高二下数学文科期中试卷二B卷

合集下载

高二(下)期中试卷(文科)(包含答案)

高二(下)期中试卷(文科)(包含答案)

高二年级(下)数学期中文科卷班级:_____________ 姓名:_____________ 分数:_______________ 参考公式:线性相关系数:ni ix ynx yr -∑独立性检验:2χ=一、 选择题(每小题5分,共50分): 1.右侧2⨯2列联表中a,b 的值分别为( )A .94,96B .52,C .52,54D .54,522.复数6+5i 共轭复数的虚部为 ( )A .-5i B .5i C.-5 D .53.已知x 与y 之间的一组数据:(0,1),(1,3),(2,5),(3,7),则y 与x 的线性回归方程必过点( )A .(2,4)B .(1.5,2)C .(1,2)D .(1.5,4) 4.若大前提是:任何实数的平方都大于0,小前提是:a R ∈,结论是:20a >,那么这个演绎推理 ( )A .正确B .大前提出错C .小前提出错D .推理形式出错5.若复数312a ii++是纯虚数,则实数值a 为 ( ) A .13 B .13 C .1.5 D .-66、右图是集合的知识结构图,如果 要加入“交集”,则应该放在( ) A .“集合的概念”的下位B .“集合的表示”的下位C .“基本关系”的下位D .“基本运算”的下位7.若通过推理所得到的结论一定是正确的,则这样的推理必定是 ( ) A . 归纳推理 B . 类比推理 C .合情推理 D. 演绎推理8.已知复数15 + ai >14,则实数a 的值为 ( )A .等于1B .大于1C .等于0D .不确定9.根据右边的结构图,总经理的直接下属是( )A .总工程师和专家办公室B .开发部C .总工程师、专家办公室和开发部D .总工程师、专家办公室和所有七个部10.设'010()cos ,()()f x x f x f x ==,…,'1()()n n f x f x +=,N x ∈,则2011()f x =( ) A .x cos B .-x cos C .x sin D .-x sin二、 填空题(每小题5分,共25分):11、甲、乙两射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9。

高二下学期期中考试数学试题 (二)(文科)

高二下学期期中考试数学试题 (二)(文科)

高二下学期期中考试数学试题 (二)(文科)本试卷全卷满分150分。

考试用时120分钟★ 祝 考 试 顺 利 ★一、选择题(本大题共10小题,每小题5分,共50分, 在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数 3cos y x x =的导数为( D )A.23sin y x x '=- B.233cos sin y x x x x '=+ C. 32sin 3cos y x x x x '=- D. 233cos sin y x x x x '=- 2. 下列命题中为真命题的是(C )A . 命题“若1x =,则220x x +-=”的否命题B .命题“若1x >,则21x >”的否命题 C .命题“若x y >,则x y >”的逆命题 D .命题“若20x >,则1x >”的逆否命题3.曲线21x y xe x =++在点(0,1)处的切线方程为(A )A .31y x =+B .31y x =-C .21y x =+D .21y x =-4. 不能表示的曲线是()方程1cos sin ],,0[22=+∈ααπαy x C A 椭圆 B 双曲线 C 抛物线 D 圆5. 设:()ln 21p f x x x mx =++++1x e mx ++在(0)+∞,内单调递增,:q m -≥0m ≥,则p 是q 的( C ) A .充分不必要条件 B . 充分必要条件 C .必要不充分条件D .既不充分也不必要条件6.已知对k R ∈,直线10y kx --=与椭圆2215x y m+=恒有公共点,则实数m 的取值范围是( D ) A .(0,1)B .(0,5)C .[1,5)D .),5()5,1[+∞⋃7.设P 为双曲线22112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为( A )A .12B . . 24 D . 8.方程322670x x -+=在(0,2)内根的个数有(B )A. 0个B. 1个C. 2个D. 3个9. 已知函数()f x 的定义域为[1,4]-,部分对应值如下表,()f x 的导函数()y f x '=的图象如右图所示。

第二学期期中高二数学(文科)试卷有答案

第二学期期中高二数学(文科)试卷有答案

C 3H 8C 2H 6CH 4HH H HH HHH H HH HHHC C C C C HHHHC 第二学期期中高二数学(文科)试卷(试卷I )注意事项:①本试卷分第I 卷、第II 卷两部分,共120分,考试时间120分钟.②请按要求作答. ③参考公式:用最小二乘法求线性回归方程系数公式1221ˆˆˆni ii ni i x y nx ybay bx x nx==-==--∑∑, 21R =-残差平方和总偏差平方和 22()()()()()n ad bc K a b c d a c b d -=++++ n a b c d =+++独立性检验概率表..1.复数1i +在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 2.按照下列三种化合物的结构式及分子式的规律,写出后一种化合物的分子式...是( ). A .C 4H 9B .C 4H 10C .C 4H 11D .C 6H 123.下列较合适用回归分析两变量相关关系的是( )A .圆的面积与半径B .人的身高与体重C .色盲与性别D . 身高与学习成绩 4.若复数1(1)m m i ++-是虚数,则实数m 满足( )A .1m ≠B . 1m ≠-C . 1m =D . 1m =-5.如右,结构图中要素之间表示从属关系的是( )6.下面几种推理中是演绎推理....的序号为( ) A .由金、银、铜、铁可导电,猜想:金属都可导电; B .猜想数列111,,,122334⨯⨯⨯ 的通项公式为1(1)n a n n =+()n N +∈; C .半径为r 圆的面积2S r π=,则单位圆的面积S π=;D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-= .7.用反证法证明:某方程“至多有一个解”中,假设正确的是:该方程 ( )A .无解B .有一个解C .有两个解D . 至少有两个解 8. 给出下列结论:(1)在回归分析中,可用指数系数2R 的值判断模型的拟合效果,2R 越大,模型的拟合效果越好; (2)在回归分析中,可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好;(3)在回归分析中,可用相关系数r 的值判断模型的拟合效果,r 越小,模型的拟合效果越好; (4)在回归分析中,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高. 以上结论中,正确的有( )个.A .1B .2C .3D .4 9.从222576543,3432,11=++++=++=中得出的一般性结论是( )A .2123...(21)n n ++++=-B .2(1)...(21)(21)n n n n ++++-=+C .2(1)...(32)(21)n n n n ++++-=- D .2(1)...(32)(21)n n n n ++++-=+ 10.已知x 与y 之间的一组数据:A . (32,4) B .(6,16) C .(2,4) D . (2,5)11.方程322740x x x +-+=的不同的实数根个数有( )个A .3B .2C .1D .012.对任意正数的12,x x ,都有1212()()()f x x f x f x ⋅=+成立,且(4)2f = 由此下列合适的是( )A .()f x =B .2()l o g f x x = C . ()2x f x = D . ()2xf x =13 5 7 9 11 13 15 17 19 ………………………………班级 座号 姓名_________________成绩_____ __◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ ◆◆◆◆◆◆◆◆◆◆◆◆◆ ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆第二学期期中试卷高 二(文科)数 学(试卷II )答卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分,请把正确答案写在题中横线上) 13.若有一组数据的总偏差平方和为100,相关指数R 2为0.6,则残差平方和为 ; 14.设P Q ==,,P Q 的大小顺序是 ; 15.正奇数按如右图数阵排列,则第n (1n >)行首,尾两数之和为 ; 16.定义运算a bad bc c d=-,则对复数z , 符合条件112zi z=的复数z 为 。

合肥市高二下学期期中数学试卷(文科) B卷

合肥市高二下学期期中数学试卷(文科) B卷

合肥市高二下学期期中数学试卷(文科) B卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数如下,其中拟合效果最好的模型是()A . 模型1的相关指数为0.98B . 模型2的相关指数为0.80C . 模型3的相关指数为0.50D . 模型4的相关指数为0.252. (2分) (2018高二下·顺德期末) 用反证法证明命题“平面四边形四个内角中至少有一个不大于时”,应假设()A . 四个内角都大于B . 四个内角都不大于C . 四个内角至多有一个大于D . 四个内角至多有两个大于3. (2分)已知复数,则在复平面内,复数z对应的点位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分)(2017·广西模拟) 在△ABC中,命题p:“B≠60°“,命题q:“△ABC的三个内角A,B,C不成等差数列“,那么p是q的()A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件5. (2分) (2018高二下·龙岩期中) 有一段演绎推理是这样的:“幂函数在上是增函数;已知是幂函数;则在上是增函数”的结论显然是错误的,这是因为()A . 大前提错误B . 小前提错误C . 推理形式错误D . 非以上错误6. (2分)现有四个函数:①y=xsinx,②y=xcosx,③y=x|cosx|,④y=x•2x的部分图象如下,但顺序被打乱了,则按照从左到右将图象对应的函数序号排列正确的一组是()A . ①②③④B . ②①③④C . ③①④②D . ①④②③7. (2分)(2018·朝阳模拟) 已知点是抛物线上的一点,是其焦点,定点,则的外接圆的面积为()A .B .C .D .8. (2分)(2017·陆川模拟) 已知命题p:∀x∈(1,+∞),x3+16>8x,则命题p的否定为()A . ¬p:∀x∈(1,+∞),x3+16≤8xB . ¬p:∀x∈(1,+∞),x3+16<8xC . ¬p:∃x0∈(1,+∞),x03+16≤8x0D . ¬p:∃x0∈(1,+∞),x03+16<8x09. (2分)对于各数互不相等的正数数组(i1 , i2 ,…,in)(n是不小于2的正整数),如果在p<q时有ip<iq ,则称“ip与iq”是该数组的一个“顺序”,一个数组中所有“顺序”的个数称为此数组的“顺序数”.例如,数组(2,4,3,1)中有顺序“2,4”、“2,3”,其“顺序数”等于2.若各数互不相等的正数数组(a1 , a2 , a3 , a4 , a5)的“顺序数”是4,则(a5 , a4 , a3 , a2 , a1)的“顺序数”是()A . 7B . 6C . 5D . 410. (2分)已知双曲线的方程为,它的左、右焦点分别,左右顶点为,过焦点先作其渐近线的垂线,垂足为,再作与轴垂直的直线与曲线交于点,若依次成等差数列,则离心率e=()A .B .C . 或D .11. (2分) (2016高二上·自贡期中) 用一个平面去截正方体,对于截面的边界,有以下图形:①钝角三角形;②直角梯形;③菱形;④正五边形;⑤正六边形.则不可能的图形的选项为()A . ③④⑤B . ①②⑤C . ①②④D . ②③④12. (2分)已知函数(k∈R),若函数有三个零点,则实数k的取值范围是()A . k≤2B . -1<k<0C . -2≤k<-1D . k≤-2二、填空题: (共4题;共5分)13. (1分) (2017高一上·上海期中) 设实数a,b满足a+ab+2b=30,且a>0,b>0,那么的最小值为________.14. (1分)已知A(2,3,5),B(﹣1,3,5),则线段AB的中点C的坐标为________.15. (2分) (2016高二下·钦州期末) 如图,类比三角形中位线定理“如果EF是三角形的中位线,则EF AB.”,在空间四面体(三棱锥)P﹣ABC中,“如果________,则________”.16. (1分)已知函数f(x)=ax2﹣2ax+a+1(a>0),g(x)=bx3﹣2bx2+bx﹣(b>1),则函数y=g(f (x))的零点个数为________个.三、解答题: (共6题;共65分)17. (10分) (2018高三上·成都月考) 已知, .(1)若在恒成立,求的取值范围;(2)若有两个极值点,,求a的范围并证明 .18. (10分)(2017·渝中模拟) f(x)=|x﹣a|+|2x+1|(1) a=1,解不等式f(x)≤3;(2) f(x)≤2a+x在[a,+∞)上有解,求a的取值范围.19. (15分)(2018·南阳模拟) 某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:设农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程=bx+a;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(注:==, )20. (10分)某高中有甲乙两个班级进行数学考试,按照大于或等于90分为优秀,90分以下为非优秀统计成绩后,得到如下的列联表:优秀非优秀总计甲班1055乙班30合计105(1)请完成上面的列联表;(2)根据列联表的数据,能否在犯错误的概率不超过0.05的前提下认为成绩与班级有关系?参考公式:为样本容量)随机变量K2的概率分布:p(K2≥k)0.250.150.100.050.0250.0100.0050.001k 1.323 2.072 2.706 3.841 5.024 6.6357.87910.82821. (10分) (2019高二上·烟台期中) 已知函数 .(1)求在点处的切线方程;(2)若存在,满足成立,求实数的取值范围.22. (10分) (2019高二上·南通月考) 如图,马路南边有一小池塘,池塘岸长40米,池塘的最远端到的距离为400米,且池塘的边界为抛物线型,现要在池塘的周边建一个等腰梯形的环池塘小路,且均与小池塘岸线相切,记 .(1)求小路的总长,用表示;(2)若在小路与小池塘之间(图中阴影区域)铺上草坪,求所需铺草坪面积最小时,的值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题: (共6题;共65分) 17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、。

高二下学期期中数学试卷(文科)第2套真题

高二下学期期中数学试卷(文科)第2套真题

高二下学期期中数学试卷(文科)一、选择题1. 设集合M={x|x2=x},N={x|lgx≤0},则M∪N=()A . [0,1]B . (0,1]C . [0,1)D . (﹣∞,1]2. 命题“若x2<1,则﹣1<x<1”的逆否命题是()A . 若≥1,则x≥1或x≤﹣1B . 若﹣1<x<1,则<1C . 若x >1或x<﹣1,则>1D . 若x≥1或x≤﹣1,则≥13. 不等式的解集为()A . [﹣1,0)B . [﹣1,+∞)C . (﹣∞,﹣1]D . (﹣∞,﹣1]∪(0,+∞)4. 在极坐标系中,与点关于极点对称的点的坐标是()A .B .C .D .5. 参数方程(t为参数)所表示的曲线是()A . 一条射线B . 两条射线C . 一条直线D . 两条直线6. 已知3x+y=10,则x2+y2的最小值为()A .B . 10C . 1D . 1007. 已知集合A={X|a+1≤x≤2a﹣1},B={x|﹣2≤x≤5},且A⊆B,则a的取值范围是()A . a<2B . a<3C . 2≤a≤3D . a≤38. 对任意实数x,若不等式|x+2|+|x+1|>k恒成立,则实数k的取值范围是()A . k>1B . k=1C . k≤1D . k<19. 若<0,则下列不等式①a+b<ab;②|a|>|b|;③a<b;④ >2中,正确的不等式有()A . 0个B . 1个C . 2个D . 3个10. a,b,c,d∈R+,设S= + ++ ,则下列判断中正确的是()A . 0<S<1B . 1<S<2C . 2<S<3D . 3<S<411. 点P(x,y)在椭圆+(y﹣1)2=1上,则x+y的最大值为()A . 3+B . 5+C . 5D . 612. 若直线y=x﹣b与曲线(θ∈[0,2π])有两个不同的公共点,则实数b的取值范围为()A . (2﹣,1)B . [2﹣,2+ ]C . (﹣∞,2﹣)∪(2+ ,+∞)D . (2﹣,2+ )二、填空题13. 点(2,﹣2)的极坐标为________(ρ>0,0≤θ<2π).14. 不等式(|3x﹣1|﹣1)•(sinx﹣2)>0的解集是________.15. 直线l过点M0(1,5),倾斜角是,且与直线交于M,则|MM0|的长为________.16. 下列各小题中,P是q的充要条件的是________(1)p:m<﹣2或m>6;q:y=x2+mx+m+3有两个不同的零点.(2)p:=1,q:y=f(x)是偶函数.(3)p:cosα=cosβ,q:tanα=tanβ.(4)p:A∩B=A,q:CUB⊆CUA.三、解答题17. 用反证法证明:已知x,y∈R,且x+y>2,则x,y中至少有一个大于1.18. 已知函数f (x)= 的定义域集合是A,函数g(x)=lg[x2﹣(2a+1)x+a2+a]的定义域集合是B.(1)求集合A,B.(2)若A∪B=B,求实数a的取值范围.19. 已知p:﹣2≤1﹣≤2,q:x2﹣2x+1﹣m2≤0(m>0),且¬p是¬q的必要不充分条件,求实数m的取值范围.20. 在平面直角坐标系xOy中,圆C的参数方程为(θ为参数),直线l经过点P(1,1),倾斜角,(1)写出直线l的参数方程;(2)设l与圆C相交于两点A,B,求点P到A,B两点的距离之积.21. 设函数f(x)=|x﹣1|+|x﹣a|.(1)若a=﹣1,解不等式f(x)≥3(2)如果∀x∈R,f(x)≥2,求a的取值范围.22. 按照某学者的理论,假设一个人生产某产品单件成本为a元,如果他卖出该产品的单价为m元,则他的满意度为;如果他买进该产品的单价为n 元,则他的满意度为.如果一个人对两种交易(卖出或买进)的满意度分别为h1和h2,则他对这两种交易的综合满意度为.现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为mAm元和mB元,甲买进A与卖出B 的综合满意度为h甲,乙卖出A与买进B的综合满意度为h乙.(1)求h甲和h乙关于mA、mB的表达式;当mA= mB时,求证:h甲=h乙;(2)设mA= mB,当mA、mB分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?。

高二下学期期中考试数学(文科)试卷含答案

高二下学期期中考试数学(文科)试卷含答案

高二下学期期中考试数学(文科)试卷含答案高二第二学期期中考试文科数学试卷考试时间:120分钟,满分150分第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知命题p: 对于任意x∈R,sinx≤1,它的否定是()A。

存在x∈R,sinx>1B。

对于任意x∈R,sinx≥1C。

存在x∈R,sinx≥1D。

对于任意x∈R,sinx>12.已知复数z满足(z-1)i=i+1,复平面内表示复数z的点位于()A。

第一象限B。

第二象限C。

第三象限D。

第四象限3.函数f(x)在x=x处导数存在,若p:f(x)=0;q:x=x是f(x)的极值点,则(。

)A。

p是q的充分必要条件B。

p是q的充分条件,但不是q的必要条件C。

p是q的必要条件,但不是q的充分条件D。

p既不是q的充分条件,也不是q的必要条件4.有下列命题:①若xy=0,则x+y=0;②若a>b,则a+c>b+c;③矩形的对角线互相垂直。

其中真命题有()A。

0个B。

1个C。

2个D。

3个5.设复数z=(1+2i)(a+i)为纯虚数,其中a为实数,则a=()A。

-2/11B。

-2/22C。

2/11D。

2/226.双曲线x^2/4-y^2/1=1的渐近线方程和离心率分别是()A。

y=±2x。

e=5B。

y=±x。

e=5/2C。

y=±x。

e=3D。

y=±2x。

e=3/27.若函数f(x)=x-lnx的单调递增区间是(。

)A。

(0,1)B。

(0,e)C。

(0,+∞)D。

(1,+∞)8.按照图1——图3的规律,第10个图中圆点的个数为()个。

A。

40B。

36C。

44D。

52图略)9.某产品的广告费用x与销售额y的统计数据如下表:广告费用x(万元) | 销售额y(万元) |4 | 49 |2 | 26 |3 | 39 |5 | 54 |根据上表可得回归方程y=bx+a中的b为9.4,据此模型预报广告费用为6万元时销售额为(。

高二下学期期中考试文科数学试卷_(有答案)

高二下学期期中考试文科数学试卷_(有答案)

16.当 x [ 2,1] 时,不等式 ax3 x2 4 x 3 0 恒成立,则实数 a 的取值范围是

三、解答题: ( 本大题共 6 小题,满分 80 分,解答应写出文字说明、证 算步骤 ) 17.(本小题满分 12 分)为了解某班学生喜爱打篮球是否与性别有关,对 行问卷
调查得到了如下的列联表,在 50 人中随机抽取 1 人抽到喜爱打篮球
1 C. n( n 1)
2
1 D. n( n 1)
2
5. 下列说法: 2①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
2 教育网 ②设有一个
回归方程 y?=3-5 x,变量 x 增加一个单位时, y 平均增加 5 个单位
5.③线性回归方程 y?=bx+a 必过 ( x , y) ; 21 世纪教育网 ④在线性回归模型中,若 R2≈ 0.64, 则表示预报变量大约有 64%是由解释变量引起的 ; 高.
13. 复数 z 满足: ( z i )(2 i ) 5 ;则 | z|= _____.
5 14.已知等比数列 { an} 满足: a1 a3 10 , a4 a6 4 ,则 { an} 的通项公式 an _____.
x2
15.已知双曲线
3
16 y2 p2
1 的左焦点在抛物线
y2
2 px 的准线上,则 p _____.
高二下学期期中考试文科数学试卷 _( 有答案 )
参考公式: K 2
n(ad bc)2
,其中 n a b c d
(a b)(c d)(a c)(b d)
参考数据:临界值表
2
p(K k)
0.15
0.10
0.05
0.025 0.010 0.005 0.001

高二第二学期文科数学期中试卷含答案

高二第二学期文科数学期中试卷含答案

高二第二学期中考试数学(文科)试题一、选择题:(每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的) 1、复数z = i·(1+i) 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2、若212(1),1z i z i =+=-,则12z z 等于( ) A . 1i -+ B . 1i + C .1i - D .1i --3、圆ρ=2cos ⎝⎛⎭⎪⎫θ+π4的圆心为( ) A.⎝ ⎛⎭⎪⎫1,π4 B.⎝ ⎛⎭⎪⎫1,34π C.⎝ ⎛⎭⎪⎫1,54π D.⎝ ⎛⎭⎪⎫1,74π4、下列点不在直线⎩⎪⎨⎪⎧x =-1-22t ,y =2+22t (t 为参数)上的是( )A .(-1,2)B .(2,-1)C .(-3,2)D .(3,-2)5、已知x 与y 之间的一组数据:则y 与x 的线性回归方程y ^=b ^x +a ^必过( )A .点(2,2)B .点(1.5,0)C .点(1.5,4)D .点(1,2)6、用反证法证明命题“a ,b ∈N ,如果ab 可被5整除”,那么a ,b 至少有一个能被5整除.则假设的内容是( )A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a 不能被5整除D .a ,b 有一个不能被5整除7、用三段论推理命题:“任何实数的平方大于0,因为a 是实数,所以20a >”,你认为这个推理( ) A .大前题错误 B .小前题错误 C .推理形式错误 D .是正确的8、设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c,类比这个结论可知:四面体S ­ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体S ­ABC 的体积为V ,则R =( )A.V S 1+S 2+S 3+S 4B.2V S 1+S 2+S 3+S 4C.4V S 1+S 2+S 3+S 4D.3VS 1+S 2+S 3+S 49、每一吨铸铁成本y (元)与铸件废品率x %建立的回归方程y ^=56+8x ,下列说法正确的是( ) A .废品率每增加1%,成本每吨增加64元 B .废品率每增加1%,成本每吨增加8% C .废品率每增加1%,成本每吨增加8元 D .如果废品率增加1%,则每吨成本为56元10、设r >0,那么直线x cos θ+y sin θ=r 与圆⎩⎪⎨⎪⎧x =r cos φ,y =r sin φ(φ是参数)的位置关系是( )A .相交B .相切C .相离D .视r 的大小而定11、 在正整数数列中,由1开始依次按如下规则将某些数染成红色.先染1,再染2个偶数2,4;再染4后面最邻近的3个连续奇数5,7,9;再染9后面最邻近的4个连续偶数10,12,14,16;再染16后面最邻近的5个连续奇数17,19,21,23,25.按此规律一直染下去,得到一红色子数列1,2,4,5,7,9,10,12,14,16,17,….则在这个红色子数列中,由1开始的第60个数是( )A .103B .105C .107D .109 12、已知在平面直角坐标系xOy 中,点P (x ,y )是椭圆x 22+y 23=1上的一个动点,则S =x +y 的取值范围为( )A . [-5,5]B .[-5,5]C .[-5,-5]D 、[5,5]二、填空题:(本题共4小题,每小题5分,共20分) 13、已知复数z 满足 ()z 1i i +=-,则z = .14根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,该社区一户年收入为15万元家庭的年支出为____________________(万元);15、在直角坐标系Oxy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线C 1:⎩⎪⎨⎪⎧x =3+cos θ,y =4+sin θ(θ为参数)和曲线C 2:ρ=1上,则|AB |的最小值为________.16、蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看做是一个正六边形,右图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f (n )表示第n 个图的蜂巢总数,则用n 表示的f (n )=________.三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17、(本题满分10分)已知,R m ∈复数2(1)12z i m mi i =+---(其中i 为虚数单位). (Ⅰ)当实数m 取何值时,复数z 是纯虚数;(Ⅱ)若复数z 在复平面上对应的点位于第三象限,求实数m 的取值范围.18、(本题满分12分)已知直线l的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =2+32t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数). (1)将曲线C 的参数方程化为普通方程;(2)若直线l 与曲线C 交于A ,B 两点,求线段AB 的长.19、(本题满分12分)近年来,微信越来越受欢迎,许多人通过微信表达自己、交流思想和传递信息,微信是现代生活中进行信息交流的重要工具.而微信支付为用户带来了全新的支付体验,支付环节由此变得简便而快捷.某商场随机对商场购物的100名顾客进行统计,其中40岁以下占,在40岁以下的顾客中采用微信支付的占,40岁以上的顾客中采用微信支付的占.40岁以下 40岁以上 合计 使用微信支付 未使用微信支付合计P (K ≥0k ) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.0010k0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.82820、(本题满分12分) 若a 1>0,a 1≠1,a n +1=2a n1+a n(n =1,2,…). (1)求证:a n +1≠a n ;(2)令a 1=12,写出a 2,a 3,a 4,a 5的值,观察并归纳出这个数列的通项公式a n(不要求证明).21、(本题满分12分)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时点P 的直角坐标.22、(本题满分12分)一只注射药物细菌的繁殖数y 与一定范围内的温度x 有关,现收集了该种注射药物y /个经计算得:611266i i x x ===∑,611336i i y ===∑,()()61557i ii x x y y =--=∑,()62184i i x x=-=∑,()213930i i y y=-=∑,线性回归模型的残差平方和()621236.64i ii y y =-=∑,8.06053167e≈,其中i x ,i y 分别为观测数据中的温差和繁殖数,1,2,3,4,5,6i =.(I )若用线性回归方程,求y 关于x 的回归方程y bx a =+(精确到0.1);(II )若用非线性回归模型求得y 关于x 回归方程为0.23030.06x y e =,且相关指数20.9522R =. (i )试与(I )中的回归模型相比,用2R 说明哪种模型的拟合效果更好.(ii )用拟合效果好的模型预测温度为35C 时该种注射药物细菌的繁殖数(结果取整数).参考公式:^221112222111()()()ˆˆˆ,1()()=,======----==-=----∑∑∑∑∑∑n nniii ii i i i i nnniiii i i x x y y x y nx yy y bay bx R x x xnxy y第二学期中考试高二数学(文科)试题(答案)一、选择题:(每小题5分,共60分.1、解析:选B z =i ·(1+i)=-1+i ,在复平面上对应点的坐标为(-1,1),其在第二象限.2、解答:A3、解析:由ρ=2cos ⎝⎛⎭⎪⎫θ+π4得ρ2=2ρcos θ-2ρsin θ,所以x 2+y 2=2x -2y ,所以⎝ ⎛⎭⎪⎫x -222+⎝ ⎛⎭⎪⎫y +222=1,圆心的直角坐标为⎝ ⎛⎭⎪⎫22,-22,极坐标为⎝ ⎛⎭⎪⎫1,7π4.答案:D4、解析:直线l 的普通方程为x +y -1=0,因此点(-3,2)的坐标不适合方程x +y -1=0. 答案:C5、解答:C6、解析:B “至少有一个”的否定为“一个也没有”,故应假设“a ,b 都不能被5整除”7、解答:A8、【解析】 四面体中以内切球的球心为顶点,四面体的各个面为底面,可把四面体分割成四个高均为R的三棱锥,从而有13S 1R +13S 2R +13S 3R +13S 4R =V .即(S 1+S 2+S 3+S 4)R =3V .∴R =3VS 1+S 2+S 3+S 4. 【答案】 D9、解析:选C 根据回归方程知y 是关于x 的单调增函数,并且由系数知x 每增加一个单位,y 平均增加8个单位10、解析:易知圆的圆心在原点,半径是r ,则圆心(0,0)到直线的距离为d =|0+0-r |cos 2θ+sin 2θ=r ,恰好等于圆的半径,所以直线和圆相切.答案:B11、【解析】 由题可知染色规律是:每次染完色后得到的最后一个数恰好是染色个数的平方.故第10次染完后的最后一个数为偶数100,接下来应该染101,103,105,107,109,此时共60个数. 【答案】 D12、解析:因椭圆x 22+y 23=1的参数方程为⎩⎨⎧x =2cos φ,y =3sin φ(φ为参数),故可设动点P 的坐标为(2cos φ,3sin φ),因此S =x +y =2cos φ+3sin φ=5(25cos φ+35sin φ)=5sin(φ+γ),其中tan γ=63,所以S 的取值范围是[-5, 5 ],故选A. 答案:A二、填空题:(本题共4小题,每小题5分,共20分)13, 14、11.8 15、 3 16、3n 2-3n +113、解答:由()z 1i i +=-得(1)11z 1(1)(1)22i i i i i i i ---===--++-,所以||z =14、解析:由题意知,x =8.2+8.6+10.0+11.3+11.95=10, y =6.2+7.5+8.0+8.5+9.85=8, ∴a ^=8-0.76×10=0.4, ∴当x =15时,y ^=0.76×15+0.4=11.8 (万元).15、解析:因为C 1:(x -3)2+(y -4)2=1,C 2:x 2+y 2=1,所以两圆圆心之间的距离为d =32+42=5.因为A 在曲线C 1上,B 在曲线C 2上,所以|AB |min =5-2=3. 答案:316、解析:由于f (2)-f (1)=7-1=6,f (3)-f (2)=19-7=2×6,推测当n ≥2时,有f (n )-f (n -1)=6(n -1),所以f (n )=[f (n )-f (n -1)]+[f (n -1)-f (n -2)]+…+[f (2)-f (1)]+f (1)=6[(n -1)+(n-2)+…+2+1]+1=3n 2-3n +1.又f (1)=1=3×12-3×1+1, 所以f (n )=3n 2-3n +1.答案:3n 2-3n +1三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17、解:解:复数221(2)z m m m i =-+--……2分(I)221020m m m ⎧-=⎨--≠⎩即1m =时,复数z 是纯虚数;……6分 (II) 2211101220m m m m m -<<⎧-<⎧⇒⎨⎨-<<--<⎩⎩即-1<m<1时,复数z 表示的点位于第三象限。

2022-2023学年高二下学期期中文科数学试题(解析版)

2022-2023学年高二下学期期中文科数学试题(解析版)

镇安中学高二年级2022-2023学年度第二学期期中考试试题 数学(文科)注意事项:1.本试卷共4页,满分150分,时间120分钟;2答卷前,务必将答题卡上密封线内的各项目填写清楚;3.第Ⅰ卷选择题必须使用2B 铅笔填涂,第Ⅱ卷非选择题必须使用0.5毫米黑色墨水签字笔书写,涂写要工整、清晰;4.考试结束后,监考员将答题卡收回并整理.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设集合,,则()(){}20A x x x =-<{}1,0,1,2B =-A B = A. B.C.D.{}1-{}1{}0,1{}1,2【答案】B 【解析】【分析】解一元二次不等式化简集合A ,再利用交集的定义求解作答. 【详解】集合,而, {|(2)0}{|02}A x x x x x =-<=<<{}1,0,1,2B =-所以. {}1A B ⋂=故选:B2. 命题,则是( )2:[1,2],10p x x ∀∈-≥p ⌝A. B. 2[1,2],10x x ∀∉-≥2[1,2],10x x ∀∈-<C. D.2[1,2],10x x ∃∉-≥2[1,2],10x x ∃∈-<【答案】D 【解析】【分析】根据全称量词的否定是特称量词可得答案. 【详解】若命题,则是.2:[1,2],10p x x ∀∈-≥p ⌝2[1,2],10x x ∃∈-<故选:D3. 复数的虚部是( ) (1i)i z =-A. B.C. 1D. i1-i -【答案】C 【解析】【分析】求出复数的代数形式,进而可得其虚部. z 【详解】,其虚部为. (1i)i=1i z =-+1故选:C.4. 设,则“”是“”的( ) x ∈R 1x <ln 0x <A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】B 【解析】【分析】根据对数函数定义域可知充分性不成立;由对数函数单调性可确定必要性成立. 【详解】当时,若,则无意义,充分性不成立; 1x <0x ≤ln x 当时,,成立,必要性成立;ln 0x <01x <<1x ∴<综上所述:,则“”是“”的必要不充分条件. x ∈R 1x <ln 0x <故选:B .5. 从5名女生2名男生中任选3人参加学校组织的演讲比赛,则在女生甲被选中的条件下,男生至少一人被选中的概率是( ) A.B.C.D.12473523【答案】C 【解析】【分析】记女生甲被选中为事件,记男生至少一人被选中为事件,根据条件概率计算. A B ()P B A 【详解】设女生甲被选中为事件,事件表示女生甲被选中后再从剩下的6人中选2人,故A A ,()263377C 15C C P A ==设男生至少一人被选中为事件,事件表示女生甲被选中后再选2男生或1男生和1女生(从剩余4B AB 女生中选),故()2112423377C C C 9C C P AB +==则在女生甲被选中的条件下,男生至少一人被选中的概率是. ()()()93155P AB P B A P A ===故选:C.6. 在中,已知,则的外接圆半径为( )ABC 60,4A BC == ABCB. 4C.D.【答案】C 【解析】【分析】利用三角形的余弦定理,即可求解. 【详解】因为在中,已知,ABC 60,4A BC ==设的外接圆半径为,由正弦定理可得 ABC R 2sin BC R A ==解得的外接圆半径为R ABC =故选:C .7. 执行如图所示的程序框图,若输入k 的值为1,则输出n 的值为( )A. 2B. 3C. 4D. 5【答案】B 【解析】【分析】按照程序框图运行,当时,结束循环,输出.4k =3n =【详解】输入,第一次循环:,,; 1k =21110<+112k =+=011n =+=第二次循环:,,;22210<+213k =+=112n =+=第三次循环:,,;23310<+314k =+=213n =+=第四次循环:,结束循环,此时,.所以输出. 24410>+4k =3n =3n =故选:B.8. 记等差数列的前项和为,若,则( ) {}n a n n S 1144S =468a a a ++=A. 12 B. 13 C. 14 D. 15【答案】A 【解析】【分析】根据等差数列的求和公式由求出,利用等差数列的性质可得答案. 1144S =64a =【详解】因为数列为等差数列,所以,{}n a ()1111161111442a a S a +===所以,所以. 64a =4686312a a a a +==+故选:A.9. 函数的图像大致是( )()()22e xf x x x =-A. B.C .D.【答案】B 【解析】【分析】由函数有两个零点排除选项A ,C ;再借助导数探讨函数的单调性与极值情况即可()f x ()f x 判断作答.【详解】由得,或,选项A ,C 不满足,即可排除A ,C()0f x =0x =2x =由求导得,()()22e x f x x x =-()()22e xx x f '=-当或时,, x <x >()0f x ¢>当时,,x <<()0f x '<于是得在和上都单调递增,在上单调递减,()fx (,-∞)+∞(所以在处取极大值,在处取极小值,D 不满足,B 满足. ()fx x =x =故选:B10. 已知变量之间的线性回归方程为,且变量之间的一组相关数据如表所示, ,x y ˆ0.47.6yx =-+,x yx 6 8 10 12y 6m32则下列说法中错误的有( ) A. 变量之间呈现负相关关系 B. 变量之间的相关系数 ,x y ,x y 0.4r =-C. 的值为5 D. 该回归直线必过点m (9,4)【答案】B 【解析】【分析】根据线性回归方程的系数,可判断A ;计算,,代入线性回归方0.40b=-< 9x =114my +=程可求得m 的值,判断C ;利用相关系数公式求得相关系数,判断B;根据线性回归方程必过样本中心点,可判断D.【详解】对于A ∶根据线性回归方程为,可知回归系数 , ˆ0.47.6yx =-+0.40b =-< 故判断之间呈现负相关关系,A 正确; ,x y 对于C ,根据表中数据,计算, , 1(681012)94x =⨯+++=111(632)44m y m +=⨯+++=代入回归方程得,解得 ,C 正确; 110.497.64m+=-⨯+5m=对于B ︰变量之间的相关系数,B 错误; ,x y 40.99x y r ==≈-对于D ∶由以上分析知,线性回归方程一定过点, 9,4x y ==(x y ∴线性回归方程过点 ,D 正确, (9,4)故选:B .11. 已知是椭圆C 的两个焦点,P 为C 上一点,且,则C 的离心率为12,F F 121260,3F PF PF PF ∠=︒=( )A.B.C.D.【答案】C 【解析】【分析】根据椭圆的定义及条件,表示出,结合余弦定理可得答案. 12,PF PF 【详解】因为,由椭圆的定义可得, 213PF PF =12242PF PF PF a +==所以,, 22a PF =132a PF =因为,由余弦定理可得1260F PF ∠=︒222121212122cos F F PF PF PF PF F PF =+-∠所以, 22291342cos 604422a a ac a =+-⨯⨯⨯︒整理可得,所以,即. 22744a c =222716c e a ==e =故选:C.12. 已知函数,且,则当时,()sin ,()f x x x x R =+∈()()2223410f y y f x x -++-+≤1y ≥1y x +的取值范围是( )A.B.C.D.13,44⎡⎤⎢⎥⎣⎦1,14⎡⎤⎢⎥⎣⎦3⎡⎤-⎣⎦1,3⎡⎤+∞⎢⎥⎣⎦【答案】A 【解析】 【分析】根据已知函数解析式,可知为奇函数,利用导数可判断出其单调递增,由已知函数不等式得,即时是以为圆心的上半部分的圆,而表示过点的直线斜22(2)(1)1x y -+-≤1y ≥(2,1)1yx +(1,0)-率,根据几何性质结合图象即可求出的范围. k 1yx +【详解】由知:单调递增,()1cos 0f x x '=+≥()f x 又知:为奇函数,()sin()(sin )()f x x x x x f x -=-+-=-+=-()f x 有,()()2223410f y y f x x -++-+≤()()2222341(41)f y y f x x f x x -+≤--+=-+-∴,整理得,时即的取值区域如下图阴影部分222341y y x x -+≤-+-22(2)(1)1x y -+-≤1y ≥(,)x y所示:∴表示直线在过图中阴影部分的点时斜率,即问题转化为直线与阴影区域有1yx +(1)y k x =+1y k x =+交点时,的取值范围,k∴当与半圆相切,取最大值,而此时圆心到的距离,得;当交k (2,1)(1)y k x =+1d ==34k =半圆于右端点时,取最小值为,所以的取值范围.(3,1)k 14k 13,44⎡⎤⎢⎥⎣⎦故选:A【点睛】本题考查了根据函数的性质确定代数关系的几何意义,应用数形结合的方法求目标代数式的范围,属于难题.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13. 已知向量,.若,则__________.(),1a m = ()3,2b m =+ a bm =【答案】1或 3-【解析】【分析】根据平面向量平行的性质进行求解即可.【详解】因为向量,,,(),1a m = ()3,2b m =+ a b所以有,或, ()2131m m m +=⨯⇒=3m =-故答案为:1或3-14. 观察图中5个图形的相应小圆圈的个数的变化规律,猜想第n 个图中有___________小圆圈.【答案】 2n n 1-+【解析】【分析】仔细观察每个图形中圆圈的个数与对应顺序之间的关系,从而归纳出第n 个图形中小圆圈的个数.【详解】观察图中5个图形小圆圈的个数分别为1,1×2+1,2×3+1,3×4+1,4×5+1,…,故第n 个图中小圆圈的个数为(n-1)·n+1=n 2-n+1. 故答案为:n 2-n+115. 已知,则函数的最小值为___________.1x >-27101x x y x ++=+【答案】 9【解析】【分析】由于,然后利用基本不等式可求得22710(1)5(1)44(1)5111x x x x y x x x x ++++++===++++++答案【详解】因为,所以,1x >-10x +>所以22710(1)5(1)44(1)5111x x x x y x x x x ++++++===++++++, 59≥+=当且仅当,即时取等号, 411x x +=+1x =所以的最小值为9,27101x x y x ++=+故答案为:916. 设双曲线x 2–=1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则23y|PF 1|+|PF 2|的取值范围是_______.【答案】.【解析】【详解】试题分析:由已知得,则,设是双曲线上任一点,由对称1,2a b c ===2ce a==(,)P x y 性不妨设在双曲线的右支上,则,,,为锐角,则P 12x <<121PF x =+221PF x =-12F PF ∠,即,解得,所以,则2221212PF PF F F +>222(21)(21)4x x ++->x >2x <<.124PF PF x +=∈【考点】双曲线的几何性质.【思路点睛】先由对称性可设点在右支上,进而可得和,再由为锐角三角形可得P 1F P 2F P 12F F P ,进而可得的不等式,解不等式可得的取值范围.2221212F F F F P +P >x 12F F P +P三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17. 已知复数. 17i1iz -=-(1)求复数的模;z z (2)若,求的值. ()246i ,az z b a b --=+∈R ,a b 【答案】(1);(2). 53,10a b =-=-【解析】【分析】(1)先化简复数为最简形式,然后求解模长; (2)先求出共轭复数,结合复数相等求解的值.,a b 【详解】(1), ()()()17i)1i 17i =43i 1i 1i 1i z -+-==---+(=5z (2)因为()()()243i 43i 244233i 46i az z b a b a b a --=--+-=---+=+所以,4424336a b a --=⎧⎨--=⎩解得.3,10a b =-=-18. 某学校为了调查学生运动情况,按照男女分层抽取了100名同学调查同学们是否喜欢体育锻炼,调查结果统计如下表:喜欢 不喜欢 合计 男生 10 女生 20 合计100已知在全部100人中随机抽取1人,抽到不喜欢体育锻炼的人的概率为0.4. (1)请将上面的列联表补充完整;(2)是否有99.9%的把握认为喜欢体育锻炼与性别有关?说明你的理由.(参考数据如下表,结果保留3位小数)()20P K k ≥0.10 0.05 0.025 0.010 0.005 0.0010k 2.7063.841 5.024 6.635 7.879 10.828附:,其中.()()()()()22n ad bc K a b c d a c b d -=++++n a b c d =+++【答案】(1)列联表见解析(2)有99.9%的把握认为喜欢体育锻炼与性别有关,理由见解析 【解析】【分析】(1)根据在全部100人中随机抽取1人,抽到不喜欢体育锻炼的人的概率为0.4,可得不喜欢体育锻炼的为40人,故可补全列联表; (2)计算出,与参考数据比较可得答案. 2K 【小问1详解】根据在全部100人中随机抽取1人,抽到不喜欢体育锻炼的人的概率为0.4,可得不喜欢体育锻炼的为40人,故可将列联表补充如下: 喜欢 不喜欢 合计 男生 40 10 50 女生 20 30 50 合计6040100【小问2详解】因为,即, ()()()()()22n ad bc K a b c d a c b d -=++++()221004030102050505060403K ⨯-⨯==⨯⨯⨯所以,又因为,216.66710.828K ≈>()210.8280.0010.1%P k ≥==所以有99.9%的把握认为喜欢体育锻炼与性别有关.19. 哈三中高二数学备课组对学生的记忆力和判断力进行统计分析,所得数据如下表所示: x y x 46 8 10y 2 3 5 6 (1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;y x ˆˆˆy bx a =+(2)根据(1)中求出的线性回归方程,预测记忆力为9的学生的判断力.(参考公式:,) ()()()1122211ˆn ni i i ii i n n i i i i x x y y x y nxy b x x x nx ====---==--∑∑∑∑ˆˆˆa y bx =-【答案】(1);(2)判断力为5.4.0.70.9y x =-【解析】【分析】(1)直接利用公式求解即可(2)把代入回归方程中求解9x =【详解】解:(1)由表中数据可得, 11(46810)7,(2356)444x y =+++==+++=, 41442638510647414i ii x y x y =-=⨯+⨯+⨯+⨯-⨯⨯=∑,422222214468104720i i x x =-=+++-⨯=∑所以, 12241414ˆ0.720i ii i i x y nxy b xnx ==-===-∑∑所以, ˆˆˆ40.770.9ay bx =-=-⨯=-所以关于的线性回归方程为,y x 0.70.9y x =-(2)当时,,9x =0.790.9 5.4y =⨯-=所以记忆力为9的学生的判断力约为5.420. 如图,在四棱锥中,已知棱两两垂直且长度分别为1,1,2,,P ABCD -,,AB AD AP AB CD 12AB CD =.(1)若中点为,证明:平面;PC M BM PAD (2)求点到平面的距离.A PCD 【答案】(1)证明见解析(2 【解析】【分析】(1) 取中点为,连接,通过长度和中位线可证明,即PD N ,MN AN ,MN AB MN AB =∥,根据线面平行判定定理即可证明;BM AN ∥(2)用等体积法,先根据长度和垂直关系求得的面积,再根据,即可求得距离.PCD A PCD P ACD V V --=【小问1详解】证明:取中点为,连接,如图所示:PD N ,MN AN分别为中点,,M N ,PC PD,且, MN CD ∴ 12MN CD =,, ∥ AB CD 12AB CD =,,MN AB MN AB ∴=∥故四边形为平行四边形,ABMN 故,BM AN ∥不含于平面,平面,BM PAD AN ⊂PAD 故平面;BM PAD 【小问2详解】连接,两两垂直且长度分别为1,1,2,AC ,,AB AD AP 且,, AB CD 12AB CD =,AD DC ∴⊥将底面拿出考虑如下:,,,2,DC AC ∴==3PC =PD =,222PD DC PC += ,CD PD ∴⊥, 12PCD S DC PD ∴=⨯⨯= 记到平面的距离为,A PCD h则 13A PCD P ACD V h V --==, 1112232=⨯⨯⨯⨯解得:, h =故到平面. A PCD 21. 已知抛物线,点在抛物线上且到焦点的距离为2.()2:20C x py p =>()02,P y C F (1)求抛物线的方程,并求其准线方程;C (2)已知,直线与抛物线交于两点,记直线,的斜率分别()2,1M -()10y kx k =+≠C ,A B MA MB 为,,求的值.1k 2k 1211k k +【答案】(1)抛物线的方程为,准线方程为C 24x y =1y =-(2)2-【解析】【分析】(1)由点在抛物线上且到焦点的距离为2,联立方程组解出即可;(2)设()02,P y C F ,,联立方程消元,韦达定理,用斜率公式写出,代入化简即可.()11,A x y ()22,B x y 1211k k +【小问1详解】由题意得,解得.002242py py ⎧+=⎪⎨⎪=⎩2p =从而得到抛物线的方程为,C 24x y =准线方程为;1y =-【小问2详解】设,,()11,A x y ()22,B x y 由 214y kx x y=+⎧⎨=⎩得,2440x kx --=∴,,124x x k +=124x x =-, 111y kx =+221y kx =+∴ 121212221111x x k k y y --+=+++ 1212221111x x kx kx --=+++++ ()()()()()()122112222222x kx x kx kx kx -++-+=++ ()()()121221212221824kx x k x x k x x k x x --+-=+++ ()2222881888248444k k k k k k k ------===--+++所以的值为. 1211k k +2-22. 已知函数,其中,.()e cos x f x a x =+0x >R a ∈(1)当时,讨论的单调性;1a =-()f x (2)若函数的导函数在内有且仅有一个极值点,求a 的取值范围.()f x ()f x '()0,π【答案】(1)函数在内单调递增()f x ()0,∞+(2) ((),e 1,π⎤-∞-⋃+∞⎦【解析】【分析】(1)由时,得到,然后利用导数法求解; 1a =-()e cos xf x x =-(2)由,令,求导,由()e sin x f x a x '=-()e sin xg x a x =-()e cos xg x a x '=-得到,令,利用数形结合法求解. ()e cos 0xg x a x '=-=e cos x a x =()e cos x h x x =【小问1详解】解:当时,,. 1a =-()e cos x f x x =-()e sin xf x x '=+因为,所以,,因此,0x >e 1x >1sin 1x -≤≤()e sin 0x f x x '=+>故函数在内单调递增.()f x ()0,∞+【小问2详解】,令,则. ()e sin x f x a x '=-()e sin x g x a x =-()e cos x g x a x '=-由得,.显然不是的根.()e cos 0x g x a x '=-=cos e x a x =2x π=()0g x '=当时,. 0,,22x πππ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭ e cos xa x =令,则. ()e cos xh x x =()()2e sin cos cos x x x h x x +'=由得.当或时,; ()0h x '=34x π=324x ππ<<02x π<<()0h x '>当时,, 34x ππ<<()0h x '<且,.所以极大值是. ()01g =()e g ππ=-3432e 4g ππ⎛⎫= ⎪⎝⎭由图知,当或时, 1a >e a π≤-直线与曲线在内有唯一交点或, y a =()y h x =0,,22πππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()1,x a ()2,x a 且在附近,,则; 1x x <e cos x a x>()e cos 0x g x a x '=-<在附近,,则. 1x x >e cos x a x<()e cos 0x g x a x '=->因此是在内唯一极小值点. 1x ()f x '()0,π同理可得,是在内唯一极大值点.2x ()f x '()0,π故a 的取值范围是. ((),e 1,π⎤-∞-⋃+∞⎦【点睛】方法点睛:关于极值点问题,转化为函数零点再结合极值点的定义求解.。

安徽省合肥市2023-2024学年高二下学期期中检测数学试题含答案

安徽省合肥市2023-2024学年高二下学期期中检测数学试题含答案

智学大联考·皖中名校联盟合肥2023-2024学年第二学期高二年级期中检测数学试题卷(答案在最后)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.试卷包括“试题卷”和“答题卷”两部分,请务必在“答题卷”上答题,在“试题卷”上答题无效.第Ⅰ卷(选择题共58分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确答案涂在答题卡上)1.甲乙两人独立的解答同一道题,甲乙解答正确的概率分别是112p =,213p =,那么只有一人解答对的概率是()A.16B.12C.13D.56【答案】B 【解析】【分析】根据独立事件概率公式,即可求解.【详解】只有1人答对的概率()()1212121111123232P p p p p =-+-=⨯+=.故选:B2.若6x⎛- ⎝的展开式中常数项为15,则=a ()A.2 B.1C.1± D.2±【答案】C 【解析】【分析】利用二项式定理的通项公式和常数项为15,求解出a【详解】6x⎛- ⎝的通项公式()3662166C C rr r r r r r T x a x --+⎛==- ⎝,令3602r -=,则4r =,由展开式中的常数项为15,故()446C =15a -,所以1a =±.故选:C3.已知等差数列{}n a 的前n 项和为n S ,若530S =,84a =,则10S =()A.50 B.63C.72D.135【答案】A 【解析】【分析】思路一:由已知利用等差数列的求和公式和通项公式求解1a 和d ,即可求解10S ;思路二:由530S =得36a =,结合84a =、等差数列求和公式以及等差数列下标和性质即可求解.【详解】方法一:设等差数列{}n a 的公差为d ,由已知可得1154530274d a a d ⨯⎧+=⎪⎨⎪+=⎩,解得134525a d ⎧=⎪⎪⎨⎪=-⎪⎩,所以10110910502dS a ⨯=+=.方法二:()()5152433530S a a a a a a =++++==,所以36a =,从而由等差数列求和公式得()()()()11010110381055564502a a S a a a a +==+=+=⋅+=.故选:A .4.若曲线2ln y x a x =-在点()1,1P 处的切线与直线2y x =-垂直,则实数a 的值为()A.1B.C.2D.3【答案】D 【解析】【分析】求导2ay x x'=-,12x y a ='=-与直线2y x =-垂直,求出a 的值.【详解】由2ln y x a x =-,求导2a y x x'=-,则2ln y x a x =-在点()1,1P 处的切线的斜率为12x y a ='=-,而2ln y x a x =-在点()1,1P 处的切线与直线2y x =-垂直,则21a -=-,故3a =.故选:D5.将分别标有数字1,2,3,4,5的五个小球放入,,A B C 三个盒子,每个小球只能放入一个盒子,每个盒子至少放一个小球.若标有数字1和2的小球放入同一个盒子,则不同放法的总数为()A.2B.24C.36D.18【答案】C 【解析】【分析】将所有情况分为标有数字1和2的小球所放入盒子中无其他小球和共有3个小球两种情况,结合分组分配、平均分组问题的求法,利用分类加法计数原理可求得结果.【详解】若标有数字1和2的小球所放入盒子中无其他小球,则剩余三个小球需放入两个不同的盒子中,将剩余三个小球分为12+的两组,则共有13C 3=种分法;将分组后的小球放入三个盒子中,共有33A 6=种放法,则共有1863=⨯种方法;若标有数字1和2的小球所放入盒子中共有3个小球,则需选择一个小球与标有数字1和2的小球放在一起,有13C 3=种选法;将剩余两个小球平均分为两组,有1222C 1A =种分法;将分组后的小球放入三个中,共有33A 6=种放法,则共有31618⨯⨯=种方法;综上:不同放法的总数为181836+=.故选:C.6.已知12e a -=,3ln 2b =,12c =,则()A.a b c >>B.c b a>> C.c a b>> D.a c b>>【答案】D 【解析】【分析】利用指数函数及对数函数的单调性判断即可.2<12>,即a c >,又322lnl 94n ln e=12b ==<,所以12b c <=,所以a c b >>.故选:D.7.随机变量X 的取值为1,2,3,若()115P X ==,()2E X =,则()D X =()A.15B.25C.5D.5【答案】B 【解析】【分析】根据概率之和为1,以及方差公式,即可解得()2P X =和()3P X =,进而利用方差公式直接求解即可.【详解】由题知,()()()423115P X P X P X =+==-==,又()()()()122332E X P X P X P X ==+=+==,所以()()922335P X P X =+==,所以()325P X ==,()135P X ==,所以()()()()22213121222325555D X =-⨯+-⨯+-⨯=.故选:B8.设O 为坐标原点,直线1l 过抛物线C :22y px =(0p >)的焦点F 且与C 交于A B 、两点(点A 在第一象限),min 4AB =,l 为C 的准线,AM l ⊥,垂足为M ,()0,1Q ,则下列说法正确的是()A.4p =B.AM AQ +的最小值为2C.若3MFO π∠=,则5AB = D.x 轴上存在一点N ,使AN BN k k +为定值【答案】D 【解析】【分析】对于A 选项,利用过焦点的弦长最短时是通径的结论即可得到;对于B 选项,利用抛物线上的点的性质进行转化,再结合图象,三点共线时,对应的线段和最小;对于C 选项,得到A 点的坐标,直线方程,联立直线与抛物线的方程求得B 点的坐标进而求得;对于D 选项,设出直线方程,与抛物线方程联立,得到韦达定理,代入AN BN k k +进行化简,要使得为定值,1t =-,从而存在点N .【详解】A 选项,因为1l 过焦点F ,故当且仅当AB 为通径时,AB 最短,即min 24AB p ==,从而2p =,故A 错误;B 选项,由抛物线的定义知AM AF =,所以AM AQ AF AQ +=+,由图知,当且仅当Q A F 、、三点共线时,AF AQ +取得最小值,即()minAM AQ QF +==B 错误;C 选项,由图K 是抛物线的准线l 与准线的交点,所以2FK p ==,在MFK Rt 中,3MFO π∠=,所以KM =,所以A y =,所以(3,A,所以1:l y =-,联立24y y x ⎧=-⎪⎨=⎪⎩得231030x x -+=,得13,3A B x x ==,从而123,33B ⎛⎫- ⎪ ⎪⎝⎭,所以1163233AB =++=,故C 错误;D 选项,设1:1l x my =+,联立241x xy y m =+=⎧⎨⎩得2440y my --=,216160m +>,设()()1122,,,A x y B x y ,则121244y y my y +=⎧⎨⋅=-⎩,设x 轴上存在一点(),0N t ,则1212121211AN BN y y y y k k x t x t my t my t+=+=+--+-+-()()()()()()()()()()()1212222222212122124414111441114my y t y y m m tm t m y y m t y y t m t m t t m t+-+-+--+===+-++--+-+---,故当1t =-时,0AN BN k k +=,即存在()1,0N -使得AN BN k k +为定值0,故D 正确.故选:D .二、选择题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,两个选项部分选对得3分;三个选项选对一个得2分,选对两个得4分,选错得0分.请把正确答案涂在答题卡上)9.已知数列{}n a 满足11a =,()*12N nn n a a n ++=∈,则下列结论中正确的是()A.45a = B.{}n a 为等比数列C.221221213a a a -+++=D.231222213a a a -+++=【答案】AC 【解析】【分析】利用递推式可求得234,,a a a 的值,可判断A ,B ,利用并项求和法结合等比数列的求和公式判断C ,D.【详解】数列{}n a 满足11a =,()*12nn n a a n ++=∈N,则122a a+=,234+=a a ,3342a a +=,有21a =,33a =,45a =,A 正确;显然211a a =,323a a =,因此数列{}n a 不是等比数列,B 错误;1221123520214()()()a a a a a a a a a a +++=++++++++ 11112224201(14)412112+2++2===1433⨯---=+- ,C 正确.()()()122212342122a a a a a a a a a +++=++++++ ()1111231321214242222+2++2===1433-⨯--=- ,D 错误;故选:AC 10.已知()14P A =,()13P B A =.若随机事件A ,B 相互独立,则()A.()13P B =B.()112P AB =C.()34P A B =D.()1112P A B +=【答案】ABC 【解析】【分析】根据给定条件,利用相互独立事件的乘法公式,结合条件概率逐项计算即得.【详解】随机事件A ,B 相互独立,()14P A =,()13P B A =,对于A ,()()()()1()()()3P A P B P AB P B P B A P A P A ====,A 正确;对于B ,()111()()4312P AB P A P B ==⨯=,B 正确;对于C ,()()()()3()1()()()4P AB P A P B P A B P A P A P B P B ====-=,C 正确;对于D ,()11113()()()1)43434P A B P A P B P AB +=+-=+---=,D 错误.故选:ABC11.已知函数()2ln x f x x=,下列说法正确的是()A.()f x 在1x =处的切线方程为22y x =-B.()f x 的单调递减区间为()e,+∞C.若()f x a =有三个不同的解,则22e ea -<<D.对任意两个不相等正实数1x ,2x ,若()()12f x f x =,则212ex x ⋅>【答案】AD 【解析】【分析】选项A ,根据条件,利用导数的几何意义,即可求解;选项B ,对()f x 求导,利用导数与函数单调性间的关系,即可求解;选项C ,作出()2ln x f x x =的图象,数形结合即可求解;选项D ,由条件知1212ln ln x x x x =,设120e x x <<<,构造函数ln ()x h x x =,2e ()()()H x h x h x =-,利用2e ()()()H x h x h x =-在区间(0,e)上单调性,得到2121e ()()()h x h x h x =<,再利用ln ()x h x x =的单调性即可求解.【详解】对于选项A ,因为()2ln x f x x=,所以当0x >时,()222ln x f x x -'=,所以()12f '=,又()10f =,所以()f x 在1x =处的切线方程为22y x =-,故选项A 正确,对于选项B ,易知函数定义域为(,0)(0,)-∞+∞ ,因为()222ln x f x x-=',由()0f x '<,得到22ln 2ln e x >=,解得e x <-或e x >,所以()f x 的单调递减区间为(),e ∞--,()e,∞+,所以选项B 错误,对于选项C ,因为()222ln x f x x -=',由()222ln 0x f x x-'=>得到e e x -<<且0x ≠,所以()f x 的增区间为区间()e,0-,()0,e ,由选项B 知,()f x 的减区间为(),e ∞--,()e,∞+,又22(e),(e)e ef f =-=-,当x →-∞时,()0f x <,且()0f x →,当x →+∞时,()0f x >,且()0f x →,当0x <且0x →时,()f x →+∞,当0x >且0x →时,()f x →-∞,其图象如图所示,由图知,()f x a =有三个不同的解,则22e ea -<<且0a ≠,所以选项C 错误,对于选项D ,由题知()1212122ln 2ln ()x x f x f x x x ===,得到1212ln ln x x x x =,由图,不妨设120e x x <<<,设ln ()x h x x =,2e ()()()H x h x h x =-,则222222222e e 1ln 1ln (1ln )(e )()()()e ex x x x H x h x h x x x x ----'''=+=-=,当0e x <<时,1ln 0x ->,22e 0x ->,所以()0H x '>,即2e ()()()H x h x h x =-在区间(0,e)上单调递增,又(e)(e)(e)0H h h =-=,所以2111e ()()()0H x h x h x =-<,得到2121e ()()()h x h x h x =<,又21ln ()x h x x-'=,当e x >时,()0h x '<,即ln ()xh x x =在区间(e,)+∞上单调递减,又221e e,e x x >>,所以221e >x x ,得到212e x x ⋅>,所以选项D 正确,故选:AD.第Ⅱ卷(非选择题共92分)三、填空题(本大题共3小题,每小题5分,共15分.把答案填在答题卡的相应位置.)12.已知数列{}n a 的首项为1,前n 项和为n S ,132n n S S +=+,则5a =____________.【答案】108【解析】【分析】由题设可得122n n a S +=+,利用,n n a S 的关系求出数列通项,进而求出5a 即可.【详解】由题意可知,111,32n n a S S +==+,所以122n n a S +=+,则12)2(2n n a S n -=+≥,所以12n n n a a a +=-,则13(2)n n a a n +=≥,又因为11a =,所以21224a S =+=,所以数列{}n a 从第二项开始成等比数列,因此通项公式为22,143,2n n n a n -=⎧=⎨⋅≥⎩,,所以3543108a =⨯=.故答案为:108.13.设()525012512x a a x a x a x +=+++⋅⋅⋅+,则135a a a ++=____________.【答案】122【解析】【分析】分别令1x =和=1x -,作差即可求得结果.【详解】令1x =,则50123453243a a a a a a +++++==;令=1x -,则()501234511a a a a a a -+-+-=-=-;两式作差得:()()135********a a a ++=--=,135122a a a ∴++=.故答案为:122.14.已知双曲线22221x y a b-=(0a >,0b >)的右焦点为F ,经过点F 作直线l 与双曲线的一条渐近线垂直,垂足为点M ,直线l 与双曲线的另一条渐近线相交于点N ,若3MN MF =,则双曲线的离心率e =____________.【答案】3【解析】【分析】设直线:(0)MN ty x c t =-<,11122(,)(0),(,)M x y y N x y >,由22220x y a b ty x c ⎧-=⎪⎨⎪=-⎩,得到2222222()20b t a y b tcy b c -++=,从而有22212122222222,b tc b c y y y y b t a b t a+=-=--,根据条件有212y y =-,从而得到2229b t a =,再利用bt a=-,即可求出结果.【详解】易知(c,0)F ,如图,由对称性不妨设直线:(0)MN ty x c t =-<,11122(,)(0),(,)M x y y N x y >,由22220x y a b ty x c ⎧-=⎪⎨⎪=-⎩,消x 得到2222222()20b t a y b tcy b c -++=,则22212122222222,b tc b c y y y y b t a b t a+=-=--,因为3MN MF =,所以212111(,)3(,)x x y y c x y --=--,得到2113y y y -=-,即212y y =-,将212y y =-代入22212122222222,b tc b c y y y y b t a b t a +=-=--,整理得到2229b t a =,又易知b t a =-,所以2229(b b a a -=,得到223b a =,即2213b a =,所以双曲线的离心率c e a ===,故答案:3.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.已知递增的等比数列{}n a 的前n 项和为n S ,且22a =,37S =.(1)求数列{}n a 的通项公式;(2)设n n b na =,求数列{}n b 的前n 项和n T .【答案】(1)12n n a -=(2)()121nn T n =-⋅+【解析】【分析】(1)设等比数列{}n a 公比为q ,根据题意列式求1,a q ,即可得通项公式;(2)由(1)可知:12n n b n -=⋅,利用错位相减法分析求解.【小问1详解】设等比数列{}n a 公比为q ,由题意可得212311127a a q S a a q a q ==⎧⎨=++=⎩,解得112a q =⎧⎨=⎩或1412a q =⎧⎪⎨=⎪⎩,又因为等比数列{}n a 为递增数列,可知112a q =⎧⎨=⎩,所以12n n a -=.【小问2详解】由(1)可知:12n n b n -=⋅,则01211222322n n T n -=⨯+⨯+⨯++⨯ ,可得12321222322n n T n =⨯+⨯+⨯++⨯ ,两式相减得()0211222222212112n n nn n n T n n n ---=++++-⨯=-⨯=-⨯-- ,所以()121n n T n =-⋅+.16.某大学为丰富学生课余生活,举办趣味知识竞赛,分为“个人赛”和“对抗赛”,竞赛规则如下:①个人赛规则:每位学生需要从“历史类、数学类、生活类”问题中随机选1道试题作答,其中“历史类”有8道,“数学类”有6道,“生活类”有4道,若答对将获得一份奖品.②对抗赛规则:两位学生进行答题比赛,每轮只有1道题目,比赛时两位参赛者同时回答这一个问题,若一人答对且另一人答错,则答对者获得1分,答错者得1-分;若两人都答对或都答错,则两人均得0分,对抗赛共设3轮,每轮获得1分的学生会获得一份奖品,且两位参赛者答对与否互不影响,每次答题的结果也互不影响.(1)学生甲参加个人赛,若学生甲答对“历史类”“数学类”“生活类”的概率分别为15,25,35,求学生甲答对所选试题的概率;(2)学生乙和学生丙参加对抗赛,若每道题学生乙和学生丙答对的概率分别为13,12,求三轮结束学生乙仅获得一份奖品的概率.【答案】(1)1645;(2)2572.【解析】【分析】(1)根据题意可知分三类求解:选题为历史类并且答对,选题为数学类且答对,选题为生活类且答对,由条件概率和全概率计算即可;(2)可先求出乙同学每轮获得1分的概率,然后由二项分布概率模型计算即可.【小问1详解】设学生甲选1道“历史类”试题为事件A ,选1道“数学类”试题为事件B ,选1道“生活类”试题为事件C ,答对试题为事件D ,则()844689P A ==++,()614683P B ==++,()424689P C ==++,()15P D A =,()25P D B =,()35P D C =,所以:()()()()()()()41122316|||95359545P D P A P D A P B P D B P C P D C =++=⨯+⨯+⨯=,故学生甲答对所选试题的概率为1645.【小问2详解】由题可知每一轮中学生乙得1分的概率为1111326⎛⎫⨯-= ⎪⎝⎭,在3轮比赛后,学生乙得1分的概率为21131525C 6672P ⎛⎫=⨯⨯= ⎪⎝⎭,故三轮结束学生乙仅获得一份奖品的概率为:2572.17.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为12,F F ,上顶点为A ,且120AF AF ⋅= ,动直线l 与椭圆交于,P Q 两点;当直线l 过焦点且与x 轴垂直时,2PQ =.(1)求椭圆C 的方程;(2)若直线l 过点()1,0E ,椭圆的左顶点为B ,当BPQ V时,求直线l 的斜率k .【答案】(1)22142x y +=(2)1±【解析】【分析】(1)根据向量数量积坐标运算和通径长可构造方程组求得,a b ,进而得到椭圆方程;(2)设:1l x ty =+,与椭圆方程联立可得韦达定理的结论;根据1212BPQ S EB y y =⋅- ,结合韦达定理可构造方程求得结果.【小问1详解】由题意得:()1,0F c -,()2,0F c ,()0,A b ,()1,AF c b ∴=-- ,()2,AF c b =- ,22120AF AF c b ∴⋅=-+= ,即22b c =,22222a b c b ∴=+=;当直线l 过焦点且与x 轴垂直时,:l x c =±,不妨令:l x c =,由22221x c x y ab =⎧⎪⎨+=⎪⎩得:2b y a =±,222b PQ a ∴==,由222222a b b a⎧=⎪⎨=⎪⎩得:2a b =⎧⎪⎨=⎪⎩∴椭圆C 的方程为:22142x y +=.【小问2详解】由题意知:直线l 斜率不为0,可设:1l x ty =+,由221142x ty x y =+⎧⎪⎨+=⎪⎩得:()222230t y ty ++-=,则()222Δ412216240t t t =++=+>,设()()1122,,,P x y Q x y ,则12222t y y t +=-+,12232y y t =-+,1222462y y t ∴-=+,又()2,0B -,()123EB ∴=--=,12213222BPQ S EB y y t ∴=⋅-=⨯=+ ,解得:1t =±,∴直线l 的斜率11k t==±.18.已知函数()()1ln 1a x x g x x +-=-,(R a ∈).(1)若1a =,求函数()g x 的单调区间;(2)若函数()1y g x x=+有两个零点,求实数a 的取值范围.【答案】(1)()g x 单调递增区间()0,1,()g x 单调递减区间()1,+∞(2)2,e ⎛⎫+∞ ⎪⎝⎭【解析】【分析】(1)求导后构造函数()21ln x x x ϕ=--,再求导分析单调性,得到()10ϕ=,进而得到()g x 的单调性即可;(2)问题等价于2ln 0a x x a -+=有两解,构造函数()2ln f x a x x a =-+,求导分析单调性,得到202f ⎛⎫> ⎪ ⎪⎝⎭,再结合对数运算解得2e a >,之后构造函数()8ln 414e g t t t t a ⎛⎫=-+=> ⎪⎝⎭,求导分析单调性和最值,验证即可.【小问1详解】当1a =,()ln x g x x x=-,()221ln ,0x x g x x x--=>,当0x >,令()21ln x x x ϕ=--,则()12,0x x x xϕ=-->',因为()0x ϕ'<恒成立,所以()x ϕ在()0,∞+上为减函数,因为()10ϕ=,所以当()0,1x ∈,()0g x '>,()g x 单调递增;()1,x ∞∈+,()0g x '<,()g x 单调递减.【小问2详解】根据条件()1y g x x=+有两个零点等价于2ln 0a x x a -+=有两解.不妨令()2ln f x a x x a =-+,则()2a f x x x='-(0x >),当0a ≤时,()0f x '<在定义域()0,∞+内恒成立,因此()f x 在()0,∞+递减,最多一个零点,不符.当0a >时,由()0f x '>,解得02x <<;()0f x '<,解得2x >;所以,0a >时,()f x 的单调减区间为,2∞⎛⎫+ ⎪ ⎪⎝⎭,增区间为0,2⎛⎫ ⎪ ⎪⎝⎭;若()f x 有两个零点,则必有2222ln 0222f a a ⎛⎫⎛=-+> ⎪ ⎪ ⎝⎭⎝⎭,化简得ln 102a +>,解得2e a >,又因2110e ef ⎛⎫=-< ⎪⎝⎭,()()24ln 416ln 4161f a a a a a a a a =-+=-+,即()()8114ln 4144e t h t t t t a h t t t -⎛⎫=-+=>⇒=-= ⎪⎝'⎭,当8,e t ∞⎛⎫∈+ ⎪⎝⎭时,()0h t '<恒成立,即()h t 在8,e ∞⎛⎫+ ⎪⎝⎭单调递减,可得()883283232ln 1ln ln e ln 80e e e e e eh t g ⎛⎫≤=-+=-+=-< ⎪⎝⎭,也即得()0h t <在8,et ∞⎛⎫∈+ ⎪⎝⎭恒成立,从而可得()f x 在1,e 2⎛⎫ ⎪ ⎪⎝⎭,,42a ⎛⎫ ⎪ ⎪⎝⎭区间上各有一个零点,综上所述,若()f x 有两个零点实数a 的范围为2,e ∞⎛⎫+ ⎪⎝⎭.【点睛】方法点睛:函数零点问题可理解为方程根的个数问题,求导分析单调性和极值可求解.19.英国数学家泰勒发现的泰勒公式有如下特殊形式:当()f x 在0x =处n (*n ∈N )阶导数都存在时,()()()()()()()()323000002!3!!n n f f f f x f f x x x x n =++++++''' .注:()f x ''表示()f x 的2阶导数,即为()f x '的导数,()()n f x (3n ≥)表示()f x 的n 阶导数,该公式也称麦克劳林公式.(1)写出()11f x x =-泰勒展开式(只需写出前4项);(2)根据泰勒公式估算1sin 2的值,精确到小数点后两位;(3)证明:当0x ≥时,2e sin cos 02xx x x ---≥.【答案】(1)()231f x x x x =+++(2)0.48(3)证明见解析【解析】【分析】(1)分别求解()f x 的一阶,二阶,三阶导数,代入公式可得答案;(2)写出sin x 的泰勒公式,代入12可得答案;(3)方法一利用泰勒公式得2e 12xx x ≥++,把不等式进行转化,求最小值可证结论;方法二构造函数,通过两次导数得出函数的最小值,进而可证结论.【小问1详解】()11f x x=-,()()21=1f x x '-,()()32=1f x x ''-,()()()346=1f x x -;()()00=1f f '=,()0=2f '',()()30=6f ;所以()23111f x x x xx ==+++-.【小问2详解】因为()()sin cos ,cos sin x x x x ''==-,由该公式可得357sin 3!5!7!x x x x x =-+-+ ,故111sin 0.482248=-+≈ .【小问3详解】法一:由泰勒展开2345e 12!3!4!5!!nxx x x x x x n =++++++++ ,易知当0x ≥,2e 12xx x ≥++,所以222e sin cos 1sin cos 222xx x x x x x x x ---≥++---1sin cos sin x x x x x =+--≥-,令()sin x x x f -=,则()1cos 0f x x '=-≥,所以()f x 在[)0,∞+上单调递增,故()()00f x f ≥=,即证得2e sin cos 02xx x x ---≥.法二:令()2e sin cos 2xG x x x x =---,()πe 4x x G x x ⎛⎫=-+ ⎪⎝⎭',易知当3π0,4x ⎡⎫∈⎪⎢⎣⎭,e x y x =-,π4y x ⎛⎫=+ ⎪⎝⎭均为增函数,所以()πe 4x x G x x ⎛⎫=--+ ⎪⎝⎭'单调递增,所以()()00G x G '≥=',所以当3π0,4x ⎡⎫∈⎪⎢⎣⎭,()G x 单调递增,所以()()00G x G ≥=,当3π,4x ⎡⎫∈+∞⎪⎢⎣⎭,()22e sin cos e 222x x x x G x x x =---≥--,令()2e 22xF x x =--,则()e 0x x F x =-≥',则()2e 22x F x x =--单调递增,则()()22e 2e 2022xF x F x =--≥=-≥,综上,原不等式得证.【点睛】方法点睛:导数证明不等式的常用方法:1、最值法:移项构造函数,求解新函数的最值,可证不等式;2、放缩法:利用常用不等式对所证不等式进行放缩,利用传递性进行证明.。

北京市丰台区2023-2024学年高二下学期期中考试数学试卷(B卷)含答案

北京市丰台区2023-2024学年高二下学期期中考试数学试卷(B卷)含答案

丰台区2023-2024学年度第二学期期中练习高二数学(B 卷)考试时间:120分钟(答案在最后)第I 卷(选择题共40分)一、选择题:共10小题,每小题4分.在每小题给出的四个选项中,选出符合题目要求的一项.(1)已知函数()cos 2f x x =,则()f x 的导数()f x '=(A )sin 2x-(B )2sin 2x-(C )sin 2x(D )2sin 2x(2)若随机变量2)(3N σξ~,,则)(3P ξ=≤(A )0.4(B )0.5(C )0.6(D )0.7(3)现有甲、乙、丙、丁4人从宫灯、纱灯、吊灯这三种灯笼中任意选购1种,则不同的选购方式有(A )321⨯⨯种(B )432⨯⨯种(C )43种(D )34种(4)抛掷一颗质地均匀的骰子,事件{}135A =,,,事件{}12456B =,,,,,则|P A B =()(A )15(B )25(C )35(D )45(5)若2340123441a a x a x x a x a x =+++++(),则1234a a a a +++=(A )15(B )16(C )20(D )24(6)某班从3名男同学和4名女同学中选取3人参加班委会选举,要求男女生都有,则不同的选法种数是(A )60(B )45(C )35(D )30(7)某次社会实践活动中,甲、乙两班的同学在同一个社区进行民意调查.甲、乙两班人数之比为5:3,甲班女生占甲班总人数的23,乙班女生占乙班总人数的13.则该社区居民遇到一位进行民意调查的同学恰好是女生的概率为(A )19(B )29(C )12(D )1324(8)某种新产品的社会需求量y 与时间t 存在函数关系()y f t =.经过一段时间的市场调研,估计社会需求量y 的市场饱和水平为500万件,且()f t 的导函数f t '()满足:))500)))(((((0f t kf t f t k ->='.若0f y =(0),则函数()f t 的图象可能为(A )①②(B )①③(C )②④(D )③④(9)已知定义在R 上的函数()f x ,()g x 的导函数分别为()()f x g x '',,且满足()()()()0f x g x f x g x '+<',当a x b <<时,下列结论正确的是(A )()()()()f x g b f b g x >(B )()()()()f x g a f a g x >(C )()()()()f xg x f b g b >(D )()()()()f xg x f a g a >(10)已知函数()ln f x x =和()1g x ax =+.若存在01[,)ex ∈+∞,使得00()()f xg x =-恒成立,则实数a 的取值范围是(A )21[2e,]e-(B )21[,2e]e-(C )21[,e 2e](D )21[,2e]e第Ⅱ卷(非选择题共110分)二、填空题:共5小题,每小题5分,共25分.(11)用1,2,3,4这四个数字可以组成___个无重复数字的四位数.(12)已知离散型随机变量ξ的分布列如表所示,则m =___,()D ξ=___.(13)函数()f x =的导数()f x '=___.(14)已知5*)1((n x n x+∈N 的展开式中存在常数项,写出一个满足条件的n 的值:___.(15)莱布尼茨三角形(如下图)具有很多优美的性质,给出下列四个结论:①第8行第2个数是172;②111111(,2)(1)C (1)C C r r r n n n r r n n n n ++-+=∈-++N ≤;③当2024n =时,中间一项为1012202412025C ;④当n 是偶数时,中间的一项取得最小值;当n 是奇数时,中间的两项相等,且同时取得最小值.其中所有正确结论的序号是___.三、解答题:共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.(16)(本小题14分)已知函数32(2)21x a x x x b f =-++在2x =处取得极小值5.(Ⅰ)求实数a ,b 的值;(Ⅱ)求()f x 在区间[03],上的最小值.(17)(本小题14分)从4名男生和3名女生中选出4人去参加一项创新大赛.(Ⅰ)如果从男生和女生中各选2人,那么有多少种选法?(Ⅱ)如果男生甲和女生乙至少要有1人被选中,那么有多少种选法?(Ⅲ)如果恰有2人获得了本次比赛的冠军、亚军,那么有多少种获奖方式?(18)(本小题14分)为了增加系统的可靠性,人们经常使用“备用冗余设备”(即正在使用的设备出故障时才启动的设备).已知某计算机网络的服务器采用的是“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机网络就不会断掉.如果三台设备各自能正常工作的概率都为0.9,它们之间相互不影响,设能正常工作的设备台数为X .(Ⅰ)求X 的分布列;(Ⅱ)求计算机网络不会断掉的概率.(19)(本小题14分)已知函数()ln f x x x =.(Ⅰ)求曲线()y f x =在点()1(1)f ,处的切线方程;(Ⅱ)求()f x 的极值;(Ⅲ)若关于x 的方程()f x k =有两个实数根,直接写出实数k 的取值范围.(20)(本小题14分)某地旅游局对本地区民宿中普通型和品质型两类房间数量进行了调研,随机选取了10家民宿,统计得到各家民宿两类房间数量如下表:(Ⅰ)若旅游局随机从乙、丙2家民宿中各选取2个房间,求选出的4个房间均为普通型的概率;(Ⅱ)从这10家中随机选取4家民宿,记其中普通型房间不低于17间的有X 家,求X 的分布列和数学期望.(21)(本小题15分)民宿甲乙丙丁戊己庚辛壬癸普通型19541713189201015品质型61210111091285已知函数()()0ekx xf x k =≠.(Ⅰ)若1k =,求()f x 的单调区间;(Ⅱ)若()f x 在区间(11)-,上单调递增,求实数k 的取值范围.(考生务必将答案写在答题卡上,在试卷上作答无效)丰台区2023-2024学年度第二学期期中练习高二数学(B )卷参考答案第Ⅰ卷(选择题共40分)题号12345678910答案BBCBADDBCB第Ⅱ卷(非选择题共110分)二、填空题(每小题5分,共25分)(11)24;(12)23;29(13)22(1)x+-;(14)6;(答案不唯一)(15)①③④.(注:15题给出的结论中,有多个符合题目要求.全部选对得5分,不选或有错选得0分,其他得3分.)三、解答题(共85分)(16)(本小题14分)解:(Ⅰ)因为()26212f x x ax '=-+,且()f x 在2x =处取极小值5,所以()2244120f a '=-+=,得9a =,所以()222912f x x x x b =-++.又因为()245f b =+=,所以1b =.因为()f x 在区间()1,2上单调递减,在区间()2,+∞上单调递增,所以()f x 在2x =时取极小值,符合题意.……………6分(Ⅱ)()3229121f x x x x -+=+,所以()()()612f x x x '=--.令0f x '=(),解得1x =,或2x =.当x 变化时,(),()f x f x '的变化情况如表所示.因此,当2x =时,函数()3229121f x x x x -+=+有极小值,并且极小值为(2)5f =.又由于(0)1f =,(3)10f =,所以函数()3229121f x x x x -+=+在区间[0,3]上的最小值是1.…………14分(17)(本小题14分)解:(Ⅰ)如果从男生和女生中各选2人,选择方法数为:22436318C C =⨯=种…………4分(Ⅱ)如果男生中的甲和女生中的乙至少有1人被选中:男生甲被选中,女生乙没有被选中的方法数为:3510C =种;女生乙被选中,男生甲没有被选中的方法数为:3510C =种;男生甲和女生乙都被选中的方法数为:2510C =种;所以,男生甲和女生乙至少有1人被选中的方法数为30种.…………9分(Ⅲ)恰有2人获得了本次比赛的冠军、亚军的方法数为:4274420C A =种.…………14分(18)(本小题14分)解:(Ⅰ)由题意可知X 服从二项分布,即~(3,0.9)X B .033(0)C 0.9(10.9)0.001P X ==⨯⨯-=,1123(1)C 0.9(10.9)0.027P X ==⨯⨯-=,2213(2)C 0.9(10.9)0.243P X ==⨯⨯-=,3303(3)C 0.9(10.9)0.729P X ==⨯⨯-=,从而X 的分布列为X 0123P0.0010.0270.2430.729…………10分(Ⅱ)要使得计算机网络不会断掉,也就是要求能正常工作的设备至少有一台,即1X ≥ ,因此所求概率为:(1)1(1)1(0)10.0010.999P X P X P X =-<=-==-=≥ .…………14分(19)(本小题14分)解:(Ⅰ)因为()ln f x x x =,所以()1ln f x x '=+,则()11k f '==,()10.f =所以切线方程为10.x y --=……………4分(Ⅱ)由()1ln f x x '=+,()0,x ∈+∞,令()0f x '=即1ln 0x +=,解得1ex =.当x 变化时,(),()f x f x '的变化情况如表所示.所以()f x 在区间1(0,)e 上单调递减,在区间1(,)e+∞上单调递增,当1e x =()f x 有极小值11()e ef =-,无极大值.……11分(Ⅲ)1,0e(-)……14分(20)(本小题14分)解:(Ⅰ)设“从乙家民宿中选取2个房间,选到的2个房间均为普通型为事件A ;“从丙家民宿中选取2个房间,选到的2个房间均为普通型”为事件B ;所以选出的4间均为普通型房间的概率为22542266C C 4()()()C C 15P AB P A P B ==⨯=.……………5分(Ⅱ)记其中普通型房间不低于17间的有X 家,则X 的可能取值为0,1,2,3,4.()()464101346410C 10,C 14C C 81,C21P X P X ======()()()2246410314641044410C C 32,C 7C C 43,C 35C 14,C210P X P X P X =========用表格表示X 的分布列,如下表.158090241()01234 1.6.210210*********E X =⨯+⨯+⨯+⨯+⨯=所以……14分(21)(本小题15分)解:(Ⅰ)2e e 1()e ekx kx kx kx kx kx f x --'==若1k =,则1()ex x f x -'=,令()0f x '=,解得1x =.当x 变化时,(),()f x f x '的变化情况如表所示.所以()f x 的单调递增区间为(,1)-∞,单调递减区间为(1,).+∞……5分(Ⅱ)因为()()0e kx x f x k =≠所以2e e 1().e ekx kx kx kx kx kx f x --'==令()0f x '=,解得1x k=.①0k >时,当x 变化时,(),()f x f x '的变化情况如表所示.所以,()f x 在1(,k-∞上单调递增,在1(,)k +∞上单调递减.②0k <时,当x 变化时,(),()f x f x '的变化情况如表所示.所以,()f x 在1(,k-∞上单调递减,在1(,)k +∞上单调递增.若函数()f x 在区间()1,1-内单调递增,则0k >时,11k≥,即01k <≤;则0k <时,11k-≤,即10k -<≤;所以k 的范围是[1,0)(0,1]- .……………15分。

辽宁省鞍山市2023-2024学年高二下学期期中考试数学试题含答案

辽宁省鞍山市2023-2024学年高二下学期期中考试数学试题含答案

2023-2024学年度下学期期中考试高二数学(A )(答案在最后)时间:120分钟满分:150分命题范围:选择性必修二,选择性必修三结束.第I 卷(选择题,共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设随机变量X 服从正态分布()3,4N ,若()()263P X a P X a >-=<-,则a =()A.2-B.1- C.12D.1【答案】B 【解析】【分析】根据正态分布曲线的对称性即可求得答案.【详解】由题意随机变量X 服从正态分布()3,4N ,即正态分布曲线关于3x =对称,因为()()263P X a P X a >-=<-,故2(63)3,12a a a -+-=∴=-,故选:B2.设等比数列{}n a 的前n 项和为n S ,且213S a =,则公比q=A.12B.13C.2D.3【答案】C 【解析】【分析】将已知转化为1,a q 的形式,解方程求得q 的值.【详解】依题意1113a a q a +=,解得2q =,故选C.【点睛】本小题主要考查利用基本元的思想求等比数列的基本量1,a q ,属于基础题.基本元的思想是在等比数列中有5个基本量1,,,,n n a q a S n ,利用等比数列的通项公式或前n 项和公式,结合已知条件列出方程组,通过解方程组即可求得数列1,a q ,进而求得数列其它的一些量的值.3.已知某公路上经过的货车与客车的数量之比为2:1,货车和客车中途停车修理的概率分别为0.02,0.01,则一辆汽车中途停车修理的概率为()A.1100B.160 C.150D.130【答案】B 【解析】【分析】利用全概率公式可求解得出.【详解】设B 表示汽车中途停车修理,1A 表示公路上经过的汽车是货车,2A 表示公路上经过的汽车是客车,则()123P A =,()213P A =,()10.02P B A =,()20.01P B A =,则由全概率公式,可知一辆汽车中途停车修理的概率为()()()()()11222110.020.013360P B P A P B A P A P B A =+⋅=⨯+⨯=.故选:B.4.函数()sin cos f x x x x =+的导数()f x '的部分图象大致为()A. B.C. D.【答案】D 【解析】【分析】根据已知,利用函数的求导公式以及函数的奇偶性、函数值进行排除.【详解】因为()sin cos f x x x x =+,所以()sin cos sin cos f x x x x x x x '=+-=,令()()cos g x f x x x '==,R x ∈,则()()cos g x x x g x -=-=-,所以函数()cos g x x x =是奇函数,故A ,C 错误;又()ππcos π=-π<0g =,故B 错误.故选:D.5.若(2nx 二项展开式的第二项的二项式系数等于第五项的二项式系数,则该展开式中的含4x 项的系数为()A.80B.14- C.14D.80-【答案】A 【解析】【分析】根据二项式定理,以及组合数的性质,建立方程,可得答案.【详解】由二项式(2nx ,则其展开式的通项()(()()121C 2C 210,N rn n rrrr n rr nnT x xr n r ---+==-≤≤∈,展开式的第二项和第五项的二项式系数分别为1C n ,4C n ,则14C C n n =,解得5n =,则通项为()()155215C 2105,N rr rr T xr r --+=-≤≤∈,令1542r -=,解得2r =,则展开式中含4x 项的系数为()22523554C 2128021-⨯⋅⋅-=⨯=⨯.故选:A.6.有一批灯泡寿命超过500小时的概率为0.9,寿命超过800小时的概率为0.8,在寿命超过,500小时的灯泡中寿命能超过800小时的概率为()A.89B.19 C.79D.59【答案】A 【解析】【分析】由条件概率公式求解即可.【详解】记灯泡寿命超过500小时为事件A ,灯泡寿命超过800小时为事件B ,则()()0.9,0.8P A P AB ==,所以()()()0.88|0.99P AB P B A P A ===.故选:A7.数学活动小组由12名同学组成,现将12名同学平均分成四组分别研究四个不同课题,且每组只研究一个课题,并要求每组选出一名组长,则不同的分配方案的种数为A.333412963C C C B.33341296433C C C A A C.33331296444C C C A D.333312964C C C 【答案】A 【解析】【详解】将这12名同学平均分成四组分别研究四个不同课题,且每组只研究一个课题只需每个课题依次选三个人即可,共有3331296C C C 中选法,最后选一名组长各有3种,故不同的分配方案为:333412963C C C ,故选A.8.已知函数32()1f x x ax x =-+--在R 上是单调函数,则实数a 的取值范围是()A.(,)-∞⋃+∞B.[C.(,)-∞⋃+∞D.(【答案】B 【解析】【分析】由题得()0f x '≤在R 上恒成立,解不等式24120a ∆=-≤即得解.【详解】由题意知,2()321f x x ax '=-+-,因为()y f x =在R 上是单调函数,且()y f x '=的图象开口向下,所以()0f x '≤在R 上恒成立,故24120a ∆=-≤,即a ≤≤故选:B【点睛】结论点睛:一般地,函数()f x 在某个区间可导,()f x 在这个区间是增函数⇒'()f x ≥0.一般地,函数()f x 在某个区间可导,()f x 在这个区间是减函数⇒'()f x ≤0.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得3分,有选错的得0分.9.对两个变量x 与y 进行线性相关性和回归效果分析,得到一组样本数据:()()()1122,,,,,,n n x y x y x y ⋅⋅⋅,则下列说法正确的是()A.残差平方和越小的模型,拟合的效果越好B.由样本数据利用最小二乘法得到的回归方程表示的直线必过样本点的中心()x yC.用相关指数2R 来刻画回归效果,2R 越小,说明模型的拟合效果越好D.若变量x 与y 之间的相关系数0.80r =,则变量x 与y 之间具有很强的线性相关性【答案】ABD 【解析】【分析】根据残差的平方和的性质判断A ,根据回归方程的性质判断B ,根据相关指数的性质判断C ,根据相关系数的定义判断D.【详解】对于A ,由残差的意义可得,残差平方和越小的模型,拟合的效果越好,A 正确;对于B ,若回归方程为ˆˆˆy bx a =+,则ˆˆy bx a =+,即回归方程表示的直线必过样本点的中心(,x y ,B 正确;对于C ,相关指数2R 越大,说明残差的平方和越小,即模型的拟合效果越好,C 正确;对于D ,变量x 与y 之间的相关系数0.80r =,故相关系数较为接近1,所以变量x 与y 之间具有很强的线性相关性.D 正确;故选:ABD.10.设等差数列{}的前n 项和为n S ,公差为d .已知312a =,100S >,60a <,则()A.数列n n S a ⎧⎫⎨⎬⎩⎭的最小项为第6项B.2445d -<<-C.50a > D.0n S >时,n 的最大值为5【答案】ABC 【解析】【分析】利用数列的单调性结合不等式的基本性质可判断A 选项的正误;根据已知条件列出关于d 的不等式组,求出d 的取值范围,可判断B 选项的正误;利用等差数列求和公式及等差数列下标和性质可判断C ,D 选项的正误.【详解】对于C 选项,由()()110105610=502a a S a a +=+>且60a <,可知50a >,故C 正确;对于B 选项,由53635632122031230252450a a d d a a d d a a a d d =+=+>⎧⎪=+=+<⎨⎪+=+=+>⎩,可得2445d -<<-,故B 正确;对于D 选项,因为100S >,()111116111102a a S a +==<,所以,满足0n S >的n 的最大值为10,故D 错误;对于A 选项,由上述分析可知,当15n ≤≤且*N n ∈时,0n a >;当6n ≥且*N n ∈时,0n a <,所以,当15n ≤≤且*N n ∈时,0nnS a >,当610n ≤≤且*N n ∈时,0nnS a <,当11n ≥且*N n ∈时,0nnS a >.由题意可知{}单调递减,所以当610n ≤≤且*N n ∈时,6789100a a a a a >>>>>,由题意可知{}n S 单调递减,即有6789100S S S S S >>>>>,所以678910111110a a a a a ->->->->->,由不等式的性质可得6789106789100S S S S Sa a a a a ->->->->->,从而可得6789106789100S S S S S a a a a a <<<<<,因此,数列n n S a ⎧⎫⎨⎬⎩⎭的最小项为第6项,故A 正确.故选:ABC.11.如果函数()f x 对定义域内的任意实数,都有()()0f x xf x '+>,则称函数()y f x =为“F 函数”.下列函数不是“F 函数”的是()A.()e xf x = B.()ln f x x =C.()2f x x= D.()sin f x x=【答案】ABD 【解析】【分析】令()()g x xf x =,则()()()0g x f x xf x ''=+>,可得函数()g x 在定义域内是单调递增函数,称函数()y f x =为“F 函数”,逐项验证可得答案.【详解】令()()g x xf x =,则()()()0g x f x xf x ''=+>,即函数()g x 在定义域内是单调递增函数,称函数()y f x =为“F 函数”.对于A ,()e xf x =,()()()e=∈=xg xf x x x x R ,()()e e 1e x x x g x x x '=+=+,当1x >-时,()0g x '>,()g x 单调递增,当1x <-时,()0g x '<,()g x 单调递减,不符合在定义域内是单调递增函数,则函数()e xf x =不是“F 函数”.故A 正确;对于B ,()ln f x x =,()()()ln 0>==g xf x x x x x ,()ln 1g x x '=+,当10e x <<时,()0g x '<,()g x 单调递减,当1ex >时,()0g x '>,()g x 单调递增,不符合在定义域内是单调递增函数,则函数()ln f x x =不是“F 函数”.故B 正确;对于C ,()2f x x =,()()()3=∈=g xf x xx x R ,()203'=≥x x g ,所以()g x 单调递增函数,则函数()2f x x =是“F 函数”.故C 错误;对于D ,()sin f x x =,()()()sin ∈==g x xf x x x x R ,()sin cos g x x x x '=+,当3ππ2<<x 时,()0g x '<,()g x 单调递减,不符合在定义域内是单调递增函数,则函数()sin f x x =不是“F 函数”.故D 正确.故选:ABD.【点睛】关键点点睛:本题解题的关键点是构造函数()()g x xf x =,根据()0g x '>可得函数()g x 在定义域内是单调递增函数,称函数()y f x =为“F 函数”.第Ⅱ卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.12.演讲比赛结束后,4名选手与1名指导教师站成一排合影留念.要求指导教师不能站在两端,那么有______种不同的站法.(用数字作答)【答案】72【解析】【分析】根据题意,分2步进行分析:①,指导教师不能站在两端,易得指导教师有3种站法,②,其4名选手全排列,安排在其他4个位置,由分步计数原理计算可得答案.【详解】根据题意,分2步进行分析:①,指导教师不能站在两端,则指导教师有3个位置可选,有3种站法;②,其4名选手全排列,安排在其他4个位置,有4424A =种情况,则有32472⨯=种不同的站法;故答案为72.【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.13.已知随机变量X ,Y 满足21Y X =+,且随机变量X 的分布列如下:X 012P1613a则随机变量Y 的方差()D Y 等于______;【答案】209##229【解析】【分析】根据分布列中概率和为1可得a ,再由期望、方差公式计算出()D X ,最后利用()()2D aX b a D X +=计算可得答案.【详解】因为11163a ++=,所以12a =,()11140126323=⨯+⨯+⨯=E X ,()22214141450126333239⎛⎫⎛⎫⎛⎫=⨯-+⨯-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D X ,所以()()()520214499=+==⨯=D Y D X D X .故答案为:209.14.若函数()3231f x ax ax =-+有3个不同的零点,则实数a 的取值范围为______.【答案】1,4⎛⎫+∞ ⎪⎝⎭【解析】【分析】由已知()()'23632fx ax ax ax x =-=-,分为0a =、0a <和0a >进行讨论,利用函数的单调区间和()01f =即可得到答案.【详解】由已知()()'23632fx ax ax ax x =-=-,当0a =时,函数()0f x =无解,不符合题意;当0a <时,()'0fx >得02x <<,()'0f x <得0x <或2x >,即函数()f x 的增区间为()0,2,减区间为()(),0,2,-∞+∞,又()01f =,所以函数()f x 有且仅有1个零点,与题意不符;当0a >时,()'0fx >得0x <或2x >,()'0f x <得02x <<,即函数()f x 的增区间为()(),0,2,-∞+∞,减区间为()0,2,又()01f =,要使函数()3231f x ax ax =-+有3个不同的零点,则需()20f <,即81210a a -+<,解得14a >.故答案为:1,4⎛⎫+∞⎪⎝⎭.四、解答题:本题共5小题,共77分.解答应写出文字说阴、证明过程或演算步骤.15.已知数列{}n a 的前n 项和为n S ,123n = ,,,,从条件①、条件②和条件③中选择两个能够确定一个数列的条件,并完成解答.(条件①:55a =;条件②:12n n a a +-=;条件③:24S =-.)选择条件和.(1)求数列{}n a 的通项公式;(2)设数列{}n b 满足n n b a =,并求数列{}n b 的前n 项的和n T 【答案】(1)25n a n =-(2)当12n ≤≤时2=4n T n n -+,当3n ≥时248n T n n =-+【解析】【分析】(1)根据12n n a a +-=可知数列{}n a 是以公差2=d 的等差数列,然后求出首项,即可得通项.(2)由52,12;25,3n n n b n n -≤≤⎧=⎨-≥⎩,分情况讨论即可得nT 【小问1详解】选①②,由12n n a a +-=可知数列{}n a 是以公差2=d 的等差数列,又55a =得13a =-,故()32125n a n n =-+-=-选②③,由12n n a a +-=可知数列{}n a 是以公差2=d 的等差数列,由24S =-可知124,a a +=-13a ∴=-,()32125n a n n =-+-=-选①③,无法确定数列.【小问2详解】52,12;252525,3n n n n n a n b a n n n -≤≤⎧=-∴==-=⎨-≥⎩ ,其中n N ∈,当12n ≤≤,n N ∈时,2=4n T n n-+当3n ≥,n N ∈时,数列{}n b 是从第三项开始,以公差2=d 的等差数列()()21252=4+482n n n T n n +--=-+.16.已知函数()ln 22f x x x =-+-.(1)求曲线()y f x =的斜率等于1的切线方程;(2)求函数()f x 的极值.【答案】(1)1y x =-;(2)极小值ln 21-,无极大值.【解析】【分析】(1)首先求函数的导数,根据()01f x '=,求切点坐标,再求切线方程;(2)根据极值的定义,利用导数求极值.【详解】(1)设切点为()00,x y ,因为()12f x x=-+',所以0121x -+=,01x =,0ln1220y =-+-=,所以切线方程l 为()011y x -=⨯-,即1y x =-.(2)()f x 的定义域为0,+∞.令()0f x '=即120x -+=,12x =,令()0f x '>,得12x >,令()0f x '<,得102x <<,故()f x 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞⎪⎝⎭上单调递增,所以()f x 存在极小值1ln 212ln 212f ⎛⎫=+-=-⎪⎝⎭,无极大值.17.随着人们生活水平的提高,国家倡导绿色安全消费,菜篮子工程从数量保障型转向质量效益型.为了测试甲、乙两种不同有机肥料的使用效果,某科研单位用西红柿做了对比实验,分别在两片实验区各摘取100个,对其质量的某项指标值进行检测,质量指数值达到35及以上的为“质量优等”,由测量结果绘成如下频率分布直方图.其中质量指数值分组区间是:[)20,25,[)25,30,[)30,35,[)35,40,[]40,45.(1)请根据题中信息完成下面的列联表,并判断是否有99.9%的把握认为“质量优等”与使用不同的肥料有关;甲有机肥料乙有机肥料合计质量优等质量非优等合计(2)在摘取的用乙种有机肥料的西红柿中,从“质量优等”中随机选取2个,记区间[]40,45中含有的个数为X ,求X 的分布列及数学期望.附:()()()()()22n ad bc a b c d a c b d χ-=++++.()20P x χ≥0.1000.0500.0100.0050.001x 2.706 3.841 6.6357.87910.828【答案】(1)列联表见解析,有99.9%的把握认为,“质量优等”与使用不同的肥料有关(2)分布列见解析,2()3E X =【解析】【分析】(1)根据已知条件,结合独立性检验公式,即可计算并判断结果.(2)随机变量X 的可能取值有0,1,2,服从超几何分布,利用超几何分布的公式可计算概率值,从而列出分布列并计算期望.【小问1详解】解:由题意可得22⨯列联表为:甲有机肥料乙有机肥料合计质量优等603090质量非优等4070110合计100100200则()()()()()22n ad bc a b c d a c b d χ-=++++2200(42001200)20018.18210.8281001001109011⨯-=≈>⨯⨯=⨯.所以有99.9%的把握认为“质量优等”与使用不同的肥料有关.【小问2详解】由频率分布直方图可得“质量优等”有30个,区间[]40,45中含有10个,随机变量X 的可能取值有0,1,2,021020230C C 19038(0)C 43587P X ====,111020230C C 20040(1)C 43587P X ====,210230C 459(2)C 43587P X ====,随机变量X 的分布列如下:X012P38874087987384092()0128787873E X =⨯+⨯+⨯=.18.已知数列{}n a 满足11a =,11n n S a n +=--.(1)证明:数列{}1n a +是等比数列;(2)设1n n nb a =+,求数列{}n b 的前n 项和n S .【答案】(1)证明见解析;(2)222n nn S +=-.【解析】【分析】(1)利用给定的递推公式,结合12,n n n n a S S -≥=-推理判断作答.(2)由(1)求出n b ,再利用错位相减法求和作答.【小问1详解】当1n =时,122S a =-,解得23a =,当2n ≥时,11n n S a n +=--,1n n S a n -=-,两式相减得11n n n a a a +=--,即121n n a a +=+,即有()1121n n a a ++=+,而21142(1)a a +==+,则N n *∀∈,()1121n n a a ++=+,所以数列{}1n a +是以2为首项,2为公比的等比数列.【小问2详解】由(1)知12nn a +=,于是12n n n n nb a ==+,则231232222n n n S =++++ ,于是231112122222n n n n n S +-=++++ ,两式相减得2311111(1)11222112221212222121n n n n n n n n n S +++-+=++++-=-=--,所以222n n n S +=-.19.设函数()e xf x ax =-,0x ≥且R a ∈.(1)求函数()f x 的单调性;(2)若()21f x x ≥+恒成立,求实数a 的取值范围.【答案】(1)答案见解析(2)e 2a ≤-【解析】【分析】(1)求导后分1a ≤与1a >两种情况讨论即可;(2)方法一:讨论当0x =时成立,当0x >时参变分离可得2e 1x x a x --≤,再构造函数()2e 1x x g x x --=,0x >,求导分析最小值即可;方法二:将题意转化为2max11e x x ax ⎛⎫++≤ ⎪⎝⎭,再构造函数()21e xx ax h x ++=,求导分类讨论单调性与最大值即可.【小问1详解】()e x f x a '=-,0x ≥,当1a ≤时,()0f x '≥恒成立,则()f x 在[)0,+∞上单调递增;当1a >时,[)0,ln x a ∈时,()0f x '≤,则()f x 在[)0,ln a 上单调递减;()ln ,x a ∈+∞时,()0f x '≥,则()f x 在[)0,ln a 上单调递增.【小问2详解】方法一:2e 1x ax x -≥+在0x ≥恒成立,则当0x =时,11≥,显然成立,符合题意;当0x >时,得2e 1x x a x --≤恒成立,即2min e 1x x a x ⎛⎫--≤ ⎪⎝⎭记()2e 1x x g x x --=,0x >,()()()2e 11x x x g x x'---=,构造函数e1xy x =--,0x >,则e 10x y '=->,故e 1xy x =--为增函数,则0e 1e 010x x -->--=.故e 10x x -->对任意0x >恒成立,则()g x 在()0,1递减,在()1,+∞递增,所以()()min 1e 2g x g ==-∴e 2a ≤-.方法二:211e xx ax ++≤在[)0,+∞上恒成立,即2max11e x x ax ⎛⎫++≤ ⎪⎝⎭.记()21e x x ax h x ++=,0x ≥,()()()11e xx x a h x '-+-=-,当1a ≥时,()h x 在()0,1单增,在()1,+∞单减,则()()max 211ea h x h +==≤,得e 2a ≤-,舍:当01a <<时,()h x 在()0,1a -单减,在()1,1a -单增,在()1,+∞单减,()01h =,()21ea h +=,得0e 2a <<-;当0a =时,()h x 在()0,∞+单减,成立;当a<0时,()h x 在()0,1单减,在()1,1a -单增,在()1,a -+∞单减,()01h =,()121eaah a ---=,而1e 11a a -≥-+,显然成立.综上所述,e 2a ≤-.。

高二下学期期中数学试卷(文科)B卷

高二下学期期中数学试卷(文科)B卷

高二下学期期中数学试卷(文科)B卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)设集合A={x|﹣1≤x≤2,x∈N},集合B={2,3},则A∪B=()A . {1,2,3}B . {0,1,2,3}C . {2}D . {﹣1,0,1,2,3}2. (2分) (2016高二上·黄骅期中) 命题“若x2>y2则x>y”的逆否命题是()A . 若x2<y2则x<yB . 若x>y则x2>y2C . 若x≤y则x2≤y2D . 若x≥y则x2>y23. (2分) (2016高二下·桂林开学考) 已知函数f(x)= ,若|f(x)|≥ax,则a的取值范围是()A . (﹣∞,0]B . (﹣∞,1]C . [﹣2,1]D . [﹣2,0]4. (2分)点M的直角坐标是,在的条件下,它的极坐标是()A .B .C .D .5. (2分)参数方程(t为参数)表示的曲线不经过点()A . (0,3)B . (1,1)C .D . (2,﹣1)6. (2分)下列函数中,最小值为4的有多少个?()① ② (0<x<π)③y=ex+4e﹣x④y=log3x+4logx3.A . 4B . 3C . 2D . 17. (2分)集合A={0,2,a},B={a2},若A∪B=A,则a的值有()A . 1个B . 2个C . 3个D . 4个8. (2分)不等式的解集是()A .B .C .D .9. (2分)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是()A .B .C . (3,+∞)D . [3,+∞)10. (2分) (2016高一上·安徽期中) 设函数f(x)的定义域为D,若存在闭区间[a,b]⊆D,使得函数f (x)满足:①f(x)在[a,b]上是单调函数;②f(x)在[a,b]上的值域是[2a,2b],则称区间[a,b]是函数f(x)的“和谐区间”.下列结论错误的是()A . 函数f(x)=x2(x≥0)存在“和谐区间”B . 函数f(x)=2x(x∈R)存在“和谐区间”C . 函数f(x)= (x>0)不存在“和谐区间”D . 函数f(x)=log2x(x>0)存在“和谐区间”11. (2分) (2017高二上·越秀期末) 已知△ABC的顶点B,C在椭圆 +y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A .B . 6C .D . 1212. (2分)点P(4,m)在以点F为焦点的抛物线(t为参数)上,则|PF|等于()A . 2B . 3C . 4D . 5二、填空题 (共4题;共4分)13. (1分)曲线的极坐标方程ρ=4sinθ+2cosθ化为直角坐标方程为________.14. (1分) (2017高一上·金山期中) 若0<a<1,则不等式(a﹣x)(x﹣)>0的解集为________.15. (1分) (2016高三上·太原期中) 在极坐标系中,曲线ρ=cosθ+1与ρcosθ=1的公共点到极点的距离为________.16. (1分)已知条件p:x>a,条件q:x2+x﹣2>0,若p是q的充分不必要条件,则实数a的取值范围是________三、解答题 (共6题;共50分)17. (5分) (2017高二下·微山期中) 设x,y都是正数,且x+y>2.证明:<2和<2中至少有一个成立.18. (10分) (2016高一上·思南期中) 已知函数f(x)=( +a)x,a∈R(1)求函数的定义域(2)是否存在实数a,使得f(x)为偶函数.19. (10分) (2019高二上·城关期中) 设实数满足(其中),实数满足。

贵阳市高二下学期期中数学试卷(文科)B卷

贵阳市高二下学期期中数学试卷(文科)B卷

贵阳市高二下学期期中数学试卷(文科)B卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016高二下·衡阳期中) 已知集合A={1,2,3,4},B={2,4,6},则A∩B的元素个数是()A . 0个B . 1个C . 3个D . 2个2. (2分)(2017·万载模拟) 复数(i是虚数单位)的模等于()A .B . 10C .D . 53. (2分)(2018·株洲模拟) 设函数的图象在点处切线的斜率为,则函数的图象一部分可以是()A .B .C .D .4. (2分)设点M是线段BC的中点,点A在直线BC外,, ..,则=()A . 2B . 4C . 6D . 85. (2分)为调查中山市中学生平均每人每天参加体育锻炼时间x(单位:分钟),按锻炼时间分下列四种情况统计:①0~10分钟;②11~20分钟;③21~30分钟;④30分钟以上.有10000名中学生参加了此项活动,下图是此次调查中某一项的流程图,其输出的结果是6200,则平均每天参加体育锻炼时间在0~20分钟内的学生的频率是()A . 3800B . 6200C . 0.62D . 0.386. (2分)在程序框图中,任意输入一次与,则能输出数对的概率为()A .B .C .D .7. (2分)已知,则的值是()A . -2B . 2C .D .8. (2分)已知双曲线C1:的离心率为2,若抛物线C2:的焦点到双曲线C1的渐近线的距离是2,则抛物线C2的方程是()A .B .C .D .9. (2分)为了得到函数的图象,可以将函数的图象()A . 向右平移个单位长度B . 向右平移个单位长度C . 向左平移个单位长度D . 向左平移个单位长度10. (2分)(2017·聊城模拟) 已知一个几何体的三视图如图所示,则该几何体的体积为()A . 2πB .C .D .11. (2分)如果两个球的体积之比为8:27,那么两个球的表面积之比为()A . 8:27B . 2:3C . 4:9D . 2:912. (2分) (2017高二下·黑龙江期末) 已知变量,有如下观察数据01342.4 4.5 4.6 6.5若对的回归方程是,则其中的值为()A . 2.64B . 2.84C . 3.95D . 4.35二、填空题 (共4题;共4分)13. (1分)(2017·银川模拟) 已知实数x,y满足,则z= 大值为________.14. (1分) (2016高二上·桃江期中) 在△ABC中,若sinA:sinB:sinC=1::3,则∠B的大小为________.15. (1分) (2018高二下·枣庄期末) 先阅读下面的文字:“求的值时,采用了如下的方式:令,则有,两边平方,可解得(负值舍去)”.那么,可用类比的方法,求出的值是________.16. (1分)(2017·襄阳模拟) 从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中的视力情况进行统计,其频率分布直方图如图所示.若某高校A专业对视力的要求在0.9以上,则该班学生中能报A专业的人数为________.三、解答题 (共6题;共55分)17. (10分) (2016高二下·昆明期末) 已知Sn是等差数列{an}的前n项和,且a2=2,S5=15.(1)求通项公式an;(2)若数列{bn}满足bn=2an﹣an,求{bn}的前n项和Tn.18. (15分) (2016高二上·河北期中) 甲、乙两位学生参加数学竞赛培训,他们在培训期间8次模拟考试的成绩如下:甲:82 81 79 78 95 88 93 84乙:92 95 80 75 83 80 90 85(1)画出甲、乙两位学生成绩的茎叶图,并求学生乙成绩的平均数和方差;(2)从甲同学超过80分的6个成绩中任取两个,求这两个成绩中至少有一个超过90分的概率.(3)甲同学超过80(分)的成绩有82 81 95 88 93 84,19. (5分) (2017高二下·营口会考) 如图所示,△ABC为正三角形,CE⊥平面ABC,BD∥CE且CE=AC=2BD,试在AE上确定一点M,使得DM∥平面ABC.20. (5分)(2017·河南模拟) 已知椭圆C: + =1(a>b>0)的离心率为,过椭圆C的右焦点且垂直于x轴的直线与椭圆交于A,B两点,且|AB|= .(Ⅰ)求椭圆C的标准方程;(Ⅱ)过点(1,0)的直线l交椭圆C于E,F两点,若存在点G(﹣1,y0)使△EFG为等边三角形,求直线l 的方程.21. (15分)(2017·武汉模拟) 已知f(x)=ex﹣ax2 ,曲线y=f(x)在(1,f(1))处的切线方程为y=bx+1.(1)求a,b的值;(2)求f(x)在[0,1]上的最大值;(3)证明:当x>0时,ex+(1﹣e)x﹣xlnx﹣1≥0.22. (5分) (2017高二下·潍坊期中) 在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1 , C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=﹣,Q为C2上的动点,求线段PQ的中点M到直线C3:ρcosθ﹣ρsinθ=8+2 距离的最小值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共55分) 17-1、17-2、18-1、18-2、18-3、19-1、21-1、21-2、21-3、22-1、。

{高中试卷}高二文科数学第二学期期中考试2

{高中试卷}高二文科数学第二学期期中考试2

20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:高二数学试题(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 共150分,考试时间120分钟.注意事项:1、所有题目用钢笔或圆珠笔直接答在答题卷中,只能在各题目答题区域内作答,超出黑色矩形边框限定区域的答案无效。

2、答卷前将答题卷上的姓名、考号、班级填写清楚。

第Ⅰ卷(选择题共60分)一、选择题:本大题共12题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.1、且,则…等于()A、B、C、D、2、已知直线,直线,给出下列命题:①∥②∥③∥④∥其中真命题的是()A、①②③B、②③④C、②④D、①③3、一个正四棱锥的底面面积为Q,则它的中截面(过各侧棱的中点的截面)的边长是()A、B、C、D、4、α表示一个平面,表示一条直线,则α内至少有一条直线与直线()A、平行B、相交C、异面D、垂直5、设M=,N=,P=,Q=,则四个集合的关系为()A、B、C、D、6、设正方体的全面积为,一个球内切于该正方体,那么这个球的体积是()A、B、C、D、7、某电视台连续播放5个广告,其中3个不同的商业广告和2个不同的奥运广告,要求最后播放的必须是奥运广告,且2个奥运广告不能连续播放,则不同的播放方式有()A、36种B、48种C、120种D、20种8、已知北纬450圈上有A、B两地,且A地在东经300线上,B地在西经600线上,设地球半径为R,则A、B两地的球面距离是()A、 B、 C、 D、9、若直线与平面所成角为,直线a在平面内,且与直线异面,则直线与直线a所成的角的取值范围是()A、B、C、D、10、正四面体棱长为,点在上移动,点在上移动,则的最小值为()A、B、C、D、11、若集合,集合,是从到的映射,则满足的映射有()A、6个B、7个C、8个D、9个12、正方体中,是,的交点,则与所成的角是()A、60°B、90°C、D、第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在题中横线上.13、.14、是球面上的四个点,两两垂直,且,则该球的表面积为_______________.15、正六棱锥S-ABCD的底面边长为6,侧棱长为,则它的侧面与底面所成的二面角的大小为_________.16、已知是直线,是平面,给出下列命题:①、若,,则②、若与所成角相等,则③、若,,则④、若,,则,其中真命题的序号是_______________.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17、(本小题满分12分)已知ABCD是正方形,P A⊥平面ABCD,且P A=AB=,E、F是侧棱PD、PC的中点。

西安市高二下学期期中数学试卷(文科) B卷

西安市高二下学期期中数学试卷(文科) B卷

西安市高二下学期期中数学试卷(文科) B卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2018高三上·河南期中) 若在复平面内,复数所对应的点落在直线上,则A .B .C .D .2. (2分)下列说法中正确的是()A . 合情推理就是正确的推理B . 归纳推理是从一般到特殊的推理过程C . 合情推理就是归纳推理D . 类比推理是从特殊到特殊的推理过程3. (2分) (2018高三上·广东月考) 记复数的共轭复数为,已知复数满足,则()A .B .C .D .4. (2分)已知a,b,c∈(0,1),则对于(1﹣a)b,(1﹣b)c,(1﹣c)a说法正确的是()A . 不能都大于B . 都大于C . 都小于D . 至少有一个大于5. (2分)下列框图属于流程图的是()A .B .C .D .6. (2分)四个学习小组分别对不同的变量组(每组为两个变量)进行该组两变量间的线性相关作实验,并用回归分析的方法分别求得相关系数r与方差m如表所示,其中哪个小组所研究的对象(组内两变量)的线性相关性更强()A . 第一组B . 第二组C . 第三组D . 第四组7. (2分) (2018高一下·枣庄期末) 某奶茶店的日销售收入y(单位:百元)与当天平均气温x(单位:℃)之间的关系如下:x-2-1012y5221通过上面的五组数据得到了x与y之间的线性回归方程为,但现在丢失了一个数据,该数据应为()A . 2B . 3C . 4D . 58. (2分) (2016高二下·河南期中) 用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是()A . 假设三内角都不大于60度B . 假设三内角至多有一个大于60度C . 假设三内角都大于60度D . 假设三内角至多有两个大于60度9. (2分) (2015高二下·张掖期中) 下列说法正确的是()A . 类比推理是由特殊到一般的推理B . 演绎推理是特殊到一般的推理C . 归纳推理是个别到一般的推理D . 合情推理可以作为证明的步骤10. (2分) (2017高二下·福州期中) 为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线 =bx+a近似的刻画其相关关系,根据图形,以下结论最有可能成立的是()A . 线性相关关系较强,b的值为1.25B . 线性相关关系较强,b的值为0.83C . 线性相关关系较强,b的值为﹣0.87D . 线性相关关系太弱,无研究价值11. (2分)复数A . 1-iB . 1+iC . -iD . i12. (2分) (2016高二下·昌平期中) 给出下列三个类比结论.①(ab)n=anbn与(a+b)n类比,则有(a+b)n=an+bn;②loga(xy)=logax+logay与sin(α+β)类比,则有sin(α+β)=sinαsinβ;③(a+b)2=a2+2ab+b2与( + )2类比,则有( + )2= 2+2 • + 2;其中结论正确的个数是()A . 0B . 1C . 2D . 3二、填空题 (共4题;共8分)13. (1分)已知复数(i为虚数单位),则 =________.14. (1分)设P(x,y)是函数y=(x>0)图象上的点,则x+y的最小值为________.15. (5分) (2018高一下·北京期中) 某人隔河看到两目标A与B,但都不能到达,该人在此岸选取相距公里的C,D两点,测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°,如果A,B,C,D共面,求A与B的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二下数学文科期中试卷二B 卷
一.选择题(每小题5分,12题共计60分)
1.已知复数1z i =-,那么||z =( )
A. 0
B. 1
C. 2
D. 2 2.设i 为虚数单位,则复数
i
i
+-15=( ) A .i 32-- B .i 32+- C .i 32- D .i 32+
3.若复数i a a a Z )3()32(2++-+=为纯虚数(i 为虚数单位),则实数a 的值是( ) A .3- B .3-或1 C .3 或1-
D .1
4.已知x 与y 之间的一组数据:
则y 与x 的线性回归方程为a x b y
ˆˆ+=必过点( ) A . )2,2( B. )4,5.1( C. )0,5.1( D. )2,1( 5.已知函数x x a x f +=ln )(在1=x 处取得极值,则a =( )
A.
21 B. 1- C.0 D.2
1
- 6.曲线2)(3-+=x x x f 的一条切线平行于直线14-=x y ,则切点0P 的坐标为( )
A .)1,0(-或)0,1(
B .)0,1(或)4,1(--
C .)4,1(--或)2,0(-
D .)0,1(或)8,2(
7.由数列1,10,100,1000,……猜测该数列的第n 项可能是( )
A .10n
B .1
10
n - C .1
10
n +
D .11n
8.函数
32()693f x x x x =-++的单调减区间为( )
A. )3,1(-
B. )1,3(--
C. )3,1(
D. )1,3(- 9.函数13)(3
+-=x x x f 在[]0,3-上最大值,最小值分别为( )
A.1,1-
B.1,17-
C.3,17-
D.9,19-
10.已知二次函数)(x f 的图象如图1所示,则其导函数)(/
x f 的图象大致形状是( )
11.函数x x y 33-=的极大值为m ,极小值为n ,则n m +=( )
A .0
B .1
C .2
D .4
12.x x f sin )(0=,)()(/
01x f x f =,)()(/
12x f x f =,……)()(/
1x f x f n n -=,则=)(2014x f ( ) A. x sin B. x sin - C. x cos D. x cos - 二.填空题(每小题5分,4题共计20分)
13.曲线34)(x x x f -=在点)3,1(--处的切线方程为 14.观察下列等式2
3
3
321=+,2
3
3
3
6321=++,2
3
3
3
3
104321=+++……根据上述规律,第五个
式子为 15.三次函数x ax x f +=3)(在),(+∞-∞∈x 内是增函数,则a 的取值范围是 16.把1
36101521 ,,,,,,这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形 (如下面),则第七个三角形数是
三.解答题
17.复数i m m Z )5()12(-+-=(R m ∈) 对应的点A : (1).当A 落在直线03=--y x 上时,求实数m 的值. (2).当A 落在第四象限内,求实数m 的取值范围.
18.已知函数1ln )(+-=x x x x f 。

(1).求)(x f 的单调区间. (2).求函数()f x 的极值.
19.已知函数c bx ax x x f +++=23)(,过曲线)(x f y =上的点))1(,1(f P 的切线方程为13+=x y , 若函数)(x f 在2-=x 处有极值,求)(x f 的表达式.
20.已知函数32()2912f x x x x =-+,
(1).求函数的极值. (2).求当[03]x ∈,
时函数的最值.
21.已知函数3
2
()f x x ax bx c =+++在2
3
x =-
与1x =时都取得极值。

(1).求,a b 的值与函数()f x 的单调区间.
(2).若对[1,2]x ∈-,不等式2
()f x c <恒成立,求c 的取值范围.
22.已知函数32()f x x ax bx c =+++在2x =-处取得极值,并且它的图象与直线33y x =-+在点)0,1( 处相切, 求c b a ,,的值.
23.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
(1).用分层抽样的方法在喜欢打篮球的学生中抽6人,其中男生抽多少人?
(2).为了研究喜欢打蓝球是否与性别有关,由公式)
)()()(()(22
d b c a d c b a bc ad n K ++++-= 计算出2
K ,那么
你能否有99.5%的把握认为是否喜欢打篮球与性别有关? 附临界值表:
高二下数学文科期中试卷二B 卷参考答案
一,选择题
1C 2C 3D 4B 5B 6B 7B 8C 9C 10B 11A 12B 二.填空题
13. 02=--y x 14. 2
3
3
3
3
3
3
21654321=+++++ 15. ),0(+∞ 16. 28 三.解答题
17.(10分) (1). )5,12(--m m A 代入直线03=--y x 可得03)5()12(=----m m 求得1-=m 。

(2). ⎩⎨
⎧<->-0
5012m m 可得521
<<m 。

18. (12分) (1).x x x x x x f ln 1)(ln ln )()(1
//=-+= 令0ln >x 解出1>x ,又函数)(x f 的定义
域为0>x ,所以)(x f 得单调增区间为()+∞,1, )(x f 得单调减区间为()1,0 (2). 0)1()(==f x f 极小值 19. (12分)
20. (12分)解:(1)2
2
()618126(32)6(1)(2)f x x x x x x x '=-+=-+=--
且(,1)(2,)()0x f x '∈-∞⋃+∞>时, (1,2)()0x f x '∈<时,
51)(==)(极大值f x f ,42)(==)(极小值f x f
(2)由(1)得,当[03]x 在,
内变化时,()()f x f x '与的变化情况如下表:
min max 0()03()9.
x f x x f x ====当时,;当时,
21.
22.略
23.( 12分)解:(1)在喜欢打蓝球的学生中抽6人,则抽取比例为
61
305
=, ∴男生应该抽取1
2045

=人。

(2)∵2
8.333K ≈7.879>,且2(7.879)0.0050.5%P k ≥==,
那么,我们能够有99.5%的把握认为是否喜欢打蓝球是与性别有关系的.。

相关文档
最新文档