概率论 第1章 随机事件与概率

合集下载

概率论第一章随机事件及其概率

概率论第一章随机事件及其概率
A
B
和事件 A∪B={| ∈ A或B } A = { HHH },B = { TTT } ; A∪B = { HHH,TTT } 三次都是同一面
特别的,对任意的随机事件 A , A∪A = A, A∪ = A, A∪S = S 当 A、B 不相容时,记成 A∪B = A+B
S
(3).事件的积运算 得到一个新事件,它的发生表示 这些事件中每一个都要发生,
解. 由减法公式, P (B – A ) = P (B ) – P (AB ) 只需要计算出概率 P (AB ) 。 (1) A、B互不相容即 AB = ,则 P (B – A ) = 0.5; (2) A B 等价于 AB = A,得到 P (B – A ) = 0.2; (3) 利用加法公式的另一形式: P (A∪B ) = P (A ) + P (B – A ), 得到P (B – A ) = 0.4。
性质5 设A,B是两个事件,若 A B, 则 P (A ) ≤ P (B ) 性质6 对任意的事件A ,有P (A ) ≤1。 证明思路 利用概率定义中的无穷可加以及非负性等。
思考
性质4中如何推广到n个事件的加法公式
例1.11 假定 P (A ) = 0.3,P (B ) = 0.5 , 分别计算 (1) A、B 不相容;(2) A B; (3) P (A∪B) = 0.7 时概率P (B – A) 的值。
例如从 26 个英文字母中任取2 个排列, 所有不同方式一共有 P262 = 26×25 = 650。
(2) 可以重复的排列
从 n 个不同元素中允许放回任意取 m 个 出来排成有顺序的一列( 即取出的这些元素 可以相同 )。所有不同的排列方式一共有 n×n×…×n = nm

(完整版)概率论第一章随机事件与概率

(完整版)概率论第一章随机事件与概率
P(A) = A中样本点的个数 / 样本点总数
解题思路
1、将事件定义为某个参数,如A,B,C; 2、确定总样本空间样本数与事件对应的样本数 技巧:可以采用概率的性质和事件的运算关系灵 活变换。
2. 样本点 ω—— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
1.1.3 随机事件
1. 随机事件 —— 某些样本点组成的集合, Ω的子集,常用A、B、C…表示.
• 重复排列:nr

选排列: Pnr
n! n(n 1)......(n r 1) (n r)!
组合

组合:
Cnr
n r
n! r!(n r)!
Pnr r!
注意
求排列、组合时,要掌握和注意: 加法原则、乘法原则.
加法原理
完成某件事情有 n 类途径, 在第一类途径中有m1种方 法,在第二类途径中有m2种方法,依次类推,在第 n 类 途径中有mn种方法,则完成这件事共有 m1+m2+…+mn种 不同的方法.
§1.1 随机事件及其运算 §1.2 概率的定义及其确定方法 §1.3 概率的性质 §1.4 条件概率 §1.5 独立性
§1.1 随机事件及其运算
1.1.1 随机现象:自然界中的有两类现象 1. 必然现象
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
乘法原理

概率第一章

概率第一章
1.2.1 基本事件空间与事件
随机试验:不能事先准确地预见它的
结果,而且在相同条件下可以重复进行。
1-4
概率论与数理统计
E
随机试验:不能事先准确地预见它的
结果,而且在相同条件下可以重复进行用 符号 E 表示。 随机事件 :在条件下事件可能发生也 可能不发生的事件用大写字母 A , B , C ,表
指出
件,并表示事件 1-9
事件中哪些是基本事 B, C, D
。 概率论与数理统计
E
1.2.2 事件间的关系与运算
1.事件的包含与相等 若事件 A 中的每个基本事件都包含在 B
A
事件 B 之中,即 A 的发生必然导致 B 的发
生,则称事件 A 包含于事件 B ,或事件 B
包含事件 A ,也称是的特款 ,记为 A B 。
1-19
概率论与数理统计
E 与B B)( A与 A与B 如果事件A与事件B A A (1) (B 的和 A B) ;
(2) AB AB BC;
(3) ( A B)( A B)(B C ).
例1.2.4 化简下列各事件:
(1) ( A B)( A B) ; (2) AB AB BC; (3) ( A B)( A B)(B C ).
(2) AB AB BC;
(3) ( A B)( A B)(B C ).
例1.3.1 设事件A, B 的概率分别为 和
,试求下列三种情况下的值: (1) B 互不相容; A, (2) A B ; (3) ( AB ) 1 . P
8
1 3
1 2
1-27
概率论与数理统计
E 与B B)( A与 A与B 如果事件A与事件B A A (1) (B 的和 A B) ;

概率论与数理统计第1章随机事件及其概率

概率论与数理统计第1章随机事件及其概率
骰子朝上的点数为 i ,第二颗骰子朝上的点数为 j . (3) (i) S1 {( 正品,次品 ),( 正品,正品 ),( 次品,正品 )} ;
(ii) S2 {( 正品,次品 ),( 正品,正品 )} .
若用“1 ”表示“正品”,“ 0 ”表示“次品”,这里的两个样本空
间又可表示为
(i) S1 {(1,0),(1,1),(0,1)} ;(ii) S2 {(1,0),(1,1)}. (4) (i) S1 {t t 0};(ii) S2 { 合格品, 不合格品} . 若用“1 ”表示“合格品”,“ 0 ”表示“不合格品”, S2 又可表示为 S2 {1,0} . (5) S5 {(x, y) x2 y2 100}.
字母 E T A O I N S R H
使用频率 0.126 8 0.097 8 0.078 8 0.077 6 0.070 7 0.070 6 0.063 4 0.059 4 0.057 3
字母 L D U C F M W Y G
使用频率 0.039 4 0.038 9 0.028 0 0.026 8 0.025 6 0.024 4 0.021 4 0.020 2 0.018 7
第1章 随机事件及其概率
§1.1 随机事件
1.1.1 随机现象
在自然界以及生产实践和科学实验中普遍存在着两类现象.一类是 在一定条件下,重复进行试验,某一结果必然发生或必然不发生,即是可 以事前预言的,称为确定性现象.
除去确定性现象,人们发现还存在另一类现象,它是事前不可预言 的,即在相同条件下重复进行试验,每次的结果不一定相同,这一类现象 我们称之为偶然性现象或随机现象.
在一定条件下,随机现象有多种可能的结果发生,事前不能预知 将出现哪种结果,但通过大量的重复观察,出现的结果会呈现出某种 规律,称为随机现象的统计规律性.

概率论与数理统计教程(茆诗松)第1章

概率论与数理统计教程(茆诗松)第1章
A = “针与平行线相交” 的充要条件是: x ≤ l/2 sin ϕ . 针是任意投掷的,所以这个问题可用几何方法 求解得
SA ∫0 P( A) = = SΩ
27 July 2011
π
l sinϕdϕ 2l 2 = d(π / 2) dπ
华东师范大学
第一章 随机事件与概率
第9页
§1.3 概率的性质
= (3/10)×(2/9)+(7/10)×(3/9) = 3/10
27 July 2011
华东师范大学
第一章 随机事件与概率
第24页 24页
1.4.4
贝叶斯公式
乘法公式是求“几个事件同时发生”的概率; 全概率公式是求“最后结果”的概率; 贝叶斯公式是已知“最后结果” ,求“原因” 的概率.
27 July 2011
第一章 随机事件与概率
第19页 19页
条件概率的三大公式
乘法公式; 全概率公式; 贝叶斯公式.
27 July 2011
华东师范大学
第一章 随机事件与概率
第20页 20页
1.4.2
性质1.4.2
乘法公式
(1) 若 P(B)>0,则 P(AB) = P(B)P(A|B); 若 P(A)>0,则 P(AB) = P(A)P(B|A). (2) 若 P(A1A2 ······An−1)>0,则 P(A1A2 ······An) = P(A1)P(A2|A1) ······ P(An|A1A2 ······An−1)
古典方法 设 Ω 为样本空间,若
① Ω只含有限个样本点; ② 每个样本点出现的可能性相等, 则事件A的概率为: P(A) = A中样本点的个数 / 样本点总数

大学概率论随机事件与概率

大学概率论随机事件与概率

② A B AB
AB
AB
A
B
BA
四、事件的运算律
1.交换律、结合律:(略)
2.分配律:
① AUBI C AUBAUC ② A I B UC AB U AC
3.对偶律:
① A U B A I B (和的逆=逆的积) ② A I B A U B (积的逆=逆的和)
例2. 用A、B、C的运算关系表示下列各事件:
P( A) A的测度(长度,面积,体积) 的测度(长度,面积,体积)
例4.
如果在一个5万平方公里的海域里有表面积达40平
方公里的大陆架贮藏着石油,
若在海域里随意选取一点
钻探, 问钻到石油的概率是多少?
解:
由题意知, 问题归结为几何概率的计算,
设A={钻到石油},
则 P( A) 40 50000
①三个事件中至少一个发生:
A U B UC
②没有一个事件发生:
ABC A U B UC
③恰有一个事件发生:
ABC U ABC U ABC
④至多有两个事件发生:
(考虑其对立事件)
ABC A U B UC
⑤至少有两个事件发生:
(由对偶律)
ABC U ABC U ABC U ABC AB U BC UCA
考虑可能出现的点数;
2 1, 2, 3, 4, 5, 6
E3: 记录某网站一分钟内受到的点击次数;
3 0,1,2,L
E4: 任选一人,
记录他的身高(m)和体重(kg).
4 h, g 0 h 3, 0 g 400
注: ①样本空间是一个集合;
②对于一个随机试验而言,
例如:
掷两枚均匀的骰子一次,

概率论第一章

概率论第一章
例如:在检查某些圆柱形产品时, 例如:在检查某些圆柱形产品时,如果规定只有它的长度及直径 都合格时才算产品合格,那么“产品合格” 直径合格” 都合格时才算产品合格,那么“产品合格”与“直径合格”、 长度合格”等事件有着密切联系。 “长度合格”等事件有着密切联系。
下面我们讨论事件之间的关系与运算
1、包含关系
⑶ 两个特殊事件
必然事件U ★ 必然事件U ★ 不可能事φ 不可能事φ
3、随机试验
如果一个试验可能的结果不止一个, 如果一个试验可能的结果不止一个,且事先不能肯定 会出现哪一个结果,这样的试验称为随机试验。 会出现哪一个结果,这样的试验称为随机试验。
例如, 掷硬币试验 例如, 寿命试验 测试在同一工艺条件下生产 掷骰子试验 掷一枚硬币,观察出正还是反. 掷一枚硬币,观察出正还是反 出的灯泡的寿命. 出的灯泡的寿命 掷一颗骰子, 掷一颗骰子,观察出现的点数
第一章 随机事件及其概率
随机事件及样本空间 频率与概率 条件概率及贝努利概型
§1 随机事件及样本空间
一、随机事件及其有关概念
1、随机事件的定义
试验中可能出现或可能不出现的情况叫“随机事件” 试验中可能出现或可能不出现的情况叫“随机事件”, 简称“事件” 记作A 简称“事件”。记作A、B、C等任何事件均可表示为样本空 间的某个子集。称事件A发生当且仅当试验的结果是子集A 间的某个子集。称事件A发生当且仅当试验的结果是子集A中 的元素。 的元素。
例如,一个袋子中装有10个大小、形状完全相同的球。 例如,一个袋子中装有10个大小、形状完全相同的球。 10个大小 将球编号为1 10。把球搅匀,蒙上眼睛,从中任取一球。 将球编号为1-10。把球搅匀,蒙上眼睛,从中任取一球。
因为抽取时这些球是完全平等的, 因为抽取时这些球是完全平等的, 我们没有理由认为10个球中的某一个会 我们没有理由认为10个球中的某一个会 10 比另一个更容易取得。也就是说,10个 比另一个更容易取得。也就是说,10个 球中的任一个被取出的机会是相等的, 球中的任一个被取出的机会是相等的, 均为1/10 1/10。 均为1/10。

第1章 概率论的基本概念.

第1章 概率论的基本概念.
, B不可能同时发生 概率论表述:事件 A .. A不能都不发生, 概率论表述:事件 A 不发生 . 事件 A 和 概率论表述:事件 A 发生,而事件 B 发生 . , , 概率论表述:事件 概率论表述:事件 概率论表述:事件 A A A , B B B 相等意味着它们是同一个集合 中至少有一个发生 同时发生 . . 概率论表述:事件A发生必然导致事件B发生. 也不能都发生,只能恰好发生其中一个.
注意事项
可能结果——样本点——基本事件
(1) (2)在概率论中常用一个长方形来 (3) 由中的单个元素组成的子集称为基本事件,常用表示. 判定一个事件是否发生的标准是看它所包含的样本点是否 表示概率空间,用椭圆或者其它的 A 出现 ① .事件发生当且仅当该事件包含的某个样本点出现 样本空间的最大子集称为必然事件,常用 表示; . ● 1 几何图形来表示事件.这类图形被称 ● ② 样本空间的最小子集称为不可能事件,常用 表示 .2 为维恩(Venn)图,又叫文氏图.
例1.1.2 一天内进入某商场的人数的样本空间为 ={0,1, 2, …}. 例1.1.3 电视机寿命的样本空间为 ={t|t0} . 在以后的数学处理上,我们往往把有限个或可列个 样本点的情况归为一类,称为离散样本空间;而将不可 列无限个样本点的情况归为另一类,称为连续样本空间.
随机事件 (random event) 随机试验的某些子集称为随机事件, 简称事件.它在随机试验中可能出现也可能不出现,而在大量重复试 验中具有某种规律性. 常用符号 (1)大写的英文字母:A,B,C. (2)大写的英文字母加下标:A1, A2, A3, … .
例1.1.7 设A, B, C是某个随机现象的三个事件,则 (1)事件“A与B发生,C不发生”:ABC (2)事件“A, B, C中至少有一个发生”:A B C (3)事件“A, B, C中至少有两个发生”:AB AC BC

概率论与数理统计(经管类)复习要点 第1章 随机事件与概率

概率论与数理统计(经管类)复习要点 第1章 随机事件与概率

第一章随机事件与概率1. 从发生的必然性角度区分,现象分为确定性现象和随机现象。

随机现象:在一定条件下,可能出现这样的结果,也可能出现那样的结果,预先无法断言。

统计规律性:在大量重复试验或观察中所呈现的固有规律性。

概率论与数理统计就是研究和揭示随机现象统计规律的一门数学学科,随机现象是概率论与数理统计的主要对象。

(1)概率论:从数量上研究随机现象的统计规律性的科学。

(2)数理统计:从应用角度研究处理随机性数据,建立有效的统计方法,进行统计推理。

2. (1)试验的可重复性——可在相同条件下重复进行;(2)一次试验结果的随机性——一次试验之前无法确定具体是哪种结果出现,但能确定所有的可能结果;(3)全部试验结果的可知性——所有可能的结果是预先可知的。

在概率论中,将具有上述三个特点的试验成为随机试验,简称试验,记作E。

样本点:试验的每一个可能出现的结果称为一个样本点,记为ω。

样本空间:试验的所有可能结果所组成的集合称为试验E的样本空间,记为Ω。

3. 在一次试验中可能出现也可能不出现的事件,统称为随机事件,记作A,B,C或A1,A2,…随机事件:样本空间Ω的任意一个子集称, 简称“事件”,记作A、B、C等。

事件发生:在一次试验中,当这一子集中的一个样本点出现时。

基本事件:样本空间Ω仅包含一个样本点ω的单点子集{ω}。

两个特殊事件:必然事件Ω、不可能事件φ样本空间Ω包含所有的样本点,它是Ω自身的子集,在每次试验中它总是发生,称为必然事件。

空集φ不包含任何样本点,它也作为样本空间Ω的子集,在每次试验中都不发生,称为不可能事件。

4. 随机事件的关系与运算(1)事件的包含与相等设A,B为两个事件,若A发生必然导致B发生,则称事件B包含A,或称事件A包含在B中,记作B⊃A,A⊂B。

①φ⊂A⊂Ω②若A⊂B且B⊂A,则称A与B相等,记作A=B。

事实上,A和B在意义上表示同一事件,或者说A和B 是同一事件的不同表述。

(2)和事件称事件“A,B中至少有一个发生”为事件A与事件B的和事件,也称为A与B的并,记作A∪B或A+B。

概率论-第一章-随机事件与概率

概率论-第一章-随机事件与概率

第一章随机事件及其概率自然界和社会上发生的现象可以分为两大类:一类是,事先可以预言其必然会发生某种结果,即在保持条件不变的情况下重复实验或观察,它的结果总是确定的。

这类现象称为确定性现象,另一类是,事先不能预言其会出现哪种结果,即在保持条件不变的情况下重复实验或观察,或出现这种结果或出现那种结果。

这类现象称为随机现象.随机现象虽然对某次实验或观察来说,无法预言其会出现哪种结果,但在相同条件下重复进行大量的实验或观察,其结果却又呈现出某种规律性。

随机现象所呈现出的这种规律性,称为随机现象的统计规律性。

概率论与数理统计就是研究随机现象统计规律性的一门数学学科。

§1随机事件一、随机试验与样本空间我们把对随机现象进行的一次实验或观察统称为一次随机试验,简称试验,通常用大写字母E表示。

举例如下:E\:抛一枚硬币,观察正面〃、反面卩出现的情况;£:将一枚硬币抛掷两次,观察正面〃、反面7出现的情况;£:将一枚硬币抛掷两次,观察正面〃出现的次数;£.:投掷一颗骰子,观察它出现的点数;£:记录某超市一天内进入的顾客人数;&:在一批灯泡里,任取一只,测试它的寿命。

随机试验具有以下三个特点:(1)每次试验的结果具有多种可能性,并且能事先明确知道试验的所有可能结果;(2)每次试验前,不能确定哪种结果会出现;%(3)试验可以在相同的条件下重复进行。

随机试验£的所有可能结果的集合称为£的样本空间,记作0。

样本空间的元素,即£的每个结果,称为样本点,一般用e表示,可记C = {e}。

上面试验对应的样本空间:n, ={w,T};D.2={HH、HT、TH、TT};o, ={0,1,2};也={123,4,5,6};={0,1234 …};o6 = {/|/>o}o注意,试验的目的决定试验所对应的样本空间。

二、随机事件试验£样本空间。

第一章 随机事件及概率讲解

第一章 随机事件及概率讲解
例1.2中A “ 编 号 为1或3” B “ 编 号 为 奇 数 ”
(2)事件的相等:若 A B 且 B A , 则称A与B相等,记为A=B。
包含关系的性质: (a) A ; (b)A A (c)若A B且B C,则A C (d )若A B且B A,则A B
(3) n个元素的全排列数为 Anr n(n 1) 3 21 n!
c. 组合
(1)从n个元素中取出r个元素而不考虑其顺序,称为组 合,其总数为
C
r n


n r


Anr r!

n(n 1) (n r 1) r!

n! r!(n r)!
(2)若r1 r2 rk n,把n个不同的元素分成k个部分,
事件的交(积) :事件A与B都发生,称
为A与B的积(交)事件,记为 A B

推广:
事件 A1, A2,, An 同时发生:
n
A1 A2 An Ai i 1
事件 A1, A2, 同时发生:

A1 A2 Ai i 1
5、差事件:事件A发生但B不发生 称为A与B之差,记为A-B
例2.9:某城市共发行A,B,C三种报纸,调 查表明居民家庭中订购C报的占30%,同 时订购A,B两报的占10%,同时订购A,C及 B,C两报的各占8%,5%,三报都订的占 3%.今在该城中任找一户,问该户(1)只订 A、B两报;(2)只订C报的概率各为多少?
第一章 概率论的基本概 念
1 理解随机事件的概念,了解样本空间的 概念,掌握事件之间的关系和运算。
2 理解概率的定义,掌握概率的基本性质, 并能应用这些性质进行概率计算。

概率论与数理统计 第一章 随机事件与概率

概率论与数理统计 第一章 随机事件与概率
S AB
推广:
(1)n个事件A1,A2, An至少有一个发生
所构成的事件,称为 A1, A2, An的和或并,
记为
n
A1 A2 An Ai
i1
当A1, A2, An互斥时
n
n
Ai Ai
i1
i1
(2)可列无限多个事件 A1, A2, 至少有一个
(1kn)的不同排列总数为:
n n n nk
例如:从装有4张卡片的盒中 有放回地摸取3张
第1张 第2张 第3张
1 2 34
n=4,k =3
1
1
1
2
2
2 共有4.4.4=43种可能取法
3
3
3
4
4
4
2、组合: 从n个不同元素取 k个
(1kn)的不同组合总数为:
C
k n

Ank k!

n! (n k)!k!

Ai
i1
三.互不相容事件(互斥事件)
若A与B不能同时发生,即 AB 则称A与B
互不相容(或互斥)。S与 互斥。
S
A
B
推广:n个事件 A1,A2, An互斥
A1, A2, An 中任两个互斥,即,
i≠j, i, j=1,2,3 ,……n.
四.事件的和(并) 事件A与B至少有一个发生所构成的事件, 称为A与B的和(并)记为A∪B。当A与B 互斥时,A∪B =A+B。
六. 对立事件(逆事件) 由A不发生所构成的事件,称为A的对立事件
(逆事件)。记为 A
A
A
AA ,A A S,A A.
例1.掷一质地均匀的骰子,A=“出现奇数点”= {1,3,5},B=“出现偶数点”= {2,4,6},C=“出现4或6”={4,6}, D=“出现3或5”={3,5},E=“出现的点 数大于2”={3,4,5,6}, 求 A B,C D,AE,E.

概率论第一章随机事件与概率

概率论第一章随机事件与概率

n n P Ai P( Ai ) P( Ai Aj ) P( Ai Aj Ak ) i 1 i 1 n 1 ...... ( 1) P( A1 A2 ...... An )
配对模型(续)
P(Ai) =1/n, P(AiAj) =1/n(n1), P(AiAjAk) =1/n(n1)(n2), …… P(A1A2……An) =1/n! P(A1A2……An)=
从中有返回地任取n 个. 则此 n 个中有 m 个不合格品的概率为:
n M (N M ) m n N
m
n m
n M N M m N N
m
n m
条件: m n ,
即 m = 0, 1, 2, ……, n. NhomakorabeaA
事件运算的图示
AB
AB
AB
德莫根公式
A B A B;
n i 1
A B A B
n
Ai
n i 1
Ai ;
i 1
Ai
n i 1
Ai
记号
Ω φ AB AB=φ AB AB AB
概率论
样本空间, 必然事件 不可能事件 样本点 A发生必然导致B发生 A与B互不相容 A与B至少有一发生 A与B同时发生 A发生且B不发生 A不发生、对立事件
概率论
第一章 随机事件与概率
概率论起源: 合理分配赌金问题
有一笔赌金, 甲乙两个人竞赌, 输赢的 概率都一样,都是1/2, 谁先能够赢累计达到6 盘,就获得这笔赌金。 但是一个特别的原因, 赌博突然终止了, 那个时候甲赢了5局, 乙赢 了2局, 问这笔赌金应该如何分配?

概率论

概率论

1第一章 随机事件及其概率第一节 随机事件一. 必然现象与随机现象在自然界里,在生产实践和科学实验中,人们观察到的现象大体可归结为两种类型。

一类是可事前预言的,即在准确地重复某些条件下,它的结果总是肯定的,或是根据它过去的状态,在相同条件下完全可以预言将来的发展。

我们把这一类型现象称之为确定性现象或必然现象。

如在一个大气压下,水在100度时会沸腾等。

一类是事前不可预言的,即在相同条件下重复进行试验,每次结果未必相同;或是知道它过去状况,在相同条件下,未来的发展事前却不能完全肯定。

这一类型的现象我们称之为偶然性现象或随机现象。

如掷一个质地均匀的硬币,结果可能是正面向上,或是背面向上。

二. 样本空间尽管一个随机试验将要出现的结果是不确定的, 但其所有可能结果是明确的, 我们把随机试验的每一种可能的结果称为一个样本点, 记为ω;它们的全体称为样本空间, 记为Ω.事件 是指某一可观察特征的随机试验的结果。

基本事件是相对观察目的而言不可再分解的、最基本的事件,其它事件均可由它们复合而成,一般地,我们称由基本事件复合而成的事件为复合事件.如掷一枚骰子,向上的一面会出现1点,2点,3点,4点,5点,6点。

则样本点有6个。

若记,16i i i ω=≤≤,i ω即为样本点。

样本空间为123456{,,,,,}ωωωωωωΩ=。

记{}i i A ω=,i A 为一个基本事件,把“出现偶数点”这样一个事件记为B ,则246{,,}B ωωω=。

B 为一个复合事件。

三. 事件的运算规律事件间的关系及运算与集合的关系及运算是一致的,为了方便,给出下列对照表:表1.1没有相同的元素与互不相容和事件事件的差集与不发生发生而事件事件的交集与同时发生与事件事件的和集与至少有一个发生与事件事件的相等与相等与事件事件的子集是发生发生导致事件的余集的对立事件子集事件元素基本事件空集不可能事件全集必然事件样本空间集合论概率论记号B A B A AB B A B A B A B A B A AB B A B A B A B A B A B A B A B A B A A A A A ∅=-=⊂∅Ω ω,第二节 随机事件的概率一. 概率的定义定义1 设E 是随机试验, Ω是它的样本空间,对于E 的每一个事件A 赋于一个实数, 记为)(A P , 若)(A P 满足下列三个条件:1. 非负性:对每一个事件A ,有 0)(≥A P ;2. 完备性:()1P Ω=;3. 可列可加性:设 ,,21A A 是两两互不相容的事件,则有.)()(11∑∞=∞==i ii i AP A P2则称)(A P 为事件A 的概率.二. 概率的性质性质1:()0P ∅=。

概率论 第一章

概率论 第一章

第一章随机事件及其概率习题一1 举出几个必然事件、不可能事件和随机事件的例子.解(1)设v10为10次射击命中次数,则{5<v10≤8=——随机事件,{v10≤10}——必然事件,{v10>10}——不可能事件;(2)掷一枚骰子试验中,{出现偶数点}——随机事件,{出现i点}(i=1,2,…,6)——随机事件,{出现点数小于7}——必然事件,{点数不小于7}——不可能事件;(3)盒中有2个白球,3个红球,从盒中随机取出3球,则{取出的3个球中含有红球}——必然事件,{取出的3个球中不含红球}——不可能事件.2 互不相容事件与对立事件的区别何在?说出下列各对事件的关系:(1)|x-a|<δ与x-a≥δ;(2)x>20与x≤20;(3)x>20与x<18;(4)x>20与x≤22;(5)20个产品全是合格产品与20个产品中只有一个废品;(6)20个产品全是合格产品与20个产品中至少有一个废品.解对立事件一定是互不相容事件,但互不相容事件不一定是对立事件.对立事件和互不相容事件的共同特点是事件间没有公共的样本点,但两个对立事件的并(和)等于样本空间,即若A与__A是两个对立事件,则A__A=Φ,A+__A=Ω;而两个互不相容事件的并(和)被样本空间所包含,即若A与B是两个互不相容事件,则AB=Φ,且A+B⊂Ω.(1)由于{x||x-a|<δ=∩{x|x-a≥δ}=Φ,且{x||x-a|<δ=∪{x|x-a≥δ}⊂R,所以事件|x-a|<δ与x-a≥δ是互不相容事件;(2)由于{x|x>20}∩{x|x≤20}=Φ,且{x|x>20}∪{x|x≤20}=R,所以事件x>20与x≤20是对立事件;(3)由于{x|x>20}∩{x|x<18}=Φ,且{x|x>20}∪{x|x<18}=R,所以事件x>20与x<18是互不相容事件;(4){x|x>20}∩{x|x≤22}≠Φ,所以事件x>20与x≤22是相容事件;(5)设事件A={20个产品全是合格品},事件B={20个产品中只有一个废品},显然AB=Φ,A+B⊂Ω={20个产品},所以A与B是互不相容事件;(6)设事件A={20个产品全是合格品},事件B={20个产品中至少有一个废品},显然AB=Φ,A+B=Ω={20个产品},所以A与B是对立事件.3 写出下列随机试验的样本空间.(1)10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数;(2)生产产品直到得到10件正品,记录生产产品的总件数;(3)测量一汽车通过给定点的速度.解(1)将3只次品都取出,至少要抽取3次,而最多抽取10次即可,故所求样本空间Ω={3,4,…,9,10};(2)最理想的情形是开始生产的10件产品都是正品,故所求样本空间Ω={10,11,12,…};(3)若不考虑汽车的运动方向,则所求样本空间Ω={v|v>0}.若考虑汽车的运动方向,θ表示该运动方向与正东方向之间的夹角,则所求样本空间 Ω={(vcosθ,vsinθ)|v>0,0≤θ<2π=.4 事件A表示在三件被检验的仪器中至少有一件为废品,事件B表示所有的仪器为合格品,问事件(1)A∪B;(2)A∩B各表示什么意义?解(1)A∪B=Ω; (2)A∩B= .5 设A,B,C为三个随机事件,试将下列事件用A,B,C来表示:(1)仅仅A发生;(2)三个事件都发生;(3)至少有两个事件发生;(4)恰有一个事件发生;(5)没有一个事件发生;(6)不多于两个事件发生.解(1)A__B__ C;(2)ABC;(3)AB∪AC∪BC;(4)A__B__C∪__AB__C∪__A__BC;(5)__A__B__C;(6) AB__ C.7 袋内装有5个白球,3个黑球,从中任取两个球,求取出的两个球都是白球的概率. 解随机试验是从8个球中任取2个,样本空间所包含的样本点总数为n=C28.设事件A={取出两个球均为白球},此时,事件A包含的样本点数为k=C25,故P(A)= k / n = C25 / C28≈0.357.8 一批产品共200个,其中有6个废品,求:(1)这批产品的废品率;(2)任取3个恰有一个是废品的概率;(3)任取3个全是废品的概率.解随机试验是从200个产品中任取3个,样本空间所包含的样本点总数为n=C3200. 设事件A i={取出的3个产品中含有i个废品},i=1,3,事件B={这批产品的废品率}.若取出的3个产品中含有i个废品,则i个废品必须从6个废品中获得,3-i个合格品必须从194 个合格品中获得,从而事件A i所包含的样本点数为k i=C i6C3-i194 ,i=1,3.故P(B)= 6 / 200 =0.03,P(A1)=k1 / n=C16C2194/C3200≈0.086,P(A3)=k3 /n=C36/C3200≈0.000 02.9 两封信随机地向四个邮筒投寄,求第二个邮筒恰好投入一封信的概率.解将两封信随机地投入四个邮筒,共有4×4=16种投法,即n=16.设 A={第二个邮筒恰好投入一封信},此时,需将两封信中的一封放入第二个邮筒,共有2种放法,剩下的一封放入其他三个邮筒中的一个,共有3种放法,从而事件A包含的样本点数为k=2×3=6,故P(A)=k/n=6/16=3/ 8.10 在房间里有10个人,分别佩带着从1号到10号的纪念章,任意选3人记录其纪念章的号码.(1)求最小号码为5的概率;(2)求最大号码为5的概率.解设事件A={最小号码为5},事件B={最大号码为5},则P(A)=C25/C310=1/12,P(B)=C24 /C310=1/20.11 把10本书任意地放在书架上,求其中指定的三本书放在一起的概率.解设事件A={指定的三本书放在一起},将指定的三本书作为一个整体,10本书成为8本,故P(A)=k/n=A33A88/A1010≈0.067.12 甲、乙二人约定1点到2点之间在某处会面,约定先到者等候10分钟即离去.设想两个人各自随意地在1点到2点之间选一个时刻到达该处,问“甲乙二人能会面”这事件的概率是多少?解记事件A={两人能会面},以x,y分别表示两人到达时刻,则两人能会面的充要条件为|x-y|≤10, 即A={(x,y):|x-y|≤10}.这是一个几何概率问题,样本空间为Ω={(x,y):0≤x,y≤60},P(A)=L(A)/L(Ω)=602-502/602=11/36.13 在一间房里有四个人,问至少有两人的生日是在同一个月的概率是多少?解四个人在12个月中任一月出生的可能性是相等的,故基本事件的总数为124.设事件A={四个人生日均不在同一个月},则P(__A)=1-P(A)=1-A412/124=738/1728=41/96.14 设有10件样品,编以号码0~9,随机地抽取1件样品,以B表示“取到号码为偶数的样品”;A1表示“取到号码为1的样品”,A2表示“取到号码为2的样品”,A3表示“取到号码大于7的样品”,分别求A1,A2,A3的概率和A1,A2,A3对B的条件概率,并将条件概率与无条件概率做一比较.解由题设可知:P(A1)=1/10,P(A2)=1/10,P(A3)=2/10=1/5,P(A1|B)=0,P(A2|B)= 1/5,P(A3|B)= 1/5 .15 某人忘了电话号码的最后一个数字,因而随意拨号,不超过三次而接通所需要电话的概率是多少?如果已知最后一个数是奇数,那么此概率是多少?解(1)设A={三次中至少有一次接通}, __A={三次每次都不通},A i={第i次接通}(i=1,2,3).易知,__A=__A1__A2__A3,故P(__A1)=9/10, P(__A2__A1)=8/9,P(__A3|__A1__A2)=7/8,从而,P(__A)= P(__A1) P(__A2__A1)P(__A3|__A1__A2)= 9/10×8/9×7/8=7/10.故P(A)=1- P(__A)=1-7/10=3/10.(2)若已知最后一个数字是奇数,从0到9有十个数,其中五个是奇数,则P(__A1)=4/5, P(__A2__A1)=3/4,P(__A3|__A1__A2)=2/3,从而,P(__A)= P(__A1) P(__A2__A1)P(__A3|__A1__A2)= 4/5×3/4×2/3=2/5.故P(A)=1- P(__A)=1-2/5=3/5.16 考察甲、乙两地出现春旱的情况,以A,B分别表示甲、乙两地出现春旱这一事件.根据以往气象记录知P(A)=0.2,P(B)=0.15,P(AB)=0.08,求 P(A|B),P(B|A)及P(A∪B).解由题设可知:P(A|B)=P(AB)/P(B)=0.08/0.15=8/15,P(B|A)=P(AB)/P(A=0.08/0.2=2/5,P(A∪B)=P(A)+P(B)-P(AB)=0.2+0.15-0.08=0.27.17 掷三个均匀骰子,已知第一粒骰子掷出幺点(事件B),问“掷出点数之和不小于10”这个事件A的条件概率是多少?解设事件B={第一粒骰子掷出幺点},事件A={掷出点数之和不小于10},由题设可知,若第一粒掷出幺点,第二粒可能掷出3、4、5、6点;若第二粒掷出3点,第三粒必掷出6点;第二粒掷出4点,第三粒可能为5、6点;第二粒掷出5点,第三粒可能掷出4、5、6点;第二粒掷出6点,第三粒可能掷出3、4、5、6点,则P(A|B)=P(AB)/P(B)=10/36=5/18.18 甲、乙二人射击,甲击中的概率为0 8,乙击中的概率为0 7,二人同时射击,并假定中靶与否是独立的,求:(1)中靶的概率;(2)甲中、乙不中的概率;(3)甲不中、乙中的概率.解设A、B分别表示甲中靶、乙中靶两事件,则事件A与B独立,又P(A)=0.8,P(B)=0.7,于是,所求概率为(1)P(A∪B)=P(A)+P(B)-P(AB)=P(A)+P(B)-P(A)P(B)=0.8+0.7-0.7×0.8=0.94;(2)P(A__B)=P(A)P(__B)=0.8×(1-0.7)=0.24;(3)P(__AB)=P(__A)P(B)=(1-0.8)×0.7=0.14.19 从厂外打电话给这个工厂某一车间要由工厂的总机转进,若总机打通的概率为0.6,车间的分机占线的概率为0.3,假定二者是独立的,求从厂外向该车间打电话能打通的概率.解设A,B分别表示从厂外打电话总机打通、分机打通两事件,则事件A,B独立,又P(A)=0.6,P(B)=1-0.3=0.7,所求概率为P(AB)=P(A)P(B)=0.6×0.7=0.42.20 设事件A,B的概率均不为0,证明事件A与B独立及互不相容不会同时成立.证若P(A)>0,P(B)>0,则有(1)因A,B两事件相互独立,且P(A)>0,P(B)>0,有P(AB)=P(A)P(B)> 0,故AB≠Φ,即A、B不互不相容;(2)因AB=Φ,故P(AB)=P(Φ)=0,而P(A)>0,P(B)>0,故P(A)P(B)>0, 于是P(AB)≠P(A)P(B),即A与B不相互独立.21 有四个大小质地一样的球,分别在其上写有数字1,2,3和“1,2,3”,令A i={随机抽出一球,球上有数字i}(i=1,2,3).试证明A1,A2,A3两两独立而不相互独立.证由题设可知P(A1)=1/2,P(A2)=1/2,P(A3)=1/2,且P(A1A2)=1/4= 1/2×1/2,P(A1A3)=1/4= 1/2×1/2,P(A2A3)=1/4= 1/2×1/2 .以上等式说明A1,A2,A3两两独立.但P(A1A2A3)=1/4≠1/2×1/2×1/2=P(A1)P(A2)P(A3).可见事件A1A2A3不相互独立.22 加工某一零件共需四道工序,设第一、二、三、四道工序的次品率分别是2%,3%,5%,3%,假定各道工序是互不影响的,求加工出来的零件的次品率.解设Ai={第i道工序出次品},i=1,2,3,4.又设A={零件为次品},则有A=A1∪A2∪A3∪A4.由题知,A1,A2,A3,A4相互独立,__A1 ,__A2 ,__A3 ,__A4也相互独立,于是P(A)=P(A1∪A2∪A3∪A4)=1-P(________________________4321AAAA⋃⋃⋃)=1-P(__A1__A2__A3__A4)=1-P(__A1)P(__A2)P(__A3)P(__A4)=1-0.98×0.97×0.95×0.97≈0.124.23 掷三枚均匀骰子,记B={至少有一枚骰子掷出1},A={三枚骰子掷出的点数中至少有两枚一样},问A,B是否独立?解考虑P(A|__B),若__B发生,则三枚骰子都不出现幺点,那么,它们都只有5种可能性(2,3,4,5,6),比不知__B发生时可能取的点数1,2,3,4,5,6少了一个.从5个数字取3个(可重复取),其中有两个一样的可能性,应比6个数字中取3个时,有两个一样的可能性要大些,即P(A)<P(A|__B).由此推出P(A)>P(A|B),故A,B不独立.24 一批玉米种子,其出芽率为0 9,现每穴种5粒,问“恰有3粒出芽”与“不大于4粒出芽”的概率是多少?解设A={恰有3粒出芽了},B={不大于4粒出芽}.把穴中每一粒种子是否发芽看作一次试验,而各粒种子发芽与否是互不影响的,所以5次试验是相互独立的,故P(A)=b3(5,0.9)=C35×0.93×(1-0.9)2=C35×0.93×0.12≈0.073,P(B)=1-b5(5,0.9)=1-C55×0.95×(1-0.9)0=1-0.95≈0.41.25 某一由9人组成的顾问小组,若每个顾问贡献正确意见的百分比是70 % ,现在该机构对某事件可行与否个别征求各位顾问意见,并按多数人意见作出决策,求作出正确决策的概率.解显然本问题是:如果9人中超过4人作出正确决策,则可对该事件可行与否作出正确决策,从而设事件A={作出正确决策},由题设知,n=9,p=0.7,q=0.3,于是bk(n,p)=bk(9,0.7)=Ck9×0.7k×0.39-k(k=5,6,7,8,9),所以5次试验是相互独立的,故P(A)=∑=95kCk9×0.7k×0.39-k≈0.901.26 电灯泡使用寿命在1 000小时以上的概率为0 2,求3个灯泡在使用1 000小时后,最多只有一个坏了的概率.解利用二项概型,有P n(k≤1)=b0(3,0.8)+b1(3,0.8)=C03×0.80×0.23+C13×0.81×0.22=0.104.27 用三台机床加工同一种零件,零件由各机床加工的概率分别为0.5,0.3,0.2,各机床加工的零件为合格品的概率分别等于0.94,0.9,0.95,求全部产品中的合格率.解设事件A、B、C分别表示三台机床加工的产品,事件E表示合格品.依题意,P(A)=0.5,P(B)=0.3,P(C)=0.2,P(E|A)=0.94,P(E|B)=0.9,P(E|C)=0.95,由全概率公式P(E)=P(A)P(E|A)+P(B)P(E|B)+P(C)P(E|C) =0.5×0.94+0.3×0.9+0.2×0.95=0.93.28 12个乒乓球中有9个新的,3个旧的,第一次比赛时,同时取出了3个,用完后放回去.第二次比赛时,又同时取出3个,求第二次取出3个球都是新球的概率.解以A i(i=0,1,2,3)表示事件“第一次比赛从盒中任取的3个球中有i个新球”.可知A0,A1,A2,A3是样本空间Ω的一个划分.以B表示事件“第二次取出的球都是新球”.则P(A0)=C33/C312=1/220,P(A1)=C19C23/C312=27/200,P(A2)=C29C13/C312=27/55,P(A3)=C39/C312=21/55,P(B|A0)=C39/C312=21/55,P(B|A1)=C38/C312=14/55,P(B|A2)=C37/C312=35/220,P(B|A3)=C36/C312=1/11.由全概率公式,得P(B)=∑=3iP(Ai)P(B|Ai)=1/220×21/55+27/220×14/55+27/55×35/220+21/55×1/11=1746/12100≈0.14629 发报台分别以概率0.6和0.4发出信号“·”和“-”.由于通信系统受到干扰,当发出信号“·”时,收报台以概率0 8及0 2收到信号“·”和“-”;当发出信号“-”时,收报台以概率0 9及0 1收到信号“-”和“·”.求:(1)收报台收到信号“·”的概率;(2)当收报台收到信号“·”时,发报台确系发出信号“·”的概率.解设事件B={收到信号“·”},A0={发出信号“·”},A1={发出信号“-”}.显然A0,A1构成一个完备事件组,且P(A0)=0.6,P(A1)=0.4,P(B|A0)=0.8,P(B|A1)=0.1.(1)应用全概率公式,有P(B)=∑=1iP(Ai)P(B|Ai)=0.6×0.8+0.4×0.1=0.52.(2)应用贝叶斯公式有P(A0|B)=P(A0)P(B|A0)/∑=1iP(Ai)P(B|Ai)=0.6×0.8/0.52≈0.923.30 设某种病菌在人口中的带菌率为0.83.当检查时,带菌者未必检出阳性反应,而不带菌者也可能呈阳性反应,假定P(阳性|带菌)=0.99,P(阴性|带菌)=0.01,P(阳性|不带菌)=0.05P(阴性|不带菌)=0.95.设某人检出阳性,问他“带菌”的概率是多少?解设A={某人检出阳性},B1={带菌},B2={不带菌}.由题设知P(B1)=0.83,P(B2)=1-0.83=0.17,P(A|B1)=0.99, P(A|B2)=0.05,故所求的概率为P(B1|A)=P(AB1)/P(A)=P(B1)P(A|B1)/∑=2jP(B j)P(A|B j)=(0.83×0.99)/(0.83×0.99+0.17×0.05)=0.8217/(0.0085+0.8217)≈0.9898.31 设有五个袋子,其中两个袋子(品种A1)每袋有两个白球和三个黑球,另外两个袋子(品种A2)每袋有一个白球和四个黑球,还有一个袋子(品种A3)中有四个白球和一个黑球,(1)从五个袋中任挑一袋,并从这袋中任取一球,此球为白球的概率;(2)从不同品种的三袋中任挑一袋,并由其中任取一球,结果是白球(事件B),问这球由三个品种的袋子中取出的概率各是多少?解(1)设事件B表示“取到白球”,A i表示“从五个袋中取到A i品种袋子”(i=1,2,3),故P(A1)=2/5, P(A2)=2/5,P(A3)=1/5,P(B|A1)=2/5,P(B|A2)=1/5,P(B|A3)=4/5,利用全概率公式,所求概率为P(B)=∑=31iP(A i)P(B|A i)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=2/5×2/5+2/5×1/5+1/5×4/5=10/25=2/5 .(2)设事件B={取到白球},A i={从不同品种三袋中取到品种A i袋子} (i=1,2,3),根据题设,欲求下述三个条件概率P(B|A1),P(B|A1),P(B|A1). 于是P(A1)=1/3 ,P(A2)=1/3,P(A3)=1/3,P(B|A1)=2/5 ,P(B|A2)=1/5,P(B|A3)=4/5. 利用全概率公式,取到白球概率为P(B)=∑=31iP(A i)P(B|A i)=1/3×2/5+1/3×1/5+1/3×4/5=7/15.再由贝叶斯公式,有P(A1|B)=P(A1)P(B|A1)/∑=31iP(Ai)P(B|Ai)=(1/3×2/5)/7/15=2/7.P(A2|B)=P(A2)P(B|A2)/∑=31iP(Ai)P(B|Ai)=(1/3×1/5)/7/15=1/7.P(A3|B)=P(A3)P(B|A3)/∑=31iP(Ai)P(B|Ai)=(1/3×4/5)/7/15=4/7.。

《概率论与数理统计》第一章知识点

《概率论与数理统计》第一章知识点

第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。

2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。

二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。

(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。

2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。

1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。

2.基本事件:试验的每一可能的结果称为基本事件。

一个样本点w 组成的单点集{w}就是随机试验的基本事件。

3.必然事件:每次实验中必然发生的事件称为必然事件。

用Ω表示。

样本空间是必然事件。

4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。

1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。

2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。

3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。

4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。

5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。

概率论与数理统计第一章——随机事件及概率

概率论与数理统计第一章——随机事件及概率
P65 = 6 5 4 3 2 = 720 (个)
ex2: 从0,1,2,3,4,5, 这六个数字中任取四 个,问能组成多少个四位偶数?
解:组成的四位数是偶数,要求末位为0,2或
4,可先选末位数,共P31 种,前三位数的选取方法有
P53 种,而0不能作首位,所以所组成的偶数个数为
P1 P3 − P1 P1 P2 = 156 (个)
◼ 为方便起见,记Φ为不可能事件,Φ不 包含任何样本点。
(三) 事件的关系及运算 ❖事件的关系(包含、相等)
1A B:事件A发生一定导致B发生
2A=B
A B
B A
B A
例:
✓ 记A={明天天晴},B={明天无雨} B A ✓ 记A={至少有10人候车},B={至少有5人候车}
B A
✓ 抛两颗均匀的骰子,两颗骰子出现的点数分别 记为x,y.记A={x+y为奇数},B={两次的骰子点
A
B
n Ai:A1, A2,An至少有一发生
i=1
n Ai:A1, A 2 ,An同时发生
i =1
✓当AB= Φ时,称事件A与B是互不相
容的,或互斥的。
A
B
A A= A B =
A的逆事件记为A, A A =
, 若 A B =
,
称A, B互逆(互为对立事件)
AA
A
B
事件A对事件B的差事件:
◼可以在相同条件下重复进行(重复性); ◼事先知道所有可能出现的结果(明确性); ◼每次试验前并不知道哪个试验结果会发生 (随机性)。
例: ❖抛一枚硬币,观察试验结果; ❖对某路公交车某停靠站登记下车人数; ❖对某批同型号灯泡,抽取其中一只测 验其使用寿命(按小时计)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若B=A, 则 B=A, 且A与B互斥, 有
AB=Φ ,A+B=Ω , A及A B B 例如:A={出现偶数点}, B={出现奇数点};
A与B互为对立事件。
二、事件的运算
1、事件的和(并)
事件A与事件B的和是指事件A和事件B中至少有 一个发生,记为A∪B。
即 A∪B={A或B发生}
={A、B中至少有一个发生}
E AA A
3
3 3 1 1
1
2 2
2
3 3
3
于是有 C=B∪E1∪E2∪E3=A1A2A3+ A1A 2 A 3 A1 A 2 A 3 A1A 2 A 3
由上式可看出,B、E1、E2、E3是互不相容事件。
也可将C表为 C= A1A 2 A1A3 A 2 A3 (3)事件D可表述为
C A1 A 2 A 1 A 3 A 2 A 3
n r
r Pnr r! Cn
Pnr n(n 1) (n r 1) n! r Cn r! r! r!(n r)! Crn Cn r n

第一章
随机事件与概率
概率论的研究对象 随机事件 事件的关系和运算 频率与概率 古典概型 几何概型 概率的公理化定义
§1.1
记为
一列事件A1„An„全都发生的事件,记为A i
i 1 i 1
A
n
i

例4 设A、B、C为任意三个事件,写出下列事件的表
达式: 1)恰有二个事件发生。 2)三个事件同时发生。 3)至少有一个事件发生。 4)有不多于一个事件发生 5) A,B都发生,但C不发生
1) 解:、ABC ABC ABC 2)、ABC 3)、A B C 或 ABC ABC ABC ABC ABC ABC ABC 4) AB AC BC 或 5) ABC ABC ABC ABC
重复进行试验时,它的结果总是确定并且不变的。
发生随机性现象的试验
试验1:在相同的条件下,投掷一枚匀质的硬币。观察哪一面 向上。
试验2:在相同条件下,投掷一颗匀质正六面体的骰子,观察
所出现的点数。 试验3:从一批灯泡中任取一只,测定灯泡的使用寿命。 这些试验具有如下特点: 1)试验可以在相同的条件下重复进行。 2)试验可能出现的所有结果种类已知。 3)在未试验之前,不知道这次试验出现的结果,但试验结果 必是所有可能结果中的某一个。 具有这些特点的试验称为随机试验。
E A A A E A A A E 其中: E1是第1次未命中目标,而第2、3次命中, A A A E A AA E A A A E2是第2次未命中目标,而第1、3次命中, A A A E
1 1 2
1 1 1 1 2 2 3 3
3
2
1
2
3
2 2
1 1
2 2
3 3
E A A A E3是第3次未命中目标,而第1、2次命中, A A A E
C=“取到黑牌”={黑桃A,黑桃2,„,黑桃K,
梅花A,梅花2,„,梅花K,小王}
D=“取到黑桃K”={黑桃K} E=“取到红心”={红心A,红心2,„,红心K}
例3,在一批含有20件正品,5件次品的产品中随机地抽取2
件,可能结果如下:
A={2件全是正品} B={只有1件是正品} C={2件全是次品} 1)、在不计次序的假定下,A、B、C是基本事件
2、事件的相等
如果事件A与事件B互相包含,即A⊂B且B⊂A,则称事
件A等于事件B。记为:A=B 两事件A,B相等,意即它们应是样本空间的同一个 子集,是同一事件的不同说法而已。 如摸球试验: A={摸出球的号码不超过3} B={摸出1号或2号或3号球} 则 A=B
3、事件的互斥
如事件A与事件B不能在同一次试验中都发生 (但可以都不发生),则称事件A与事件B是互斥或互 不相容的。 互不相容事件作为样本空间的子集看,其交集 是空集,即:A∩B=Φ 如事件A1,A2,„,An任意两个都互斥,则称这
但上述三事件不能再分解为更简单的事件,因而是基
本事件。
2) 、从一批灯泡中,任取一只,测定灯泡的使用寿命,
{灯泡寿命大于100小时}的事件。 解:{灯泡寿命大于100小时}={T∣T>100}
3)随机试验:从一副扑克牌中任取一张牌。
A=“取到黑桃”={黑桃A,黑桃2,„,黑桃K}
B=“取到K”={黑桃K,红心K,梅花K,方块K}
ABC
例 一射击选手连续向目标射击3次,若令 Ai={第i次射击命中目标} (i=1,2,3)
试用这3个事件A1、A2、A3表示下面的事件。
(1)B={3次射击都命中目标};
(2)C={3次射击至少有2次命中目标};
(3)D={至少有1次未命中目标}。 解:(1)当且仅当A1、A2、A3都发生时,事件B发生,固有 B=A1A2A3 (2)当且仅当“恰有2次命中目标(E)”或 “3次射击皆命中目标(B)”发生时,事件C发生, 即C=B+E
有n1种方法,第二步有n2种方法,„,第k步有nk种方法。 各步骤连续进行时,这一工作才可以完成,则完成这一工 作共有
N=n1×n2 ׄ×nk种不同的方法。
如果一件工作分几种方法独立完成, 用加法原理计算所用方法总数。 若一件工作分几步连续完成, 用乘法原理计算完成这件工作的方法总数。
2.排列
事件。常用A、B、C等表示。 在一次试验中,当试验结果ω ∈事件A时,称这次 试验中事件A发生。 否则,当试验结果ω 事件A时,称这次试验中事 件A不发生。
两种特殊的随机事件:
必然事件:将样本空间Ω 也作为事件。在每次试
验中Ω 均会发生,故称为必然事件。
不可能事件:不含任一样本点的空集Φ 在每次试 验中均不会发生,故称为不可能事件。
有国徽图案的是正面。
Ω 1={正面,反面}
试验2:投掷一颗匀质正六面体的骰子,观察所出现的
点数。
Ω 2={1,2,3,4,5,6} 试验3:袋中装有大小相同的3个白球和2个黑球,现从中任 取出一球。(先对球予以编号: 1、2、3号球是白球, 4、5号球是黑球,则ω i={取得第i号球}(i=1,2,3,4,5))
说明:
1)从随机试验中观察到的现象称为随机现象。
2)随机试验今后简称为试验。
3)在随机试验的重复实施中呈现出的不变性质,
称为统计规律性。
概率论的研究对象就是随机现象的统计规律性。
§1.2
随机事件
样本空间:随机试验所有可能结果的集合,称为样本空
间。常用Ω (或S)表示。
样本点: 例1: 试验1:投掷一枚匀质的硬币,观察哪一面向上。规定带 样本空间中的元素称为样本点,常用ω 表示。
复习 1.加法原理与乘法原理 加法原理 :若完成某一工作有k种方式,第一种方式
中有n1个方法,第二种方式中有n2个方法,„,第k种方式 中有nk个方法。这些方法都不相同,无论通过其中哪一个 方法都可以完成这一工作,则完成这一工作共有
N=n1+n2 +„+nk 个不同的方法。 乘法原理:若完成某一工作可分成k个步骤,第一步
={A发生或B发生或A和B都发生}
例如:A={出现2点或4点},B={出现2点或6点},
则A∪B={出现偶数点} 若 A B,则必有A∪B=B,称之为并的“吸收律”。 当A、B互斥时,A∪B可记为A+B。 如果事件A1,A2,„,An两两互斥,则 Ai Ai
i 1 i 1 n n
一系列事件A1„An„中至少有一个事件发生,记

Ai i 1

2、事件的积
事件A与事件B的积是指事件A和事件B同时发生。记 为AB或A∩B。
例如:A={出现2点或4点},B={出现2点或6点};则
AB={出现2点} 当A、B互为对立事件时,有:A+B=Ω ,AB=Φ 。
可列多个事件的积事件是指A1„An同时发生的事件,
Pn Pnn n(n 1)(n 2)3 2 1 n!
允许重复选取的排列
从n个不同元素里每次有放回地任取1个元素,共取r 次,按先后选取顺序排成一列,称为从n个不同元素中允 许重复地取出r个元素的排列,其排列总数为nr.
3.组合
从n个不同元素中,每次取出r个元素,不管它们之 间的顺序,合为一组,叫做从n个元素中每次取出r个元 素的组合,组合总数记作 Cr 或(n )(1 r n)
基本事件:只含单个样本点的集合称为基本事件
或简单事件。
也可这样定义:
不能再分解的事件称为简单事件或称为基本 事件。 由基本事件组合而成的事件称为复合事件。 注意:基本事件是相对的,不是绝对的。
例2:试用样本空间的子集表示下列试验中的事件。
1)、投掷一颗匀质正六面体的骰子,出现偶数点的事件。
解 {出现偶数点}={2,4,6} {出现偶数点}是一个复合事件。它可分解为更简单的事件: {出现偶数点} ={出现2点}∪{出现4点}∪{出现6点}
选排列与全排列
从n个不同的元素里,任意取出r个不同的
元素(1≤r≤n),按一定的顺序排成一列,称
为从n个不同元素中取出r个不同元素的一种排列,
r 表示。 P 或A n r≤n的排列总数为:

r n
Pnr n(n 1)(n 2) (n r 1)
当r<n时,称这样的排列为从n个不同元素中取出r个 不同元素的选排列。 当r=n时,n个元素全部取出进行排列,叫做全排列, 记作Pn。
2)、如果考虑次序,B不再是基本事件,它可分解为B1 和B2
两个基本事件。 B1={第1次抽到正品,第2次是次品} B2={第1次抽到次品,第2次是正品}
§1.3 事件的关系和运算
1.3.1 事件的关系
相关文档
最新文档