高中数学解题技巧和方法(数列求和及综合应用)

合集下载

高考第一轮复习之方法指导——《数列求和的方法》

高考第一轮复习之方法指导——《数列求和的方法》

高考第一轮复习之方法指导——《数列求和的方法》数列求和是高中数学中非常重要的一个概念,也是高考中经常会涉及到的内容。

下面给出一些数列求和的方法指导,希望对高考复习有所帮助。

1.等差数列求和:等差数列是高中数学中最基本的数列之一,求和方法也是最为简单的。

对于一个等差数列:a_1,a_2,a_3,...,a_n,如果首项是a_1,公差是d,则数列的和可以通过如下公式计算:S_n=(n/2)(a_1+a_n)其中,S_n表示数列的和,n表示数列的项数,a_n表示数列的最后一项。

2.等比数列求和:等比数列也是高中数学中常见的数列类型,求和方法相对于等差数列要稍复杂一些。

对于一个等比数列:a_1,a_2,a_3,...,a_n,如果首项是a_1,公比是q,则数列的和可以通过如下公式计算:S_n=(a_1(q^n-1))/(q-1)其中,S_n表示数列的和,n表示数列的项数,q表示数列的公比。

3.等差数列前n项和:如果需要计算等差数列的前n项的和,可以通过使用等差数列求和公式快速计算。

首先,计算数列的首项a_1和最后一项a_n,然后带入求和公式即可。

4.等差数列项数:如果需要计算等差数列的项数n,可以通过反推求解。

首先,计算数列的首项a_1和最后一项a_n,然后使用如下公式:n=(a_n-a_1)/d+1其中,n表示等差数列的项数,a_n表示最后一项,a_1表示首项,d表示公差。

5.等差数列的和等于0:如果一个等差数列的和等于0,可以应用等差数列的性质进行求解。

首先,计算数列的首项a_1和公差d,然后使用等差数列求和公式解方程:n/2(a_1+a_n)=0可得等差数列的项数n。

6.等差数列差数求和:如果需要计算等差数列的差数的和,可以使用差数求和公式进行计算。

该公式是等差数列求和公式的一个变形。

首先,计算差数的和:S_d=(n/2)(a_2-a_1)其中,S_d表示差数的和,n表示数列的项数,a_1表示首项,a_2表示第二项。

高中数学数列求和题解题方法技巧

高中数学数列求和题解题方法技巧

高中数学数列求和题解题方法技巧数列求和的七种解法1.公式法:顾名思义就是通过等差、等比数列或者其他常见的数列的求和公式进行求解。

2.倒序相加:如果一个数列{an},与首末两端等“距离”的两项和相等或者等于同一个常数,则求该数列的前n项和即可用倒序相加法。

例如等差数列的求和公式,就可以用该方法进行证明。

3.错位相减:形如An=Bn∙Cn,其中{Bn}为等差数列,首项为b1,公差为d;{Cn}为等比数列,首项为c1,公比为q。

对数列{An}进行求和,首先列出Sn,记为①式;再把①式中所有项同乘等比数列{Cn}的公比q,即得q∙Sn,记为②式;然后①②两式错开一位作差,从而得到{An}的前n项和。

这种数列求和方式叫做错位相减。

4.裂项相消:把数列的每一项都拆成正负两项,使其正负抵消,只剩下首尾几项,再进行求和,这种数列求和方式叫做裂项相消。

5.分组求和:有一类数列,既不是等差,又不是等比,但若把这个数列适当的拆开,就会分成若个等差,等比或者其他常见数列(即可用倒序相加,错位相减或裂项相消求和的数列),然后分别求和,之后再进行合并即可算出原数列的前n项和。

6.周期数列:一般地,若数列{an}满足:存在一个最小的正整数T,使得an+T=an对于一切正整数n都成立,则数列{an}称为周期数列,其中T叫做数列{an}的周期,接下来根据数列的周期性进行求和。

7.数学归纳法:是一种重要的数学方法,其对求数列通项,求和的归纳猜想证明起到了关键作用。

高中数学解题方法实用技巧1解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

高中数学-数列综合应用

高中数学-数列综合应用

数列综合应用知识精要一、数列求和数列求和的常用方法1、公式法(1)直接利用等差数列、等比数列的前n 项公式求和;①等差数列的前n 项和公式:②等比数列的前n 项和公式:(2)一些常见的数列的前n 项和:○1(1)12342n n n ++++++=; ○22222(1)(21)1236n n n n ++++++=; ○32462(1)n n n ++++=+; ○4213521n n ++++-=; ○52233332(1)(1)123[]24n n n n n ++++++==。

2、倒序相加法如果一个数列{}n a ,首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的。

3、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的;4、裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和;注:用裂项相消法求数列前n 项和的前提是:数列中的每一项均能分裂成一正一负两项,这是用裂项相消法的前提。

5、分组求和法一个数列的通项公式是由若干个等差或等比或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减;6、并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和。

形如(1)()n n a f n =-类型,可采用两项合并求解。

二、数列的综合应用1、解答数列应用题的步骤:(1)审题——仔细阅读材料,认真理解题意;(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的特征、要求是什么;(3)求解——求出该问题的数学解;(4)还原——将所求结果还原到实际问题中。

2、数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差;(2)等比数列:如果后一个量与前一个量的比是一个固定的数时,该模型是等比数列模型,这个固定的数就是公比。

高中数学解数列求和问题的技巧

高中数学解数列求和问题的技巧

高中数学解数列求和问题的技巧数列是高中数学中的重要概念之一,求和问题是数列中常见的考点。

解决数列求和问题需要掌握一些技巧和方法,下面我将介绍几种常见的数列求和问题及其解题技巧。

一、等差数列求和问题等差数列是指数列中相邻两项之间的差值恒定的数列。

求等差数列的前n项和,可以利用求和公式来解决。

求和公式为:Sn = (a1 + an) * n / 2,其中Sn表示前n项和,a1表示首项,an表示末项,n表示项数。

例如,给定一个等差数列的首项为3,公差为2,求前10项的和。

根据求和公式,首先计算出末项an:an = a1 + (n - 1) * d = 3 + (10 - 1) * 2 = 21。

然后代入公式计算出前10项的和:Sn = (a1 + an) * n / 2 = (3 + 21) * 10 / 2 = 120。

二、等比数列求和问题等比数列是指数列中相邻两项之间的比值恒定的数列。

求等比数列的前n项和,可以利用求和公式来解决。

求和公式为:Sn = a1 * (1 - q^n) / (1 - q),其中Sn表示前n项和,a1表示首项,q表示公比,n表示项数。

例如,给定一个等比数列的首项为2,公比为3,求前5项的和。

根据求和公式,代入相应的值计算出前5项的和:Sn = 2 * (1 - 3^5) / (1 - 3) = 242。

三、特殊数列求和问题除了等差数列和等比数列外,还存在一些特殊的数列,求和问题也有相应的解题技巧。

1. 平方数列求和问题:平方数列是指数列中的每一项都是前一项的平方。

例如,1,1,4,16,...。

求平方数列的前n项和,可以利用平方数的求和公式来解决。

求和公式为:Sn = (2^(n+1) - n - 2) / 3。

2. 斐波那契数列求和问题:斐波那契数列是指数列中的每一项都是前两项的和。

例如,1,1,2,3,5,...。

求斐波那契数列的前n项和,可以利用斐波那契数列的性质来解决。

(完整word版)高中数学_数列求和及数列通项公式的基本方法和技巧

(完整word版)高中数学_数列求和及数列通项公式的基本方法和技巧

数列求和的基本方法和技巧关键词:数列求和 通项分式法错位相减法反序相加法分组法分组法合并法数列是高中代数的重要内容,又是学习高等数学的基础•在高考和各种数学竞赛中都占有重要的地位数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定 的技巧•下面,就几个历届高考数学来谈谈数列求和的基本方法和技巧、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法 1、等差数列求和公式: S nn(a1 an)na !n(n 1)d2 2[例]求和 1 + X 2 + X 4+ X 6+…x 2n+4(x 工 0)解: ••• X M0•••该数列是首项为1,公比为X 2的等比数列而且有n+3项 当x 2= 1即X =±1时和为n+3评注:(1)利用等比数列求和公式•当公比是用字母表示时,应对其是否为 1进行讨论,如本 题若为“等比”的形式而并未指明其为等比数列,还应对 X 是否为0进行讨论.(2)要弄清数列共有多少项,末项不一定是第n 项.2n 1对应高考考题:设数列 1,( 1+2 ),•••,( 1+2+2 2 ), ..... 的前顶和为 S n,则S n的值。

2、等比数列求和公式:S nn^ 印(1 q n )1 q3、S nnkk 1 1n(n 1) 25、S nnk3k 11 2[才(n 1)]22a 1 a n q 1 q(q 1)n214、S nk—n(n 1)(2 n 1)k 16当黑忖1即篡詳主1对?和為自然数方幕和公式:(q 1)二、错位相减法求和错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。

需要我们的学生认真掌握好这种方法。

这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{a n • b n}的前n项和,其中{ a n }、{ b n }分别是等差数列和等比数列•求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法[例]求和:S n 1 3x 5x2 7x3(2n 1)x n 1(X 1)解:由题可知,{(2n 1)x n1}的通项是等差数列{2n —1}的通项与等比数列{x n1}的通项之积设xS n 1x 3x2 5x3 7x4(2n 1)x n.................... ②(设制错位)①一②得(1 x)S n 1 2x 2x22x32x42x n1(2n1)x n(错位相减)再利用等比数列的求和公式得:(1 x)Snn 11 x1 2x - (2n 1)x n1 xS (2n S n1)xn 11 ;2n 1)x n (1 x)2(1 x)注意、1要考虑当公比x为值1时为特殊情况2错位相减时要注意末项此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。

高中数学解题方法系列:数列中求和问题的7种方法

高中数学解题方法系列:数列中求和问题的7种方法

高中数学解题方法系列:数列中求和问题的7种方法一、公式法利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a q q a q na S n nn 3、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n 5、213)]1(21[+==∑=n n k S nk n [例1]求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.[例2]设S n =1+2+3+…+n,n∈N *,求1)32()(++=n nS n S n f 的最大值.二、错位相减法(等差乘等比)[例3]求和:132)12(7531--+⋅⋅⋅++++=n n xn x x x S [例4]求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②(设制错位)①-②得1432222222222222211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n ∴1224-+-=n n n S 三、倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5]求证:nnn n n n n C n C C C 2)1()12(5321+=++⋅⋅⋅+++证明:设nn n n n n C n C C C S )12(5321++⋅⋅⋅+++=…………………………..①把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由mn nmn C C -=可得n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得nnn n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加)∴nn n S 2)1(⋅+=[例6]求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②(反序)又因为1cos sin ),90cos(sin 22=+-=x x x x①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴S=44.5四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7]求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…[例8]求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴∑=++=n k n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得S n=kk k nk nk nk ∑∑∑===++1213132(分组)五、裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1))()1(n f n f a n -+=(2)nn n n tan )1tan()1cos(cos 1sin -+=+(3)111)1(1+-=+=n n n n a n (4)121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n (6)nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则[例9]求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10]在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.[例11]求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+(裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+-=)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅=1sin 1cos 2∴原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12]求cos1°+cos2°+cos3°+···+cos178°+cos179°的值.解:设S n =cos1°+cos2°+cos3°+···+cos178°+cos179°∵)180cos(cosn n --=(找特殊性质项)∴S n =(cos1°+cos179°)+(cos2°+cos178°)+(cos3°+cos177°)+···+(cos89°+cos91°)+cos90°(合并求和)=0[例13]数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a ,2,3,1,2,3,1121110987-=-=-====a a a a a a ……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a ∵0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项)∴S 2002=2002321a a a a +⋅⋅⋅+++(合并求和)=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a 2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++=46362616+++++++k k k k a a a a =5[例14]在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质qp n m a a a a q p n m =⇒+=+(找特殊性质项)和对数的运算性质NM N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=(合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++=10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15]求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个(找通项及特征)∴11111111111个n ⋅⋅⋅+⋅⋅⋅+++=)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和)=)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++=9110)110(1091n n ---⋅=)91010(8111n n --+数列练习一、选择题1.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =A.21 B.22 C.2 D.22.已知为等差数列,,则等于A.-1B.1C.3D.73.公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项,832S =,则10S 等于A.18B.24C.60D.90.4设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于A.13B.35C.49D.635.已知{}n a 为等差数列,且7a -24a =-1,3a =0,则公差d =(A )-2(B )-12(C )12(D )26.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和A.90B.100C.145D.1907.等差数列{}n a 的前n 项和为n S ,已知2110m m ma a a -++-=,2138m S -=,则m =(A)38(B)20(C)10(D)9.8.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =A.2744n n+B.2533n n+C.2324n n+D.2n n+9.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是A.90 B.100 C.145 D.190.二、填空题1设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a =.2.设等差数列{}n a 的前n 项和为n S ,则4S ,84S S -,128S S -,1612S S -成等差数列.类比以上结论有:设等比数列{}n b 的前n 项积为n T ,则4T ,,,1612T T 成等比数列.3.在等差数列}{n a 中,6,7253+==a a a ,则____________6=a .4.等比数列{n a }的公比0q >,已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S =.数列练习参考答案一、选择题1.【答案】B【解析】设公比为q ,由已知得()22841112a q a q a q⋅=,即22q=,又因为等比数列}{n a的公比为正数,所以q =,故2122a a q ===,选B 2.【解析】∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-∴204(204)1a a d =+-⨯=.选B。

第26讲-数列求和及数列的综合应用(解析版)

第26讲-数列求和及数列的综合应用(解析版)

第26讲-数列求和及数列的综合应用(解析版)第26讲-数列求和及数列的综合应用(解析版)数列是数学中的重要概念,它在各个领域都有广泛的应用。

本文将讨论数列求和的方法以及数列在各个领域中的综合应用。

一、数列求和方法介绍1.1 等差数列求和公式等差数列是数列中最常见的一种类型,它的每一项与前一项之差都相等。

对于一个等差数列a,其中首项为a1,公差为d,一共有n项。

那么等差数列的求和公式为:Sn = (n/2) * (2a1 + (n-1)d)其中Sn表示等差数列的前n项和。

1.2 等比数列求和公式等比数列是另一种常见的数列类型,它的每一项与前一项的比值都相等。

对于一个等比数列b,其中首项为b1,公比为q,一共有n项。

那么等比数列的求和公式为:Sn = b1 * (1 - q^n) / (1 - q)其中Sn表示等比数列的前n项和。

1.3 平方数列求和公式平方数列是指数列中每一项都是前一项的平方。

对于平方数列c,其中首项为c1,一共有n项。

那么平方数列的求和公式为:Sn = (2^(n+1) - 1) * c1其中Sn表示平方数列的前n项和。

二、数列的综合应用2.1 数列在几何问题中的应用数列在几何问题中有着广泛的应用。

比如,在计算几何中,我们经常需要计算等差数列的前n项和来求解某些图形的周长或面积。

在解答这类问题时,我们可以先通过观察找到数列的公差和首项,然后利用等差数列的求和公式求解。

2.2 数列在金融问题中的应用数列在金融问题中也有着重要的应用。

比如,在投资领域,我们经常需要计算等比数列的前n项和来求解复利问题或者计算某种投资的总收益。

同样地,我们可以通过观察数列的首项和公比,然后利用等比数列的求和公式来进行计算。

2.3 数列在自然科学中的应用数列在自然科学中也扮演着重要的角色。

在物理学中,等差数列的前n项和可以用来计算运动物体的位移和速度。

在化学中,平方数列可以用来计算物质的化学计量位移。

三、总结数列求和方法为我们解决各类实际问题提供了有效的工具。

高中数学数列求和技巧及应用

高中数学数列求和技巧及应用

高中数学数列求和技巧及应用数列是高中数学中的重要内容,求和是数列的一个基本运算。

在解决数列求和问题时,我们需要掌握一些技巧和方法,以便更快更准确地求解。

本文将介绍几种常用的数列求和技巧,并通过具体的例子进行说明,帮助读者更好地理解和应用。

一、等差数列求和技巧等差数列是指数列中相邻两项之差都相等的数列。

对于等差数列的求和问题,我们可以利用求和公式来简化计算。

求和公式:Sn = (a1 + an) * n / 2其中,Sn表示等差数列的前n项和,a1为首项,an为末项,n为项数。

举例说明:求等差数列1,3,5,7,9的前10项和。

首先确定a1 = 1,an = 9,n = 10,代入求和公式得到:Sn = (1 + 9) * 10 / 2 = 50因此,等差数列1,3,5,7,9的前10项和为50。

这个例子展示了等差数列求和的基本思路,通过找到首项、末项和项数,代入求和公式即可得到结果。

二、等比数列求和技巧等比数列是指数列中相邻两项之比都相等的数列。

对于等比数列的求和问题,我们可以利用求和公式来简化计算。

求和公式:Sn = a1 * (1 - q^n) / (1 - q)其中,Sn表示等比数列的前n项和,a1为首项,q为公比,n为项数。

举例说明:求等比数列2,4,8,16,32的前5项和。

首先确定a1 = 2,q = 2,n = 5,代入求和公式得到:Sn = 2 * (1 - 2^5) / (1 - 2) = 62因此,等比数列2,4,8,16,32的前5项和为62。

这个例子展示了等比数列求和的基本思路,通过找到首项、公比和项数,代入求和公式即可得到结果。

三、特殊数列求和技巧除了等差数列和等比数列,还存在一些特殊的数列,它们的求和方法也各不相同。

下面我们将介绍两种常见的特殊数列求和技巧。

1. 平方数列求和技巧平方数列是指数列中每一项都是某个正整数的平方的数列。

对于平方数列的求和问题,我们可以利用平方和公式来简化计算。

高中数学数列方法及技巧

高中数学数列方法及技巧

高中数学数列方法及技巧1高中数学数列方法和技巧一.公式法如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q≠1.二.倒序相加法如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.三.错位相减法如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.四.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.五.分组求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.2高中数学数列问题的答题技巧高中数列,有规律可循的类型无非就是两者,等差数列和等比数列,这两者的题目还是比较简单的,要把公式牢记住,求和,求项也都是比较简单的,公式的运用要熟悉。

题目常常不会如此简单容易,稍微加难一点的题目就是等差和等比数列的一些组合题,这里要采用的一些方法有错位相消法。

题目变化多端,往往出现的压轴题都是一些从来没有接触过的一些通项,有些甚至连通项也不给。

针对这两类,我认为应该积累以下的一些方法。

对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为函数等方法等方法对于求通项一类的题目,可以采用先代入求值找规律,再数学归纳法验证,或是用累加法,累乘法都可以。

总之,每次碰到一道陌生的数列题,要进行总结,得出该类的解题方法,或者从中学会一种放缩方法,这对于以后很有帮助。

3高考数学解题方法解题过程要规范高考数学计算题要保证既对且全,全而规范。

应为高考数学计算题表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。

高中数列求和题型归纳总结

高中数列求和题型归纳总结

高中数列求和题型归纳总结在高中数学学习中,数列求和是一个重要的考点。

学生们需要熟练掌握不同类型的数列求和题目,并能灵活运用各种求和公式和技巧。

下面,我将对高中数列求和题型进行归纳总结,以便同学们更好地理解和应用。

一、等差数列求和等差数列是指数列中每个相邻的两项之间的差恒定的数列。

对于等差数列,我们可以使用以下公式来求和:1. 如果已知等差数列的首项为a₁,公差为d,项数为n,则该等差数列的前n项和Sn为:Sn = n/2 * (2a₁ + (n-1)d)2. 若已知等差数列的首项为a₁,末项为an,项数为n,则该等差数列的前n项和Sn为:Sn = n/2 * (a₁ + an)二、等比数列求和等比数列是指数列中每个相邻的两项之间的比恒定的数列。

对于等比数列,我们可以使用以下公式来求和:1. 如果已知等比数列的首项为a₁,公比为q(|q|<1),项数为n,则该等比数列的前n项和Sn为:Sn = a₁ * (1 - q^n) / (1 - q)2. 如果已知等比数列的首项为a₁,末项为an,项数为n,则该等比数列的前n项和Sn为:Sn = a₁ * (1 - q^n) / (1 - q)三、特殊数列求和除了等差数列和等比数列,还有一些特殊的数列求和方法,我们来看两个常见的例子。

1. 平方和求和:求1² + 2² + 3² + ... + n²的和,可以使用以下公式进行求解: Sn = n * (n + 1) * (2n + 1) / 62. 立方和求和:求1³ + 2³ + 3³ + ... + n³的和,可以使用以下公式进行求解: Sn = [n * (n + 1) / 2]^2四、应用题型除了基本的数列求和题型,我们还要学会将数列求和运用到实际问题中。

以下是一些常见的应用题型:1. 排球比赛:有一支排球队,第一天进行了一场比赛,第二天进行了两场比赛,第三天进行了三场比赛,以此类推,第n天进行了n场比赛。

高中数学数列答题技巧

高中数学数列答题技巧

高中数学数列答题技巧一、数列问题解题方法技巧1.判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n≥2的任意自然数,验证为同一常数。

(2)通项公式法:①若= +(n-1)d= +(n-k)d ,则为等差数列;②若,则为等比数列。

(3)中项公式法:验证中项公式成立。

2. 在等差数列中,有关的最值问题——常用邻项变号法求解:(1)当>0,d<0时,满足的项数m使得取最大值.(2)当<0,d>0时,满足的项数m使得取最小值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。

三、数列问题解题注意事项1.证明数列是等差或等比数列常用定义,即通过证明或而得。

2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。

3.注意与之间关系的转化。

如:=,=.4.数列极限的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列极限的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路.5.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.一、高中数列基本公式:1、一般数列的通项a n与前n项和S n的关系:a n=2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k 为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。

3、等差数列的前n项和公式:S n=S n=S n=当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n 的正比例式。

4、等比数列的通项公式:a n= a1 q n-1 a n= a k q n-k(其中a1为首项、a k为已知的第k项,a n≠0)5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n的正比例式);当q≠1时,S n=S n=三、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m -S3m、……仍为等差数列。

解数列求和的基本技巧

解数列求和的基本技巧

When you can't fight daddy, you can only do it hard!(页眉可删)解数列求和的基本技巧解数列求和的基本技巧,数列求和,各位同学你们准备好解答了吗?请看下面:数列求和的基本方法和技巧【1】一.公式法如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q1.二.倒序相加法如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.三.错位相减法如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.四.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.五.分组求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.六.并项求和法一个数列的前n项和中,若可两两结合求解,则称之为并项求和法.形如类型,可采用两项合并求解.数列知识整合1、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题。

2、在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

3、培养学生善于分析题意,富于联想,以适应新的背景,新的`设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。

高考数列求和知识点总结

高考数列求和知识点总结

高考数列求和知识点总结数列求和是高中数学中的一个重要知识点,也是高考数学中经常考察的内容之一。

掌握了数列求和的方法和技巧,可以帮助我们更好地解决问题,提高解题效率。

下面将对数列求和的相关知识进行总结和归纳。

一、等差数列的求和等差数列是高中数学中最基本的数列之一,求和公式为Sn = n* (a1 + an) / 2,其中Sn表示前n项和,a1表示首项,an表示第n 项。

例题1:已知某等差数列的首项为2,公差为3,求前10项的和。

解题思路:首先根据等差数列的公式an = a1 + (n - 1) * d,计算出第10项的值为2 + (10 - 1) * 3 = 29。

然后利用等差数列的求和公式Sn = n * (a1 + an) / 2,代入n=10,a1=2,an=29,计算出前10项的和为10 * (2 + 29) / 2 = 155。

二、等比数列的求和等比数列是高中数学中另一个重要的数列,求和公式为Sn = a1 * (1 - q^n) / (1 - q),其中Sn表示前n项和,a1表示首项,q表示公比。

例题2:已知某等比数列的首项为1,公比为2,求前5项的和。

解题思路:首先根据等比数列的公式an = a1 * q^(n - 1),计算出第5项的值为1 * 2^(5 - 1) = 16。

然后利用等比数列的求和公式Sn = a1 * (1 - q^n) / (1 - q),代入n=5,a1=1,q=2,计算出前5项的和为1 * (1 - 2^5) / (1 - 2) = 31。

三、一般数列的求和对于一般的数列,如果找不到明显的规律或者确定不了数列的类型,可以采用递推法求和。

例题3:已知数列{an}满足a1 = 1,an = an-1 + 2,求前5项的和。

解题思路:根据数列的递推关系an = an-1 + 2,可以得出第2项a2 = a1 + 2 = 1 + 2 = 3,第3项a3 = a2 + 2 = 3 + 2 = 5,以此类推,可以求得前5项依次为1,3,5,7,9。

第三节:数列求和及综合应用

第三节:数列求和及综合应用

第三节:数列求和及综合应用△高考导航△1.掌握数列求和的方法:裂项相消、错项相减、分组求和;2. 掌握数列与函数、不等式综合应用。

△知识梳理△1.求n S 的方法:{}{}{}{}⎪⎪⎩⎪⎪⎨⎧-=++用错项相减法项和的前是等比数列,则是等差数列,③错项相减:若裂项公式:为公差的等差数列,则是以②裂项相消:①分组求和:n n n n n n n n n n S n b a b a a a d a a d a )11(1111注:裂项相消法:⎩⎨⎧-=+项未相减项:共公差d a a d n n 2:1错项相减法:⎪⎩⎪⎨⎧⎩⎨⎧-②式末项①式首项未相减项:项相减相减项数:共有_1_n 2. n S 的综合问题:(与不等式相结合)①⎩⎨⎧⇒<-⇒>+=为上界为下界M M n f M M M n f M S n )()(②含参数不等式恒成立问题:⎩⎨⎧≥>⇔>上界最大值n n n S m f S m f S m f )()()( ⎩⎨⎧≤<⇔<下界最小值n n n S m f S m f S m f )()()( ③单调法:)(n f S n =⎪⎩⎪⎨⎧==⇒⎪⎩⎪⎨⎧↓↑⇒⎩⎨⎧<->-=++1(max)1(min)1100S S S S S S S S S S S n n n n n n n n n△考点阐释△考点①n S 的求和:习题一:①已知n n n a 2-=,求和:n n a a a S +++=...21. ②已知)2(+=n n a n ,求和:n n a a a S 1...1121+++=. ③已知n n n a 3∙=,求和:n n a a a S +++= (21)考点②n S 求和的综合应用:习题一:(2011·惠州调研二)已知数列{}n a 中,12,311-==+n n a a a .(1) 设1-=n n a b ,求证:数列{}n b 是等比数列;(2) 求数列{}n a 的通项公式;(3) 设12+=n n nn a a c ,求证:数列{}n c 的前n 项和31<n S .习题二:已知各项均为正数的数列{}n a 中,n S 是数列{}n a 的前n 和,设向量),1(n n a a -=,)2,(n a =,满足n S 2=∙,其中*N n ∈.(1)求数列{}n a 的通项公式;(2)记11+=n n n a a b ,求证:数列{}n b 的前n 项和1<n T习题三:已知函数x x x f 2321)(2+=,数列{}n a 的前n 项和n S ,点))(,(*N n S n n ∈均在函数)(x f y =的图象上.(1)求数列{}n a 的通项公式;(2)令12-=n n n a b ,求数列{}n b 的前n 项和6<n T习题四:已知,,)41)(13(*N n n S n n ∈-=若1412-+≤m m S n ,对*N n ∈∀恒成立,求实数m 的取值范围.附:在数列{}n a 中,21=a ,且)1()11(1+++=+n a n a n n ,*N n ∈. (1)设na b n n =,证明:数列{}n b 是等差数列. (2)记数列⎭⎬⎫⎩⎨⎧n a 1前n 项和n S ,若对*N n ∈∀恒有:n S m <-452,求实数m 的取值范围. (3)对+∈∀R x ,恒有22+-<ax x S n 成立,求实数a 的取值范围.。

高中数学数列解题方法与技巧

高中数学数列解题方法与技巧

高中数学数列解题方法与技巧一、引言在高中数学学习中,数列是一个重要的章节。

数列解题是数学学习中的基础,在考试中也占有比较大比重。

数列解题需要注意以下方面:1.正确理解题意,判断题目要求,2.找准解题方法与策略,3.实际操作,不放过每一道小问题。

二、数列概念1.数列的定义所谓数列,就是按照一定规律排列的一组数,其中每一个数均称为这个数列的项,数列中第一个项的位置称为“第一项”。

数列可以写作:a1,a2,a3,a4,a5,…,an比如:1,3,5,7,9,…,n,其中的5表示数列的第5项,n表示数列的第n项。

2.数列分类数列可分为等差数列、等比数列、递推数列、Fibonacci数列等。

其中,等差数列的相邻两项之间的公差相等,为d;等比数列的相邻两项之间的比值相等,为q;递推数列则是通过前项计算出后项,最后项由第一项通过递推公式推出。

三、数列解题方法1.等差数列(1)判断等差数列一般来说,判断一组数列是否为等差数列,需要寻找其中的通项公式。

可以借助相邻两项之差是否相等的方法来判断是否为等差数列。

比如:5,8,11,14,17,…判断方法如下:8-5=11-8=14-11=33=d,为常数,因此,判断这个数列为等差数列。

(2)求等差数列公式已知等差数列的首项a1与公差d,求通项公式an的方法如下:an=a1+n-1×d其中,n为数列的项数。

此公式可以自己推导得出,需要注意的是,根据首项与公差可推出所有项,若题目信息不足,则需要另外的方法解题。

(3)等差数列求和等差数列求和有两种方法:平均数法和公式法。

平均数法:将首项与尾项之和除以2,再乘以项数n,即为等差数列之和。

Sn=[a1+an]n2公式法:首项加末项n次方乘公差除以2,即为等差数列之和。

Sn=na1+nna22.等比数列(1)判断等比数列判断一组数列是否为等比数列,需要寻找其中的通项公式。

可以借助相邻两项之比是否相等的方法来判断是否为等比数列。

高中数学经典解题技巧和方法(数列求和及综合应用)

高中数学经典解题技巧和方法(数列求和及综合应用)

高中数学经典的解题技巧和方法(数列求和及综合应用)【编者按】数列求和及综合应用是高中数学考试的必考内容,而且是这几年考试的热点跟增长点,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。

因此,马博士教育网数学频道编辑部特意针对这两个部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。

好了,下面就请同学们跟我们一起来探讨下数列求和及综合应用的经典解题技巧。

首先,解答数列求和及综合应用这两个方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.了解数列求和的基本方法。

2.能在具体问题情景中识别数列的等差、等比关系,并能用有关知识解决相应问题。

3.了解等差数列与一次函数、等比数列与指数函数的关系。

好了,搞清楚了数列求和及综合应用的上述内容之后,下面我们就看下针对这两个内容的具体的解题技巧。

一、可转化为等差、等比数列的求和问题考情聚焦:1.可转化为等差或等比数列的求和问题,已经成为高考考查的重点内容之一。

2.该类问题出题背景选择面广,易与函数方程、递推数列等知识综合,在知识交汇点处命题。

3.多以解答题的形式出现,属于中、高档题目。

解题技巧:某些递推数列可转化为等差、等比数列解决,其转化途径有:1.凑配、消项变换——如将递推公式(q、d为常数,q≠0,≠1)。

通过凑配变成;或消常数转化为2.倒数变换—如将递推公式(c、d为非零常数)取倒数得3.对数变换——如将递推公式取对数得4.换元变换——如将递推公式(q、d为非零常数,q≠1,d≠1)变换成,令,则转化为的形式。

例1:(2010·福建高考文科·T17)数列{n a } 中a =13,前n 项和n S 满足1n S +-n S =113n +⎛⎫⎪⎝⎭(n ∈*N ).( I ) 求数列{n a }的通项公式n a 以及前n 项和n S ;(II )若S 1, t ( S 1+S 2 ), 3( S 2+S 3 ) 成等差数列,求实数t 的值。

数列求和及综合应用

数列求和及综合应用

=3n+n2ln 3-1;
题型与方法
专题四 第二讲
当 n 为奇数时,Sn=2×11--33n-(ln 2-ln 3)+n-2 1-nln 3
本 讲
=3n-n-2 1ln 3-ln 2-1.

目 开
3n+n2ln 3-1,
n为偶数,
综上所述,Sn=3n-n-2 1ln 3-ln 2-1, n为奇数.
专题四 第二讲
2.(2012·福建)数列{an}的通项公式 an=ncos n2π,其前 n 项和为
Sn,则 S2 012 等于
()
A.1 006 B.2 012 C.503 D.0
本 解析 用归纳法求解.
讲 栏 目
∵an=ncos n2π,∴a1=0,a2=-2,a3=0,a4=4,a5=0,

a6=-6,a7=0,a8=8,….
目 开
此时一定要查清其项数.
题型与方法
专题四 第二讲
变式训练 2 (2013·山东)设等差数列{an}的前 n 项和为 Sn,且
S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;

(2)设数列{bn}的前 n 项和为 Tn,且 Tn+an2+n 1=λ(λ 为常数).
讲 栏
令 cn=b2n,n∈N*,求数列{cn}的前 n 项和 Rn.

栏 目
当 a1=2 时,当且仅当 a2=6,a3=18 时,符合题意;

当 a1=10 时,不合题意.
因此 a1=2,a2=6,a3=18.所以公比 q=3.
故 an=2·3n-1 (n∈N*).
题型与方法
专题四 第二讲
(2)因为bn=an+(-1)nln an

数列求和的8种常用方法(最全)

数列求和的8种常用方法(最全)

数列求和的8种常用方法(最全)一、前言在高中数学以及各类应用数学问题中,数列求和问题是非常常见的。

解决数列求和问题不仅需要对常用数列的规律进行深刻的理解,还需要掌握多种数列求和的方法。

本文将介绍数列求和的八种常用方法,并且会结合具体的数列实例来进行讲解。

尽力做到对每一种方法的介绍都能够做到极致详细,希望对读者有所帮助。

二、数列求和的8种常用方法1. 等差数列求和公式对于一个首项为$a_1$,公差为$d$,共有$n$ 项的等差数列,其求和公式为:$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$1,3,5,7,9$ 的和。

分析:此数列的首项为1,公差为2,总共有5项。

解答:$$S_5 = \frac{5}{2}(2\times 1 + (5-1)\times 2)=25$$因此,数列$1,3,5,7,9$ 的和为25。

2. 等比数列求和公式对于一个首项为$a_1$,公比为$q$,共有$n$ 项的等比数列,其求和公式为:$$S_n = \frac{a_1(1-q^n)}{1-q}$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$2,4,8,16,32$ 的和。

分析:此数列的首项为2,公比为2,总共有5项。

解答:$$S_5=\frac{2\times (1-2^5)}{1-2}=-62$$因此,数列$2,4,8,16,32$ 的和为-62。

3. 几何级数通项公式求和对于一般形式为$a_1r^{n-1}$ 的数列,其求和公式为:$$S_n = \frac{a_1(1-r^n)}{1-r}$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16}$ 的和。

分析:此数列的首项是1,公比是$-\frac{1}{2}$,总共有5项。

数学高中数列10种解题技巧

数学高中数列10种解题技巧

数学高中数列10种解题技巧数列是高中数学中一个非常重要且经常被考察的概念。

它在数学和实际应用中都有着广泛的应用。

但是,数列的解题方法非常多,有时候我们可能会感到困惑。

为此,本文总结了数学高中数列10种解题技巧,让我们一起来看看吧。

1. 求和公式有些数列如果求和,使用求和公式可以极大地简化计算。

例如,等差数列和等比数列的求和公式是非常常见和重要的。

2. 递推式递推式是数列的一种描述方法,是一种基于之前项和公式推导下一项的方法。

有些数列通过递推式很容易得到通项公式,进而求解问题。

3. 归纳法归纳法是数列题目解题的常用方法。

通过证明一个命题对于某个特定的数成立,以及每一个下一个数都满足这个性质,我们就可以得到它对于所有数都成立的结论。

4. 图像法有些数列的图像规律比较明显,通过观察它们的图像,我们可以得到一些结论,从而解决一些问题。

5. 交替数列交替数列是一种奇数项和偶数项分别出现不同的项的数列。

有时候,我们可以通过对它进行分割,分别计算奇数项和偶数项的和,然后再将结果相加。

6. 通项公式对于某些数列,如果能够求得它们的通项公式,那么我们就可以很方便地计算出它们的各个项。

常见的数列有等差数列、等比数列、斐波那契数列等等。

7. 变形技巧变形技巧是数列解题过程中常用的一种方法。

它通常用于将原有的数列问题转化为其他已知的数列问题,从而利用已有的知识来解决问题。

8. 逆推法逆推法是一种通过倒向考虑来解决数列问题的方法,通常它可以帮助我们找到某个数列的特定项。

9. 等比数列与等差数列之间的关系等比数列和等差数列是数列中最常见的两种类型,它们之间有着一些重要的关系。

通过研究它们之间的联系,我们可以更加深入的理解它们的性质和规律。

10. 特殊的数列有些数列非常特殊,它们没有通项公式,没有明显的规律,但是它们在实际应用中却有着广泛的应用。

如果我们能够了解这些特殊的数列及其应用,那么在应用数学中会有更多的灵活性和优越性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列求和及综合应用【编者按】不等式是高中数学考试的必考内容,而且是这几年考试解答题的必选,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。

因此,小编特意针对这部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。

首先,解答数列求和及综合应用这两个方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.了解数列求和的基本方法。

2.能在具体问题情景中识别数列的等差、等比关系,并能用有关知识解决相应问题。

3.了解等差数列与一次函数、等比数列与指数函数的关系。

好了,搞清楚了数列求和及综合应用的上述内容之后,下面我们就看下针对这两个内容的具体的解题技巧。

一、可转化为等差、等比数列的求和问题考情聚焦:1.可转化为等差或等比数列的求和问题,已经成为高考考查的重点内容之一。

2.该类问题出题背景选择面广,易与函数方程、递推数列等知识综合,在知识交汇点处命题。

3.多以解答题的形式出现,属于中、高档题目。

解题技巧:某些递推数列可转化为等差、等比数列解决,其转化途径有: 1.凑配、消项变换——如将递推公式(q 、d 为常数,q ≠0,≠1)。

通过凑配变成;或消常数转化为2.倒数变换—如将递推公式(c 、d 为非零常数)取倒数得3.对数变换——如将递推公式取对数得4.换元变换——如将递推公式(q 、d 为非零常数,q ≠1,d ≠1)变换成,令,则转化为的形式。

例1:(福建高考文科·T17)数列{n a } 中a =13,前n 项和n S 满足1n S +-n S =113n +⎛⎫⎪⎝⎭(n ∈*N ).( I ) 求数列{n a }的通项公式n a 以及前n 项和n S ;(II )若S 1, t ( S 1+S 2 ), 3( S 2+S 3 ) 成等差数列,求实数t 的值。

【命题立意】本题考查数列、等差数列、等比数列等基础知识,考查运算求解能力,考查函数方程思想、化归转化思想。

【思路点拨】第一步先求n a 的通项,可知n a 为等比数列,利用等比数列的前n 项和求解出n S ;第二步利用等差中项列出方程求出t【规范解答】 ( I ) 由1113n n n S S ++⎛⎫-= ⎪⎝⎭得()1113n n a n N +*+⎛⎫=∈ ⎪⎝⎭,又113a =,故()13nn a n N *⎛⎫=∈ ⎪⎝⎭,从而()11123nn S n N *⎡⎤⎛⎫=-∈⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ (II )由( I ) 1231413,,,3927S S S ===从而由S 1, t ( S 1+S 2 ), 3( S 2+S 3 ) 成等差数列可得14131432,392739t ⎛⎫⎛⎫+⨯+=⨯+ ⎪ ⎪⎝⎭⎝⎭解得2t =。

【方法技巧】要求数列通项公式,由题目提供的是一个递推公式,如何通过递推公式来求数列的通项。

题目要求的是项的问题,这就涉及有关“项”与“和”如何转化的问题。

一般地,含有n S 的递推关系式,一般利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩化“和”为“项”。

二、错位相减法求和考情聚焦:1.错位相减法求和,是高中数学中重要的数列求和方法,是近年来高考的重点考查内容。

2.该类问题背景选择面广,可与等差、等比数列、函数、不等式等知识综合,在知识交汇点处命题。

3.多以解答题的形式出现,属于中、高档题。

解题技巧:几种求通项及求和方法 (1)已知,求可用叠加法,即(2)已知,求可用叠乘法,即(3)设{}为等差数列,为等比数列,求数列的前n 项和可用错位相减法。

例2:(海南宁夏高考·理科T17)设数列{}n a 满足12a =, (Ⅰ)求数列{}n a 的通项公式:(Ⅱ)令n n b na =,求数列{}n b 的前n 项和n S .【命题立意】本题主要考查了数列通项公式以及前n 项和的求法,解决本题的关键是仔细观察形式,找到规律,利用等比数列的性质解题.【思路点拨】由给出的递推关系,求出数列的通项公式,在求数列的前n 项和. 【规范解答】(Ⅰ)由已知,当1n ≥时,[]111211()()()n n n n n a a a a a a a a ++-=-+-++-+21232(1)13(222)22n n n --+-=++++=而12a =,满足上述公式,所以{}n a 的通项公式为212n n a -=. (Ⅱ)由212n n n b na n -==•可知,35211222322n n n s -=•+•+•++• ①从而 23572121222322n n n s +=•+•+•++• ②①-②得3521212(12)22222n n n n s -+-=++++-•即 211(31)229n n S n +⎡⎤=-+⎣⎦ 【方法技巧】利用累加法求数列的通项公式,利用错位相减法求数列的和. 三、裂项相消法求和考情聚焦:1.裂项相消求和是高中数学中的一个重要的数列求和方法,是近年来高考的重点考查内容。

2.该类问题背景选择面广,可与等差、等比数列、函数、不等式等知识综合,在知识交汇点处命题。

3.多以解答题的形式出现,属中、高档题目。

解题技巧:裂项求和的几种常见类型(1);(2);(3);(4);(5)若是公差为d 的等差数列,则;(6);(7)(8)。

例3:(山东高考理科·T18)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (1)求n a 及n S ;(2)令n b =211na -(n ∈N *),求数列{}n b 的前n 项和n T . 【命题立意】本题考查等差数列的通项公式与前n 项和公式的应用、裂项法求数列的和,考查了考生的逻辑推理、等价变形和运算求解能力.【思路点拨】(1)设出首项和公差,根据已知条件构造方程组可求出首项和公差,进而求出求n a 及n S ;(2)由(1)求出n b 的通项公式,再根据通项的特点选择求和的方法.【规范解答】(1)设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所以有112721026a d a d +=⎧⎨+=⎩,解得13,2a d ==, 所以321)=2n+1n a n =+-(;n S =n(n-1)3n+22⨯=2n +2n .(2)由(1)知2n+1n a =,所以b n =211n a -=21=2n+1)1-(114n(n+1)⋅=111(-)4n n+1⋅, 所以n T =111111(1-+++-)4223n n+1⋅-=11(1-)=4n+1⋅n 4(n+1), 即数列{}n b 的前n 项和n T =n4(n+1).【方法技巧】数列求和的常用方法:1、直接由等差、等比数列的求和公式求和,注意对公比1≠q 的讨论.2、错位相减法:主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.3、分组转化法:把数列的每一项分成两项,使其转化为几个等差、等比数列,再求解.4、裂项相消法:主要用于通项为分式的形式,通项拆成两项之差求和,正负项相消剩下首尾若干项,注意一般情况下剩下正负项个数相同.5、倒序相加法:把数列正着写和倒着写相加(即等差数列求和公式的推导过程的推广). 四、与不等式有关的数列问题考情聚焦:1.数列综合问题,特别是数列与不等式的综合问题是高考中经常考查的重要内容。

2.该类问题可与函数的单调性、基本不等式、导数函数等知识交汇,综合命题。

3.多以解答题的形式出现,属高档题。

例4:(天津高考文科·T22)在数列{}n a 中,1a =0,且对任意k *N ∈,2k 12k 2k+1a ,a ,a -成等差数列,其公差为2k.(Ⅰ)证明456a ,a ,a 成等比数列; (Ⅱ)求数列{}n a 的通项公式;(Ⅲ)记2222323n nn T a a a =+++,证明n 32n T 2n 2<-≤≥(2). 【命题立意】本小题主要考查等差数列的定义及前n 项和公式、等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法. 【思路点拨】(Ⅰ)(Ⅱ)应用定义法证明、求解;(Ⅲ)对n 分奇数、偶数进行讨论.【规范解答】(I )由题设可知,2122a a =+=,3224a a =+=,4348a a =+=,54412a a =+=,65618a a =+=。

从而655432a a a a ==,所以4a ,5a ,6a 成等比数列. (II )由题设可得21214,*k k a a k k N +--=∈所以()()()2112121212331...k k k k k a a a a a a a a ++----=-+-+- ()441...41k k =+-++⨯ ()21,*k k k N =+∈.由10a =,得()2121k a k k +=+ ,从而222122k k a a k k +=-=.所以数列{}n a 的通项公式为221,2,2n n n a n n ⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数或写为()21124n n n a --=+,*n N ∈. (III )由(II )可知()2121k a k k +=+,222k a k =,以下分两种情况进行讨论:(1) 当n 为偶数时,设n=2m ()*m N ∈若1m =,则2222nk kk n a =-=∑,若2m ≥,则()()()22222112211112212214441221nm m mm k k k k k k k k k k k k k k a a a k k k --=====++++=+=++∑∑∑∑∑ ()()21111441111222212121m m k k k k m m k k k k k k --==⎡⎤+⎡⎤⎛⎫=++=++-⎢⎥ ⎪⎢⎥++-⎝⎭⎣⎦⎣⎦∑∑ ()11312211222m m n m n⎛⎫=+-+-=-- ⎪⎝⎭. 所以223122nk k k n a n =-=+∑,从而22322,4,6,8,....2nk kk n n a =<-<=∑(2)当n 为奇数时,设()21*n m m N =+∈.()()()22222222121213142221nm k k k km m m k k m a a a m m m ==+++=+=--++∑∑ ()11314222121m n m n =+-=---+所以2231221nk k k n a n =-=++∑,从而22322,3,5,7,....2nk kk n n a =<-<=∑综合(1)和(2)可知,对任意2,*,n n N ≥∈有32 2.2n n T <-≤。

相关文档
最新文档