a a - (1)(5)m m -- 【详解】解:(1)2222()()y x x y x x y y -++=--=(2)2222()x xy y x y -+=-(3)24(4)a a a a -=-(4)265(1)(5)m m m m -+=--故答案为()()y x y x +-,2()x y -,(4)a a -,(1)(5)m m -- 17.4【详解】解:48x y ⋅=()()2323232=2222x x x yy x +⋅=⋅, ∵x +3y -2=0,∵x +3y =2,∵原式=22=4,故答案为:4.18.(11x x ++【详解】解:原式=2212x x ++-2(1)2x =+-(11x x =+++,故答案为(11x x +++.19.2x 2-4x +3;原式=0.【详解】x 2(﹣x +2)﹣(﹣x +1)(x 2+x ﹣3)=﹣x 3+2x 2﹣(﹣x 3-x 2+3x + x 2+x ﹣3)=﹣x 3+2x 2+x 3+x 2-3x - x 2-x +3=2x 2-4x +3∵2x 2+3=4x∵2x 2-4x +3=0∵原式=0.20.【方法运用】见解析;【拓展】92【详解】【方法运用】∵(a -b )2= a 2+b 2-2ab∵2ab = a 2+b 2-(a -b )2.∵a -b =1,a 2+b 2=25,∵2ab = 25-1=24.∵ab =12.【拓展】由题意,得AC 2+BC 2=18.∵(AC +BC )2=62,AC 2+2AC •BC +BC 2=36. ∵2AC •BC =36﹣(AC 2+BC 2)=36﹣18=18. ∵AC •BC =9.∵S ∵ABC =12AC •BC =92. 21.87154x y - 【详解】 (59x 3y )•(﹣3xy 2)3•(12x )2 ()233332251392x x x y y ⎛⎫=-⨯⨯⋅⋅⋅⋅⋅ ⎪⎝⎭ 87154x y =- 22.2269x y y -+-【详解】解:33x y x y33x y x y 223x y2269x y y =-+-23.2ab -,2【详解】解:原式=223222÷-÷-÷+-a b b ab b b b b a=22222--+-a ab b b a=2ab -, 当12021a =-,2021b =时,原式=1220212021⎛⎫-⨯-⨯ ⎪⎝⎭=2. 24.(1)(a +3)(a -3)2;(2)(x -2y -4)(x -2y +4) ;(3)等腰三角形,见解析 【详解】解:(1)a 3-3a 2-9a +27=a 2(a -3)-9(a -3)=(a 2-9)(a -3) =(a -3)(a +3)(a -3) =(a +3)(a -3)2;(2)x 2+4y 2-4xy -16=(x 2-4xy +4y 2)-16=(x -2y )2-42=(x -2y -4)(x -2y +4);(3)∵ABC 是等腰三角形,理由如下:∵222a ab c ac bc -+=-,∵2220a ac c ab bc -+-+=,∵()()20a c b a c ---=,∵()()0a c a c b ---=,∵a ,b ,c 是∵ABC 的三边,∵a -c -b <0.∵a -c =0,∵a =c ,∵∵ABC 是等腰三角形.。

人教版初中八年级数学上册第十四章《整式的乘法与因式分解》经典习题(含答案解析)

人教版初中八年级数学上册第十四章《整式的乘法与因式分解》经典习题(含答案解析)

一、选择题1.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解D解析:D【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.【详解】解:①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解.故选:D .【点睛】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义.2.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =( )A .1B .2C .5D .7D 解析:D【分析】 由题意竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),即可解出n =5,从而求出m 值即可.【详解】解:由题意得竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),整理得n =5,则有m ﹣3+4=﹣3+1+5,解得m =2,∴m +n =5+2=7,故选:D .【点睛】此题主要考查列一元一次方程解决实际问题,理解题意,找出等量关系是解题关键. 3.已知3a b -=、4b c -=、5c d -=,则()()a c d b --的值为( )A .7B .9C .-63D .12C 解析:C【分析】由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,然后整体代入求解即可.【详解】解:由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,∴()()()7963a c d b --=⨯-=-;故选C .【点睛】本题主要考查求代数式的值,关键是根据题意利用整体思想进行求解.4.下列多项式中,不能用完全平方公式分解因式的是( )A .214m m ++ B .222x xy y -+- C .221449x xy y -++D .22193x x -+ C 解析:C【分析】直接利用完全平方公式分解因式得出答案.【详解】 A 、222111(44)(2)444m m m m m ++=++=+能用完全平方公式分解因式,不符合题意; B 、222222(2)()x xy y x xy y x y -+-=--+=--能用完全平方公式分解因式,不符合题意;C 、221449x xy y -++不能用完全平方公式分解因式,符合题意;D 、2222111(69)(3)9399x x x x x -+=-+=-能用完全平方公式分解因式,不符合题意; 故选:C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握完全平方公式是解本题的关键. 5.下列运算正确的是( )A .3m ·4m =12mB .m 6÷m 2= m 3(m≠0)C .236(3)27m m -=D .(2m+1)(m-1)=2m 2-m-1D解析:D【分析】利用同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式的运算法则计算即可判断.【详解】A 、 347·m m m =,该选项错误;B 、624m m m ÷=,该选项错误;C 、236(3)27m m -=-,该选项错误;D 、(()221)121m m m m +-=--,该选项正确; 故选:D .【点睛】本题考查了同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式,熟练掌握运算法则是解题的关键.6.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( )A .a b c >>B .b c a >>C .c a b >>D .a c b >> B解析:B【分析】由552a =,443b =,334c =,比较5432,3,4的大小即可.【详解】解:∵555112=(2)a =,444113(3)b == ,333114(4)c == ,435342>> , ∴411311511(3)(4)(2)>>,即b c a >>,故选B .【点睛】本题考查了幂的乘方的逆运算及数的大小的比较,解题的关键是熟练掌握幂的乘方运算法则.7.下列计算正确的是( )A .()222x y x y +=+B .()32626m m =C .()2224x x -=-D .()()2111x x x +-=- D 解析:D【分析】根据完全平方公式,平方差公式和积的乘方公式分别判断即可.【详解】A. ()2222x y x xy y +=++,故原选项错误;B.()32628m m =,故原选项错误;C.()22244x x x -=-+,故原选项错误;D. ()()2111x x x +-=-,故选项正确.故选:D .【点睛】本题考查完全平方公式,平方差公式和积的乘方公式.熟记公式是解题关键.8.下列各多项式中,能用平方差公式分解因式的是( )A .21x -+B .21x +C .21x --D .221x x -+ A 解析:A【分析】根据平方差公式:两个数平方的差,等于这两个数的和与差的平方解答.【详解】A 、21x -+,能用平方差公式分解因式;B 、21x +,不能用平方差公式分解因式;C 、21x --,不能用平方差公式分解因式;D 、221x x -+,不能用平方差公式分解因式;故选:A .【点睛】此题考查平方差公式:22()()a b a b a b -=+-,掌握公式中多项式的特点是解题的关键.9.若()()()248(21)2121211A =+++++,则A 的末位数字是( )A .4B .2C .5D .6D 解析:D【分析】在原式前面加(2-1),利用平方差公式计算得到结果,根据2的乘方的计算结果的规律得到答案.【详解】 ()()()248(21)2121211A =+++++=()()()248(21)(21)2121211-+++++=()()()2248(21)2121211-++++=()()448(21)21211-+++ =()88(21)211-++ =162,∵2的末位数字是2,22的末位数字是4,32的末位数字是8,42的末位数字是6,52的末位数字是2,,∴每4次为一个循环,∵1644÷=,∴162的末位数字与42的末位数字相同,即末位数字是6,故选:D .【点睛】此题考查利用平方差公式进行有理数的简便运算,数字类规律的探究,根据2的乘方末位数字的规律得到答案是解题的关键.10.下列各式计算正确的是( )A .5210a a a =B .()428=a aC .()236a b a b =D .358a a a += B解析:B【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断.【详解】解:A 、a 5•a 2=a 7,此选项计算错误,故不符合题意;B 、(a 2)4=a 8,此选项计算正确,符合题意;C 、(a 3b )2=a 6b 2,此选项计算错误,故不符合题意;D 、a 3与a 5不能合并,此选项计算错误,故不符合题意.故选:B .【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则. 二、填空题11.因式分解()()26x mx x p x q +-=++,其中m 、p 、q 都为整数,则m 的最大值是______.5【分析】根据整式的乘法和因式分解的逆运算关系按多项式乘以多项式法则把式子变形然后根据pq 的关系判断即可【详解】解:∵(x +p)(x +q)=x2+(p+q )x+pq=x2+mx-6∴p+q=mpq=解析:5【分析】根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.【详解】解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx-6∴p+q=m ,pq=-6,∴pq=1×(-6)=(-1)×6=(-2)×3=2×(-3)=-6,∴m=-5或5或1或-1,∴m 的最大值为5,故答案为:5.【点睛】此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.12.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式()35f x mx nx =++,当3x =时,多项式的值为()32735f m n =++,若()36f =,则()3f -的值为__________.4【分析】由得到整体代入求出结果【详解】解:∵∴即∴故答案是:4【点睛】本题考查代数式求值解题的关键是掌握整体代入求值的思想解析:4【分析】由()36f =得到2731m n +=,整体代入()32735f m n -=--+求出结果.【详解】解:∵()36f =,∴27356m n ++=,即2731m n +=,∴()()327352735154f m n m n -=--+=-++=-+=.故答案是:4.【点睛】本题考查代数式求值,解题的关键是掌握整体代入求值的思想.13.因式分解269x y xy y -+-=______.-y (x-3)2【分析】提公因式-y 再利用完全平方公式进行因式分解即可;【详解】解:-x2y+6xy-9y=-y (x2-6x+9)=-y (x-3)2故答案为:-y (x-3)2;【点睛】本题考查了因式解析:-y (x-3)2【分析】提公因式-y ,再利用完全平方公式进行因式分解即可;【详解】解:-x 2y+6xy-9y=-y (x 2-6x+9)=-y (x-3)2,故答案为:-y (x-3)2;【点睛】本题考查了因式分解的方法,掌握提公因式法、公式法是正确解答的关键.14.若26x x m ++为完全平方式,则m =____.9【分析】完全平方式可以写为首末两个数的平方则中间项为x 和积的2倍即可解得m 的值【详解】解:根据题意是完全平方式且6>0可写成则中间项为x 和积的2倍故∴m=9故答案填:9【点睛】本题是完全平方公式的【分析】 完全平方式可以写为首末两个数的平方()2x m +,则中间项为x 和m 积的2倍,即可解得m 的值.【详解】解:根据题意,26x x m ++是完全平方式,且6>0,可写成()2x m +,则中间项为x 和m 积的2倍,故62x x m =,∴m =9,故答案填:9.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意中间项的符号,避免漏解.15.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是:__________;(请选择正确的一个)A .2222()a ab b a b -+=-B .22()()a b a b a b -=+-C .2()a ab a a b +=+(2)应用:利用所选(1)中等式两边的等量关系,完成下面题目:若46x y +=,45x y -=,则221664x y -+的值为__________.B ;【分析】(1)先求出图1中剩余部分的面积为a2-b2再求出图2中图形的面积即可列得等式;(2)利用平方差公式分解因式后代入求值即可【详解】(1)图1中边长为a 的正方形的面积为:a2边长为b 的正方解析:B ; 94(1)先求出图1中剩余部分的面积为a 2-b 2,再求出图2中图形的面积即可列得等式; (2)利用平方差公式分解因式后代入求值即可.【详解】(1)图1中,边长为a 的正方形的面积为:a 2,边长为b 的正方形的面积为:b 2,∴图1中剩余部分面积为:a 2-b 2,图2中长方形的长为:a+b ,长方形的宽为:a-b ,∴图2长方形的面积为:(a+b )(a-b ),故选:B ;(2)∵46x y +=,45x y -=,∴221664x y -+=(4)(4)64x y x y +-+=6564⨯+=94,故答案为:94.【点睛】此题考查几何图形中平方差公式的应用,利用平方差公式进行计算,掌握平方差计算公式是解题的关键.16.如图所示,在这个运算程序当中,若开始输入的x 是2,则经过2021次输出的结果是________.4【分析】根据第一次输出的结果是1第二次输出的结果是6…总结出每次输出的结果的规律求出2021次输出的结果是多少即可【详解】解:把x=2代入得:2÷2=1把x=1代入得:1+5=6把x=6代入得:6解析:4【分析】根据第一次输出的结果是1,第二次输出的结果是6,…,总结出每次输出的结果的规律,求出2021次输出的结果是多少即可.【详解】解:把x=2代入得:2÷2=1,把x=1代入得:1+5=6,把x=6代入得:6÷2=3,把x=3代入得:3+5=8,把x=8代入得:8÷2=4,把x=4代入得:4÷2=2,把x=2代入得:2÷2=1,以此类推,∵2021÷6=336…5,∴经过2021次输出的结果是4.故答案为:4.【点睛】本题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.17.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第6个图形需要黑色棋子的个数是______,第n 个图形需要的黑色棋子的个数是______.(n 为正整数)【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3第二个图形需要黑色棋子的个数为3×4-4第三个图形需要黑色棋子的个数为4×5-5依此类推可得第n 个图形需要黑色棋子的个数为计算可得答案解析:()2n n +【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3,第二个图形需要黑色棋子的个数为3×4-4,第三个图形需要黑色棋子的个数为4×5-5,依此类推可得第n 个图形需要黑色棋子的个数为()()()122n n n ++-+,计算可得答案.【详解】解:观察图形可得:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子2×3-3个,第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子3×4-4个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子4×5-5个,按照这样的规律下去:则第n 个图形需要黑色棋子的个数是()()()()1222n n n n n ++-+=+,∴当n=6时,()26848n n +=⨯=;故答案为48;()2n n +.【点睛】本题主要考查图形规律及整式乘法的应用,关键是根据图形得到一般规律,然后问题可求解.18.若2249x mxy y -+是一个完全平方式,则m =______【分析】利用完全平方公式的结构特征判断即可确定出m 的值【详解】∵是一个完全平方式∴故答案为:【点睛】本题考查了完全平方公式的简单应用明确完全平方公式的基本形式是解题的关键解析:12±【分析】利用完全平方公式的结构特征判断即可确定出m 的值.【详解】∵2249x mxy y -+是一个完全平方式,∴22312m =±⨯⨯=±.故答案为:12±.【点睛】本题考查了完全平方公式的简单应用,明确完全平方公式的基本形式是解题的关键. 19.计算:32(2)a b -=________.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.【详解】32(2)a b -=624a b ,故答案为:624a b .【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.20.已知22m mn -=,25mn n -=,则22325m mn n +-=________.31【分析】由然后把代入求解即可【详解】解:由题意得:∴把代入得:原式=;故答案为31【点睛】本题主要考查代数式的值及整式的加减关键是对于所求代数式进行拆分然后整体代入求解即可解析:31【分析】由()()222232535m mn n m mn mn n+-=-+-,然后把22m mn -=,25mn n -=,代入求解即可.【详解】解:由题意得: ()()222232535m mn n m mn mn n +-=-+-,∴把22m mn -=,25mn n -=代入得:原式=325531⨯+⨯=;故答案为31.【点睛】本题主要考查代数式的值及整式的加减,关键是对于所求代数式进行拆分,然后整体代入求解即可. 三、解答题21.(1)因式分解:()222224x y x y +- (2)计算:()()()233323a b a b a b a b ⎡⎤----++÷-⎣⎦解析:(1)()()22x y x y -+;(2)9a【分析】 (1)先用平方差公式进行因式分解,然后再用完全平方公式进行因式分解;(2)整式的混合运算,注意先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的.【详解】解:(1)()222224x y x y +- =()()222222x y xyx y xy +-++ =()()22x y x y -+(2)()()()233323a b a b a b a b ⎡⎤----++÷-⎣⎦=()222296923a ab b b a a b ⎡⎤++--÷-⎣⎦ =2222(96+9)23a ab b b a a b ++-÷-=2(186)23a ab a b +÷-=933a b b +-=9a【点睛】本题考查因式分解和整式的混合运算,掌握运算法则正确计算是解题关键.22.图1是一个长为2a 、宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于________.(2)观察图2,请你写出下列三个代数式2()a b +,2()a b -,ab 之间的等量关系为________.(3)运用你所得到的公式,计算:若m 、n 为实数,且3=-mn ,4m n -=,试求m n +的值.(4)如图3,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设8AB =,两正方形的面积和1226S S +=,求图中阴影部分面积.解析:(1)44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)2或2-;(4)192. 【分析】(1)直接写出边长:长边减短边=a-b ,进而可得周长; (2)根据阴影正方形的面积=大正方形的面积-4个长方形的面积解答,或利用大正方形的面积=阴影方形的面积+4个长方形的面积解答,或利用4个长方形的面积=大正方形的面积-阴影方形的面积解答;(3)根据22()()4a b a b ab +=-+求解即可;(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,然后把8x y +=的两边平方求解即可.【详解】解:(1)由图可知,阴影部分正方形的边长为:a-b ,∴阴影部分的正方形的周长等于44a b -或者4()a b -,故答案为:44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或(22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)∵3=-mn ,4m n -=,∴222()()444(3)16124m n m n mn +=-+=+⨯-=-=,∴2m n +=±,∴m n +的值为2或2-.(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,而8x y AB +==, 而12S xy =阴影部分, ∵8x y +=,∴22264x xy y ++=,又∴2226x y +=,∴238xy =,∴13819242S xy ===阴影部分, 即,阴影部分的面积为192. 【点睛】本题主要考查完全平方公式的几何背景,利用图形的面积是解决此题的关键,利用数形结合的思想,注意观察图形.23.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++ 请用以上方法解决下列问题:(计算过程要有竖式)(1)计算:()()3223102x x x x +--÷- (2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值.解析:(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.24.材料:数学兴趣一小组的同学对完全平方公式进行研究:因2()0a b -≥,将左边展开得到2220a ab b -+≥,移项可得222a b ab +≥.(当且仅当a b =时,取“=”)数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m ,n ,都存在2m n mn +≥m n =时,取“=”)并进一步发现,两个非负数m ,n 的和一定存在着个最小值.根据材料,解答下列问题:(1)22(3)(4)x y +≥________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭________(0x >);(2)求312(0)4x x x+>的最小值; (3)已知2x >,当x 为何值时,代数式43201036x x ++-有最小值?并求出这个最小值.解析:(1)24xy ,2;(2)6;(3)83x =,最小值为2020 【分析】(1)根据阅读材料可得结论; (2)根据阅读材料介绍的方法即可得出结论;(3)把已知代数式变形为4(36)201636x x -++-,再利用阅读材料介绍的方法即可得出结论.【详解】解:(1)∵0x >,0y >∴22(3)(4)x y +≥23424x y xy ⨯⨯=∵0x > ∴221x x ⎛⎫+≥ ⎪⎝⎭122x x ⨯⨯= 故答案为:24xy ,2(2)∵0x >时,12x ,34x 均为正数,∴31264x x +≥= ∴3124x x+的最小值是6 (3)当2x >时,3x ,36x -,436x -均为正数 ∴43201036x x ++-4(36)2016201636x x =-++≥-2016=2020= 当43636x x -=-时,即8433x =或(舍去)时,有最小值, ∴当83x =时,代数式43201036x x ++-的最小值是2020.【点睛】此题主要考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.25.已知2,3x y a a ==,求23x y a +的值解析:108【分析】首先根据已知条件可得a 2x 、a 3y 的值,然后利用同底数幂的乘法运算法则求出代数式的值.【详解】 解:2,3x y a a ==,∴()()23232323108x y xy a a a +=⨯=⨯=. 【点睛】 本题主要考查了幂的乘方和同底数幂的乘法,利用性质转化为已知条件的形式是解题的关键.26.因式分解:(1)322242a a b ab -+(2)4481x y -解析:(1)22()a a b -;(2)22((3)(3)9)x y x y x y +-+.【分析】(1)先提公因式2a ,再利用完全平方公式进行分解222a ab b -+,即可得出结果;(2)原多项式先利用平方差公式分解为2222(9)(9)x y x y +-,再次利用平方差公式对229x y -进行分解即可.【详解】解:(1)322242a a b ab -+222(2)a a ab b =-+22()a a b =-,(2)4481x y -2222(9)(9)x y x y =+-22(93(3))()x y x y x y =+-+.【点睛】本题考查了因式分解,掌握因式分解的基本方法并能结合多项式的特点准确分解是解题的关键.27.如果2()()41x m x n x x ++=+-.①填空:m n +=______,mn =______.②根据①的结果,求下列代数式的值:(1)225m mn n ++;(2)2()m n -.解析:①4,−1;②(1)13;(2)20【分析】①据多项式乘多项式的运算法则求解即可;②根据完全平方公式计算即可.【详解】①∵(x +m )(x +n )=x 2+(m +n )x +mn =x 2+4x−1,∴m +n =4,mn =−1.故答案为:4,−1;②(1)m 2+5mn +n 2=(m +n )2+3mn =42+3×(−1)=16−3=13;(2)(m−n )2=(m +n )2−4mn =42−4×(−1)=16+4=20.【点睛】本题主要考查了完全平方公式以及多项式乘多项式,熟记相关公式与运算法则是解答本题的关键.28.如图,在长8cm ,宽5cm 的长方形塑料板的四个角剪去4个边长为 cm x 的小正方形,按折痕做一个无盖的长方体盒子,求盒子的容积(塑料板的厚度忽略不计).解析:()32342640cm x x x -+ 【分析】这个盒子的容积=边长为8-2x,5-2x 的长方形的底面积乘高 x ,把相关数值代入即可.【详解】解:由题意,得()()8252x x x --()24016104x x x x =--+()242640x x x =-+3242640x x x =-+,答:盒子的容积是()32342640cm x x x -+.【点睛】本题主要考查单项式乘多项式,多项式乘多项式,解决本题的关键是找到表示长方体容积的等量关系.。

(必考题)初中八年级数学上册第十四章《整式的乘法与因式分解》经典习题

(必考题)初中八年级数学上册第十四章《整式的乘法与因式分解》经典习题

一、选择题1.如下列试题,嘉淇的得分是( )姓名:嘉淇 得分:将下列各式分解因式(每题20分,共计100分)①242(12)xy xyz xy z -=-;②2363(12)x x x x --=--;③221(2)a +a a a +=+;④2224(2)m n m n -=-;⑤22222()()x y x y x y -+=-+-A .40分B .60分C .80分D .100分A 解析:A【分析】根据提公因式法及公式法分解即可.【详解】①242(12)xy xyz xy z -=-,故该项正确;②2363(12)x x x x --=-+,故该项错误;③2221(1)a +a a +=+,故该项错误;④224(2)(2)m n m n m n -=+-,故该项错误;⑤22222()()x y x y x y -+=-+-,故该项正确;正确的有:①与⑤共2道题,得40分,故选:A .【点睛】此题考查分解因式,将多项式写成整式乘积的形式,叫做将多项式分解因式,分解因式的方法:提公因式法、公式法,根据每道题的特点选择恰当的分解方法是解题的关键. 2.化简()2003200455-+所得的值为( ) A .5-B .0C .20025D .200345⨯ D 解析:D【分析】首先把52004化为(-5)2004,然后再提公因式(-5)2003,继而可得答案.【详解】解:()2003200455-+=(-5)2003+(-5)2004=(-5)2003(1-5)=4×52003,故选:D .【点睛】此题主要考查了提公因式分解因式,关键是正确确定公因式.3.下列运算中,正确的个数是( )①2352x x x +=;②()326x x =;③03215⨯-=;④538--+= A .1个B .2个C .3个D .4个A解析:A【分析】 ①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算.【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的;∵()326x x =,∴②是正确的; ∵032112-1=1⨯-=⨯,∴③是错误的;∵53-5+3=-2--+=,∴④是错误的;综上所述,只有一个正确,故选:A.【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.4.如图,从边长为21a +的正方形纸片中剪去一个边长为2a +的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .233a -B .233a +C .221a a -+D .2189a a ++ A解析:A【分析】 矩形的面积就是边长是21a +的正方形与边长是2a +的正方形的面积的差,列代数式进行化简即可.【详解】解:由题意可知,矩形的面积就是边长是21a +的正方形与边长是2a +的正方形的面积的差,∴S 矩形=()()22212a a +-+=2244144a a a a ++---=233a -.故选:A .【点睛】本题考查了整式的运算,根据题意列出代数式,同时正确使用完全平方公式是解决本题的关键.5.下列运算正确..的是( ) A .246x x x ⋅=B .246()x x =C .3362x x x +=D .33(2)6x x -=- A 解析:A【分析】根据同底数幂的乘法、幂的乘方、积的乘方以及合并同类项进行判断即可.【详解】A 选项246x x x ⋅=,选项正确,故符合题意;B 选项248()x x =,选项错误,故不符合题意;C 选项3332x x x +=,选项错误,故不符合题意;D 选项33(2)8x x -=-,选项错误,故不符合题意. 故选:A .【点睛】本题考查同底数幂的乘法、幂的乘方、积的乘方以及合并同类项,属于基础题,熟练掌握这些计算公式和方法是解决本题的关键.6.已知5a b +=,2ab =-,则a 2+b 2的值为( )A .21B .23C .25D .29D 解析:D【分析】根据完全平方公式得()2222a b a b ab +=+-,再整体代入即可求值.【详解】解:∵()2222a b a b ab +=++,∴()2222a b a b ab +=+-, ∵5a b +=,2ab =-,∴原式()252225429=-⨯-=+=. 故选:D .【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式进行计算.7.下列各式运算正确的是( )A .235a a a +=B .1025a a a ÷=C .()32626b b =D .2421a a a -⋅= D 解析:D【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;合并同类项的法则,对各选项计算后利用排除法求解.【详解】解:A 、a 2与3a 不是同类项,不能合并,故本选项错误;B 、1028a a a ÷=,故本选项错误;C 、()32628b b =,故本选项错误; D 、24221a a a a --⋅==,正确. 故选:D .【点睛】本题考查了幂的乘方的性质,同底数幂的乘法,合并同类项的法则,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的不能合并.8.下列运算中,正确的是( )A .()23294x y x y = B .3362x x x += C .34x x x ⋅=D .22(3)(3)3x y x y x y +-=- C 解析:C【分析】根据积的乘方与幂的乘方运算法则,合并同类项法则,同底数幂的乘法以及平方差公式分别计算各项,然后再进行判断即可.【详解】解:A. ()23264x y x y =,所以原选项计算错误,故不符合题意;B.3332x x x +=,所以原选项计算错误,故不符合题意;C.34x x x ⋅=,计算正确,符合题意;D.22(3)(3)9x y x y x y +-=-,所以原选项计算错误,故不符合题意.故选:C .【点睛】此题主要考查了乘方与幂的乘方运算法则,合并同类项法则,同底数幂的乘法以及平方差公式,要熟练掌握.9.已知x ,y ﹣1,则xy 的值为( )A .8B .48C .D .6D解析:D【分析】利用平方差公式计算即可.【详解】当x +1,y 1时,xy +11))2﹣12=7﹣1=6,故选:D.【点睛】此题考查平方差计算公式,已知字母的值求代数式的值,熟记平方差公式是解题的关键. 10.已知2|5213|(310)0x y x y +-+--=,则x y 的立方根为( )A .1B .1-C .2D .2- B解析:B【分析】根据绝对值和平方式的非负性得到关于x 、y 的方程组,然后解方程组求得x 、y 值,代入求得x y 即可求解.【详解】 解:由题意,得:521303100x y x y +-=⎧⎨--=⎩, 解得:31x y =⎧⎨=-⎩, ∴x y =(﹣1)3=﹣1,∴x y 的立方根为﹣1,故选:B .【点睛】本题考查解二元一次方程组、绝对值和平方式的非负性、代数式求值、立方根,正确列出方程组是解答的关键.二、填空题11.如果23a b -的值为1-,则645b a -+的值为_____.7【分析】把所求代数式整理成已知条件的形式然后整体代入进行计算即可得解【详解】解:∵2a-3b=-1∴3b-2a=1∴=2+5=7故答案是:7【点睛】本题考查了代数式求值整体思想的利用是解题的关键解析:7【分析】把所求代数式整理成已知条件的形式,然后整体代入进行计算即可得解.【详解】解:∵2a-3b=-1,∴3b -2a=1,∴()64523b 2a 5b a -+=-+=2+5=7,故答案是:7.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.12.2007200820092()(1.5)(1)3⨯÷-=_____.-15【分析】首先把分解成再根据积的乘方的性质的逆用解答即可【详解】解:原式===﹣15故答案为-15【点睛】本题考查有理数的乘方运算逆用积的乘方法则是解题关键解析:-1.5【分析】首先把20081.5分解成20071.5 1.5⨯,再根据积的乘方的性质的逆用解答即可.【详解】 解:原式=()200720072 1.5 1.513⎛⎫⨯⨯÷- ⎪⎝⎭ =()20072 1.5 1.513⎛⎫⨯⨯⨯- ⎪⎝⎭=﹣1.5,故答案为-1.5 .【点睛】 本题考查有理数的乘方运算,逆用积的乘方法则是解题关键.13.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式()35f x mx nx =++,当3x =时,多项式的值为()32735f m n =++,若()36f =,则()3f -的值为__________.4【分析】由得到整体代入求出结果【详解】解:∵∴即∴故答案是:4【点睛】本题考查代数式求值解题的关键是掌握整体代入求值的思想解析:4【分析】由()36f =得到2731m n +=,整体代入()32735f m n -=--+求出结果.【详解】解:∵()36f =,∴27356m n ++=,即2731m n +=,∴()()327352735154f m n m n -=--+=-++=-+=.故答案是:4.【点睛】本题考查代数式求值,解题的关键是掌握整体代入求值的思想.14.|1|0-=b ,则2020()a b +=_________.1【分析】根据算术平方根的非负性及绝对值的非负性求出a=-2b=1代入计算即可【详解】∵且∴a+2=0b-1=0∴a=-2b=1∴故答案为:1【点睛】此题考查代数式的求值正确掌握算术平方根的非负性及【分析】根据算术平方根的非负性及绝对值的非负性求出a=-2,b=1,代入计算即可.【详解】 ∵2|1|0++-=a b ,且20,|1|0a b +≥-≥,∴a+2=0,b-1=0,∴a=-2,b=1,∴202020201()(21)a b +-+==,故答案为:1.【点睛】此题考查代数式的求值,正确掌握算术平方根的非负性及绝对值的非负性求出a=-2,b=1是解题的关键.15.如图所示,在这个运算程序当中,若开始输入的x 是2,则经过2021次输出的结果是________.4【分析】根据第一次输出的结果是1第二次输出的结果是6…总结出每次输出的结果的规律求出2021次输出的结果是多少即可【详解】解:把x=2代入得:2÷2=1把x=1代入得:1+5=6把x=6代入得:6解析:4【分析】根据第一次输出的结果是1,第二次输出的结果是6,…,总结出每次输出的结果的规律,求出2021次输出的结果是多少即可.【详解】解:把x=2代入得:2÷2=1,把x=1代入得:1+5=6,把x=6代入得:6÷2=3,把x=3代入得:3+5=8,把x=8代入得:8÷2=4,把x=4代入得:4÷2=2,把x=2代入得:2÷2=1,以此类推,∵2021÷6=336…5,∴经过2021次输出的结果是4.故答案为:4.本题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.16.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第6个图形需要黑色棋子的个数是______,第n 个图形需要的黑色棋子的个数是______.(n 为正整数)【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3第二个图形需要黑色棋子的个数为3×4-4第三个图形需要黑色棋子的个数为4×5-5依此类推可得第n 个图形需要黑色棋子的个数为计算可得答案解析:()2n n +【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3,第二个图形需要黑色棋子的个数为3×4-4,第三个图形需要黑色棋子的个数为4×5-5,依此类推可得第n 个图形需要黑色棋子的个数为()()()122n n n ++-+,计算可得答案.【详解】解:观察图形可得:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子2×3-3个,第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子3×4-4个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子4×5-5个,按照这样的规律下去:则第n 个图形需要黑色棋子的个数是()()()()1222n n n n n ++-+=+,∴当n=6时,()26848n n +=⨯=;故答案为48;()2n n +.【点睛】本题主要考查图形规律及整式乘法的应用,关键是根据图形得到一般规律,然后问题可求解.17.已知香蕉,苹果,梨的价格分别为a ,b ,c (单位:元/千克)、用20元正好可以买三种水果各1千克:买1千克香蕉,2千克苹果,3千克梨正好花去42元,若买b 千克香需w 元,则w =___________.(结果用含c 的代数式表示)【分析】根据题意得:通过计算得到b 和c 的关系式;再将b 和c 的关系式代入到得a 和c 的关系式经计算即可得到答案【详解】根据题意得:∴∴∴∴故答案为:【点睛】本题考查了三元一次方程组整式运算的知识;解题的解析:222644c c -+-【分析】根据题意得:20a b c ++=,2342a b c ++=,通过计算得到b 和c 的关系式;再将b 和c 的关系式代入到20a b c ++=,得a 和c 的关系式,经计算即可得到答案.【详解】根据题意得:20a b c ++=,2342a b c ++=∴204223a b c b c =--=--∴222b c =-∴20202222a b c c c c =--=-+-=-∴()()2222222644w a b c c c c =⨯=--=-+- 故答案为:222644c c -+-.【点睛】本题考查了三元一次方程组、整式运算的知识;解题的关键是熟练掌握三元一次方程组、整式乘法运算的性质,从而完成求解.18.要使()()22524x x x mx -+--的展开式中不含2x 项,则m 的值是______.-6【分析】结合题意根据整式乘法的性质计算即可得到答案【详解】∵的展开式中不含项∴∴∴故答案为:-6【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式乘法的性质从而完成求解解析:-6【分析】结合题意,根据整式乘法的性质计算,即可得到答案.【详解】∵()()22524x x x mx -+--的展开式中不含2x 项∴()224520x x mx x ⨯-+⨯+⨯= ∴4100m -++=∴6m =-故答案为:-6.【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式乘法的性质,从而完成求解. 19.因式分解:24ay a -=_______.【分析】先提取公因式a 再利用平方差公式分解因式【详解】=故答案为:【点睛】此题考查多项式的分解因式综合运用提公因式法和公式法分解因式掌握因式分解的方法是解题的关键解析:()()22a y y +-【分析】先提取公因式a ,再利用平方差公式分解因式.【详解】24ay a -=2)(4a y -=()()22a y y +-,故答案为:()()22a y y +-.【点睛】此题考查多项式的分解因式,综合运用提公因式法和公式法分解因式,掌握因式分解的方法是解题的关键.20.在学习整式乘法的时候,我们发现一个有趣的问题:将上述等号右边的式子的各项系数排成下表,如图:(a +b )0=1(a +b )1=a +b(a +b )2=a 2+2ab +b 2(a +b )3=a 3+3a 2b +3ab 2+b 3这个图叫做“杨辉三角”,请观察这些系数的规律,直接写出(a +b )5=__________,并说出第7排的第三个数是___.a5+5a4b+10a3b2+10a2b3+5ab4+b515【分析】多项式乘方运算安全平方公式安全立方公式发现规律数字规律归纳即可【详解】解:(a+b )5=a5+5a4b+10a3b2+10a2b解析:a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5 15【分析】多项式乘方运算,安全平方公式,安全立方公式,发现规律,数字规律归纳即可,【详解】解:(a +b )5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5;第7排的第三个数是15,故答案为:a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5;15,【点睛】本题考查完全平方公式、完全立方公式,规律型:数字的变化类,掌握多项式乘法法则,和完全平方公式,观察式子的特征是解题关键,三、解答题21.先化简,再求值:2(21)(21)(23)+---a a a ,其中112a =-. 解析:12a -10,-11【分析】先按乘法公式进行化简,再代入求值即可.【详解】解:原式=2241(4129)---+a a a =22414129--+-a a a=12a -10当112a =-时, 原式=112()1012⨯-- =110--=11-.【点睛】本题考查了运用乘法公式进行化简整式并求值,解题关键是熟练运用乘法公式进行化简,注意符号的变化.22.如图1,将一个长为4a ,宽为2b 的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形.(1)图2的空白部分的边长是多少?(用含a ,b 的式子表示)(2)若2a+b=7,且ab=6,求图2中的空白正方形的面积;(3)观察图2,用等式表示出(2a-b )2,ab 和(2a+b )2的数量关系.解析:(1)2a-b ;(2)1;(3)22(2)(2)8a b a b ab +=-+【分析】(1)观察由已知图形,求出小长方形的长为2 a ,宽为b ,那么图2中的空白部分的正方形的边长是小长方形的长—小长方形的宽;(2)通过观察图形,大正方形的边长为小长方形的长和宽的和.图2中空白部分的正方形的面积为大正方形的面积 - 四个小长方形的面积;(3)通过观察图形知:(2 a +b )2 ,(2 a -b )2 , 8 a b .分别表示的是大正方形、空白部分的正方形及小长方形的面积,据此即可解答.【详解】解:()1长为4a ,宽为2b 的长方形分成四个小长方形,则小长方形的长为422a a ÷=,宽为22b b ÷=,图2的空白部分的边长=小长方形的长 - 小长方形的宽,即图2的空白部分的边长是2a b -;()2由图2可知,S 空白小正方形=()()222=28a b a b ab -+-, 27a b +=,且6ab =,∴S 空白小正方形=()()222=28a b a b ab -+-=()2786=1-⨯; ()3由图2可以看出,大正方形面积=空白部分的正方形的面积+四个小长方形的面积, 即:22(2)(2)8a b a b ab +=-+.【点睛】此题考查了学生观察、分析图形解答问题的综合能力,以及对列代数式、代数式求值的理解与掌握.关键是通过观察图形找出各图形之间的关系.23.已知x 、y 互为相反数,a 、b 互为倒数,m 是最大的负整数,求(x +y )﹣abm 的值.解析:2【分析】根据相反数和倒数的概念以及数的大小比较法则确定x+y ,ab 以及m 的值,从而代入计算.【详解】解:∵x 、y 互为相反数,a 、b 互为倒数,m 是最大的负整数,∴x+y=0,ab=1,m=-1∴(x +y )﹣abm=0-1×(-1)=2.【点睛】本题考查代数式求值,掌握相反数及倒数的概念以及数的大小比较,正确计算是解题关键.24.计算:(1)()2323298---(2)()()2215105x y xy xy -÷-(3)()()()2321x x x -+--解析:(133;(2)32x y -+;(3)7x -【分析】(1)同时计算乘方、绝对值、算术平方根及开立方,再计算加减法;(2)用多项式除以单项式法则计算;(3)先根据多项式乘以多项式及完全平方公式计算,再合并同类项即可.【详解】(1)解:原式43232=--33=-;(2)解:原式32x y =-+(3)解:原式2223621x x x x x =+---+- 7x =-.【点睛】此题考查实数的混合运算及整式的混合运算,掌握实数的乘方、绝对值、算术平方根及开立方、加减法运算,整式的多项式乘以多项式及完全平方公式、多项式除以单项式法则是解题的关键.25.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是______;(2)运用(1)中的结论,完成下列各题:①已知:3a b -=,2224a b -=,求+a b 的值;②计算:22222111111111123420192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⋅⋅⋅⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 解析:(1)a 2-b 2=(a+b )(a-b );(2)①8;②20214040【分析】 (1)分别表示拼接前后的阴影部分的面积,可得等式a 2-b 2=(a+b )(a-b ),得出答案; (2)①利用平方差公式将a 2-b 2化为(a+b )(a-b ),再整体代入即可;②先利用平方差公式变形,再约分即可得到结果.【详解】解:(1)图1中阴影部分的面积为a 2-b 2,图2中阴影部分的面积为(a+b )(a-b ), 因此有a 2-b 2=(a+b )(a-b ),∴能验证的等式是a 2-b 2=(a+b )(a-b )(2)①∵a 2-b 2=(a+b )(a-b )=24,a-b=3,∴a+b=8;②原式=11111111(1)(1)(1)(1)(1)(1)...(1)(1)22334420202020-+-+-+-+ 1324352019,223344202020202021=⨯⨯⨯⨯⨯⨯⨯⨯12021=⨯220202021=4040【点睛】本题考查平方差公式的意义和应用,理解和掌握平方差公式的结构特征是正确应用的前提.26.第一步:阅读材料,掌握知识.要把多项式am+an+bm+bn分解因式,可以先把它的前两项分成一组,并提出公因式a,再把它的后两项分成一组,提出公因式b,从而得: am+an+bm+bn=a(m+n)+b(m +n).这时,由于a(m+n)+b(m+n)中又有公因式(m+n),于是可提出(m+n),从而得到(m+n)(a+b),因此有: am+an+bn+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m +n)(a+b).这种方法称为分组法.第二步:理解知识,尝试填空.(1)ab-ac+bc-b2=(ab-ac)+(bc-b2)=a(b-c)-b(b-c)=.第三步:应用知识,解决问题.(2)因式分解:x2y-4y-2x2+8.第四步:提炼思想,拓展应用.(3)已知三角形的三边长分别是a、b、c,且满足a2+2b2+c2=2b(a+c),试判断这个三角形的形状,并说明理由.解析:(1)(b-c)(a-b);(2)(y-2)(x+2)(x-2);(3)这个三角形为等边三角形,理由见解析.【分析】(1)提取b-c即可;(2)先分组,用提取公因式法分解,再用平方差公式分解即可;(3)移项后分解因式,可得出a=b=c,则可得出答案.【详解】解:(1)a(b-c)-b(b-c)=(b-c)(a-b).故答案为:(b-c)(a-b);(2)x2y-4y-2x2+8=(x2y-4y)-(2x2-8)=y(x2-4)-2(x2-4)=(y-2)(x2-4)=(y-2)(x+2)(x-2);(3)这个三角形为等边三角形.理由如下:∵a2+2b2+c2=2b(a+c),∴a2+2b2+c2-2ba-2bc=0,∴a 2-2ab+b 2+b 2-2bc+c 2=0,∴(a-b )2+(b-c )2=0,∵(a-b )2≥0,(b-c )2≥0,∴a-b=0,b-c=0,∴a=b=c ,∴这个三角形是等边三角形.【点睛】本题考查分组因式分解,等边三角形的定义.能理解题意,掌握分组分解法是解题关键. 27.计算(1)2019(1)|2|-;(2)9(3)(3)x x -+-;(3)2(23)4(3)a b a a b ---.解析:(1)2;(2)221839x b -;()【分析】(1)根据乘方、立方根、算术平方根、绝对值的意义计算出各项值再去括号进行加减即可;(2)先根据平方差公式计算后两项的积,然后去括号合并同类项即可;(3)根据完全平方公式或单项式乘多项式法则计算出前面两个乘法结果后合并同类项即可 .【详解】解:(1)原式=-1+3+2-(2=4-22=+(2)原式=()222999918x x x --=-+=-;(3)原式=222241294129a ab b a ab b -+-+=.【点睛】本题考查实数和整式的混合运算,熟练掌握有关运算法则和乘法公式的应用是解题关键. 28.因式分解:(1)4x 2y ﹣4xy +y ;(2)9a 2﹣4(a +b )2.解析:(1)y (2x ﹣1)2;(2)(5a +2b )(a ﹣2b )【分析】(1)先提公因式,再利用完全平方公式;(2)先利用平方差公式分解,再化简即可.【详解】解:(1)4x 2y ﹣4xy +y=y (4x 2﹣4x +1)=y (2x ﹣1)2;(2)9a2﹣4(a+b)2=[3a+2(a+b)][3a﹣2(a+b)]=(5a+2b)(a﹣2b).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学 第14章《整式的乘法与因式分解》练习题
一、选择题
1.下列多项式能分解因式的是( )
A .2x +2y 2y
B .﹣2x ﹣2y
C .﹣2x +2xy ﹣2y
D .2x ﹣xy+2y
2.下列分解因式正确的是( )
A .-a+a 3=-a (1+a 2)
B .2a-4b+2=2(a-2b )
C .a 2-4=(a-2)2
D .a 2-2a+1=(a-1)2
3.因式分解x 2y -4y 的正确结果是( )。

(A )y (x 2-4) (B )y (x+2)(x -2)
(C )y (x+4)(x -4) (D )y (x -2)2
4.下列多项式能因式分解的是( )
A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n
5.下列各式中能用完全平方公式进行因式分解的是( )
A .x 2+x+1
B .x 2+2x-1
C .x 2-1
D .x 2-6x+9
6.下列多项式中能用平方差公式分解因式的是( )
A .a 2+(﹣b )2
B .5m 2﹣20mn
C .﹣x 2﹣y 2
D .﹣x 2+9
7.计算(2x 3y )2的结果是( )
A .4x 6y 2
B .8x 6y 2
C .4x 5y 2
D .8x 5y 2
8.已知a+b=3,ab=2,计算:a 2b+ab 2等于( )
A .5
B .6
C .9
D .1
二、填空题
9.把多项式2a ﹣4a 分解因式为 .
10.若实数a 满足a 2+a=1,则-2a 2-2a+2015= .
11.如果x 2+mx +6=(x -3)(x -n ),那么m +n 的值为_________________.
12.计算1112(0.25)(4)
-⨯-= . 13.分解因式:x 3﹣x= .
14.已知n mx x x x ++=-+2)2)(1(,则m +n = .
15.因式分解:43a ﹣122
a +9a= .
16.因式分39x x -= .
三、计算题
17.化简或计算
(1)、2421(9)()3a b a c -⋅-
(2)、)5()1015(2
2xy xy y x -÷-
(3)、4x 3 ÷(-2x )2
(4)、(x-3)(x-2)-(x+1)2
(5)、a (2a+3)-2(a +3)(a-3)
18.因式分解:
(1)92-x ;(2)b b b 4423+-
四、解答题
19.把下列多项式分解因式
(1) 9(a+b)2-25(a -b)2 (2)6x(a-b)+4y(b-a)
20.连一连: (1)
(2)
参考答案
1.C
2.D .
3.B
4.C .
5.D .
6.D .
7.A
8.B .
9.a (a -4)
10.2013.
11.-3.
12.-4
13.x (x+1)(x ﹣1).
14.-3.
15.a 2(23)a
16.(3)(3)x x x +-
17.(1)443a b c (2)(3)x 2y -+ (3)x (4)
7x 5-+ (5) 3a 18+ 18.(1))3)(3(-+x x ;(2)2)2(-b b .
19.(1)4(4a-b)(4b-a) (2)2(a-b)(3x-2y)
20.略。

相关文档
最新文档