高中数学 第三章 不等式 3.4 简单线性规划 可行域在解题中的妙用素材 北师大版必修5

合集下载

辽宁省大连市高中数学第三章不等式3.4简单线性规划教案新人教B版

辽宁省大连市高中数学第三章不等式3.4简单线性规划教案新人教B版
由图可知OM的最小值即为点O到直线x+y-2=0的距离,即dmin= = .
答案:
5.设z=2y-2x+4,式中x,y满足 求z的最大值和最小值.
解:作出满足条件 的可行域如图:
作直线l:2y-2x=t,当l过点A(0,2)时,zmax=2×2-2×0+4=+4=4.
数形结合
1、讨论思考
2、抽签小组展示讨论的结果。
3、提出的问题。
强化学生知识储备及养成良好的学习习惯,加强数学思维的培养
4
分钟
5.
目 标
检 测
1、巡视学生作答情况。
2、公布答案。
3、评价学生作答结果
1、小考卷上作答。
2、组间互批。
3、独立订正答案。
检查学生对本课所学知识的掌握情况
6
分钟
6.布置下节课
A.(1- ,2) B.(0,2)
C.( -1,2) D.(0,1+ )
解析:由题意知,正三角形ABC的顶点C的坐标为(1+ ,2),当z=-x+y经过点B时,zmax=2,经过点C时,zmin=1- .
答案:A
3.若实数x,y满足 则 的取值范围是( )
A.(0,1) B.(0,1]
C.(1,+∞) D.[1,+∞)
所以,z的最大值为8,最小值为4.
理由:
依据本节课重难点制定
教具
多媒体课件、教材,教辅
教学
环节
教学内容
教师行为
学生行为
设计意图
时间
1.


3


学生回答
画不等式组确定的平面区域的步骤。
画不等式组
x-2y+6>0
2x+3y-6>0;平面区域
教师要求学生同桌互相提问检查。

高中数学 第3章 不等式 4.2 简单线性规划讲义教案 北师大版必修5

高中数学 第3章 不等式 4.2 简单线性规划讲义教案 北师大版必修5

学习资料4.2 简单线性规划学习目标核心素养1.了解目标函数、约束条件、二元线性规划问题、可行解、可行域、最优解等基本概念.(重点)2.掌握二元线性规划问题的求解过程,特别是确定最优解的方法.(重点、难点)1.通过学习与线性规划有关的概念,培养数学抽象素养.2.通过研究最优解的方法,提升数学运算能力.简单线性规划阅读教材P100~P101“例6”以上部分,完成下列问题(1)线性规划中的基本概念名称意义约束条件关于变量x,y的一次不等式(组)线性约束条件关于x,y的一次不等式(组)目标函数欲求最大值或最小值的关于变量x,y的函数解析式线性目标函数关于变量x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域由所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题①目标函数的最值线性目标函数z=ax+by(b≠0)对应的斜截式直线方程是y=-错误!x+错误!,在y轴上的截距是错误!,当z变化时,方程表示一组互相平行的直线.当b>0,截距最大时,z取得最大值,截距最小时,z取得最小值;当b<0,截距最大时,z取得最小值,截距最小时,z取得最大值.②解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答"四步,即(ⅰ)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(ⅱ)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(ⅲ)求:解方程组求最优解,进而求出目标函数的最大值或最小值.(ⅳ)答:写出答案.思考:(1)在线性约束条件下,最优解唯一吗?[提示]可能唯一,也可能不唯一.(2)若将目标函数z=3x+y看成直线方程时,z具有怎样的几何意义?[提示]由z=3x+y得y=-3x+z,z是直线在y轴上的截距.1.设变量x,y满足约束条件错误!则目标函数z=3x-y的最大值为()A.-4 B.0C.错误!D.4D[作出可行域,如图所示.联立{x+y-4=0,,x-3y+4=0,解得错误!当目标函数z=3x-y移到(2,2)时,z=3x-y有最大值4.]2.若实数x,y满足错误!则s=x+y的最小值为.2[如图所示阴影部分为可行域,由s=x+y得y=-x+s,由图可知,当直线y=-x+s与直线x+y-2=0重合时,s最小,即x=4,y=-2时,s的最小值为4-2=2.]3.如图,点(x,y)在四边形ABCD的内部和边界上运动,那么z=2x-y的最小值为.1[法一:目标函数z=2x-y可变形为y=2x-z,所以当直线y=2x-z在y轴上的截距最大时,z的值最小.移动直线2x-y=0,当直线移动到经过点A时,直线在y轴上的截距最大,即z的值最小,为2×1-1=1.法二:将点A,B,C,D的坐标分别代入目标函数,求出相应的z值,比较大小,得在A点处取得最小值为1.]4.已知点P(x,y)的坐标满足条件错误!点O为坐标原点,那么|PO|的最小值等于,最大值等于.2错误![画出约束条件对应的可行域,如图阴影部分所示,因为|PO|表示可行域上的点到原点的距离,从而使|PO|取得最小值的最优解为点A(1,1);使|PO|取得最大值的最优解为点B(1,3),所以|PO|min=2,|PO|max=错误!.]线性目标函数的最值问题【例1】的最大值为.错误![由题意画出可行域(如图所示),其中A(-2,-1),B错误!,C(0,1),由z=x+y知y=-x+z,当直线y=-x+z经过B错误!时,z取最大值错误!.]用图解法解决线性规划问题的关键和注意点,图解法是解决线性规划问题的有效方法.其关键在于平移目标函数对应的直线ax+by=0,看它经过哪个点(或哪些点)时最先接触可行域和最后离开可行域,则这样的点即为最优解,再注意到它的几何意义,从而确定是取最大值还是最小值.错误!1.若x ,y 满足约束条件错误!则z =x -2y 的最小值为 .-5 [画出可行域,数形结合可知目标函数的最小值在直线x =3与直线x -y +1=0的交点(3,4)处取得,代入目标函数z =x -2y 得到-5.]线性规划问题中的参数问题【例2】 已知变量x ,y 满足的约束条件为错误!若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,求a 的取值范围.[解] 依据约束条件,画出可行域.∵直线x +2y -3=0的斜率k 1=-错误!, 目标函数z =ax +y (a >0)对应直线的斜率k 2=-a , 若符合题意,则需k 1>k 2.即-12>-a ,得a >错误!.含参数的线性目标函数问题的求解策略(1)约束条件中含有参数:此时可行域是可变的,应分情况作出可行域,结合条件求出不同情况下的参数值。

高中数学 第三章 不等式 3.3.2 简单的线性规划问题常

高中数学 第三章 不等式 3.3.2 简单的线性规划问题常

线性规划的常见题型及其解法线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致.归纳起来常见的命题探究角度有: 1.求线性目标函数的最值. 2.求非线性目标函数的最值. 3.求线性规划中的参数. 4.线性规划的实际应用.本节主要讲解线性规划的常见基础类题型.【母题一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-ab x +z b,通过求直线的截距z b的最值,间接求出z 的最值.【解析】画出不等式组⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,表示的平面区域如图中阴影部分所示,由目标函数z =2x +3y 得y =-23x +z 3,平移直线y =-23x 知在点B 处目标函数取到最小值,解方程组⎩⎪⎨⎪⎧x +y =3,2x -y =3,得⎩⎪⎨⎪⎧ x =2,y =1,所以B (2,1),z min =2×2+3×1=7,在点A 处目标函数取到最大值,解方程组⎩⎪⎨⎪⎧x -y =-1,2x -y =3,得⎩⎪⎨⎪⎧x =4,y =5,所以A (4,5),z max =2×4+3×5=23.【答案】A【母题二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.点(x ,y )在不等式组表示的平面区域内,y 2x -1=12·y -0⎝ ⎛⎭⎪⎫x -12表示点(x ,y )和⎝ ⎛⎭⎪⎫12,0连线的斜率;x 2+y 2表示点(x ,y )和原点距离的平方;x 2+y 2+6x -4y +13=(x +3)2+(y -2)2表示点(x ,y )和点(-3,2)的距离的平方.【解析】(1)由约束条件⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,作出(x ,y )的可行域如图所示.由⎩⎪⎨⎪⎧x =1,3x +5y -25=0,解得A ⎝⎛⎭⎪⎫1,225.由⎩⎪⎨⎪⎧ x =1,x -4y +3=0,解得C (1,1).由⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,解得B (5,2).∵z =y 2x -1=y -0x -12×12∴z 的值即是可行域中的点与⎝ ⎛⎭⎪⎫12,0连线的斜率,观察图形可知z min =2-05-12×12=29. (2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方. 结合图形可知,可行域上的点到原点的距离中,d min =|OC |=2,d max =|OB |=29.∴2≤z ≤29.(3)z =x 2+y 2+6x -4y +13=(x +3)2+(y -2)2的几何意义是: 可行域上的点到点(-3,2)的距离的平方. 结合图形可知,可行域上的点到(-3,2)的距离中,d min =1-(-3)=4,d max =-3-2+-2=8∴16≤z ≤64.1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义. 2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-ab x +z b ,通过求直线的截距z b的最值,间接求出z 的最值.(2)距离型:形一:如z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离;形二:z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离的平方.(3)斜率型:形如z =y x ,z =ay -b cx -d ,z =y cx -d ,z =ay -bx,此类目标函数常转化为点(x ,y )与定点所在直线的斜率.【提醒】 注意转化的等价性及几何意义.角度一:求线性目标函数的最值1.(2014·新课标全国Ⅱ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .2【解析】作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点A (5,2)时,对应的z 值最大.故z max =2×5-2=8.【答案】B2.(2015·高考天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z =x +6y 的最大值为( )A .3B .4C .18D .40【解析】作出约束条件对应的平面区域如图所示 ,当目标函数经过点(0,3)时,z 取得最大值18.【答案】C3.(2013·高考陕西卷)若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( )A .-6B .-2C .0D .2【解析】如图,曲线y =|x |与y =2所围成的封闭区域如图中阴影部分,令z =2x -y ,则y =2x -z ,作直线y =2x ,在封闭区域内平行移动直线y =2x ,当经过点(-2,2)时,z 取得最小值,此时z =2×(-2)-2=-6.【答案】A角度二:求非线性目标的最值4.(2013·高考山东卷)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12【解析】已知的不等式组表示的平面区域如图中阴影所示,显然当点M 与点A 重合时直线OM 的斜率最小,由直线方程x +2y -1=0和3x +y -8=0,解得A (3,-1),故OM 斜率的最小值为-13.【解析】C5.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1的取值范围 .【解】由不等式组画出可行域如图中阴影部分所示,目标函数z =2x +y -1x -1=2+y +1x -1的取值范围可转化为点(x ,y )与(1,-1)所在直线的斜率加上2的取值范围,由图形知,A 点坐标为(2,1),则点(1,-1)与(2,1)所在直线的斜率为22+2,点(0,0)与(1,-1)所在直线的斜率为-1,所以z 的取值范围为(-∞,1]∪[22+4,+∞).【答案】(-∞,1]∪[22+4,+∞)6.(2015·郑州质检)设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]【解析】如图所示,不等式组表示的平面区域是△ABC 的内部(含边界),x 2+y 2表示的是此区域内的点(x ,y )到原点距离的平方.从图中可知最短距离为原点到直线BC 的距离,其值为1;最远的距离为AO ,其值为2,故x 2+y 2的取值范围是[1,4].【答案】B7.(2013·高考北京卷)设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.【解析】作出可行域,如图中阴影部分所示,则根据图形可知,点B (1,0)到直线2x -y =0的距离最小,d =|2×1-0|22+1=255,故最小距离为255. 【答案】2558.设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,|AB |的最小值等于( )A .285B .4C .125D .2【解析】不等式组⎩⎪⎨⎪⎧x ≥1x -2y +3≥0y ≥x,所表示的平面区域如图所示,解方程组⎩⎪⎨⎪⎧x =1y =x ,得⎩⎪⎨⎪⎧x =1y =1.点A (1,1)到直线3x -4y -9=0的距离d =|3-4-9|5=2,则|AB |的最小值为4.【答案】B角度三:求线性规划中的参数9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A .73 B .37 C .43D .34【解析】不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝ ⎛⎭⎪⎫12,52.当y =kx +43过点⎝ ⎛⎭⎪⎫12,52时,52=k 2+43,所以k =73.【解析】A10.(2014·高考北京卷)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C .12D .-12【解析】D 作出线性约束条件⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0的可行域.当k >0时,如图①所示,此时可行域为y 轴上方、直线x +y -2=0的右上方、直线kx -y +2=0的右下方的区域,显然此时z =y -x 无最小值.当k <-1时,z =y -x 取得最小值2;当k =-1时,z =y -x 取得最小值-2,均不符合题意.当-1<k <0时,如图②所示,此时可行域为点A (2,0),B ⎝ ⎛⎭⎪⎫-2k,0,C (0,2)所围成的三角形区域,当直线z =y -x 经过点B ⎝ ⎛⎭⎪⎫-2k ,0时,有最小值,即-⎝ ⎛⎭⎪⎫-2k =-4⇒k =-12.【答案】D11.(2014·高考安徽卷)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A .12或-1 B .2或12C .2或1D .2或-1【解析】法一:由题中条件画出可行域如图中阴影部分所示,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B =-2a ,z C =2a -2,要使目标函数取得最大值的最优解不唯一,只要z A =z B >z C 或z A =z C >z B 或z B=z C >z A ,解得a =-1或a =2.法二:目标函数z =y -ax 可化为y =ax +z ,令l 0:y =ax ,平移l 0,则当l 0∥AB 或l 0∥AC 时符合题意,故a =-1或a =2.【答案】D12.在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤s ,y +2x ≤4.下,当3≤s ≤5时,目标函数z =3x +2y 的最大值的取值范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]【解析】 由⎩⎪⎨⎪⎧x +y =s ,y +2x =4,得⎩⎪⎨⎪⎧x =4-s ,y =2s -4,,则交点为B (4-s,2s -4),y +2x =4与x 轴的交点为A (2,0),与y 轴的交点为C ′(0,4),x +y =s 与y 轴的交点为C (0,s ).作出当s =3和s =5时约束条件表示的平面区域,即可行域,如图(1)(2)中阴影部分所示.(1) (2)当3≤s <4时,可行域是四边形OABC 及其内部,此时,7≤z max <8; 当4≤s ≤5时,可行域是△OAC ′及其内部,此时,z max =8. 综上所述,可得目标函数z =3x +2y 的最大值的取值范围是[7,8]. 【答案】D13.(2015·通化一模)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1的最小值为32,则a 的值为________.【解析】∵x +2y +3x +1=1+y +x +1,而y +1x +1表示过点(x ,y )与(-1,-1)连线的斜率,易知a >0, ∴可作出可行域,由题意知y +1x +1的最小值是14,即⎝ ⎛⎭⎪⎫y +1x +1min =0--3a --=13a +1=14⇒a =1.【答案】1角度四:线性规划的实际应用14.A ,B 两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A 产品需要在甲机器上加工3小时,在乙机器上加工1小时;B 产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A 产品每件利润300元,B 产品每件利润400元,则这两台机器在一个工作日内创造的最大利润是________元.【解析】 设生产A 产品x 件,B 产品y 件,则x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y ≤11,x +3y ≤9,x ∈N ,y ∈N ,生产利润为z=300x +400y .画出可行域,如图中阴影部分(包含边界)内的整点,显然z =300x +400y 在点A 处取得最大值,由方程组⎩⎪⎨⎪⎧3x +y =11,x +3y =9,解得⎩⎪⎨⎪⎧x =3,y =2,则z max =300×3+400×2=1 700.故最大利润是1 700元.【答案】1 70015.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润w (元); (2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?【解析】(1)依题意每天生产的伞兵个数为100-x -y ,所以利润w =5x +6y +3(100-x -y )=2x +3y +300.(2)约束条件为⎩⎪⎨⎪⎧5x +7y +-x -y ,100-x -y ≥0,x ≥0,y ≥0,x ,y ∈N .整理得⎩⎪⎨⎪⎧x +3y ≤200,x +y ≤100,x ≥0,y ≥0,x ,y ∈N .目标函数为w =2x +3y +300. 作出可行域.如图所示:初始直线l 0:2x +3y =0,平移初始直线经过点A 时,w有最大值.由⎩⎪⎨⎪⎧x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50.最优解为A (50,50),所以w max =550元.所以每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,最大利润为550元.一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)【解析】根据题意知(-9+2-a )·(12+12-a )<0.即(a +7)(a -24)<0,解得-7<a <24. 【答案】B2.(2015·临沂检测)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 的最小值是( )A .-3B .0C .32D .3【解析】作出不等式组⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3表示的可行域(如图所示的△ABC 的边界及内部).平移直线z =x -y ,易知当直线z =x -y 经过点C (0,3)时,目标函数z =x -y 取得最小值,即z min =-3.【答案】A3.(2015·泉州质检)已知O 为坐标原点,A (1,2),点P 的坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧x +|y |≤1,x ≥0,则z =OA →·OP →的最大值为( )A .-2B .-1C .1D .2【解析】如图作可行域,z =OA →·OP →=x +2y ,显然在B (0,1)处z max =2.【答案】D4.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A .⎣⎢⎡⎦⎥⎤53,5B .[0,5]C .⎣⎢⎡⎭⎪⎫53,5D .⎣⎢⎡⎭⎪⎫-53,5 【解析】画出不等式组所表示的区域,如图阴影部分所示,作直线l :2x -2y -1=0,平移l 可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是⎣⎢⎡⎭⎪⎫-53,5.【答案】D5.如果点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取的整数值为( ) A .2 B .1 C .3D .0【解析】由题意知(6-8b +1)(3-4b +5)<0,即⎝ ⎛⎭⎪⎫b -78(b -2)<0,∴78<b <2,∴b 应取的整数为1.【答案】B6.(2014·郑州模拟)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 的取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)【解析】如图,根据题意得C (1+3,2).作直线-x +y =0,并向左上或右下平移,过点B (1,3)和C (1+3,2)时,z =-x +y 取范围的边界值,即-(1+3)+2<z <-1+3,∴z =-x +y 的取值范围是(1-3,2).【答案】A7.(2014·成都二诊)在平面直角坐标系xOy 中,P 为不等式组⎩⎪⎨⎪⎧y ≤1,x +y -2≥0,x -y -1≤0,所表示的平面区域上一动点,则直线OP 斜率的最大值为( )A .2B .13C .12D .1【解析】作出可行域如图所示,当点P 位于⎩⎪⎨⎪⎧x +y =2,y =1,的交点(1,1)时,(k OP )max =1.【答案】D8.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1C .12D .14【解析】不等式⎩⎪⎨⎪⎧x +y ≤1,x ≥0,y ≥0,所表示的可行域如图所示,设a =x +y ,b =x -y ,则此两目标函数的范围分别为a =x +y ∈[0,1],b =x -y ∈[-1,1],又a +b =2x ∈[0,2],a -b =2y ∈[0,2],∴点坐标(x +y ,x -y ),即点(a ,b )满足约束条件⎩⎪⎨⎪⎧0≤a ≤1,-1≤b ≤1,0≤a +b ≤2,0≤a -b ≤2,作出该不等式组所表示的可行域如图所示,由图示可得该可行域为一等腰直角三角形,其面积S =12×2×1=1.【答案】B9.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为4,则ab 的取值范围是( )A .(0,4)B .(0,4]C .[4,+∞)D .(4,+∞)【解析】作出不等式组表示的区域如图阴影部分所示,由图可知,z =ax +by (a >0,b >0)过点A (1,1)时取最大值,∴a +b =4,ab ≤⎝⎛⎭⎪⎫a +b 22=4,∵a >0,b >0,∴ab ∈(0,4].【答案】B10.设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为( )A .πB .2πC .3πD .4π【解析】作出不等式组所表示的可行域如图中阴影部分所示,则根据图形可知,以AB 为直径的圆的面积的最大值S =π×⎝ ⎛⎭⎪⎫422=4π.【答案】D11.(2015·东北三校联考)变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥-1,x -y ≥2,3x +y ≤14,若使z =ax +y 取得最大值的最优解有无穷多个,则实数a 的取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}【解析】作出不等式组所表示的平面区域,如图所示.易知直线z =ax +y 与x -y =2或3x +y =14平行时取得最大值的最优解有无穷多个,即-a =1或-a =-3,∴a =-1或a =3.【答案】B12.(2014·新课标全国Ⅰ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a=( )A .-5B .3C .-5或3D .5或-3【解析】法一:联立方程⎩⎪⎨⎪⎧x +y =a ,x -y =-1,解得⎩⎪⎨⎪⎧x =a -12,y =a +12,代入x +ay =7中,解得a =3或-5,当a =-5时,z =x +ay 的最大值是7;当a =3时,z =x +ay 的最小值是7.法二:先画出可行域,然后根据图形结合选项求解.当a =-5时,作出不等式组表示的可行域,如图(1)(阴影部分).图(1) 图(2)由⎩⎪⎨⎪⎧ x -y =-1,x +y =-5得交点A (-3,-2),则目标函数z =x -5y 过A 点时取得最大值.z max =-3-5×(-2)=7,不满足题意,排除A ,C 选项.当a =3时,作出不等式组表示的可行域,如图(2)(阴影部分).由⎩⎪⎨⎪⎧x -y =-1,x +y =3得交点B (1,2),则目标函数z =x +3y 过B 点时取得最小值.z min =1+3×2=7,满足题意.【答案】B13.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,则由点P (a ,b )所确定的平面区域的面积是( )A .12 B .π4C .1D .π2【解析】因为ax +by ≤1恒成立,则当x =0时,by ≤1恒成立,可得y ≤1b(b ≠0)恒成立,所以0≤b ≤1;同理0≤a ≤1.所以由点P (a ,b )所确定的平面区域是一个边长为1的正方形,面积为1.【答案】C14.(2013·高考北京卷)设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 的取值范围是( )A .⎝⎛⎭⎪⎫-∞,43B .⎝ ⎛⎭⎪⎫-∞,13C .⎝⎛⎭⎪⎫-∞,-23D .⎝⎛⎭⎪⎫-∞,-53【解析】当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0.如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m<-12m -1,解得m <-23.【答案】C15.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x的图象上存在区域D 上的点,则a 的取值范围是 ( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞)【解析】平面区域D 如图所示.要使指数函数y =a x的图象上存在区域D 上的点,所以1<a ≤3. 【解析】A16.(2014·高考福建卷)已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .49【解析】由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.【解析】C17.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k x --1表示一个三角形区域,则实数k 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)【解析】已知直线y =k (x -1)-1过定点(1,-1),画出不等式组表示的可行域示意图,如图所示. 当直线y =k (x -1)-1位于y =-x 和x =1两条虚线之间时,表示的是一个三角形区域.所以直线y =k (x -1)-1的斜率的范围为(-∞,-1),即实数k 的取值范围是(-∞,-1).当直线y =k (x -1)-1与y =x 平行时不能形成三角形,不平行时,由题意可得k >1时,也可形成三角形,综上可知k <-1或k >1.【答案】D18.(2016·武邑中学期中)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 的最大值为( )A .4B .6C .8D .10【解析】区域如图所示,目标函数z =2x +y 在点A (3,2)处取得最大值,最大值为8.【答案】C19.(2016·衡水中学期末)当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x x +3y ≤4x ≥m时,z =x -3y 的最大值为8,则实数m 的值是( )A .-4B .-3C .-2D .-1【解析】画出可行域如图所示,目标函数z =x -3y 变形为y =x 3-z3,当直线过点C 时,z 取到最大值,又C (m ,m ),所以8=m -3m ,解得m =-4. 【答案】A20.(2016·湖州质检)已知O 为坐标原点,A ,B 两点的坐标均满足不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≤0,x -1≥0,则tan∠AOB 的最大值等于( )A .94 B .47 C .34D .12【解析】如图阴影部分为不等式组表示的平面区域,观察图形可知当A 为(1,2),B 为(2,1)时,tan ∠AOB 取得最大值,此时由于tan α=k BO =12,tan β=k AO =2,故tan ∠AOB =tan (β-α)=tan β-tan α1+tan βtan α=2-121+2×12=34. 【解析】C 二、填空题21.(2014·高考安徽卷)不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.【解析】作出不等式组表示的平面区域如图中阴影部分所示,可知S △ABC =12×2×(2+2)=4.【答案】422.(2014·高考浙江卷)若实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则x +y 的取值范围是________.【解析】作出可行域,如图,作直线x +y =0,向右上平移,过点B 时,x +y 取得最小值,过点A 时取得最大值.由B (1,0),A (2,1)得(x +y )min =1,(x +y )max =3.所以1≤x +y ≤3. 【答案】[1,3]23.(2015·重庆一诊)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为____.【解析】根据约束条件作出可行域,如图中阴影部分所示,∵z =3x -y ,∴y =3x -z ,当该直线经过点A (2,2)时,z 取得最大值,即z max =3×2-2=4.【答案】424.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8的最小值为________.【解析】目标函数w =x 2+y 2-4x -4y +8=(x -2)2+(y -2)2,其几何意义是点(2,2)与可行域内的点的距离的平方.由实数x ,y 所满足的不等式组作出可行域如图中阴影部分所示,由图可知,点(2,2)到直线x +y -1=0的距离为其到可行域内点的距离的最小值,又|2+2-1|2=322,所以w min =92.【答案】9225.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM |的最小值是________.【解析】如图所示阴影部分为可行域,数形结合可知,原点O 到直线x +y -2=0的垂线段长是|OM |的最小值,∴|OM |min =|-2|12+12=2.【答案】 226.(2016·汉中二模)某企业生产甲、乙两种产品,已知生产每吨甲产品要用水3吨、煤2吨;生产每吨乙产品要用水1吨、煤3吨.销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元,若该企业在一个生产周期内消耗水不超过13吨,煤不超过18吨,则该企业可获得的最大利润是______万元.【解析】设生产甲产品x 吨,生产乙产品y 吨,由题意知⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +y ≤13,2x +3y ≤18,利润z =5x +3y ,作出可行域如图中阴影部分所示,求出可行域边界上各端点的坐标,经验证知当x=3,y=4,即生产甲产品3吨,乙产品4吨时可获得最大利润27万元.【答案】2727.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:________亩.【解析】设黄瓜和韭菜的种植面积分别为x亩,y亩,总利润为z万元,则目标函数为z=(0.55×4x-1.2x)+(0.3×6y-0.9y)=x+0.9y.线性约束条件为⎩⎪⎨⎪⎧x+y≤50,1.2x+0.9y≤54,x≥0,y≥0,即⎩⎪⎨⎪⎧x+y≤50,4x+3y≤180,x≥0,y≥0.画出可行域,如图所示.作出直线l0:x+0.9y=0,向上平移至过点A时,z取得最大值,由⎩⎪⎨⎪⎧x+y=50,4x+3y=180,解得A(30,20).【答案】3028.(2015·日照调研)若A为不等式组⎩⎪⎨⎪⎧x≤0,y≥0,y-x≤2表示的平面区域,则当a从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________.【解析】平面区域A 如图所示,所求面积为S =12×2×2-12×22×22=2-14=74.【答案】7429.(2014·高考浙江卷)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.【解析】画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则a >0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a +1≤4,1≤a ≤4即可,解得1≤a ≤32.所以a 的取值范围是1≤a ≤32.【答案】⎣⎢⎡⎦⎥⎤1,3230.(2015·石家庄二检)已知动点P (x ,y )在正六边形的阴影部分(含边界)内运动,如图,正六边形的边长为2,若使目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,则k 的值为________.【解析】由目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,结合图形分析可知,直线kx +y =0的倾斜角为120°,于是有-k =tan 120°=-3,所以k =3.【答案】 331.设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围 .【解析】变换目标函数为y =-1m x +z m ,由于m >1,所以-1<-1m<0,不等式组表示的平面区域如图中的阴影部分所示,根据目标函数的几何意义,只有直线y =-1m x +zm在y 轴上的截距最大时,目标函数取得最大值.显然在点A 处取得最大值,由y =mx ,x +y =1,得A ⎝ ⎛⎭⎪⎫11+m ,m 1+m ,所以目标函数的最大值z max=11+m +m 21+m<2,所以m 2-2m -1<0,解得1-2<m <1+2,故m 的取值范围是(1,1+2).【答案】(1,1+2)32.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,若目标函数z =x -y 的最小值的取值范围是[-2,-1],则目标函数的最大值的取值范围是________.【解析】不等式组表示的可行域如图中阴影部分(包括边界)所示,目标函数可变形为y =x -z ,当z 最小时,直线y =x -z 在y 轴上的截距最大.当z 的最小值为-1,即直线为y =x +1时,联立方程⎩⎪⎨⎪⎧y =x +1,y =2x -1,可得此时点A 的坐标为(2,3),此时m =2+3=5;当z 的最小值为-2,即直线为y =x +2时,联立方程⎩⎪⎨⎪⎧y =x +2,y =2x -1,可得此时点A 的坐标是(3,5),此时m =3+5=8.故m 的取值范围是[5,8].目标函数z =x -y 的最大值在点B (m -1,1)处取得,即z max =m -1-1=m -2,故目标函数的最大值的取值范围是[3,6].【答案】[3,6]33.(2013·高考广东卷)给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.【解析】线性区域为图中阴影部分,取得最小值时点为(0,1),最大值时点为(0,4),(1,3),(2,2),(3,1),(4,0),点(0,1)与(0,4),(1,3),(2,2),(3,1),(4,0)中的任何一个点都可以构成一条直线,共有5条 ,又(0,4),(1,3),(2,2),(3,1),(4,0)都在直线x +y =4上,故T 中的点共确定6条不同的直线. 【答案】634.(2011·湖北改编)已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为__________.【解析】∵a =(x +z,3),b =(2,y -z ),且a ⊥b ,∴a ·b =2(x +z )+3(y -z )=0,即2x +3y -z =0.又|x |+|y |≤1表示的区域为图中阴影部分,∴当2x +3y -z =0过点B (0,-1)时,z min =-3,当2x +3y -z =0过点A (0,1)时,z min =3. ∴z ∈[-3,3]. 【答案】[-3,3]35.(2016·衡水中学模拟)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +4y -13≤02y -x +1≥0x +y -4≥0且有无穷多个点(x ,y )使目标函数z =x +my 取得最小值,则m =________.【解析】作出线性约束条件表示的平面区域,如图中阴影部分所示.若m =0,则z =x ,目标函数z =x +my 取得最小值的最优解只有一个,不符合题意. 若m ≠0,则目标函数z =x +my 可看作斜率为-1m 的动直线y =-1m x +zm,若m <0,则-1m>0,由数形结合知,使目标函数z =x +my 取得最小值的最优解不可能有无穷多个;若m >0,则-1m<0,数形结合可知,当动直线与直线AB 重合时,有无穷多个点(x ,y )在线段AB 上,使目标函数z =x +my 取得最小值,即-1m=-1,则m =1.综上可知,m =1. 【答案】1。

高中数学第三章不等式3.4简单线性规划可行域在解题中的妙用素材北师大版必修(1)

高中数学第三章不等式3.4简单线性规划可行域在解题中的妙用素材北师大版必修(1)

1可行域在解题中的妙用一 与解析几何交汇例1若双曲线221x y -=的右支上一点(),P a b ,到直线y x =则a b +的值为 .解:由题意得221a b -=,又点(),P a b 到直线y x ==注意到点(),P a b 在双曲线y x =右支的下方,则有b a <,=. 可得,12a b +=. 点评:本题求解时,极易出现两解,没注意到利用“点P 在直线下方”这一隐含条件来取舍.二与平面向量交汇例2已知在平面直角坐标系中,()0,0O ,11,2M ⎛⎫ ⎪⎝⎭,()0,1N ,()1,1Q -,若动点(),P x y 满足不等式01OP OM ≤⋅≤,01OP ON ≤⋅≤,则OP OQ ⋅最小值为 . 解:由题意得,01201y x y ⎧≤+≤⎪⎨⎪≤≤⎩ ,OP OQ x y ⋅=-+, 令z x y =-+,不等式组所表示的平面区域如图:故y x z =+在点()1,0处,有最小值.即OP OQ ⋅最小值为1-. 点评:本题中以向量的数量积为工具,的本质.三 与几何概型交汇例3将一长为10cm 的线段随机地分成三段,则这三段能够组成一个三角形的概率为 .解:设“构成三角形的事件”为A ,长度为1010x y --. 则010010010()10x y x y ì<<ïïï<<íïï<-+<ïïî,即010010010x y x y ì<<ïïï<<íïï<+<ïïî. 由一个三角形两边之和大于第三边,有 10()x y x y +>-+,即510x y <+<.又由三角形两边之差小于第三边,有5x <,即05x <<,同理05y <<.故构成三角形的条件为0505510x y x y ì<<ïïï<<íïï<+<ïïî. 所以满足条件的点(),P x y 组成的图形是如图所示中的阴影区域(不包括区域的边界).2125522S D ´阴影==,211052OAB S D ´==0.∴ 1()4OMN S P A S D D 阴影==. 点评:本题为测度为面积的几何概型问题,对于含有两个变量的问题,我们常将其进行转化.四 与导数交汇例4已知函数()3211232f x x ax bx c =+++在()0,1内取得极大值,在()1,2内取得极小值,z =z 的取值范围为 .解:()'22fx x ax b =++,依题意方程220x ax b ++=的一根大于0且小于1,另一2a +3 根大于1且小于2,从而a 、b 满足条件()()()'''020*********f b f a b f a b ⎧=>⎪⎪=++<⎨⎪=++>⎪⎩这个条件所表示的平面区域如图所示:设(),P a b 为可行域内任一点,z ==(),P a b 到定点()1,0Q的距离,由图知 max z QA ==m 2in z QB ==,故(z ∈.点评:解决本题关键在于转化,将其转化为根的分布问题,而在求目标函数最值时,数形结合,巧妙解决问题.。

高中数学第三章不等式3.4简单线性规划3.4.3简单线性规划的应用高一数学

高中数学第三章不等式3.4简单线性规划3.4.3简单线性规划的应用高一数学
3x+2y≤30, 即x+2y≤22,
x,y∈N,
利润 z=6x+8y.
(4 分)
12/13/2021
作出可行域如图阴影部分所示中的整点部分.
(8 分) 由图可知当直线 6x+8y=z 经过可行域内点 A 时 ,
12/13/2021
z 取最大值,由3xx++22y=y=2320,得xy==94,,(10 分) 此时 zmax=6×4+8×9=96(百元). 所以生产空调机 4 台,洗衣机 9 台时,可获最大利润 9 600 元.
12/13/2021
3.医院用甲、乙两种原料给手术后的病人配营养餐,甲种原 料每 10 g 含 5 单位蛋白质和 10 单位铁质,售价 3 元;乙种原 料每 10 g 含 7 单位蛋白质和 4 单位铁质,售价 2 元.若病人每 餐至少需要 35 单位蛋白质和 40 单位铁质,试问:应如何使用 甲、乙原料,才能既满足营养,又使费用最省?
12/13/2021
【解】 (1)由已知,x,y 满足的数学关系式为
70x+60y≤600, 7x+6y≤60,
5x+5y≥30, x+y≥6,
x≤2y,
即x-2y≤0,
x≥0,
x≥0,
y≥0,
y≥0,
12/13/2021
该二元一次不等式组所表示的平面区域为图①中的阴影部分:
12/13/2021
5
25
12/13/2021
已知电视台每周安排的甲、乙连续剧的总播放时间不多于 600 分钟,广告的总播放时间不少于 30 分钟,且甲连续剧播放的 次数不多于乙连续剧播放次数的 2 倍.分别用 x,y 表示每周计 划播出的甲、乙两套连续剧的次数. (1)用 x,y 列出满足题目条件的数学关系式,并画出相应的平 面区域; (2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收 视人次最多?

高中数学第三章不等式3.4简单线性规划线性规划之父_丹奇克素材北师大版必修52

高中数学第三章不等式3.4简单线性规划线性规划之父_丹奇克素材北师大版必修52

线性规划之父----丹奇克线性规划是高中数学的重要内容,也是体现数学应用的重要方法之一.它不但在数学中有着广泛的应用,在统计等方面会经常见到它的身影.而线性规划这种方法的发展道路也经历了一个曲折的过程.许多数学家都为此付出了艰辛的劳动.提起线性规划的发展,我们不得不提起一位被称为“线性规划之父”的著名数学家---丹奇克(George Dantzig).在1982年的第11届数学规划大会上,丹奇克举例说明了单纯形法的威力.他说,为70个人分配70项任务,总共有70!种分配方案.若要按照某种标准选出最优的一种分配方案,则要对70!种方案进行分析.而70!是一个比100100还要大的天文数字.如果有10个地球,从宇宙大爆炸时代到太阳变冷,每一个地球装满并行运行程序到每秒运算10亿次到计算机.才能完成这么庞大的运算工作.但如果用单纯形法,在计算机上只需几秒钟就能得出答案.那么,什么是单纯形法呢?单纯形方法的基本思路是,首先从可行域中找一个基可行解,然后判别它是否为最优解,如果是,则停止计算;否则,就找一个更好的基可行解,再进行检验,如此反复迭代,直至找到最优解,或者判定它无界(即无有限最优解)为止.其实,这位研究出来单纯形法的神奇数学家的故事也充满着传奇色彩.常言说:“不经一番寒彻骨,怎得梅花扑鼻香”.和许多人一样,丹奇克的求学之路也经历了一个曲折的过程.丹奇克出生在一个家境贫寒的数学家的家庭,但是他初中时数学成绩却很差,进入高中由于受到一位几何老师的启发,使他对几何着了迷,在父亲的诱导下全身心投入到数学的学习中.在这期间,他的父亲曾经先后为他出了上万道几何题目.每当他得到一个答案,他的父亲就说“我再给你一道”.其实,当时他只是为了摆脱丹奇克的打扰,却成就了丹奇克非凡的数学才华.高中毕业后,他进入马里兰大学攻读数学,但当时大学数学不开设单独的有关数学应用的课程.这对于热爱数学的他来说无疑是一种损失.但是,他并没有停止对应用数学方面的研究.在一年级的化学课中,丹奇克遇到了数学的一个有趣应用,并写出与此有关的短篇论文.教授看了以后,认为结论很有意义,但他以为有人一定已经进行过研究了.两年以后,当丹奇克上三年级时,这位教授找到丹奇克,略带歉意地拿出一篇别人刚刚发表的论文,在这篇论文中竟然发现,它的结论与丹奇克两年前得到的完全一样.1937年,美国经济进入萧条时期,整个国家陷入困难状态,失业人员大量增加.而就是在这种条件下,丹奇克却在劳工统计局找到了一个统计职员的工.在此期间,他熟悉了许多与实际应用有关的知识,并与同事埃文斯成了好朋友.后来,埃文斯从事一项有关二次大战中美国经济的利昂季耶夫投入产出模型的研究,这项研究改变了丹奇克一生的研究生活.1939年,丹奇克到伯克利攻读博士学位,他师从被称为数理统计鼻祖的著名数学家内曼(Neyman, Jerzy)(1894—1981).在此期间,他所学的统计课程只有两门,并且都由内曼讲授.内曼是假设检验的统计理论的创始人之一.他与K·皮尔逊的儿子E·S·皮尔逊合著《统计假设试验理论》,发展了假设检验的数学理论,其要旨是把假设检验问题作为一个最优化问题来处理.他们把所有可能的总体分布族看作一个集合,其中考虑了一个与解消假设相对应的备择假设,引进了检验功效函数的概念,以此作为判断检验程序好坏的标准.这种思想使统计推断理论变得非常明确.内曼还想从数学上定义可信区间,提出了置信区间的概念,建立置信区间估计理论.内曼还对抽样引进某些随机操作,以保证所得结果的客观性和可靠性,在统计理论中有以他的姓氏命名的内曼置信区间法、内曼—皮尔森引理、内曼结构等.内曼将统计理论应用于遗传学、医学诊断、天文学、气象学、农业统计学等方面,取得丰硕的成果.他获得过国际科学奖,并在加利福尼亚大学创建了一个研究机构,后来发展成为世界著名的数理统计中心.在这段求学期间,丹奇克受到了很大的启发,改变了他的学习方式.在一次作业中,内曼在黑板上写了两个题目,丹奇克把它抄下来.几天以后,他把自己努力完成的作业交到内曼的办公桌上.大约经过6个星期的一天上午8点左右,内曼拿着丹奇克的本子找到他,略显激动地说:“我刚为你的论文写好一篇序言,你看一下,就可以理科寄出去发表了”.当时的丹奇克感觉有点莫名其妙,怎么也搞不清楚老师在说什么.原来,他作业中完成的那两个问题正是统计学中的两个非常著名的难题.后来,这份作业也成了丹奇克的博士论文.但令人略感遗憾的是,有关第二个难题的研究成果,直到第二次大战后才得以发表.并且是与一个叫沃尔德的联名发表的.1946年末,丹奇克建立了能反映实际工业各部门之间关系的数学模型.经过一年的思考,在1947年6月,他向经济学家科普曼斯(Tjalling C.Koopmans)介绍了线性规划模型.科普曼斯认识到,经济学中相当多的问题能转化为线性规划的形式,科普曼斯一下子看出丹奇克所介绍的模型对经济理论的重要性.这使得科普曼斯在1975年获得诺贝尔奖.后来,应科普曼的要求,为了解决军事调度问题,他又建立了单纯形法.进入20世纪90年代,年过80的丹奇克与夫人选择了美国斯坦福大学校园一幢优美的住宅一起安享晚年.他所获得的各种奖赏挂满了他的书房.。

江西省吉安县高中数学第3章不等式3.4.3简单线性规划的应用课件北师大版必修5

江西省吉安县高中数学第3章不等式3.4.3简单线性规划的应用课件北师大版必修5


某家具厂有方木材 90m3,木工板600m3,准备加工成书桌和书橱出售,已知生 产每张书桌需要方木料 0.1m3 、木工板2m3 ;生产每个书橱需要方木料 0.2m3, 木工板1m3,出售一张书桌可以获利80元,出售一张书橱可以获利120元;
怎样安排生产可以获利最大?
解:
y
600 A(100,400)
下,求目标函数 z 3x 2 y 的最小值.
议展
解 设甲、乙两种原料分别用 10 x g 和 10 y g . 需要的费用为
z 3x 2 y ;
病人每餐至少需要 35 单位蛋白质,可表示为 5 x 7 y 35 ; 同理,对铁质的要求可以表示为
10 x 4 y 40 .

设甲、乙两种原料分别用10x克和10y克,则需要的费 用为:____________ 病人每餐至少需要35单位蛋白质,可表示为: _______________ 病人每餐至少需要35单位铁质,可表示为: _______________ 这样问题转化为在约束条件:
求目标函数_____________的最小值问题。
下,求目标函数 z 20.708x 9.96 y 的最大值.
作出可行域,如图,
令 z 0 作直线 l0 : 20.708x 9.96 y 0 ,
y
l0
2
9 x 1 7 0 y 4 51
0 .3 xy0
A
由图形可以看出,平移直线 l0 , 在可行域中的顶点 A 处, z 取得最大值.
0
2x+y-600=0
4.3 简单线性规划的应用

解线性规划问题的方法步骤:纵截距图解法
第一步:画可行域; 第二步:作初始直线 l ,画与目标函数平行的直线,在

不等式简单的线性规划问题线性规划的实际应用

不等式简单的线性规划问题线性规划的实际应用
目标函数的概念
目标函数的线性规划
二维线性规划问题的概念
二维不等式线性规划问题是指具有两个决策变量和一组不等式约束条件的线性规划问题。
二维线性规划问题的求解方法
求解二维不等式线性规划问题通常采用图解法和单纯形法。
二维不等式线性规划问题
多维不等式线性规划问题
多维不等式线性规划问题是指具有多个决策变量和一组不等式约束条件的线性规划问题。
详细描述
运输问题优化在实际应用中需要考虑多个因素,如运输方式、运输距离、运输成本、运输时间等。通过不等式简单的线性规划方法,我们可以得到最优的运输计划方案,实现运输成本和时间的最佳组合。
运输问题的优化案例
资源分配问题优化是一种解决资源利用和分配问题的技术,通过合理的资源分配计划,企业可以实现资源的最大化利用和经济效益的最大化。
总结词
线性规划可以确定最经济的生产计划,通过对生产计划中的各种因素进行限制和优化,可以最大化企业的利润或最小化成本。
详细描述
生产计划优化
运输问题是企业物流管理的重要环节,线性规划可以用来优化运输计划,提高物流效率和降低成本。
线性规划可以确定最经济的运输计划,通过对运输路线、运输量、运输成本等因素进行限制和优化,可以最大化运输效率并降低运输成本。
要点一
要点二
详细描述
人员安排问题优化在实际应用中需要考虑多个因素,如人员素质、工作经验、工作能力、岗位需求等。通过不等式简单的线性规划方法,我们可以得到最优的人员安排计划方案,实现人力资源的最大化和员工工作效率的最大化。
人员安排问题的优化案例
THANKS
感谢观看
应用场景的特定约束条件的定义
应用场景的特定约束条件对线性规划的影响
处理应用场景的特定约束条件的方法

高中数学第三章不等式3.4简单线性规划3.4.2习题精选北师大版必修415

高中数学第三章不等式3.4简单线性规划3.4.2习题精选北师大版必修415

4.2简单线性规划课后篇巩固探究A组1.(2017北京高考)若x,y满足则x+2y的最大值为()A.1B.3C.5D.9解析:由题意画出可行域(如图).设z=x+2y,则z=x+2y表示斜率为-的一组平行线,当过点C(3,3)时,目标函数取得最大值z max=3+2×3=9.故选D.答案:D2.(2017山东高考)已知x,y满足约束条件则z=x+2y的最大值是()A.-3B.-1C.1D.3解析:可行域为如图所示阴影部分(包括边界).把z=x+2y变形为y=-x+z,作直线l0:y=-x并向上平移,当直线过点A时,z取最大值,易求点A的坐标为(-1,2),所以z max=-1+2×2=3.答案:D3.已知在平面直角坐标系xOy内的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为(,1),则z=的最大值为()A.4B.3C.4D.3解析:画出可行域,而z=x+y,所以y=-x+z.令l0:y=-x,将l0平移到过点(,2)时,截距z有最大值,故z max=+2=4.答案:C4.已知x,y满足则点P(x,y)到直线x+y=-2的距离的最小值为()A. B.2 C. D.解析:不等式组所表示的可行域如图阴影部分.其中点P(1,1)到直线的距离最短,其最小值为=2.故选B.答案:B5.若点(x,y)位于曲线y=|x-1|与y=2所围成的封闭区域,则2x-y的最小值为.解析:由y=|x-1|=及y=2画出可行域如图阴影部分.令2x-y=z,则y=2x-z,画直线l0:y=2x并平移到过点A(-1,2)时,-z最大,即z min=2×(-1)-2=-4.答案:-46.若变量x,y满足约束条件则z=x+2y的最小值为.解析:根据得可行域如图,根据z=x+2y得y=-,平移直线y=-,在点M处z 取得最小值.由得此时z min=4+2×(-5)=-6.答案:-67.若实数x,y满足则z=3x+2y的最小值为.解析:不等式组所表示的可行域如图阴影部分.令t=x+2y,则当直线y=-x+t经过原点O(0,0)时,t取最小值,即t的最小值为0,则z=3x+2y的最小值为30=1.答案:18.导学号33194070若实数x,y满足不等式组则(x+2)2+(y+1)2的最小值为.解析:画出不等式组表示的平面区域,如图阴影部分.表示可行域内的点D(x,y)与定点M(-2,-1)间的距离.显然当点D在点A(1,2)时,|DM|最小,这时|DM|=3,故(x+2)2+(y+1)2的最小值是18.答案:189.已知x,y满足约束条件求z=5x-8y的最大值.解作出不等式组表示的可行域,如图阴影部分.作直线l0:5x-8y=0,平移直线l0,由图可知,当直线平移到经过A点时,z取最大值.解方程组得A(6,0),所以z max=5×6-8×0=30.10.导学号33194071已知-4≤a-b≤-1,-1≤4a-b≤5,求9a-b的取值范围.解如图所示,令a=x,b=y,z=9a-b,即已知-4≤x-y≤-1,-1≤4x-y≤5,求z=9x-y的取值范围,画出不等式表示的可行域如图阴影部分.由z=9x-y,得y=9x-z,当直线过点A时,z取最大值,当直线过点B时,z取最小值.由得A(3,7),由得B(0,1),所以z max=9×3-7=20,z min=-1,所以9a-b的取值范围是[-1,20].B组1.在约束条件下,目标函数z=x+y的最大值为()A. B. C. D.解析:由z=x+y,得y=-2x+2z.作出可行域如图阴影部分,平移直线y=-2x+2z,当直线经过点C时,直线y=-2x+2z在y轴上的截距最大,此时z最大.由解得点C坐标为,代入z=x+y,得z=.答案:C2.已知x,y满足约束条件则(x+3)2+y2的最小值为()A. B.2 C.8 D.10解析:画出可行域(如图).(x+3)2+y2表示点A(-3,0)与可行域内点(x,y)间距离的平方.显然|AC|长度最小,所以|AC|2=(0+3)2+(1-0)2=10.答案:D3.若关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x0-2y0=2.则m 的取值范围是()A. B.C. D.解析:由线性约束条件可画出如图所示的可行域,要使可行域内存在点P(x0,y0),使x0-2y0=2成立,只需点A(-m,m)在直线x-2y-2=0的下方即可,即-m-2m-2>0,解得m<-.故选C.答案:C4.设不等式组所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x-4y-9=0对称.对于Ω1中的任意点A与Ω2中的任意点B,则|AB|的最小值为()A. B.4 C. D.2解析:如图所示.由约束条件作出可行域,得D(1,1),E(1,2),C(3,3).要求|AB|min,可通过求可行域内的点到直线3x-4y-9=0距离最小值的2倍来求得.经分析,点D(1,1)到直线3x-4y-9=0的距离d==2最小,故|AB|min=4.答案:B5.导学号33194072已知实数x,y满足不等式组若目标函数z=y-ax取得最大值时的唯一解是(1,3),则实数a的取值范围为()A.(-∞,-1)B.(0,1)C.[1,+∞)D.(1,+∞)解析:作出不等式组对应的平面区域如图阴影部分所示,由z=y-ax,得y=ax+z,要使目标函数y=ax+z仅在点(1,3)处取最大值,则只需直线y=ax+z仅在点B(1,3)处的截距最大,由图像可知a>k BD,因为k BD=1,所以a>1,即a的取值范围是(1,+∞).答案:D6.导学号33194073设实数x,y满足则z=的取值范围是.解析:令k=,则y=kx.因为x≠0,所以k存在,直线y=kx恒过原点,而在可行域中,当直线过边界点(1,2)时,斜率有最大值,k=2;当直线过边界点(3,1)时,斜率有最小值,k=,所以斜率k的取值范围是,又z==k+,利用函数单调性的定义可知k∈时,z=k+为减函数;k∈[1,2]时,z=k+为增函数,可得z的取值范围为.答案:7.若x,y满足约束条件(1)求目标函数z=x-y+的最值;(2)求点P(x,y)到直线y=-x-2的距离的最大值.解(1)根据约束条件,作出可行域如图,则直线x+y=1,-x+y=1,2x-y=2的交点分别为A(3,4),B(0,1),C(1,0).平移直线x-y+=0,由图像可知过点A时,z取得最小值,z min=×3-4+=-2,过点C时,z取得最大值,z max==1.故z的最大值为1,最小值为-2.(2)由图像可知,所求的最大值即是点A到直线x+y+2=0的距离,则d=.8.导学号33194074在直角坐标系xOy中,O为坐标原点,点M的横、纵坐标分别为茎叶图中的中位数和众数,若点N(x,y)的坐标满足的最大值.解由茎叶图可得中位数为23,众数为23,所以点M为(23,23),所以=23x+23y.设z=23x+23y,作出不等式组对应的平面区域如图.作一平行于z=23x+23y的直线,当直线和圆相切时,z=23x+23y取得最大值.由圆心到直线的距离d==2,解得|z|=46.所以z=46或z=-46(舍去),故的最大值是46.。

高中数学知识点精讲精析 简单线性规划的应用

高中数学知识点精讲精析 简单线性规划的应用

3.4.3 简单线性规划的应用1. 用线性规划解决实际问题在物资调运、产品安排、工厂下料等实践问题中,体现出两种情况:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务。

我们可以从问题中寻找出不等关系,用线性规划求解。

注:在解决线性规划的实际问题时,要注意以下几点:①在线性规划问题的应用中,题中的条件常常较多,因此一定要认真审题; ②线性约束条件有无等号要依据条件加以判断;③结合实际问题,未知数x、y等是否有限制(“x、y”为正整数、非负数等); ④分清线性约束条件和线性目标函数,前者一般是不等式,后者一般是等式; ⑤图对解决线性规划问题至关重要,故作图尽可能准确,图上操作尽可能规范. 2. 线性规划应用问题的求解步骤解答线性规划的应用问题,可遵循如下两大步进行: (1)读题转化:根据实际问题的条件列出约束不等式组与目标函数.反复地读题,读懂已知条件和问题,边读边进行摘要,读懂之后可以列出一个表格表达题意,然后根据题中的已知条件,找出约束条件和目标函数,完成实际问题向数学模型的转化.此步的过程可简述为“读题—列表—列式”。

转化后基本数学模型为:已知,求的最大(小)值。

其中,是常量.(2)作图求解:作出不等式组所表示的可行域,确定目标函数的最优解位置,从而获得最优解,图解法的实质就是数形结合思想的两次运用,第一次是得到线性约束条件,作出可行域,将表示约束条件的不等式组转化为平面区域这一图形,第二次是将目标函数转化为平行直线系进行探究。

方程表示的是与直线平行的直线系,为了探究z 的几何意义,将目标函数变形为,从而为直线系在y 轴上的截距,观察图形寻找可行域内使其取最大值或最小值的点.此步的过程可简述为“可行域—直线系—最优解”。

例1:甲乙两个粮库要向A 、B 两镇运送大米,已知甲库可调出100吨大米,乙库可调出80吨大米,A 镇需70吨大米,B 镇需110吨大米,两库到两镇的路程和运费表3.5.2:表3.5.2(1)这两个粮库各运往A 、B 两镇多少吨大米?才能使总运费最省?此时总运费是多少?)(i i i i i i c c c c y b x a ><≤≥+或或qy px z +=),,2,1(,,n i c b a i i i ⋅⋅⋅=q p ,qy px z +=0=+qy px q z x q p y +-=q z(2)最不合理的调运方案是什么?它使国家造成的损失是多少?【解析】设甲粮库向A 镇运送大米吨,向B 镇运送大米吨,总运费为元,则乙粮库向A 镇运送大米吨,向B 镇运送大米吨,目标函数是其中线性约束条件是:,即可行域如右图。

高中数学第三章不等式4简单线性规划第2课时简单线性规划学案(含解析)北师大版必修5

高中数学第三章不等式4简单线性规划第2课时简单线性规划学案(含解析)北师大版必修5

第2课时简单线性规划Q情景引入ing jing yin ru某电视台要播放两套宣传片,其中宣传片甲播放时间为3分30秒,广告时间为30秒,收视观众为60万;宣传片乙播放时间为1分钟,广告时间为1分钟,收视观众为20万.广告公司规定每周至少有3.5分钟的广告,而电视台每周只能为该栏目宣传片提供不多于16分钟的节目时间.电视台每周应播映两套宣传片各多少次,才能使得收视观众最多?X新知导学in zhi dao xue1.线性规划中的基本概念名称定义目标函数求最大值或最小值的函数z=ax+by+c叫作目标函数约束条件目标函数中的变量所要满足的不等式组最优解可行域内使目标函数取得最大值或最小值的解称为最优解线性规划问题在线性约束条件下,求线性目标函数的最大值或最小值问题,称为线性规划问题可行解满足约束条件的坐标,称为可行解可行域由所有可行解(x,y)组成的集合称为可行域(1)作出可行域.(2)作出直线l0:ax+by=0.(3)确定l0的平移方向,依可行域判断取得最优解的点.(4)解相关方程组,求出最优解,从而得出目标函数的最大值或最小值.Y预习自测u xi zi ce1.目标函数z=3x-y,将其看成直线方程时,z的意义是( C )A.该直线的截距B.该直线在y轴上的截距C.该直线在y轴上的截距的相反数D.该直线在x轴上的横截距[解析] 把目标函数变形为y=3x-z,由此可见,z是该直线在y轴上的截距的相反数.2.有5辆6吨的汽车,4辆4吨的汽车,需x 辆6吨的汽车和y 辆4吨的汽车,要运送最多的货物,完成这项运输任务的线性目标函数为( A )A .z =6x +4yB .z =5x +4yC .z =x +yD .z =4x +5y3.(2019·浙江卷,3)若实数 x ,y 满足约束条件⎩⎪⎨⎪⎧x -3y +4≥0,3x -y -4≤0,x +y ≥0,则 z =3x +2y 的最大值是( C )A .-1B .1C .10D .12[解析]如图,不等式组表示的平面区域是以A (-1,1),B (1,-1),C (2,2)为顶点的△ABC 区域(包含边界).作出直线y =-32x 并平移,知当直线y =-32x +z2经过C (2,2)时,z 取得最大值,且z max =3×2+2×2=10.故选C .4.(2018·全国卷Ⅰ理,13)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z =3x +2y 的最大值为_6.[解析] 作出满足约束条件的可行域如图阴影部分所示.由z =3x +2y 得y =-32x +z2.作直线l 0:y =-32x .平移直线l 0,当直线y =-32x +z2过点(2,0)时,z 取最大值,z max =3×2+2×0=6.5.若x ,y 满足约束条件⎩⎪⎨⎪⎧y -x ≤1,x +y ≤3,y ≥1,则z =x +3y 的最大值为7.[解析] 画出可行域及直线x +3y =0,平移直线x +3y =0,当其经过点A (1,2)时,直线的纵截距最大,所以z =x +3y 的最大值为z =1+3×2=7.H 互动探究解疑u dong tan jiu jie yi命题方向1 ⇨求线性目标函数的最值问题例题1 设z =2x +y ,式中变量x 、y 满足条件⎩⎪⎨⎪⎧x -4y ≤-33x +5y ≤25x ≥1,求z 的最大值和最小值.[分析] 由于所给约束条件及目标函数均为关于x ,y 的一次式,所以此问题是简单线性规划问题,使用图解法求解.[解析] 作出不等式组表示的平面区域(即可行域),如图所示.把z =2x +y 变形为y =-2x +z ,得到斜率为-2,在y 轴上的截距为z ,随z 变化的一族平行直线.由图可看出,当直线z =2x +y 经过可行域上的点A 时,截距z 最大,经过点B 时,截距z 最小.解方程组⎩⎪⎨⎪⎧x -4y +3=03x +5y -25=0,得A 点坐标为(5,2),解方程组⎩⎪⎨⎪⎧x =1x -4y +3=0,得B 点坐标为(1,1),所以z max =2×5+2=12,z min =2×1+1=3.『规律总结』 在求目标函数z =ax +by +c 的最值时,根据y 的系数的正负,可分为以下两种情形求最值.1.求目标函数z =ax +by +c ,b >0的最值.在线性约束条件下,当b >0时,求目标函数z =ax +by +c 的最小值或最大值的求解程序为:(1)作出可行域.(2)作出直线l 0:ax +by =0.(3)确定l 0的平移方向,若把l 0向上平移,则对应的z 值随之增大;若把l 0向下平移,所对应的z 值随之减小,依可行域判定取得最优解的点.(4)解相关方程组,求出最优解,从而得出目标函数的最大值或最小值. 2.求目标函数z =ax +by +c ,b <0的最值.在线性约束条件下,当b <0时,求目标函数z =ax +by +c 的最小值或最大值的求解程序为:(1)作出可行域.(2)作出直线l 0:ax +by =0.(3)确定l 0的平移方向:若把l 0向上平移,所得相应z 值随之减小;若把l 0向下平移,所对应的z 值随之增大,依可行域判定取得最优解的点.(4)解相关方程组,求出最优解,从而得出目标函数的最大值或最小值. 〔跟踪练习1〕(1)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤8,0≤x ≤4,0≤y ≤3,则z =2x +y 的最大值等于( C )A .7B .8C .10D .11(2)(2018·全国卷Ⅲ理,14)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,则z =x +y 的最大值为9.[解析] (1)画出x ,y 约束条件限定的可行域如图阴影部分所示,作直线l :y =-2x ,平移直线l ,经过可行域上的点A (4,2)时,z 取最大值,即z max =2×4+2=10,故选C .(2)由不等式组画出可行域,如图(阴影部分).x +y 取得最大值⇔斜率为-1的直线x +y =z (z 看作常数)的横截距最大,由图可得直线x +y =z 过点C 时z 取得最大值.由⎩⎪⎨⎪⎧x =5,x -2y +3=0得点C (5,4),∴ z max =5+4=9.命题方向2 ⇨求非线性目标函数的最值问题例题2 已知⎩⎪⎨⎪⎧x -y +2≥0x +y -4≥02x -y -5≤0,求:(1)z =x 2+y 2-10y +25的最小值; (2)z =2y +1x +1的范围.[分析] (1)其中z =x 2+y 2-10y +25=(x -0)2+(y -5)2的几何意义为平面区域内的点(x ,y )到(0,5)距离的平方;(2)z =2y +1x +1=2·y -⎝ ⎛⎭⎪⎫-12x --1的几何意义为平面区域内的点(x ,y )与⎝⎛⎭⎪⎫-1,-12连线斜率的2倍.关键将目标函数进行变形找到其几何意义,再利用数形结合知识求解.[解析] 作出可行域,如图.A (1,3),B (3,1),C (7,9).(1)z =x 2+(y -5)2表示可行域内任一点(x ,y )到点M (0,5) 的距离的平方,过M 作AC 的垂线,易知垂足在AC 上,故 |MN |=|0-5+2|1+-12=32=322. |MN |2=92,所以z =x 2+y 2-10y +25的最小值为92.(2)z =2·y -⎝ ⎛⎭⎪⎫-12x --1表示可行域内点(x ,y )与定点Q ⎝⎛⎭⎪⎫-1,-12连线斜率的2倍.∵k QA =74,k QB =38,故z 的范围是[34,72].『规律总结』 对于目标函数不是直线的形式,这类问题常考虑目标函数的几何意义. (1)形如y -bx -a的式子,表示动点M (x ,y )和定点N (a ,b )连线的斜率k . (2)形如x -a2+y -b2的式子,表示动点M (x ,y )到定点N (a ,b )的距离|MN |;而(x -a )2+(y -b )2表示动点M (x ,y )到定点N (a ,b )的距离的平方,即|MN |2.(3)形如|ax +by +c |a 2+b 2的式子,表示动点M (x ,y )到直线ax +by +c =0的距离d ;而|ax +by +c |表示a 2+b 2d .〔跟踪练习2〕(1)设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为255.[解析] 本题考查不等式组表示平面区域,点到直线距离公式等. 区域D 如图所示:则(1,0)到区域D 的最小值即为(1,0)到直线y =2x 的距离:|2×1-0|5=255.(2)设x ,y 满足条件⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3.①求u =x 2+y 2的最大值与最小值; ②求v =yx -5的最大值与最小值.[解析] 画出满足条件的可行域,如图阴影部分所示.①u =x 2+y 2表示可行域内的任一点与坐标原点距离的平方,由图可知,u max =|OC |2=73,u min =0.②v =yx -5表示可行域内的点(x ,y )到定点D (5,0)的斜率,由图可知,k BD 最大,k CD 最小,又C (3,8),B (3,-3),所以v max =-33-5=32,v min =83-5=-4.命题方向3 ⇨已知目标函数的最值求参数例题3 已知变量x 、y 满足约束条件1≤x +y ≤4,-2≤x -y ≤2.若目标函数z=ax +y (其中a >0)仅在点(3,1)处取得最大值,则a 的取值范围为(1,+∞).[分析] 作出可行域,平移直线使其过(3,1)点时,在y 轴上的截距也取得最大值.[解析] 由约束条件画出可行域(如图所示).为矩形ABCD (包括边界).点C 的坐标为(3,1),z 最大时,即平移y =-ax 时使直线在y 轴上的截距最大, ∴-a <k CD ,即-a <-1,∴a >1.『规律总结』 这是一道线性规划的逆向思维问题,解答此类问题必须要明确线性目标函数的最值一般在可行域的顶点或边界取得,运用数形结合的思想方法求解.〔跟踪练习3〕本例中,若使目标函数z =ax +y (a >0)取得最大值的点有无数个,则a 的范围又是什么? [解析] 若目标函数z =ax +y (a >0)取得最大值的点有无数个,则必有直线z =ax +y 与直线x +y =4重合,此时a =1.Y 易混易错警示i hun yi cuo jing shi例题4 设变量x ,y 满足条件⎩⎪⎨⎪⎧3x +2y ≤10x +4y ≤11x ∈Z ,y ∈Zx >0,y >0.求S =5x +4y 的最大值.[误解] 依约束条件画出可行域如图所示,如先不考虑x 、y 为整数的条件,则当直线5x +4y =S 过点A (95,2310)时,S =5x +4y 取最大值,S max =915.因为x 、y 为整数,而离点A 最近的整点是C (1,2),这时S =13,所要求的最大值为13.[辨析] 显然整点B (2,1)满足约束条件,且此时S =14,故上述解法不正确. 对于整点解问题,其最优解不一定是离边界点最近的整点.而要先对边界点作目标函数t =Ax +By 的图像, 则最优解是在可行域内离直线t =Ax +By 最近的整点.[正解] 依约束条件画出可行域如上述解法中的图示,作直线l: 5x +4y =0,平行移动直线l 经过可行域内的整点B (2,1)时,S max =14.B 本节思维导图ei jie si wei dao tu简单的线性规划问题⎩⎪⎨⎪⎧约束条件、目标函数、可行解、可行域、最优解线性目标函数最优解的确定整数线性规划问题的解法非线性目标函数的最值求解。

高中数学必修5(北师版)第三章不等式3.4简单线性规划(与.

高中数学必修5(北师版)第三章不等式3.4简单线性规划(与.

描述:例题:高中数学必修5(北师版知识点总结含同步练习题及答案第三章不等式 3.4 简单线性规划一、知识清单平面区域的表示线性规划非线性规划二、知识讲解1.平面区域的表示二元一次不等式表示的平面区域已知直线 :,它把坐标平面分为两部分,每个部分叫做开半平面,开半平面与的并集叫做闭半平面.以不等式解为坐标的所有点构成的集合,叫做不等式表示的区域或不等式的图象 .对于直线 : 同一侧的所有点 ,代数式的符号相同,所以只需在直线某一侧任取一点代入 ,由符号即可判断出 (或表示的是直线哪一侧的点集.直线叫做这两个区域的边界 (boundary .二元一次不等式组表示的平面区域二元一次不等式组所表示区域的确定方法:①直线定界②由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分.l Ax +By +C =0l (x , y l Ax +By +C =0(x , y Ax +By +C (, x 0y 0Ax +By +C A +B +C x 0y 0A +B +C >0x 0y 0<0Ax +By +C =0画出下列二元一次不等式表示的平面区域.(1;(2 .解:(1①画出直线 ,因为这条直线上的点不满足 ,所以画成虚线.②取原点 ,代入 ,所以原点在不等式所表示的平面区域内,不等式表示的区域如图.(2①画出直线 ,画成实线.②取点 ,代入 ,所以不在不等式表示的平面区域内, 不等式表示的区域如图.3x +2y +6>0y ⩾ 3x 3x +2y +6=03x +2y +6>0(0,0 3x +2y +6=6>03x +2y +6>0y=3x (1,0 y − 3x =−3<0(1,0 y ⩾ 3x描述:例题:2.线性规划线性规划的有关概念若约束条件是关于变量的一次不等式(方程,则称为线性约束条件 (objectivefunction.一般地,满足线性约束条件的解叫做可行解 (feasible solution,由所有可行解组成的集合叫做可行域 (feasible region.要求最大(小值所涉及的关于变量 , 的一次解析式叫做线性目标函数 (linearobjectives .使目标函数取得最大值或最小值的可行解叫做最优解 .在线性约束条件下,求线性目标函数的最大值或最小值问题叫做线性规划问题(linearprogram.画出不等式组表示的平面区域. 解:不等式表示直线及右下方的平面区域; 表示直线及右上方的平面区域; 表示直线及左方的平面区域;所以不等式组表示的平面区域如图中阴影部分.⎧⎩⎨ x − y +5⩾ 0x +y ⩾ 0x ⩽3x − y +5⩾0x − y +5=0x +y ⩾ 0x +y =0x ⩽ 3x =3(x , y x y 已知、满足条件 ,求的最大值和最小值. 解:不等式组所表示的可行域如图所示:x y ⎧⎩⎨ 7x − 5y − 23⩽0x +7y − 11⩽ 04x +y +10⩾0z =4x − 3y ⎧⎩⎨ 7x − 5y − 23⩽0x +7y − 11⩽ 04x +y +10⩾。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可行域在解题中的妙用
一 与解析几何交汇
例1若双曲线221x y -=的右支上一点(),P a b ,到直线y x =
,则a b +的值为 .
解:由题意得221a b -=,
又点(),P a b 到直线y x =

=
注意到点(),P a b 在双曲线y x =右支的下方, 则有b a <
,=. 可得,1
2
a b +=.
点评:本题求解时,极易出现两解,没注意到利用“点P 在直线下方”这一隐含条件来取舍. 二与平面向量交汇
例2已知在平面直角坐标系中,()0,0O ,11,2M ⎛⎫
⎪⎝⎭
,()0,1N ,()1,1Q -,若动点
(),P x y 满足不等式01OP OM ≤⋅≤u u u r u u u u r ,01OP ON ≤⋅≤u u u r u u u r ,则OP OQ ⋅u u u r u u u r
最小值
为 .
解:由题意得,01
2
01
y x y ⎧≤+≤⎪⎨⎪≤≤⎩ ,OP OQ x y ⋅=-+u u u r u u u r ,
令z x y =-+,不等式组所表示的平面区域如图:
故y x z =+在点()1,0处,有最小值.
即OP OQ ⋅u u u r u u u r
最小值为1-.
点评:本题中以向量的数量积为工具,本质为线性规划问题,关键是我们要
能看清题目的本质. 三 与几何概型交汇
例3将一长为10cm 的线段随机地分成三段,则这三段能够组成一个三角形的概率为 .
解:设“构成三角形的事件”为A ,长度为10
为x 、y 、10x y --.
则010010010()10x y x y ì<<ïïï<<íïï<-+<ïïî,即010010010
x y x y ì<<ïïï<<íïï<+<ïïî由一个三角形两边之和大于第三边,有
10()x y x y +>-+,即510x y <+<.
又由三角形两边之差小于第三边,有
5x <,即05x <<,同理05y <<.
故构成三角形的条件为0505510
x y x y ì<<ïïï
<<íïï<+<ïïî.
所以满足条件的点(),P x y 组成的图形是如图所示中的阴影区域(不包括区域的边界).
2125522S D ´阴影==,211052OAB S D ´==0.∴ 1
()4OMN S P A S D D 阴影==.
点评:本题为测度为面积的几何概型问题,对于含有两个变量的问题,我们常将其进行转化.
四 与导数交汇
例4已知函数()3211
232f x x ax bx c =+++在()0,1内取得极大值,在()1,2内
取得极小值,z z 的取值范围为 .
解:()'22f x x ax b =++,依题意方程220x ax b ++=的一根大于0且小于1,另一根大于1且小于2,从而a 、b 满足条件
()()()''
'020*********
f b f a b f a b ⎧=>⎪⎪=++<⎨⎪=++>⎪⎩ 这个条件所表示的平面区域如图所示: 设(),P a b 为可行域内任一点,
z ==
(
,P a b 到定点1,0Q 的距离,由
图知
max z QA ==m 2in z QB ==,故(z ∈.
点评:解决本题关键在于转化,将其转化为根的分布问题,而在求目标函数最值时,数形结合,巧妙解决问题.
2a +。

相关文档
最新文档