小船渡河专题
小船渡河、牵连速度专题训练(附答案)
小船渡河模型1.小船要横渡一条宽400m 的小河,河水流速是3m/s ,船在静水中的速度是5m/s ,(已知sin53°=0.8,cos53°=0.6)求:(1)要使船到达对岸的时间最短,船头应指向何处?最短时间是多少? (2)要使船航程最短,船头应指向何处?最短航程为多少?渡河时间又是多少?2.汽艇在宽为400 m 、水流速度为2 m/s 的河中横渡河面,已知它在静水中的速度为4 m/s .求: (1)如果要在最短时间内过河,船头应取什么航向?最短时间为多少?(2)若水流速度为4 m/s ,船在静水中的速度为2 m/s ,求出船能过河的最短航程?3.小船匀速横渡一条河流,水流速度的大小1v ,船在静水中的速度大小2v ,第一次船头垂直对岸方向航行时,在出发后020s t =到达对岸下游60m 处;第二次船头保持与河岸成53θ=︒角向上游航行时,小船恰好经过时间t 1能垂直河岸到达正对岸,已知sin53︒=0.8,cos53︒=0.6,求: (1)求船在静水中的速度大小v 2; (2)求第二次过河的时间t 1;(3)若上游大暴雨,导致水流速度增大到10m/s 时,求小船到达河对岸的最短位移x 及所用时间时间t 2。
4.一条宽度为L 的河,水流速度v 水恒定,(1)若船在静水中的速度为v 船,那么,保持发动机输出功率不变,怎样渡河时间最短?最短时间? (2)若船在静水中速度v v >船水,怎样渡河位移最小?最小位移?(3)如图,某同学偶然发现在水流速度恒定的河流中,某渡河游艇的航迹好像是一条抛物线,又发现游艇船头指向对岸,该同学猜测该游艇可能在垂直河岸方向做匀加速运动,请你分析论证该同学的猜想。
参考答案1.【详解】(1)船头始终垂直河岸航行时,在垂直于河岸方向的速度最大,到达对岸时间最短,且最短时间1400s 80s 5d t v ===船 (2)由于船速大于水速度,船能到达正对岸时航程最短,此时设船与河岸夹角为θ,则3cos 5v v θ==水船 可得 θ=53°船头与上游河岸夹角为53°最短航程为河宽400m4m/s v ==合过河时间 2=100s dt v =合2.【详解】(1)由合运动与分运动具有等时性及分运动的独立性知,在船速一定的情况下,船头应垂直指向对岸开渡河时间最短.则:t =1dv =100 s (其中d 为河宽).(2)由于河水的流速大于船速,故小船不可能垂直于河岸过河,如图,设船从A 点开始渡河,按题意作出速度矢量三角形,若要航程最短,只需船的合速度v ′方向与AB 间的夹角α最小,由于v 1′的大小恒定,所以当v ′与圆周相切,即v 1′⊥v ′时航程最短.由相似三角形关系知最短航程为'2'1X 800m v d v ==.3.【详解】(1)第二次到达正对岸,有 21cos v v α= 第一次航行时,有 10s v t = 解得 25m/s v =(2)第一次过河时,河宽为 20100m d v t == 第二次过河时间为 1225s sin dt v α==(3)由于船速小于水速,所以船无法到达正对岸,设船头与上游河岸的夹角为β ,则当211cos 2v v β==' 时,小船到达对岸的位移最小,所用的时间为12sin d t v β==最小位移为 200m sin dx β==4.(1)如图所示设船头斜向上游与河岸成任意角θ,这时船速在垂直与河岸方向的速度分量为2sin v v θ=船渡河所用时间为 2sin L Lt v v θ==船 由此可知L 、v 船一定时,t 随sin θ增大而减小;当θ=90°时,sin θ=1(最大),所以船头与河岸垂直时,渡河时间最小为 min =Lt v 船(2))如图所示,渡河的最小位移即河的宽度为使船能直达对岸,船头应指向河的上游,并与河岸成一定角度θ,根据三角函数关系有cos v v θ=水船因为0≤cos θ≤1,所以只有在v 船>v 水时,船才有可能垂直河岸渡河,此时渡河最短位移为L ; (3)由题可知水流速度不变,而游艇的运动轨迹是曲线,故游艇的速度发生变化,根据运动轨迹可知,游艇的加速度沿y 轴正方向,与游艇的初速度方向相同,故游艇沿y 轴方向做匀加速直线运动。
小船过河问题专题
平行四边形定则。
问题1:时间最短
河宽L=100 m,水速v水=3 m/s,船在静水中的速度 v船=5 m/s,让船头与岸垂直出发,小船能否行驶到 河正对岸?求小船过河的时间为多少?
V船
v水
L
动画演示
问题1:时间最短
渡河时间最短:若使小船过河的时间最短,应使船头正对河岸
河宽L=100 m,水速v水=3 m/s,船在静水中的速度 v船=5 m/s,问:船如何过河位移最短?此时船头方 向与岸所成角度为多少?
垂直过河
船头与上
位移最短
游岸成530
L
V船
V合
V θ
2
v V1
水
方法二:
sin
v 1
v水
3
v船 v船 5
问题2:位移最短 探究二:
不能
河宽L=100 m,水速v水=5 m/s,船在静水中的速度 v船=3m/s,问:小船还能垂直过河吗?此种情况下 若使小船过河位移最短,应如何设计?
练习一
船在静水中的航速为v1,水流的速度为v2.为使 船行驶到河正对岸的码头,则v1相对v2的方向 应为( )
解析:为使船行驶到正对岸,必须使v1、v2的合速度方向指 向正对岸,只有C图象正确. 答案: C
练习二
小船在静水中速度为v,今小船要渡过一条小河,船
在行驶过程中,船头始终与河岸垂直.若航行到河中
练习三
小船在d=200m宽的河水中行驶,船在静水中v 船=2m/s,水流速度v水=4m/s。求:要使船能在 最短距离内渡河,应向何方划船?
? cos v船
S
d v船
v实际 v水
v船 v水
d Sv水 α(
微专题18 小船过河问题-2025版高中物理微专题
微专题18小船过河问题【核心要点提示】小船渡河问题分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v 1(船在静水中的速度)、v 2(水流速度)、v (船的实际速度).(3)三种情景①过河时间最短:船头正对河岸时,渡河时间最短,t 短=d v 1(d 为河宽).②过河路径最短(v 2<v 1时):合速度垂直于河岸时,航程最短,s 短=d .船头指向上游与河岸夹角为α,cos α=v 2v 1.③过河路径最短(v 2>v 1时):合速度不可能垂直于河岸,无法垂直渡河.确定方法如下:如图所示,以v 2矢量末端为圆心,以v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cos α=v 1v 2,最短航程:s 短=d cos α=v 2v 1d .【微专题训练】如图所示,甲、乙两同学从河中O 点出发,分别沿直线游到A 点和B 点后,立即沿原路线返回到O 点,OA 、OB 分别与水流方向平行和垂直,且OA =OB 。
若水流速度不变,两人在静水中游速相等,则他们所用时间t 甲、t 乙的大小关系为()A .t 甲<t 乙B .t 甲=t 乙C .t 甲>t 乙D .无法确定解析:选C 设水速为v 0,人在静水中的速度为v ,OA =OB =x 。
对甲,O →A 阶段人对地的速度为(v +v 0),所用时间t 1=x v +v 0;A →O 阶段人对地的速度为(v -v 0),所用时间t 2=x v -v 0。
所以甲所用时间t 甲=t 1+t 2=x v +v 0+x v -v 0=2vx v 2-v 02。
对乙,O →B 阶段和B →O 阶段的实际速度v ′为v 和v 0的合成,如图所示。
由几何关系得,实际速度v ′=v 2-v 02,故乙所用时间t 乙=2x v ′=2x v 2-v 02。
t 甲t 乙=v v 2-v 02>1,即t 甲>t 乙,故C 正确。
(完整版)小船渡河问题练习题大全
小船过河问题I1河宽d = 60m,水流速度v i = 6m/ s,小船在静水中的速度V2=3m / s,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少?(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?2在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v i,摩托艇在静水中的航速为V2,战士救人的地点A离岸边最近处0的距离为d,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离0点的距离为(C )C.速,则船速与水速之比为()3某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T i;若此船用最短的位移过河,则需时间为T2,若船速大于水(B) T2(C)T iJ2T22(D)T iT4小河宽为d,河水中各点水流速度大小与各点到较近河岸边的距离成正比,4v nV水kx, k —0, X是各点到近岸的距离,小船船头d垂直河岸渡河,小船划水速度为v0,则下列说法中正确的是()A、小船渡河的轨迹为曲线C、小船渡河时的轨迹为直线B、小船到达离河岸-处,船渡河的速度为• 2v02D、小船到达离河岸3d/4处,船的渡河速度为.1^05.如图1所示,人用绳子通过定滑轮以不变的速度v0拉水平面上的物体A ,当绳与水平方向成B角时,物体A的速度6如图3所示,某人通过一根跨过定滑轮的轻绳提升一个质量为m的重物,开始时人在滑轮的正下方,绳下端A点离滑轮的距离为H。
人由静止拉着绳向右移动,当绳下端到B点位置时,人的速度为v , 与水平面夹角为B。
问在这个过程中,人对重物做了多少功?7. 一条宽度为L的河,水流速度为v水,已知船在静水中速度为v船,那么:(1)怎样渡河时间最短?(2)若v船v水,怎样渡河位移最小? 3)若v船v水,怎样渡河船漂下的距离最短?绳8河宽60m,小船在静水中的速度为4m/s,水流速度为3m/s。
求小船渡河的最小时间是多少,小船实际渡河的位移为多大?若小船在静水中的速度为5m/s,水流速度为3m/s。
小船渡河问题专题分析
关键:
运动的轨迹由合初速度和合加速度的 方向关系来决定。
小船渡河
在流动的河水中渡河的轮船的运动可分解为 两个运动:
假设轮船不开动,轮船随水流一起向下游运 动;
假设河水不流动,轮船相对河水的运动。
小船过河专题
小船在220m宽的河中横渡,水流速度为v1= 2m/s,船在静水中的速度是v2=4m/s,求: ⑴如果要求船划到对岸航程最短,则船头应指 向什么方向?最短航程是多少?所用时间多 少? ⑵如果要求船划到对岸时间最短,则船头应指 向什么方向?最短时间是多少?航程是多少?
B
C
v船
v合
d
Aθ
v水
上题中,如果水速V水=4m/s,船在静 水中的速度V船=2m/s,结果如何呢?
如果河水的速度大于船在静水的速度时,这 时船不可能垂直渡河,但仍存在最短位移,求 解的方法如下:
V船 V船
V合
d
V合 θ
V水
小船渡河问题
②渡河的最短位移
v船 < v水的情况
B
v船
θ 上游 A
E
smin θ
1、如果两个分运动都是匀速直线运动,合运动一定是 匀速直线运动。
2、如果一个分运动是匀速直线运动,另一个分运动是 匀变速直线运动,且互成角度,合运动一定是匀变 速曲线运动。
(可见,两直线运动的合运动不一定是直线运动)。
3、如果两个分运动都是匀变速直线运动, 合运动可能是匀变速直线运动(这时合加速 度方向与合初速度方向在同一条直线上如图 1)。合运动也可能是匀变速曲线运动(这时 合加速度方向与合初速度方向不在同一条直 线上如图2)。
基础重温
一、合运动与分运动 1、定义:
如果物体同时参与了几个运动,那么物体实际发 生的运动就叫做那几个运动的合运动,那几个运动叫 做这个实际运动的分运动。
高中物理:题型一:小船渡河问题
小船渡河问题的分析:
(1)船的实际运动是水流的运动和船相对静水的运动的合运动。
(2)三种速度:船在静水中的速度v1,水流速度v2,船的实际速度v.
(3)三种情形
①过河时间最短:船头正对河岸时,过河时间最短,短 =1
(d为河宽)。
②过河路径最短
a. v2<v1时,合速度垂直于河岸,航程最短,短 =d,船头指向上游,与河岸夹
的角度。
D.小船不可能垂直河岸到达对岸。
答案:BD
2.河宽为d,水流速度为v1,小汽艇在静水中航行速度为v2,且v1<v2,如果小
汽艇航向与河岸成夹角,斜向上游,求:
B
A
C
(1)它过河需要多少时间?
(2)到达对岸的位置?
(3)如果它以最短时间渡河,航向应如何?
(4)如果它要直达正对岸,航向又应怎样?
角为a,cosa=2
。
1
b. v2>v1,合速度不可能垂直于河岸,无法垂直渡河。确定方法如下
如图所示,以v2矢量末端为圆心,以v1矢量的大小为半径画弧,从v2矢量的
始端向圆弧作切线,则合速度沿此切线方向航程最短。
短
v1 d v1
a
2
1
由图可知:cosa=1
,最短航程:
航行方向是实际运动方向,也就是合速度方向。
(2)小船过河最短时间与水流速度无关。
典例
1.小船渡河,河宽90米,船在静水中的速度是3m/s,水流速度是4m/s,那么
(
)(多选)
A.小船渡河最短时间为18s.
B.小船渡河最短时间为30s.
C.要使小船能垂直河岸以最短路程到达对岸,船头要偏向上游与河岸夹一定
专题一小船渡河问题绳拉物牵连速度问题
目录
• 问题背景与基本概念 • 小船渡河问题分析 • 绳拉物牵连速度问题分析 • 典型例题解析与思路拓展 • 实验设计与验证环节 • 知识拓展与应用领域探讨
01 问题背景与基本概念
小船渡河问题及其实际应用
小船渡河问题
描述了一个小船在静水中和流水 中的运动情况,涉及速度合成与 分解的基本原理。
度之比。
解析
根据题目条件,两小球 做匀速圆周运动,且绳 子与竖直方向的夹角不 同。结合牵连速度的概 念和几何关系,可求解 两小球的线速度之比。
解题思路拓展与技巧总结
小船渡河问题
理解合运动与分运动的关系,明确小船渡河的实 际运动轨迹。
熟练掌握运动的合成与分解方法,能够根据题目 条件选择合适的分解方式。
实际应用
该问题在现实生活中有广泛应用 ,如航空、航海、车辆行驶等领 域中涉及速度合成与分解的问题 。
绳拉物牵连速度问题描述
绳拉物问题
描述了一个通过绳子连接的物体在运 动过程中,由于绳子的牵连作用而产 生的速度变化问题。
牵连速度
指由于物体间的相互作用而产生的附 加速度,与物体本身的运动速度不同 。
相关物理概念及原理
第四季度
例题1
一端固定的绳子,另一 端连接一个小球,小球 在水平面上做匀速圆周 运动,求小球的线速度 和角速度。
解析
根据题目条件,小球做 匀速圆周运动,线速度 大小不变,方向时刻改 变;角速度大小和方向 均不变。结合线速度和 角速度的定义及关系式
,可求解相关问题。
例题2
两根绳子分别连接两个 小球,两小球在水平面 上做匀速圆周运动,且 绳子与竖直方向的夹角 不同,求两小球的线速
02 小船渡河问题分析
(完整版)小船过河问题分析与题解
小船过河问题分析与题解【问题概说】(1)船的实际运动是水流的运动和船相对静水的运动的合运动. (2)三种速度:船相对水的速度为v 船(即船在静水中的速度),水的流速为v 水(即水对地的速度),船的合速度为v (即船对地的速度,船的实际速度,其方向就是船的航向)。
(3)三种情景:①过河时间最短:当船头垂直河岸,渡河时间最短,且渡河时间与水的流速无关。
②过河路径最短:在v 船>v 水的条件下,当船的合速度垂直于河岸时,渡河位移(航程或路径)最小并等于河宽。
在v 船<v 水的条件下,当船头与船的合速度垂直时,渡河位移(航程或路径)最小。
此种情况下,合速度不可能垂直于河岸,无法垂直渡河。
最短航程确定如下:如图所示,以v 水矢量末端为圆心,以v 船矢量的大小为半径画弧,从v 水矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
(下图中v 1表船速,v 2表水速)③最小渡河速度:水速和航向一定,船速垂直航向有最小船速。
【典型题例】两河岸平行,河宽d=100m ,水流速度v 1=3m/s ,求:(1)船在静水中的速度是4m/s 时,欲使船渡河时间最短,船应怎样渡河?最短时间是多少?船的位移是多大?(2)船在静水中的速度是6m/s 时,欲使船航行距离最短,船应怎样渡河?渡河时间多长?(3)船在静水中的速度为1。
5m/s 时,欲使船渡河距离最短,船应怎样渡河?船的最小航程是多少?[思路分析](1)当船头垂直于河岸时,渡河时间最短: t min =d/v 2=100/4=25s 合速度v=s m v v /543222221=+=+船的位移大小s=v t min =125m(2)欲使船航行距离最短,需船头向上游转过一定角度使合速度方向垂直于河岸,设船的开行速度v 2与岸成θ角,则cosθ=216321==v v , 所以θ=600,合速度v=v 2sin600=3s m /3 t=s v d 93100= (3)船在静水中速度小于水流的速度,船头垂直于合速度v 时,渡河位移最小, 设船头与河岸夹角为β,如图所示:v 1 dvv 2v 1θvv 2cosβ=2135.112==v v 所以β=600 最小位移s min =m d 20060cos 100cos 0==β [答案](1) 船头垂直于河岸时,渡河时间最短:t min =25s ,s =125m; (2) 船头向上游转过一定角度, 与岸成600角航程最短,t=s 93100; (3) 船头垂直于合速度,船头与河岸夹角600时航程最短,s min =m 200。
小船渡河问题(含知识点例题和练习)
小船渡河问题小船渡河的问题,可以分解为它同时参与的两个分运动,一是小船相对水的运动(设水不流时船的运动,即在静水中的运动),一是随水流的运动(即水冲船的运动,等于水流的运动),船的实际运动为合运动.两种情况:①船速大于水速;②船速小于水速。
两种极值:①渡河最小位移;②渡河最短时间。
【例1】一条宽度为L 的河,水流速度为水v ,已知船在静水中速度为船v ,那么:(1)怎样渡河时间最短? (2)若水船v v >,怎样渡河位移最小?(3)若水船v v <,怎样渡河位移最小,船漂下的距离最短?解析:(1)小船过河问题,可以把小船的渡河运动分解为它同时参与的两个运动,一是小船运动,一是水流的运动,船的实际运动为合运动。
如右图所示,船头与河岸垂直渡河,渡河时间最短:船v L t =min 。
此时,实际速度(合速度)22水船合v v v +=实际位移(合位移)船水船v v v L L 22sin s +=∂= (2)如右图所示,渡河的最小位移即河的宽度。
为使渡河位移等于L ,必须使船的合速度v 合的方向与河岸垂直,即使沿河岸方向的速度分量等于0。
这时船头应指向河的上游,并与河岸成一定的角度θ,所以有水船v v =θcos ,即船水v v arccos=θ。
因为θ为锐角,1cos 0<<θ,所以只有在水船v v >时,船头与河岸上游的夹角船水v v arccos =θ,船才有可能垂直河岸渡河,此时最短位移为河宽,即L s =min 。
实际速度(合速度)θsin 船合v v =,运动时间θsin 船合v Lv L t ==(3)若水船v v <,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?V 船V 水V 合如右图所示,设船头v 船与河岸成θ角。
合速度v 合与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 合与圆相切时,α角最大,根据水船v v =θcos ,船头与河岸的夹角应为水船v v arccos=θ,此时渡河的最短位移:船水v Lv Ls ==θcos 渡河时间:θsin 船v Lt =,船沿河漂下的最短距离为:θθsin )cos (min 船船水v Lv v x ⋅-=误区:不分条件,认为船位移最小一定是垂直到达对岸;将渡河时间最短与渡河位移最小对应。
小船过河问题专题
河流宽度对小船过河的影响
河流宽度增加
较宽的河流意味着小船需要更多的航行时间和能量才能到达对岸。
河流宽度减少
河流宽度过窄可能导致小船无法正常通过,需要寻找更宽阔的河道。
应对措施
根据河流的宽度,小船需要选择合适的航道和航速,以确保顺利过 河。
小船过河问题的实际案例分析
案例一
01
某小型船只在河流中遇到湍急的流水和障碍物,通过调整航向
02
考虑风速影响
03
考虑小船的载重
风速可能会影响小船的方向和速 度,进而影响小船过河的时间和 路径。
小船的载重会影响其在水中的浮 力和稳定性,进而影响其过河的 时间和路径。
解决小船过河问题的其他方法
建立数学模型
通过建立小船过河问题的数学模型,可以更 精确地描述小船的运动轨迹和时间。
模拟实验
通过模拟实验可以模拟小船在各种条件下的过河情 况,从而得出更接近实际情况的结论。
问题背景
小船过河问题是物理学中一个非常实际的问题,涉及到日常生活和生产中的许多场 景,如渡口、水上运输等。
解决小船过河问题对于理解物理学中的基本概念和原理,以及在实际生活中应用这 些知识具有重要意义。
•·
02
小船过河问题的基本概念
定义与特点
定义
小船过河问题是指一艘小船需要从一条河的上游渡到下游,或者从下游渡到上 游,同时要克服水流的影响,使小船能够安全到达对岸的问题。
和航速成功过河。
案例二
02
某船只在河流中遇到狭窄的河道和浅水区,需要寻找更合适的
航道才能安全过河。
案例三
03
某船只在河流中遇到漩涡和水流不稳定的情况,采取紧急措施
后成功脱险并顺利过河。
课时作业12:专题强化 小船渡河与关联速度问题
题型一 小船渡河模型1.小船船头指向对岸,以相对于静水的恒定速率向对岸划去,当水流匀速时,它渡河的时间、发生的位移与水速的关系是( ) A .水速小时,位移小,时间也短 B .水速大时,位移大,时间也长 C .水速大时,位移大,但时间不变 D .位移、时间大小与水速大小无关 答案 C解析 小船渡河时参与了顺水漂流和垂直河岸横渡两个分运动,由运动的独立性和等时性知,小船的渡河时间决定于垂直河岸的分运动,等于河的宽度与垂直河岸的分速度之比,由于船以一定速率垂直河岸向对岸划去,故渡河时间一定.水速大,水流方向的分位移就大,合位移也就大,反之则合位移小,故C 正确.2.(2019·山西平遥中学高一下期中)在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,若战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为( ) A.d v 2v 22-v 12B .0 C.d v 1v 2 D.d v 2v 1答案 C解析 摩托艇登陆的最短时间t =dv 2,登陆点到O 点的距离s =v 1t =d v 1v 2,故选C.3.一只小船在静水中的速度为v 1=5 m/s ,它要渡过一条宽为d =50 m 的河,河水流速为v 2=4 m/s ,则( )A .这只船过河位移不可能为50 mB .这只船过河时间不可能为10 sC .若河水流速改变,船过河的最短时间一定不变D .若河水流速改变,船过河的最短位移一定不变解析当船头垂直指向河岸航行时,渡河时间最短,t min=dv1=505s=10 s,B错误;由于船在静水中的速度大于河水流速,船的实际航向可以垂直河岸,即过河最短位移为s=d=50 m,A错误;根据运动的独立性,渡河最短时间为10 s,与水速无关,C正确;若河水流速大于船在静水中的速度,则船过河最短位移大小大于河宽,D错误.4.(多选)河水的流速与某河岸的距离的变化关系如图1甲所示,船在静水中的速度与时间的关系如图乙所示.若要使船以最短时间渡河,下列说法正确的是()图1A.船渡河的最短时间为100 sB.船在行驶过程中,船头始终与河岸垂直C.船在河中航行的轨迹是一条直线D.船在河水中的最大速度为7 m/s答案AB解析由运动的独立性可知,垂直河岸方向速度越大,渡河时间越短,即船头始终与河岸垂直,航行时所用时间最短,t min=dv船=100 s,选项A、B正确;由题图甲可知,水流速度在变化,船的合速度大小及方向均会随位置发生变化,因此轨迹不是直线,选项C错误;船在静水中的速度与水流速度方向垂直,水流速度最大值为 4 m/s,则船在河水中的最大速度为5 m/s,选项D错误.5.如图2所示为一条河流,河水流速为v,一只船从A点先后两次渡河到对岸,船在静水中行驶的速度为v静,第一次船头向着AB方向行驶,渡河时间为t1,船的位移为s1;第二次船头向着AC方向行驶,渡河时间为t2,船的位移为s2,若AB、AC与河岸垂线方向的夹角相等,则()图2A.t1>t2,s1<s2B.t1<t2,s1>s2C.t1=t2,s1<s2D.t1=t2,s1>s2解析因为AB、AC与河岸垂线方向的夹角相等,则船在垂直于河岸方向上的分速度相等,渡河时间t=dv静⊥,所以两次渡河时间相等.设AB、AC与河岸夹角为θ,船头向着AB方向时,沿河岸方向的分速度v1=v静cos θ+v,船头向着AC方向行驶时,沿河岸方向的分速度v2=|v-v静cos θ|<v1,水平方向上的位移x1>x2,根据平行四边形定则,s1>s2,故D正确,A、B、C错误.题型二关联速度模型6.人用绳子通过光滑轻质定滑轮拉物体A,A穿在光滑的竖直杆上,当以速度v0匀速地拉绳使物体A到达如图3所示位置时,绳与竖直杆的夹角为θ,则物体A实际运动的速度大小是()图3A.v0sin θ B.v0sin θC.v0cos θ D.v0cos θ答案 D解析由运动的合成与分解可知,物体A参与两个分运动:一个是沿着与它相连接的绳子的运动,另一个是垂直于绳子斜向上的运动.而物体A的实际运动轨迹是沿着竖直杆向上的,这一轨迹所对应的运动就是物体A的合运动,它们之间的关系如图所示.由几何关系可得v=v0cos θ,所以D正确.7.(2019·康杰中学期中)如图4所示,汽车用跨过光滑轻质定滑轮的轻绳提升物块.汽车匀速向右运动,在物块到达滑轮之前,下列说法正确的是()图4A.物块将竖直向上做匀速运动B.物块将处于超重状态C.物块将处于失重状态D.物块将竖直向上先加速后减速答案 B解析设汽车向右运动的速度为v,绳子与水平方向的夹角为α,物块上升的速度为v′,则v cos α=v′,汽车匀速向右运动,α减小,v′增大,物块加速上升,A、D错误;物块的加速度向上,处于超重状态,B正确,C错误.8.小船过河时,船头偏向上游,与水流方向成α角,船在静水中的速度为v,其航线恰好垂直于河岸.现水流速度突然增大,为保持航线不变,且准时到达对岸,下列措施中可行的是()A.增大α角,增大船速vB.减小α角,增大船速vC.减小α角,保持船速v不变D.增大α角,保持船速v不变答案 A解析由平行四边形定则可画出如图所示的示意图,由图可知,v1′>v1,则α′>α,v′>v,选项A正确.9.(多选)(2019·山东省实验中学高一下期中)如图5,河水由西向东流,河宽为800 m,河中各点的水流速度大小为v水,各点到较近河岸的距离为x,v水与x的关系为v水=3400x (m/s),让小船船头垂直河岸由南向北渡河,小船在静水中的速度大小恒为v船=4 m/s,下列说法正确的是()图5A.小船渡河的轨迹为直线B.小船在河水中的最大速度是5 m/sC.小船渡河的时间是200 sD.小船在距南岸200 m处的速度小于距北岸200 m处的速度答案BC解析小船在垂直河岸方向上做匀速直线运动,在沿河岸方向上做变速运动,合加速度的方向与合速度方向不在同一条直线上,做曲线运动,选项A错误;当小船行驶到河中央时水流速度最大,v 水=3400×400 m/s =3 m/s ,那么小船在河水中的最大速度v max =32+42 m/s =5m/s ,选项B 正确;小船船头垂直河岸由南向北渡河,那么小船渡河的时间是t =d v 船=8004s =200 s ,选项C 正确;在距南岸200 m 处的河水速度大小与距北岸200 m 处的河水速度大小相等,根据矢量的合成法则,则两种情况下小船的合速度大小相等,选项D 错误. 10.(2019·眉山高中下学期期末质检)如图6所示,人用轻绳通过光滑轻质定滑轮拉穿在光滑竖直杆上的物块A ,人以速度v 0向左匀速拉绳,某一时刻,定滑轮右侧绳与竖直杆的夹角为θ,左侧绳与水平面的夹角为α,此时物块A 的速度v 1为( )图6A .v 0sin αcos θ B.v 0sin αsin θ C .v 0cos αcos θ D.v 0cos αcos θ答案 D解析 人和A 沿绳方向的分速度相等可得v 0cos α=v 1cos θ 所以v 1=v 0cos αcos θ,D 正确.11.如图7所示, 一根长直轻杆AB 在墙角沿竖直墙和水平地面滑动.当AB 杆和墙的夹角为θ时,杆的A 端沿墙下滑的速度大小为v 1,B 端沿地面滑动的速度大小为v 2,则v 1、v 2的关系是( )图7A .v 1=v 2B .v 1=v 2cos θC .v 1=v 2tan θD.v1=v2sin θ答案 C解析将A端的速度沿杆方向和垂直于杆的方向分解,沿杆方向的分速度为v1∥=v1cos θ,将B端的速度沿杆方向和垂直于杆方向分解,沿杆方向的分速度v2∥=v2sin θ.由于v1∥=v2∥.所以v1=v2tan θ,故C正确,A、B、D错误.12.如图8所示,河宽d=120 m,设小船在静水中的速度为v1,河水的流速为v2.小船从A点出发,若船头指向河对岸上游的B点,经过10 min,小船恰好到达河正对岸的C点;若船头指向河正对岸的C点,经过8 min,小船到达C点下游的D点.求:图8(1)小船在静水中的速度v1的大小;(2)河水的流速v2的大小;(3)在第二次渡河中小船被冲向下游的距离s CD.答案(1)0.25 m/s(2)0.15 m/s(3)72 m解析(1)小船从A点出发,若船头指向河正对岸的C点,则此时v1方向的位移为d,故有v1=dt min=12060×8m/s=0.25 m/s.(2)设AB与河岸上游成α角,由题意可知,此时恰好到达河正对岸的C点,故v1沿河岸方向的分速度大小恰好等于河水的流速v2的大小,即v2=v1cos α,此时渡河时间为t=dv1sin α,所以sin α=dv1t=0.8,故v2=v1cos α=0.15 m/s.(3)在第二次渡河中小船被冲向下游的距离为s CD=v2t min=72 m.13.如图9所示,水面上方高度为20 m处有一光滑轻质定滑轮,用绳系住一只船,船离岸的水平距离为20 3 m,岸上的人用3 m/s的恒定速度水平拉绳子,求:图9(1)开始时船的速度大小; (2)5 s 末船的速度大小. 答案 (1)2 3 m/s (2)5 m/s解析 船的速度产生了两个效果:一是滑轮与船间的绳缩短,二是绳绕滑轮顺时针转动,因此将船的速度进行分解,如图所示.(1)人拉绳的速度v 人=v 船1cos θ1,即v 船1=v 人cos θ1,由数学知识可知,开始时船到滑轮的距离为x 1=(203)2+202 m =40 m , 则cos θ1=20340=32,又v 人=3 m/s ,解得v 船1=2 3 m/s.(2)5 s 末船到滑轮的距离(绳长)x 2=x 1-v 人t =40 m -3×5 m =25 m , 由数学知识可知,船到岸边的距离为252-202 m =15 m , cos θ2=1525=0.6,故v 船2=v 人cos θ2=5 m/s.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)如果要求船划到对岸时间最短,则船头 应指向什么方向?最短时间是多少?航程是多 少?
v2
v
d
v1
总结、渡河的时间最短则船头指向必须和河岸 垂直,不受河水速度大小的影响。
B C
v船
v合
θ
d
A
v水
(2)如果要求船划到对岸航程最短,则船头应指向 什么方向?最短航程是多少?所用时间多少?
v2
θ
v
d
v1
总结:渡河的最短位移大小就是河宽,但是实 现这一最短位移,必须满足船在静水的速度大于 河水的速度。
v船
θ
v合 v水
d
(3) 如果河水的速度大于船在静水的速度时, 这时船不可能垂直渡河,但仍存在最短位移, 求解的方法如下:
V船
V船 θ
V合
d
V合
V水
小船渡河问题
②渡河的最短位移
v船 < v水的情况
E
B
smin θ v船
θ
上游
v v船
A θ
D
d C
v水 O
下游
二、拉船靠岸问题 【例 3】如图,人在岸边通过定滑轮用绳拉小船。 人拉住绳子以速度v0匀速前进,当绳子与水平方向成θ
角时,求小船的速度v。
v1 v v2
【归纳】 此类问题的关键是: 1. 准确判断谁是合运动,谁是分运动;实际运动是 合运动 2.根据运动效果寻找分运动; 3.一般情况下,分运动表现在: ①沿绳方向的伸长或收缩运动; ②垂直于绳方向的旋转运动。 4. 根据运动效果认真做好运动矢量图,是解题的关 键。 5. 对多个用绳连接的物体系统,要牢记在绳的方向 上各点的速度大小相等。
v
“绳+物”问题 【例题】如图所示,A、B两物体用细绳相连,在水平面 上运动,当α=450,β=300时,物体A的速度为2 m/s,这
时B的速度为
寻找分运动效果
。
v绳
vB
A
vA
v绳
【答案】 v B
2 6 m / s 3
随堂反馈
如图,汽车的速度 v0 和 绳子与水平方向的夹角 θ 已知,求重物上升的速 度 v。
v1 v v2
随堂反馈
如图,以速度v沿竖直杆匀速下滑的物体A,用细绳
通过定滑轮拉动物体B在水平桌面上运动,当绳与水
平面夹角为θ时,物体B的速率为
B
。
v
A
寻找分运动效果
v sin
【答案】
vB=vsinθ