第九章分布滞后和自回归模型
庞皓版计量经济学课件 (1)
三、阿尔蒙法
目的:消除多重共线性的影响。 基本原理:在有限分布滞后模型滞后长度 s 已
知的情况下,滞后项系数有一取值结构,把它 看成是相应滞后期 i 的函数。在以滞后期 i 为 横轴、滞后系数取值为纵轴的坐标系中,如果 这些滞后系数落在一条光滑曲线上,或近似落 在一条光滑曲线上,则可以由一个关于 i 的次 数较低的 m次多项式很好地逼近,即
,
* β0 = β0
, u t* = u t - λu t -1
则库伊克模型(7.10)式变为
* Yt = α * + β 0 X t + β 1* Y t -1 + u t*
(7.12)
这是一个一阶自回归模型。
7-33
库伊克变换的优点
1.以一个滞后被解释变量代替了大量的滞后解 释变量,使模型结构得到极大简化,最大限度 地保证了自由度,解决了滞后长度难以确定的 问题; 2.滞后一期的被解释变量与 X t 的线性相关程 度将低于 X 的各滞后值之间的相关程度,从而 在很大程度上缓解了多重共线性。
7-28
库伊克假定:
对于如下无限分布滞后模型:
Yt = α + β0 X t + β1 X t-1 + β2 X t- 2 ++ut
(7.6)
可以假定滞后解释变量 X t-i 对被解释变量 Y 的影 响随着滞后期 i 的增加而按几何级数衰减。即滞 后系数的衰减服从某种公比小于1的几何级数:
βi = β0 λi , 0 λ 1 , i 0,1,2,
计量经济学
分布滞后模型与自回归模型
7-1
引子: 货币政策效应的时滞
货币供给的变化对经济影响很大,货币政策总是 备受关注。 货币政策的影响效应存在着时间上的滞后。在货币政策的传 导过程中,货币扩张首先促使利率降低,或者一般价格水平 的上升,这需要一段时间。 这些因素对以GDP为代表的经济增长的影响,更是需要一 段时间才能显示出来。只有经过一段时间以后,支出对利率 的反应增强,投资、进出口和消费才会不断上升,货币政 策才最终促使GDP增加。通常,货币扩张对GDP影响的最 高点可能是在政策实施以后的一到两年间达到。
分布滞后模型
S.E. of regression
21.88962 Akaike info criterion
Sum squared resid
7187.333 Schwarz criterion
Log likelihood
-75.52028 F-statistic
Durbin-Watson stat
1.438436 Prob(F-statistic)
8.2 有限分布滞后模型及其估计
如果有限分布滞后模型
yt a b0 xt b1xt1 ...... bk xtk ut
中的参数bi(i=0,1,2,…,k)的分布可以 近似地用一个关于i的低阶多项式表示,就可以利 用多项式减少模型中的参数。
8.2 有限分布滞后模型及其估计
8.2 有限分布滞后模型及其估计
8.2.2 有限分布滞后模型的估计方法 1.经验加权估计法 根据实际经济问题的特点及经验判断,对滞后 变量赋予一定的权数,利用这些权数构成各滞后变 量的线性组合,以形成新的变量,再应用最小二乘 法进行估计。
8.2 有限分布滞后模型及其估计
基本思路是设法减少模型中被估计的参数个数。 模型中参数的个数主要由解释变量的个数来决定, 要减少模型中被估计的参数个数,就要对解释变量 进行归并,并通过解释变量的归并,消除或削弱多 重共线性问题。
Prob. 0.0023 0.0000 818.6959 279.9181 9.120033 9.218058 2601.407 0.000000
8.2 有限分布滞后模型及其估计
Dependent Variable: Y
Method: Least Squares
Sample(adjusted): 1958 1974
分布滞后模型
Yt Yt1 ut
(12.18)
Yt1 Yt2 ut1
(12.19)
Yt Y0 ut
(12.20)
E(Yt ) Y0
(12.21)
var(Yt ) var(ut ut1 u) T 2 (12.22)
Yt (Yt Yt1 ) ut
(12.23)
2-10
12.5 随机游走模型
2-15
12.6 分对数模型
2-16
12.1 动态经济模型:自回归和分布滞后模型
动态模型(dynamic models)
Yt A B0 X t B1 X t1 B2 X t2 ut
分布滞后模型(distributed lag models)
Yt 常数 0.4 X t 0.3X t1 0.2 X t2 Yt 常数 0.9X t1
2.零假设为Yt1 的系数 A3 为零,等价于时间序 列是非平稳的,称为单位根假设。
3.为了检验A3 的估计值 a3 为零,通常会使用
熟悉的t 检验。
2-8
12.4 协整时间序列
eˆt 0.2753 et1
t( ) (3.779)
r 2 0.1422
2-9
12.5 随机游走模型
随机游走模型(random walk model): 即根据变量今天的值并不能预测出变量明天的值。
2-11
图12-3 利用随机游走模型进行预测
12.6 分对数模型
分对数模型(logit model)和概率单位模型 (probit model)
逻辑分布函数(logistic distribution function)
2-12
12.6 分对数模型
2-13
12.6 分对数模型
分布滞后模型与自回归模型.ppt
1、滞后效应与产生滞后效应的原因
因变量受到自身或另一解释变量的前几 期值影响的现象称为滞后效应。
表示前几期值的变量称为滞后变量。 如:消费函数
通常认为,本期的消费除了受本期的收入影 响之外,还受前1期,或前2期收入的影响:
Ct=0+1Yt+2Yt-1+3Yt-2+t Yt-1,Yt-2为滞后变量。
以滞后变量作为解释变量,就得到滞后变量模 型。它的一般形式为:
Yt 0 1Yt1 2Yt2 qYtq 0 X t 1X t1 s X ts t q,s:滞后时间间隔
自回归分布滞后模型(autoregressive distributed lag model, ADL):既含有Y对自身滞后变量的回归, 还包括着X分布在不同时期的滞后变量
无限分布滞后模型,主要是通过适当的模型 变换,使其转化为只需估计有限个参数的自回归 模型。
(1)经验加权法 根据实际问题的特点、实际经验给各滞后变 量指定权数,滞后变量按权数线性组合,构成新 的变量。权数据的类型有:
常见的滞后结构类型
w
w
t (c)
•递减型:
即认为权数是递减的,X的近期值对Y的影响较 远期值大。
本节基本内容:
●经济活动中的滞后现象 ●滞后效应产生的原因 ●滞后变量模型
一、滞后变量模型
通常把这种过去时期的,具有滞后作用的变量 叫做滞后变量(Lagged Variable),含有滞后变量 的模型称为滞后变量模型。
滞后变量模型考虑了时间因素的作用,使静态 分析的问题有可能成为动态分析。含有滞后解释变 量的模型,又称动态模型(Dynamical Model)。
如消费函数中,收入的近期值对消费的影响作 用显然大于远期值的影响。
第九章 滞后变量模型
Yt * = b0 + b1 X t + ut
( 9.19 )
Yt*不可观测。由于生产条件的波动,生产管理 方面的原因,库存储备Yt的实际变化量只是预期变 化的一部分。
郑州大学商学院
储备按预定水平逐步进行调整,故有如下局部 储备按预定水平逐步进行调整,故有如下局部 调整假设: 调整假设 * Yt − Yt −1 = δ (Yt − Yt −1 ) ( 9.20 )
郑州大学商学院
( 9.25)
(9.25)减去(9.26)得
Yt = γ b0 + γ b1 X t + (1 − γ ) Yt −1 + ut − (1 − γ ) ut −1
( 9.27 )
郑州大学商学院
郑州大学商学院
Yt = a0 + b0 X t + b1 X t −1 + b2 X t − 2 + ⋅⋅⋅ + bs X t − s + ut
( 9.1)
Yt = a0 + b0Yt + b1Yt −1 + b2Yt − 2 + ⋅⋅⋅ + bρ Yt − ρ + ut
( 9.2 )
(9.1)仅含有解释变量的滞后变量,称为外 生滞后变量模型或分布滞后模型; (9.2)仅含有被解释变量的滞后变量,称为 外生滞后变量模型或自回归模型。
Yt = δ Yt * + (1 − δ ) Yt −1
其中,δ为调整系数 调整系数,0≤ δ ≤1 调整系数 将( 9.19)式代入(9.21)
( 9.21)
Yt = δ b0 + δ b1 X t + (1 − δ ) Yt −1 + δ ut
第九章分布滞后和自回归模型
基本思想:以滞后期i 的一个适当次数的多项
式,模拟分布滞后模型的系数。 可分别模拟单调下降、先升后降,以及循环变
化等不同的滞后效应类型。
设一个有限分布滞后模型为:
Yt 0 X t 1X t 1 K X t K t
也可以写成:
分布滞后模型形式上是含有解释变量滞后项的 多元回归模型。
但分布滞后模型主要用来研究经济变量作用的 时间滞后效应、长期影响,以及经济变量之间 的动态影响关系,可用于评价经济政策的中长 期效果,属于动态计量分析的范畴。
二、分布滞后模型参数估计
用分布滞后模型研究滞后效应,进行预测分析 和评估政策效果之前,先要估计模型中的未知 参数。
i0
i0
则模型变为:
i0
Yt a0Z0t a1Z1t a2Z2t t
很显然,上述 Z0t、Z1t和 Z2t 只是 X t及其各
期滞后的线性组合,因此仍是非随机的 或与误差项无关。
因此可用OLS法对该式进行参数估计,得 到估计值
最后,只需要把这些估计值代入滞后参数多项 式,就可以得到得到各个滞后参数的估计值:
这种现象就是滞后效应。滞后效应在经济问题 中是普遍存在的。
例如人们获得后通常不会立即全部花掉,而是 会在以后一个阶段分次花费,因此收入对人们 消费的影响往往有时间滞后和持续的影响。
滞后效应对经济问题的影响非常重要。要准确 把握经济关系,特别是长期动态关系,避免预 测和决策偏差,必须重视这种滞后效应。
从另一个角度,滞后效应也可以反过来 理解为当期某指标受上期、再上期其他 某指标的影响。
例如上述消费滞后效应也可理解为,当 年消费不仅受到当年收入(40%)的影 响,而且受到上年收入(30%)、再上 年收入(20%)的影响。用公式表示就 是:Ct 0.4It 0.3It1 0.2It2
计量经济学第九章分布滞后和自回归模型
自回归模型的理论导出
适应性预期(Adaptive expectation)模型
在某些实际问题中,因变量 Yt 并不取决于解释变量的当
前实际值
X
t
,而取决于X
t
的“预期水平”或“长期均衡水X
* t
平” 。
例如,家庭本期消费水平,取决于本期收入的预期值;
❖ 为了解决滞后长度不确定的困难,可以依次估计滞 后效应变量的一期滞后、二期滞后…当发现滞后变 量(加入的最多期滞后)的回归系数在统计上开始 变得不显著,或至少有一个变量的系数改变符号 (由正变负或由负变正)时,就不再增加滞后期, 把此前一个模型作为分布滞后模型的形式,相应参 数估计作为模型的参数估计。
市场上某种商品供求量,决定于本期该商品价格的均衡值。
因此,适应性预期模型最初表现形式是
Yt
0
1
X
* t
t
由于预期变量是不可实际观测的,往往作如下 适应性预期假定:
X
* t
X* t 1
(Xt
X
* t 1
)
其中:r为预期系数(coefficient of expectation), 0r 1。
该式的经济含义为:“经济行为者将根据过去的 经验修改他们的预期”,即本期预期值的形成是一 个逐步调整过程,本期预期值的增量是本期实际值 与前一期预期值之差的一部分,其比例为r 。
这个假定还可写成:
X
* t
X t
(1
)
X
* t 1
将
X
* t
X t
(1
)
X
* t 1
代入
第九章 滞后变量模型
第九章 滞后变量模型一. 单项选择题1.下列属于有限分布滞后模型的是( )。
A. t t t t t u Y b Y b X b Y +++++=-- 22110αB. t t t t u X b X b Y ++++=- 110αC. t k t k t t t t u Y b Y b Y b X b Y ++++++=--- 22110αD.t k t k t t t t u X b X b X b X b Y ++++++=--- 22110α2.消费函数模型211.03.05.0400ˆ--+++=t t t t I I I C ,其中I 为收入,则当期收入I t 对未来消费C t+2的影响是:I 增加1单位,C t+2增加( )。
A. 0.5单位;B. 0.3单位C. 0.1单位;D. 0.9单位3.在分布滞后模型t k t k t t t t u X b X b X b X b Y ++++++=--- 22110α中,长期乘数为( )。
A.0bB. i b (i=1,2,…,k)C.∑=ki ib1D.∑=ki ib4.在分布滞后模型的估计中,使用时间序列资料可能存在的序列相关问题就表现为( )。
A.异方差问题B.自相关问题C.多重共线性问题D.随机解释变量问题5.对于有限分布滞后模型t k t k t t t t u X b X b X b X b Y ++++++=--- 22110α中,如果其参数i b (i=1,2,…, k) 可以近似地用一个关于滞后长度i (i=1,2,…,k) 的多项式表示,则称此模型为( )。
A.有限多项式滞后模型B.无限多项式滞后模型C.考伊克变换模型D.自适应预期模型6.自适应预期模型基于如下的理论假设:影响被解释变量Y t 的因素不是X t,而是关于X 的预期*1+t X ,且预期*1+t X 形成的过程是*1+t X -*t X =)(*1+-t t X X γ,其中0<γ<1,γ被称为( )。
自回归分布滞后模型
自回归分布滞后模型自回归分布滞后模型(ARIMA)是一种可用于自回归过程的统计建模技术。
它的主要优点是它能够使用时间序列数据预测未来或者检测和调整自回归过程中可能存在的性质变化。
ARIMA是一种重要的时间序列分析技术,它可以用来预测变量的自回归过程(AR),如动量(MA)和季节性过程(I)。
一、什么是自回归分布滞后模型(ARIMA)自回归分布滞后模型(ARIMA)是一种用于分析和预测时间序列数据的统计学方法。
ARIMA模型可以帮助研究者分析并预测事件的发生情况,以及由事件的发生情况产生的结果。
ARIMA模型的结构可以被定义为简单的一般线性二阶拟合模型。
二、ARIMA模型的有效性ARIMA模型通常证明是有效预测时间序列数据的一种有效方法。
无论是实现和应用于单变量和多变量时间序列上,ARIMA模型都可以为研究者提供可靠的预测结果。
在单变量的时间序列数据分析中,ARIMA 模型可以帮助研究者发现一些未知的趋势,从而判断该变量在未来的运动趋势。
三、ARIMA模型的应用ARIMA模型的应用,可以分为零度模型和非零度模型应用。
它们可以应用于单变量时间序列(零度模型)和多变量时间序列(非零度模型)上。
零度模型可以用来描述和预测单变量时间序列,而非零度模型可以用来描述和预测多变量时间序列中变量之间的关系。
此外,ARIMA模型还可以应用于时间序列平滑、广义线性模型、转换型自回归等领域。
四、ARIMA模型的优缺点ARIMA模型的优点是它能够有效地描述时间序列的差异性,可以使用时间序列数据预测未来或者检测已经发生的变化,进而找出时间序列中可能存在的自回归过程的特征,从而可以有效的预测和预测时间序列的发展趋势。
缺点是在使用自回归过程时,数据分析人员必须对变量进行较小的调整,以保持变量在ARIMA模型中是稳定的,而如果调整失败,将无法得到良好的分析结果。
第九章分布滞后和自回归模型
此外,在考虑一个解释变量对被解释变量的影 响和滞后作用(如收入对消费)以外,还可以 同时考虑其他解释变量对被解释变量的影响, 甚至同时考虑多个解释变量作用的滞后效应等。 分布滞后模型形式上是含有解释变量滞后项的 多元回归模型。 但分布滞后模型主要用来研究经济变量作用的 时间滞后效应、长期影响,以及经济变量之间 的动态影响关系,可用于评价经济政策的中长 期效果,属于动态计量分析的范畴。
设一个有限分布滞后模型为: Yt 0 X t 1 X t 1 K X t K t
也可以写成:
Yt i X t i t
i 0 K
阿尔蒙认为可以用如下i 的多项式模拟 i 的变化: i a0 a1i a2i 2 ami m
其次是滞后效应的模式,对应于m,也 必须预先知道,这就很难以避免判断的 主观偏差。 最后上述变量变换会缩短样本长度,因 此并不能完全解决分布滞后模型参数估 计的自由度问题。 当样本容量并不是很大,滞后期长度较 长时,仍然无法得到有效的估计结果。
2. 考伊克方法
考伊克方法在一定程度上可以弥补阿尔蒙多项 式法的不足,解决其部分问题。 考伊克方法形式上是针对无限分布滞后模型: Yt 0 X t 1 X t 1 2 X t 2 t
(二)先验约束估计
分布滞后模型参数估计的另一类方法, 是利用某种先验信息和经验设定分布滞 后模型的滞后模式,从而简化分布滞后 模型的函数形式,方便参数估计。这类 方法称为“参数约束法”。 最重要的参数约束法是阿尔蒙多项式法 和考伊克方法。
1. 阿尔蒙多项式法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这种模型正是分析判断滞后效应的存在性及其 模式,研究经济行为、经济关系中滞后作用的 基本模型,称为“分布滞后模型” 。
理论上可以考虑有无限多滞后项的分布滞后模
型:Ct c0 c1It c2It 1 c3It 2 t
这种分布滞后模型通常称为“无限分布滞后模 型”,相比之下,只有有限个滞后项的分布滞 后模型则称为“有限分布滞后模型”。
为了横向比较方便等原因,滞后效应也可以通 过滞后期长度、短期效应、中期相应、半效应 长度等进行衡量。
例如上述收入对消费滞后效应的滞后期长度, 也就是滞后效应的持续时间,总滞后效应完全 实现的时间,为2年。滞后的短期效应(当年 效果)为4/9,中期效应(当年加次年效果) 为7/9。半效应长度,也就是滞后效应过半的 时间长度,则在1年之内。
第九章 分布滞后和自回归模型
ቤተ መጻሕፍቲ ባይዱ
前言
前面各章基本上没有区别所用的数据究竟是时 间序列数据还是截面数据。但这两类数据在计 量经济分析中还是有明显差异的。
时间序列数据是经济运动动态过程的数量记录, 包含不同于横截面数据的特殊信息,可以进行 动态计量分析,但时间序列数据的内在联系也 可能给计量经济分析带来问题和困难。
从另一个角度,滞后效应也可以反过来 理解为当期某指标受上期、再上期其他 某指标的影响。
例如上述消费滞后效应也可理解为,当 年消费不仅受到当年收入(40%)的影 响,而且受到上年收入(30%)、再上 年收入(20%)的影响。用公式表示就 是:Ct 0.4It 0.3It1 0.2It2
(二)分布滞后模型
已知存在滞后效应以及滞后效应的时间 长度和结构时,对滞后作用的分析预测 是比较简单的。
但现实中的问题常常是只知道可能存在 滞后效应,滞后效应是否确实存在,滞 后效应的持续长度,及其结构模式都是 未知的。
例如消费滞后效应问题可能是:
Ct c0 c1It c2It 1 c3It 2 t
或:Ct c0 c1It c2It 1 c3It 2 cK It K 1 t
模型中的c0是反映基本消费的常数,c1 等
是反映滞后效应结构的系数,这些参数 的数值,是否显著都是未知的,需要根 据收入和消费数据通过计量分析估计。
有时反映滞后期长度的K也是未知的,也 需要通过分析确定。
此外,在考虑一个解释变量对被解释变量的影 响和滞后作用(如收入对消费)以外,还可以 同时考虑其他解释变量对被解释变量的影响, 甚至同时考虑多个解释变量作用的滞后效应等。
分布滞后模型形式上是含有解释变量滞后项的 多元回归模型。
但分布滞后模型主要用来研究经济变量作用的 时间滞后效应、长期影响,以及经济变量之间 的动态影响关系,可用于评价经济政策的中长 期效果,属于动态计量分析的范畴。
本章介绍利用时间序列数据进行动态计量分析 的几个专题。下一章我们将对时间序列数据计 量分析的一些问题进行分析。
本章结构
第一节 分布滞后模型 第二节 自回归模型 第三节 因果关系检验
第一节 分布滞后模型
一、经济中的滞后效应和分布滞后模型 二、分布滞后模型参数估计
(一)经济中的滞后效应
由于信息滞后、交易周期和心理因素等多方面 的原因,经济行为、政策的作用,经济变量之 间相互影响的效果,常常不是立即体现出来, 而是有时间延滞性或持续作用,会在以后一个 时期内逐步体现出来。
当然,消费者的消费行为一般不可能满足严格 函数关系,必然会因素随机因素干扰而有波动。
此外人们有维持消费水平相对稳定的倾向,在 收入很低时也会设法保持基本的生活水平,因 此会有不受收入直接影响的基本消费。
但上述公式反映了滞后效应的主要特征,只要 进一步了解了基本消费,以此为基础就可以对 消费发展的趋势和收入政策效果等作出有效的 预测和分析。
这种现象就是滞后效应。滞后效应在经济问题 中是普遍存在的。
例如人们获得后通常不会立即全部花掉,而是 会在以后一个阶段分次花费,因此收入对人们 消费的影响往往有时间滞后和持续的影响。
滞后效应对经济问题的影响非常重要。要准确 把握经济关系,特别是长期动态关系,避免预 测和决策偏差,必须重视这种滞后效应。
二、分布滞后模型参数估计
用分布滞后模型研究滞后效应,进行预测分析 和评估政策效果之前,先要估计模型中的未知 参数。
分布滞后模型形式上与一般的多元线性回归相 似,但因为引进多个滞后变量和滞后期长度难 以确定,分布滞后模型的参数估计与一般多元 线性回归模型有所不同。
分布滞后模型的参数估计首先要解决的问题是 滞后长度确定,或者如何在未知滞后长度时估 计参数。
一般可采用下列标准化表达式分别表示有限分 布滞后模型和无限分布滞后模型:
无限分布滞后模型:有无限多滞后项
Yt 0 X t 1X t 1 2 X t 2 t
有限分布滞后模型:有限个滞后项
Yt 0 X t 1X t 1 2 X t 2 K X t Kt
滞后效应可以直接通过滞后作用的描述来反映。 例如若某地消费者平均来说在获得20000元收
入后,会在当年消费掉8000元,下一年消费 6000元,再下一年又消费4000元,余下2000 元储蓄起来以备不时之需,那么意味着当年收 入一般对当年消费会产生40%的作用,对下年 消费会产生30%的作用,对再下年消费则有 20%的作用。
(一)现式估计法
现式估计法适用滞后长度不确定的分布滞后模 型。
为了解决滞后长度不定的困难,可以依次估计 有滞后效应变量的一期滞后、两期滞后……, 当发现滞后变量(加入的最多期滞后)的回归 系数在统计上开始变得不显著,或至少有一个 变量的系数改变符号(由正变负或由负变正) 时,就不再增加滞后期,把此前一个模型作为 分布滞后模型的形式,相应参数估计作为模型 的参数估计。