带传动
带 传 动
3) 使用张紧轮的张紧装置:当中心距不能调节时,可使用张紧轮把带张紧, 如图2-9所示。张紧轮一般应安装在松边内侧,使带只受单向弯曲,以减少寿命 的损失;同时张紧轮还应尽量靠近大带轮,以减少对包角的影响。张紧轮的使 用会降低带轮的传动能力,在设计时应适当考虑。
机电一体化
1.普通带传动 带传动是利用张紧在带轮上的带,靠它们之间的摩擦或啮合,在两轴(或多 轴)间传递运动或动力,见图2-6。根据传动原理不同,带传动可分为摩擦型和 啮合型两大类,其常见的是摩擦带传动。摩擦带传动根据带的截面形状分为平 带、V带、多楔带和圆带等。
图2—6 带传动的形式 a-摩擦型带传动;b-啮合型带传动
1) 定期张紧装置:调节中心距使带重新张紧。如图2-7a所示,为一移动 定期张紧置,将装在带轮的电动机安装在滑轨l上,需调节带的拉力时,松开螺 母2,旋转调节螺钉改变电动机位置,然后固定。这种装置适合两轴处于水平或 倾斜不大的传动。图2-7b为摆动架和调节螺杆定期张紧,将装在带轮伪电动机 固定在可以摆动的机座上,通过机座绕一定轴旋转使带张紧。这种装置适合垂 直的或接近垂直的传动。
图2-7 带的定期张紧装置
图2-8 电动机的自动张紧 Nhomakorabea图2-9 张紧轮装置
2.同步齿形带传动 同步齿形带传动,是一种新型的带传动,如图2-10所示,它利用
齿形带的齿形与带轮的轮齿依次相啮合传动运动和动力,因而兼有带传 动,齿轮传动及链传动的优点,即无相对滑动,平均传动比准确,传动 精度高,而且齿形带的强度高,厚度小,重量轻,故可用于高速传动; 齿型带无需特别张紧,故作用在轴和轴承等上的载荷小,传动效率高, 在数控机床上亦有应用。
带传动
2)啮合式带传动 同步带传动是一种啮合传动,具有的优点是:无滑动,能保证固 定的传动比;带的柔韧性好,所用带轮直径可较小;传递功率大。 用于要求传动平稳,传动精度较高的场合.(强力层为钢丝绳,变形 小;带轮为渐开线齿形)
二、带传动的组成及特点 1.带传动的组成
(2)V带: 截面形状为梯形,两侧面为工作表面。应用最广的带 传动是V带传动,在同样的张紧力下,V带传动较平带传动能产生 更大的摩擦力。
在相同的张紧力作用下,V带可比平 带产生较大的正压力,因而获得较大 的摩擦力。
设平带与V带传动承受相同的张紧 力Q,则平带工作时产生的摩擦力为
Ff = fN = fQ V带工作时产生的摩擦力为
2
F
cos d
2
因d 很小,可取 sin d d , cos d 1 去掉二阶微量dF d
22
2
2
dFN Fd fdFN dF
dF fd
F
积分得: F1 dF
f d
F F2
0
ln F1 f
F2
紧边和松边的拉力之比为: F1 e f →绕性体摩擦的基本公式 F2
联立求解:
F1 = F0 + F/2 F2 = F0 + F/2
紧后,位于带轮基准直径上的周线长度Ld 。)
带轮基准直径——V带轮上与所配V带节宽bp
相对应的带轮直径。
带轮的基准直径是V带轮的公称直径。 V带的楔角: V带两个侧面的夹角。 带轮的槽角: 带轮轮槽两个侧面的夹角 中心距a: 两个带轮轴线之间的距离。
V带的尺寸已经标准化,其标准有截面尺寸和V带基准长度。
取绕在主动轮或从动轮上的传动带为研究对象,有:Ff=F1-F2;
机械设计基础带传动
学生自我评价报告
知识掌握情况
团队协作与沟通能力
通过课程学习,我对带传动的类型、 特点、工作原理和设计计算有了深入 的理解,能够独立完成相关设计任务。
在课程设计和实验中,我与同学积极 协作,共同解决问题,提高了自己的 团队协作和沟通能力。
摩擦系数
摩擦系数越小,越容易发生打 滑。
带的类型与材料
不同类型和材料的带具有不同 的抗滑性能。
参数计算方法及实例
计算方法
根据给定的设计条件和要求,选择合适的带型、带轮直径、中心距等参数,并进行必要的校核计算。
实例分析
以某型号V带传动为例,介绍参数计算过程。首先根据传递功率和转速选择合适的V带型号和带轮直径, 然后根据中心距和张紧力要求进行设计计算,最后进行传动效率和滑动率的校核。通过实例分析,可以加 深对带传动性能评价和参数计算的理解。
3
关注新技术和新方法
随着科技的不断进步,新的设计方法和制造技术 不断涌现,建议关注和学习这些新技术和新方法, 提高自己的竞争力。
感谢您的观看
THANKS
寿命与可靠性
通过合理的设计和材料选择,提 高带传动的寿命和可靠性。
维护与保养
设计时应考虑方便维护和保养的 因素,如易于更换传动带和张紧
装置等。
03
带传动性能评价与参数计 算
传动效率及影响因素
传动效率定义
带传动中,输入功率与输出功率之比,反映 了传动的能量损失情况。
张紧力
适当的张紧力可以提高传动效率,但过大的 张紧力会导致带的磨损和能量损失。
滑,起到保护其他零件的作用。常用于两轴平行且旋转方向相同的场合。
带传动的名词解释
带传动的名词解释带传动是一种常见的机械传动方式,广泛应用于各个行业和领域。
它通过一个或多个带条或带环,将动力从一个部件传递到另一个部件,实现机器的正常运转。
带传动一般由带轮、带条、张紧装置和传动装置等组成。
其中,带轮是带传动中的核心部件,通常由金属或塑料制成,具有一定的结构和形状。
带轮的结构设计决定了带传动的性能和使用寿命。
带条是带传动的主要承载部件,广泛应用于传输动力和扭矩的场合。
其材质可以是橡胶、聚酯纤维、尼龙等,具有良好的柔韧性和耐磨性。
带条的选择要考虑到传动功率、速度比、工作环境等因素,以保证带传动的正常运行。
张紧装置是带传动中的重要辅助部件,用于调节带条的张紧度,使其保持适当的紧密度。
常见的张紧装置有弹性张紧装置、重力张紧装置和液力调速器等。
通过张紧装置的合理调节,能够使带条在高速和负载变化的情况下保持稳定运行,提高带传动的传动效率和使用寿命。
传动装置是带传动的功能关键部件,通过带轮和带条之间的接触摩擦,将动力从驱动轴传递到被驱动轴。
传动装置的种类繁多,常见的有平面带传动、V带传动、耐磨带传动等。
不同的传动装置适用于不同的工况和要求,可以满足不同场合的动力传输需求。
带传动具有一些独特的优势,使其得到广泛应用。
首先,带传动具有良好的缓冲性能,能够减震和降噪,提高机器运行的平稳性。
其次,带传动具有较高的传动效率,能够将动力传输到更远的距离和带条张紧度变化可调的特点。
此外,带传动可靠性高,易于安装和维护,使用寿命长,成本较低,适用于多种工况和环境。
然而,带传动也存在一些局限和问题。
例如,在高速和大负载条件下,带条容易滑动,导致传动效率下降和带条磨损加剧。
另外,由于带条在使用过程中会逐渐老化和劣化,需要定期更换和维护。
因此,合理选择和使用带传动装置,对于提高传动效率和延长使用寿命至关重要。
带传动作为一种常见的机械传动方式,不仅被广泛应用于各行各业的机械设备中,还在汽车、船舶、飞机等交通工具中发挥重要作用。
带传动
§7-2 带传动的工作情况分析
§8-2 带传动的工作情况分析
一、受力分析
初拉力F0 : 带传动尚未工作,带 所受的拉力称为张紧 力。 紧边拉力F1 松边拉力F2 设带的总长度不变,则
F1-F0=F0-F2 即: F1 +F2=2F0 (1 )
F0
1
F0
2
F0
a
F0
尚未工作状态
F2
n1
主动
υ F2
多楔带传动:
圆带传动:
平带传动分为:开口传动;交叉传动和半交叉传动(见图7-2b)。
பைடு நூலகம்
概 述
带的剖面形状
概 述
Semi-intersecting belt
带传动概述4
概 述
4.带传动的特点 优点: 1. 适用于中心距较大的传动, 2. 带有弹性,能缓冲减振,运转平稳,噪音小; 3. 摩擦带传动过载时带与带轮打滑,以此保护其他零件。 4. 结构简单,成本低; 缺点:1. 带的寿命短,在有油的场合,寿命更短;
小带轮上的包角为:
1 180
d d 2 d d1 a 57.3
(2)带的基准长度Ld
Ld 2a
2
(d d 2 d d1 )
(d d 2 d d1 ) 2 4a
(3) 中心距a
a 2 Ld (d d 2 d d1 ) [2 Ld (d d 2 d d1 )]2 8(d d 2 d d1 ) 2 8
2. 对摩擦带传动,传动比不恒定; 3. 效率较低。 5.带传动的应用 在各类机械中应用广泛,但摩擦带传动不适用于对传动比有精确 要求的场合。
通常,传递的功率 ≤ 700 kW;带速一般为5~25m/s;传动比 i ≤7。
带传动
沈阳航空工业学院第八章带传动§8-1带传动类型及应用§8-2带传动的受力分析§8-3带的应力分析§8-4 带传动的打滑、弹性滑动和传动比§8-5 V带传动的计算§8-6 V带的张紧装置一、组成主动带轮带从动带轮二、工作原理:摩擦带:原动机驱动主动带轮转动,通过带与带轮之间产生的摩擦力,使从动带轮一起转动,从而实现运动和动力的传递。
啮合带:靠带与带轮的啮合传递运动和动力。
三、常见带传动的类型◆摩擦带传动◆啮合带传动平带传动V带传动多楔带传动§8-1 带传动的类型和应用四、摩擦带传动的特点优点:①因带是弹性体,可以缓冲和吸振,传动平稳、噪声小;②当传动过载时,带在带轮上打滑,可防止其他零件损坏;③可用于中心距较大的传动;④结构简单、装拆方便、成本低。
其主要缺点是:①传动比不准确;②外廓尺寸大;③传动效率低;④带的寿命短;⑤需要张紧装置;五、V带与带轮的结构V带有普通V带、窄V带、宽V带、汽车V带、大楔角V带等。
其中以普通V带和窄V带应用较广。
1、V带的结构标准V带都制成无接头的环形带,横截面结构如下:V带的结构2、带的型号:我国普通V带和窄V带都已标准化。
按截面尺寸由小到大,普通V带可分为Y、Z、A、B、C、D、E七种型号;窄V带可分为SPZ、SPA、SPB、SPC四个型号。
在同样条件下,截面尺寸大,则传递的功率就大。
3、带的主要参数◆节线:当带纵向弯曲时,在带中保持原长度不变的周线。
◆节面:由全部节线构成的面称为节面。
◆节宽b p :长度不变层。
所在位置称为中性层。
节面节线◆基准直径d d :V 带装在带轮上,和节宽b p 相对应的带轮直径。
◆基准长度L d :V 带在规定的张紧力下,位于带轮基准直径上的周线长度。
它用于带传动的几何计算。
表8-2 普通V带的基准长度系列及长度系数(部分)基准长度L d/mm长度系数KY Z A B C D E2500 1.09 1.030.932800 1.11 1.050.950.833150 1.13 1.070.970.863550 1.17 1.090.990.894000 1.19 1.13 1.020.914500 1.15 1.040.930.90 5000 1.18 1.070.960.92 5600 1.090.980.95 6300 1.12 1.000.97 7100 1.15 1.03 1.00§8-2 带传动的受力分析一、带传动中的力分析1)带不运转时初拉力F0。
带传动
二、欧拉公式 带传动即将打滑时,可推出古典的柔韧体摩擦欧拉公式:
f 为摩擦系数;α为带轮包角
欧拉公式反映了带传动丧失工作能力之 前,紧、松边拉力的最大比值
那么:
F = F1 – F2 = F1(1-1/e fα)
F - 此时为不打滑时的最大有效拉力,正常工 作时,有效拉力不能超过此值
整理后得:
F
带传动 本章教学内容
§1 概述 §2 V带和带轮的结构 §3 带传动的工作能力分析 §4 V带传动的设计 §5 带传动的张紧、安装与维护
带传动(一)
§9-1概述
第9章 带传动
一、带传动的工作原理及特点
1、传动原理——以张紧在至少两轮上带作为中间挠性 件,靠带与轮接触面间产生摩擦力来传递运动 与动力
8
§9—3 带传动的受力分析
一、受力分析 安装时,带必须以一定的初拉力张紧在带轮上
带工作前:
带工作时: Ff
F0 松 动边 轮的-F一退0边出主
此时,带只受 初拉力F0作用
F紧2 边
-
F2
进入
F带f 的-由紧摩带于边擦轮摩拉擦力力作力用--的于作用:
n1 主动轮的一边 n2 Ff
由 F0 增加到 F1;
设计内容:确定V带的型号、长度L和根数Z、传动中心距a及带轮基准 直径,画出带轮零件图等。
1.确定计算功率
PC K AP
式中: P 传递的名义功率
KW
K A 工作情况系数
工作情况系数KA表
KA
工作情况
软启动
硬启动
每天工作小时数/h
<10 10~16 >16 <10 10~16 >16
载荷变动微小
带传动一般是由主动轮、从动轮紧套在两轮上的传动带及机架组成。 带的传动过程:
第6讲 带传动 - 副本 - 副本 - 副本
演示带传动
点击小图看运动图
分类: 按工作原理分
摩擦式带传动 啮合式带传动
按带的截面形状分
平带 V带 多楔带 圆带 同步齿形带
按传动的布置形式分
§1 概
三. 优缺点 优点:中心距大,能缓 一. 工作原理 冲减振,运转平稳无噪音, 二. 带传动的类型 具有过载保护作用,价格 按带分类有 低廉;缺点:瞬时传动比 不恒定,效率较低,寿命 按轴的位置关系有 较短,对轴和轴承的压力 大,不宜用于高速、易燃 四. 应用范围 等场合。 对传动比无精确要求的中小功率传动。一般:
窄V带见表11.11;kL - 长度系数,见表11.12。
z* = 3 ~ 5
7.作用在轴上的载荷Q
a1
2 + 2
= 90
a1 (11.23) Q = 2 zF0 cos = 2 zF0 sin 2 2
二. 设计例题
§5
带传动的张紧
由于传动带的材料不是完全的弹性体,因 而带在工作一段时间后会发生塑性伸长而松驰, 使张紧力降低。因此,带传动需要有重新张紧 的装置,以保持正常工作。 张紧装置分定期张紧和自动张紧两类。
带
传
动
带传动属于挠性传动。是靠摩擦力传递动力的.挠 性传动就是由两个或多个传动轮和中间环形挠性件组 成,通过挠性件在传动轮之间传递运动和动力的一种 传动。如带传动、链传动等。
§1 概
述
一. 工作原理
带呈环形,并以一定的拉力(称为张紧力)F0套在一对带 轮上,使带和带轮相互压紧。带传动不工作时,带两边的拉 力相等,均为F0; 工作时,由于带与轮 面间的摩擦力使其一边 拉力加大到F1(称为紧边 拉力),另一边拉力减小 到F2(称为松边拉力)。 两者之差F=F1-F2即为带 的有效拉力,它等于沿 带轮的接触弧上摩擦力 注意:在一定条件下,摩擦力有一极 的总和。 限值,如果工作阻力超过极限值,带 就在轮面上打滑,传动不能正常工作.
机械基础带传动
同步带传动
多楔带传动
利用同步带与带轮齿槽之间的啮合传递动 力,具有准确的传动比和较高的传动效率 ,适用于高精度传动。
利用多楔带与带轮之间的多个楔面摩擦传递 动力,结构紧凑,传动功率大,适用于大功 率传动。
应用领域
01
02
03
04
工业领域
带传动广泛应用于各种工业机 械中,如机床、纺织机械、包
装机械等。
机械基础带传动
contents
目录
• 带传动概述 • 带传动组成及工作原理 • 带传动设计参数与选型 • 带传动性能评价与优化 • 带传动安装、调试与维护保养 • 常见故障分析与排除方法 • 总结与展望
01 带传动概述
定义与原理
定义
带传动是利用张紧在带轮上的柔性带 进行运动或动力传递的一种机械传动 方式。
隔声措施
在带传动周围设置隔声罩 或隔声板,减少噪声向周 围环境的传播。
寿命预测及优化方法
带的疲劳寿命
分析带的疲劳寿命,预测其在特定工 况下的使用寿命。
带的磨损
优化设计
基于寿命预测结果,对带传动进行优 化设计,如改进带轮结构、优化带的 材料和制造工艺等,以提高带传动的 使用寿命和可靠性。
研究带的磨损机理,分析磨损对带传 动性能的影响,提出减少磨损的措施 。
断裂事故原因及预防措施
断裂事故原因
断裂是指带在传动过程中突然断裂,可能原因包括过载、疲劳断裂、带轮直径过 小导致弯曲应力过大等。
预防措施
避免过载运行、定期检查并更换老化或损坏的带、选择合适的带轮直径以降低弯 曲应力等。对于重要传动系统,建议采用高强度或耐疲劳性能更好的带材料。
07 总结与展望
课程回顾与总结
多学科交叉融合的发展
第六章 带传动
V带轮的基准直径被标准化为系列尺寸。为了防止V 带绕过带轮时产生过大弯曲而影响V带的强度,设计时 应限制小带轮的最小直径取值,即d1≥d1min (表6-4) 二、V带传动的失效形式与设计准则 V带传动的主要失效形式为:疲劳断裂和打滑 V带传动的设计准则:在保证带传动不打滑的条件 下,V带具有一定的疲劳强度和寿命。 三、单根V带的额定功率 1.P0的计算式:根据V带传动不打滑的临界条件和带 的疲劳强度条件 单根带所能传递的额定功率P0 (式6-13) 需进一步确定[σ]
如果带轮采用铸铁材料制造: 当带轮基准直径dd ≤ (2.5~3)d(d为带轮轴直径) 时,采用实心式结构,图; 当dd ≤ 350mm,且d2-d1 <100mm时(d1为轮毂外 径,d2为轮缘内径),采用腹板式结构,图;
当dd ≤ 350mm,且若d2-d1 ≥ 100mm,则采用孔 板式结构,图;
2
2
(d1 d 2 ) (d 2 d1 )
代入
中心距a选取的合理性由小带轮包角验算来衡量:
d 2 d1 57.3 >120º 应保证 1 180 a
否则应适当增大中心距或减小传动比来满足。 Pc Pc 5.传动带根数Z 计算 Z [ P0 ] ( P0 P0 ) K K L 将计算值圆整确定带的根数Z。为保证多根带受力均匀,Z不
1、包布层:为挂胶帘布。 2、伸张层:橡胶,工作时受拉。 3、强力层:线绳、尼龙绳或帘布。 4、压缩层:橡胶,工作时受压。
带轮的基准直径:在V带轮上与V带节面处于同一圆周位置上 的轮槽宽度,称为轮槽的基准宽度,基准宽度处的带轮直径, 成为带轮的基准直径。 V带的基准长度:普通V带都制成无接头的环形。V带在规定的 初拉力下,位于带轮基准直径上的周线长度,称为V带的基准 长度,用Ld 表示。
带传动
第七章 带传动一、主要内容带传动是应用广泛的一种机械传动,它是靠带与带轮之间的摩擦力来传递运动和动力的,属于摩擦传动。
此外,带传动的另一形式,即靠带与带轮轮齿的啮合来传递动力的同步齿形带,本章仅作简单介绍。
学习带传动这一章,要抓住“摩擦传动”这一本质。
它的主要内容有:(1)带传动主要类型、特点及应用;(2)带传动工作时的工作情况分析,它的主要失效形式,防止措施和设计准则;(3)三角带传动的设计计算。
a) 带传动的主要类型、特点和应用带传动的主要类型有三角带传动和平型带传动。
根据qi 面摩擦原理,三角带传动传递功率的能力远比平型带传动为大,因此,在一般机械传动中主要采用三角带传动。
我们在设计机械、选择、确定传动方案时,主要根据传动的特点和应用,因此,这部分内容很重要,学习时应结合本章的有关思考题,加深理解。
b) 带传动的工作情况分析和设计依据(1) 带传动的受力分析安装时,带以一定的紧张力0F 套在带轮上,使带和带轮相互压紧。
工作时,由于带与带轮接触面间的摩擦力作用,使紧边的拉力增加为1F ,松边的拉力减少为2F 。
带传动所能传递的有效圆周力为e F ,它与021,,F F F 之间的关系为:e F F F =-210212F F F =+注意:有效圆周力e F ,是受任意一个带轮接触弧(1a 或2a )上的最大摩擦力m ax f F ∑限制的。
当max f e F F ∑≤时,带传动正常工作;max f e F F ∑>,带传动不能正常工作(即带在带轮上打滑)。
通过带传动工作时的受力分析,可以推导出带在带轮上即开始打滑时的欧拉公式:fa e F F 21=带能所传递的最大有效圆周力e F (即当max f e F F ∑=)时的临界值为:1120+-=fa fa e e e F F 由上式可见,为了提高带的传动能力,防止打滑,可以采用一下措施,即:安装时保证适当的紧张力0F ,增大带与带轮间的摩擦系数f 及增大包角a 。
带传动设计
带相对1轮 的滑动方向
δ2 ι
B β1 α1
n1 F2
A′A
F1
ι δ1
v
C
c'
F2
n2
α2 β2
F1 D
4.弹性滑动对传动的影响 1)降低传动效率(V带传动效率η =0.91~ 0.96),使带与
带轮摩损增加和温度升高。 2)使从动轮的圆周速度v2低于主动轮的圆周速度v1,
即: v2< v1 。
缺 点
②传动效率较低,寿命较短,外廓尺寸较大;
③由于需要施加张紧力,轴和轴承受力较大。
应用:用于中心距较大,传动比无严格要求的场合,在多级 传动系统中通常用于高速级传动,如机床中由电动机到主轴 箱的第一级传动。
2.啮合型带传动
兼有带传动和啮合传动的优点,传动比准确;效 率高(98~99.5%);传动比较大(可达12~20),允
F
cos d
2
(F
dF) cos d
2
0
dF sin d 0,sin d d ,
2
22
cos d
2
1, F 'C
qv2d
代入,则
dF fd
F qv2
两端积分
F1 dF
1
fd
F2 F qv2 0
可得: F1 qv2 e f1
拉力差,即:紧边拉力F1大于松边拉力F2,则带在紧
边的伸长量δ 1大于松边的伸长量δ 2。
δ2 ι
v
C
B n1 F2
F2
n2
α1
α2
带相对1轮 的滑动方向
A
F1
F1
D
带传动和链传动
链传动可以在高温、低 温、潮湿、多尘等恶劣 环境下工作,适应性强。
链传动的缺点
振动和噪音
链轮和链条在传动过程中会产生振动和噪音,特别是在高速运转 时。
精度较低
链传动的精度不如带传动高,可能会导致传动不平稳和位置误差。
维护要求高
需要定期润滑和清洁,否则容易出现卡滞和磨损。
链传动的改进方向
结构简单
带传动结构简单,制造和维护成本较 低。
适用于中心距较大的传动
带传动可以通过张紧装置调整带的张 紧力,以适应中心距较大的传动。
带传动的缺点
效率较低
带传动中,带与带轮之间存在 一定的摩擦损失,导致效率较
低。
寿命较短
带传动中的带容易磨损和老化 ,需要定期更换,寿命较短。
传递功率有限
带传动的传递功率受到带的强 度限制,难以传递大功率。
带传动和链传动
目录
• 带传动介绍 • 带传动的原理 • 带传动的优缺点 • 链传动介绍 • 链传动的原理 • 链传动的优缺点
01 带传动介绍
带传动的定义
定义
带传动是一种通过带与带轮之间的摩 擦力来传递动力的机械传动方式。
组成
工作原理
通过主动轮的旋转,带动传动带在带 轮上运动,从而将动力传递给从动轮。
在输送设备中,链传动是常用 的传动方式之一,如输送带、 提升机等。
05 链传动的原理
链传动的啮合原理
链传动是通过链轮之间的链条进 行啮合,从而实现动力的传递。
链条由一系列的链节组成,每个 链节都由两个相邻的滚子组成, 滚子与链轮的齿相啮合,从而实
现了动力的传递。
链传动的啮合原理是利用了链条 与链轮之间的摩擦力来实现动力
带传动
带传动和摩擦轮传动一样,也有下列缺点:1) 缺点: 有弹性滑动和打滑,使效率降低和不能保持准确 的传动比(同步带传动是靠啮合传动的,所以可 保证传动同步),2)传递同样大的圆周力时,轮 廓尺寸和轴上的压力都比啮合传动大:3)带的寿 命较短。4)不适用于高温、易燃及有腐蚀介质 的场合。
机械基础部分
15
机械基础部分
8
同步齿形带应用
机械基础部分
9
同步带应用
机器人关节
机械基础部分
10
(6)齿孔带:
机械基础部分
11
3)按用途分:
(1)传动带 传递动力用
(2)输送带 输送物品用。
传动带
输送带
机械基础部分 平型带 普通V带 窄V带 齿形V带 宽V带 联组V带 大楔角V带
12
摩擦型 类 型 啮合型
V 拉力增加, 带逐渐被拉长,沿轮面产生向前的弹性滑动,使带 的速度逐渐大于从动轮的圆周速度。
由于带弹性变形而产生的带与带轮间的局部 相对滑动称为弹性滑动。
机械基础部分 弹性滑动的分析
B B1
45
A1
A
重合(v 相等) 拉力降 B A1 轮 带回缩 B1 ⌒< ⌒ ∴ AB A1B1 即:v< v1 ——微量相对滑动 同理在从动轮一边有: v2<v (弹性滑动)
结构设计: 带轮由轮缘、 腹板(轮辐)和轮毂三部分 组成。 轮缘是带轮的工作部分, 制有梯形轮槽。轮毂是带轮 与轴的联接部分,轮缘与轮 毂则用轮辐(腹板)联接成 一整体。 V带轮按腹板结构的不 同分为以下几种型式:实心 带轮(S型)、腹板带轮(P 型) 、孔板带轮(H型)、 轮辐带轮(E型)。
机械基础部分
n1、n2——主、从动轮的转速,r/min
《机械设计基础》第十章 带传动
10.2.2 带传动工作时的应力分析
带是在变应力下工作,当应力较大,应力变化频率较高时,带将很快产生疲劳 断裂而失效,从而限制了带的使用寿命。带传动工作时,带所受应力有如下几种:
机械设计基础
1.由紧边拉力和松边产生的拉应力
紧边拉应力 松边拉应力
2.由离心力产生的拉应力
∵F1> F2
∴ σ 1> σ 2
FQ=2ZFo
机械设计基础
10.带轮结构的设计
带轮结构的设计根据带轮槽型、槽数、基准直径和轴的尺寸确定。参 见本章10.4节部分或有关机械设计手册。
【例 10-1】 设计一带式输送机的普通 V 带传动。原动机为 Y112M-4 异步电动机, 其额定功率 P =4kW, 满载转速 n1 =1440 r/min, 从动轮转速 n 2 =470 r/min, 单班制工作, 载荷变动较小,要求中心距 a ≤550 mm。 解.(1)确定计算功率 Pc 由表 10-7 查的 K 1.1 ,故
机械设计基础
6、验算小带轮包角
对于V带,一般要求α1≥120°,否则,应增大中心距或加 张紧轮。 7、确定V带的根数
为了使每根V带受力均匀,带的根数不宜太多,通常取带的 根数小于10根。 机械设计基础
8、计算初拉力F0 初拉力F0的大小对带传动的正常工作及寿命影响很大。初拉 力不足,易出现打滑;初拉力过大,则V带寿命降低,压轴力增 大。
式中PC——计算功率,kW; Z——V带的根数; v——V带速度,m/s; Kα——包角修正系; q——v带每米长质量,kg/m。 由于新带易松弛,所以对于非自动张紧的带传动,安装新 带时的初拉力应为上述初拉力的1.5倍。 机械设计基础
9、计算轴压力 V带作用在轴上的压力FQ一般可近似按两边的初拉力F0的合 力来计算。
皮带传动
二、单根普通V带的许用功率
带在带轮上打滑或带发生疲劳损坏(脱层、撕裂或拉断)时,就 不能传递动力。因此带传动的设计依据是保证带不打滑及具有 一定的疲劳寿命。
❖在载荷平稳、包角α1=180°、带长Ld为特定长度、抗拉体为 化学纤维绳芯结构的条件下,单实际工作条件与上述特定条件不同时,应对P0值加以修正。 修正后即得实际工作条件下,单根普通V带所能传递的功率 ,称为许用功率[P0]
由于V带传动中心距一般是可以调整的,故可采用下列公式作近
似计算
a a 0 L d2 L 0
(1 1 3 )6
❖考虑安装调整和补偿张紧力的需要,中心距变动范围为: (a-0.015 Ld )~(a+0.03 Ld )
小轮包角计算
α118 0d2a d15.73 一般应使α1>120°,否则可加大中心距或增设张紧轮。 3. 初拉力 保持适当的初拉力是带传动正常工作的首要条件。初拉力不足
带传动的缺点:
①传动的外廓尺寸较大;②由于需要张紧,使轴上受力较大;③ 工作中有弹性滑动,不能准确地保持主动轴和从动轴的转速比关 系;④带的寿命短;⑤传动效率降低;⑥带传动可能因摩擦起电 ,产生火花,故不能用于易燃易爆的场合。
(5)作用在轴上的压力 如图13-11所示,静止时轴上压力为
F Q2 F 0siα 2 1 n2 13 s0 i12 n 2 7 105N 90
带轮直径较小时可采用实心式(图13-16a);中等直径的带轮可采用腹 板式(图13-16b);直径大于350 mm时可采用轮辐式(图13-17)。图中列 有经验公式可供带轮结构设计时参考。各种型号V带轮的轮缘宽B、 轮毂孔径ds和轮毂长L的尺寸,可查阅GB10412-89。
普通V带轮轮缘的截面图及其各部尺寸见表6-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F1 F2 e
f
Fec 2 F0
e
1
包角α↑→最大有效拉力Fec ↑
摩擦系数 f↑→最大有效拉力Fec ↑
2
1
当已知带传递的载荷时,可根据欧拉公式确定应保证的最小初拉力F0。
切记:欧拉公式不可用于非极限状态下的受力分析!
机械设计 Machine design
三、采用张紧轮张紧装臵
张紧轮一般应放在松边的内侧,使带只受单向弯曲。同时张紧轮应尽 量靠近大轮,以免过分影响在小带轮上的包角。张紧轮的轮槽尺寸与带轮 的相同。
机械设计 Machine design
V带传动的设计例子
V带传动设计实例
机械设计 Machine design
作业与思考题
6-1 常用的传动带有哪些类型?试述各自的特点和应用。 6-5 何谓带传动的打滑?出现打滑的根本原因是什么? 6-7 试述带传动中带的应力是如何变化的。带的最大应力出现在何处? 6-8 为什么要规定带轮的最小基准直径? 6-9 为什么要规定带传动的最大速度?速度太低对传动有何影响? 6-10 带传动为什么会产生弹性滑动?弹性滑动与打滑有何区别?试述 弹性滑动的过程及其后果。 6-11 带传动的主要失效形式有哪些?试述带传动的设计准则。 6-12 单根V带能传递的功率是在什么条件下得到的?考虑实际运转条 件时应作哪些修正? 6-13 带传动的根数为什么不宜过多? 6-15 带传动为什么要考虑张紧装臵?常用张紧方法有哪些? 6-18 试设计一窄V带传动,已知:n1=1450 r/min,n2=400 r/min,dd1=l80 mm,中心距a≈1 600 mm,传递功率P=12 kW,工作时有中等振动,一天运转16 h。
v/m〃s-1
≤20 ≤60 ≤40 ≤50
速度
功率P/kW 常用值 ≤20 ≤20 ≤40 ≤10 最大值 200 3 500 500 300
η (%)
闭式0.90~0.96 开式0.80~0.88 0.94~0.98 0.90~0.94 0.96~0.98
效率
传动比i 常用值 ≤7~10 2~4 ≤7 ≤10 最大值 ≤15~ 25 6 10 20
比、包角、带长因素对P0进行修正
带长应取基准长度系列 带轮直径应取基准直径系列 必须验算小带轮包角和带速
机械设计 Machine design
V 带轮设计
1.V带轮设计的要求 各轮槽的尺寸和角度应保持一定的精度,以使带的载荷分布较为均匀。
结构工艺性好、无过大的铸造内应力、质量分布均匀。
轮槽工作面要精细加工,以减少带的磨损。 2.带轮的材料 通常采用铸铁,常用材料的牌号为HT150和HT200。
特 点 传动平稳,有过载保护作用。传动比不 能保持恒定,寿命及效率较低。宜用于 小功率传动,广泛用于无级变速传动 传动平稳,有缓冲吸振及过载保护作 用。平带和V带传动有弹性滑动,传动 比不能保持恒定。传动中心距大。轴压 力大。窄V带的性能优于普通V带,并有 替代之趋势。同步带的传动比恒定,适 宜于高速传动 瞬时速度不均匀,有冲击、动载和噪 声,传动中心距大。寿命较短(一般为 5 000~15 000h)。适宜于低速传动, 可在恶劣条件下可靠工作 适用的速度和功率范围广,结构紧凑, 传动比恒定,效率高,工作可靠,寿命 长。制造和安装精度要求高,对润滑和 密封有较高要求。无过载安全保护作用。 广泛应用于各类机械。准双曲面齿轮传 动用于代替蜗杆传动时,传动比可达 50~100 传动比大,结构紧凑,传动平稳,噪 声小,可制成自锁机构。效率低,不宜 用于低速大功率传动。重要传动的蜗轮 常用青铜制造,成本高。制造和安装精 度要求高,要求有良好的润滑和密封。 无过载安全保护作用 传动平稳,噪声低。滑动螺旋磨损大, 效率低,寿命短,可制成自锁机构。滚 动螺旋效率较高,寿命较长。适用于低 速传动
ddmin/mm
机械设计 Machine design
带的弹性滑动和打滑
带传动在工作时,从紧边到松边,传动带所受的拉力是变化的,因此带 的弹性变形也是变化的。
带传动中因带的弹性变形变化所导 致的带与带轮之间的相对运动,称为弹 性滑动。 弹性滑动导致:从动轮的圆周速度v2<主动轮的圆周速度v1,速度降低 的程度可用滑动率ε来表示:
转速较高时宜采用铸钢或用钢板冲压后焊接而成。
小功率时可用铸铝或塑料。 3.结构与尺寸
(详细介绍) V带轮的典型结构有:实心式、 腹板式、 孔板式和 轮辐式。
带轮的结构设计,主要是根据带轮的基准直径选择结构形式。 根据带的截型确定轮槽尺寸。
带轮的其它结构尺寸通常按经验公式计算确定。
机械设计 Machine design
F0
尚未工作状态
带传动尚未工作时,传动带中的预紧力为F0。 带传动工作时,一边拉紧,一边放松,记紧边拉力为F1和松边拉力为F2。 设带的总长度不变,根据线弹性假设:F1-F0=F0-F2; 或:F1 +F2=2F0; 记传动带与小带轮或大带轮间总摩擦力为Ff,其值由带传动的功率P和带 速v决定。 定义由负载所决定的传动带的有效拉力为Fe=P/v,则显然有Fe=Ff。
机械设计 Machine design
第6章 带传动
§6.1 带传动的工作特性及应用 §6.2 V带传动的设计计算 §6.3 V带轮结构设计 §6.4 带传动的张紧装置 §6.5 V带传动设计实例
带传动的组成和特点
1.带传动的组成
固联于主动轴上的带轮1(主动轮); 固联于从动轴上的带轮3(从动轮); 紧套在两轮上的传动带2。
机械设计 Machine design
带传动中的力分析
取绕在主动轮或从动轮上的传动带为研究对象 ,有:Fe=Ff=F1-F2; 因此有: F1=F0+Fe/2;F2=F0-Fe/2;
f f
带传动的最大有效拉力Fec有多大? 由欧拉公式确定,即:
e 1 欧拉公式给出的是带传动在极限状态下各力之间的关系,或者说是给出 了一个具体的带传动所能提供的最大有效拉力Fec 。 由欧拉公式可知: 包角的概念
机械设计 Machine design
V 带的截面尺寸
V带的截面尺寸
机械设计 Machine design
带传动中的力分析
带传动的工作情况分析是指带传动的受力分析、应力分析、运动分析。 带传动是一种挠性传动,其工作情况具有一定的特点。
F0 1 F0
F0 2
1 Ff
F2 n1 F1
工作状态
F2 n2 2 F1
机械设计 Machine design
带传动的类型
平带传动,结构简单,带轮也容易制造,在传动中心距 较大的场合应用较多。 在一般机械传动中,应用最广的带传动是V带传动,在 同样的张紧力下,V带传动较平带传动能产生更大的摩擦力。
多楔带传动兼有平带传动和V带传动的优点,柔韧性好、 摩擦力大,主要用于传递大功率而结构要求紧凑的场合。
带传动的应力分析
带传动在工作过程中带上的应力有:
◆ 拉应力:紧边拉应力、松边拉应力; ◆ 离心应力:带沿轮缘圆周运动时的离心力在带中产生的离心拉应力; ◆ 弯曲应力:带绕在带轮上时产生的弯曲应力。
为了不使带所受到的弯曲应力过大,应限制带轮的最小直径。 槽 型 Z SPZ 50 63 75 90 A SPA 125 140 B SPA 200 224 C SPC
第2篇 传动零件
传动装臵是将动力机的运动和动力传递到执行机构以满
足工作需要的中间装臵,其功能主要有: 减速或增速、变速
改变运动形式。
传动装臵按其工作原理可分为机械传动、流体传动及电 力传动。本课程只介绍机械传动。常用机械传动的主要性能 见表1。
第2篇 传动零件
表1常用机械传动的主要性能
类型
带传动的张紧
张紧的目的
◆ ◆
根据带的摩擦传动原理,带必须在预张紧后才能正常工作; 运转一定时间后,带会松弛,为了保证带传动的能力,必须重新张紧,才 能正常工作。 常见的张紧装臵有定期张紧装臵、自动张紧装臵、张紧轮张紧装臵。
一、定期张紧装臵
机械设计 Machine design
带传动的张紧
二、自动张紧装臵
v1 v2 v1 100%
d d1n1
6000
或
v2 (1 )v1
v2
其中: v1
(m / s)
d d 2 n2
6000
(m / s)
因此,传动比为:
i
n1 n2
(1 )
dd2 d d1
若带的工作载荷进一步加大,有效圆周力达到临界值Fec后,则带与带轮 间会发生显著的相对滑动,即产生打滑。
⑸考虑传动装臵寿命要求。齿轮传动的使用寿命最长,润滑、维护良好的齿轮传 动其使用寿命可长达10多年甚至几十年;精度较高及润滑良好的蜗杆传动也有较长的使用 寿命;链传动的寿命一般为5 000~15 000h;V带传动的寿命一般为3 500~5 000h。 ⑹考虑传动位臵的布臵。通常平行轴传动的结构最简单,加工、装配方便。而锥 齿轮传动、蜗杆传动由于轴心线需垂直或交错布臵,一般应在结构布臵需要时才采用。带 传动通常布臵在紧挨动力机的高速级,有利于隔离动力机的振动,便于动力机的布臵,还 可起过载安全保护作用。
蜗杆传动
<15~35
≤50
螺旋传动
低速
小功率
机械设计 Machine design
第2篇 传动零件
选择机械传动的一般原则:
⑴考虑传递功率和经济性要求。传递功率小、制造费用低:带传动、链传动、普 通精度(7级及以下)的齿轮传动;传递功率大、制造费用高:精度较高(6级及以上)的 齿轮传动;直接选用合适的标准减速器,则最为经济。
⑵考虑传动速度要求。带传动、齿轮传动、蜗杆传动宜用于高速传动;链传动、 螺旋传动适用于低速传动。