八年级数学简单的旋转作图

合集下载

八年级数学下册(北师大版)3.2.2图形的平移与旋转(旋转作图)课件

八年级数学下册(北师大版)3.2.2图形的平移与旋转(旋转作图)课件

后作这两部分关于GH的轴
对称图形,这样就可以得
到整个图形。
G
F
旋转图案设计欣赏
课后任务:
1、旋转作图的步骤 : (1)明确题目要求:弄清旋转中心、方向和角度; (2)分析所作图形:找出构成图形的关键点; (3)旋转关键点:沿一定的方向和角度分别作出
各关键点的对应点; (4)作出新图形: 顺次连接作出的各点;
(5)写出结论: 说明所作出的图形.
2、“旋转”作图的条件 : (1)图形原来的位置; (2)旋转中心; (3)旋转方向; (4)旋转角度.
1.将△AOB绕点O旋转180°得到△DOC,则下列作图正确的是( )
2.如图,在正方形网格中有△ABC,△ABC绕点O按逆时针方向旋转90°后的 图案应该是( )
各关键点的对应点;
(4)作出新图形: 顺次连接作出的各点;
(5)写出结论: 说明所作出的图形.
目标检测1:
目标检测1:
3、如图,在方格纸上,△DEF是由△ABC绕定 点P顺时针旋转得到的,如果用(2,1)表示方格 纸上A点的位置,(1,2)表示B点的位置,那么 点P的位置为( A ) A.(5,2) B.(2,5) C.(2,1) D.(1,2)
第三章 图形的平移与旋转
3.2 图形的旋转(第二课时)
3.2.2 旋转作图
课前学习——知识回顾
1、“旋转”的定义: 在平面内,将一个图形绕着_一__个_定_点__沿_某_个_方__向_转动
_一_个__角_度__,这样的图形运动称为__旋_转__(变_换__) ___. 2、“旋转”的基本性质: (1)经过旋转,图形的___形_状__和_大_小_____不变; (2)经过旋转,图形上的每一点都绕_旋__转_中_心_沿相同 的方向转动了相同的__角__度__; (3)任意一对_对__应_点__与_旋_转__中_心__的连线所成的角都是 ___旋_转_角___,对应点到__旋_转__中_心___的距离相等.

北师大版八年级下册数学 第三章 图形的平移与旋转 简单的图案设计

北师大版八年级下册数学 第三章 图形的平移与旋转  简单的图案设计

探究新知
方法总结 图案形成过程的分析方法
解这类题首先要仔细观察图形,找出构成该图形的基本 图案,这些基本图案一般都会重复多次出现,然后结合几 种图形变换的概念和性质看这些基本图案通过怎样的 变换才能最终得到所给图形.
巩固练习
变式训练
如图,甲、乙、丙、丁四个图中的图2是由图1经过轴对称、平移、 旋转这三种运动变换而得到的,请分别分析出它们是如何运动变 换的.图中每个方格的单位长度为1.
探究新知
方法总结
设计图案时要注意两点: 一是要把设计的图案当作一个整体,即整体构思; 二是作图的过程中可以把图案中几个相邻的基本图案当作 一个新的基本图案,要明确图案设计及作图的要求,图案作 完后,一定要检验图形是否符合题意.
巩固练习
变式训练
下列四个图形中,若以其中一部分作为基本图案,无论用旋转
还是平移都不能得到的图形是(
)
C
探究新知
知识点 4
图案设计欣赏
运动美
探究新知
运动美
探究新知
探究新知
★★★
★★★
★★★★★ ★★★★★
★★★★★★★★★★★
★★★★★★★★★
★★★★★★★
★★★★★
★★★
组合美

连接中考
(2020·枣庄)如图的四个三角形中,不能 由△ABC经过旋转或平移得到的是 ( B )
正方形组成.
课堂检测
能力提升题
1.为了美化环境,需在一块正方形的空地上分别种植四种不同的 花草.现要将这块空地分割成4块全等图形,且分割后整个图形成 中心对称图形.现给出一种画法(如图①),请按上述要求,再画出3 种不同的画法.
课堂检测 解:答案不唯一.如图所示:

第9讲 图形的旋转与中心对称八年级数学下册同步讲义(北师大版)

第9讲  图形的旋转与中心对称八年级数学下册同步讲义(北师大版)

第9讲图形的旋转与中心对称目标导航1、掌握旋转的概念,探索它的基本性质,能够按要求作出简单平面图形旋转后的图形;2、掌握旋转对称图形、中心对称图形和中心对称的概念,理解他们的区别和联系,并会判别给出的图形是旋转对称图形还是中心对称图形;3、会画出给定条件的旋转对称图形或中心对称图形以及会画已知图形关于已知点成中心对称的图形.知识精讲知识点01 生活中的旋转现象(1)旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做对应点.(2)注意:①旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.②旋转中心是点而不是线,旋转必须指出旋转方向.③旋转的范围是平面内的旋转,否则有可能旋转成立体图形,因而要注意此点.【知识拓展1】(2021秋•建华区期末)时钟的时针从上午的8时到上午10时,时针旋转的旋转角为.【即学即练1】(2021秋•太原期中)几何图形由点、线、面组成,点动成线、线动成面、面动成体.下列现象中能反映“线动成面”的是()A.流星划过夜空B.笔尖在纸上快速滑动C.汽车雨刷的转动D.旋转门的旋转【即学即练2】(2021春•凤翔县期末)下列运动形式属于旋转的是()A.在空中上升的氢气球B.飞驰的火车C.时钟上钟摆的摆动D.运动员掷出的标枪知识点02 旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.【知识拓展2】(2021秋•泰山区期末)小明把一副三角板按如图所示叠放在一起,固定三角板ABC,将另一块三角板DEF绕公共顶点B顺时针旋转(旋转角度不超过180°).若两块三角板有一边平行,则三角板DEF旋转的度数可能是()A.15°或45°B.15°或45°或90°C.45°或90°或135°D.15°或45°或90°或135°【即学即练1】(2021秋•湖北期末)如图,在△ABC中,∠BAC=110°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则旋转角∠ACD的度数为()A.50°B.40°C.30°D.20°【即学即练2】(2021秋•莆田期末)“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图①所示的“三等分角仪”能三等分任意一角.如图②,这个“三等分角仪”由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,点C固定,点D,E可在槽中滑动,OC=CD=DE.若∠BDE=81°,则∠AOB的度数是()A.24°B.27°C.30°D.33°知识点03 旋转对称图形(1)旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.(2)常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.【知识拓展3】(2021秋•北仑区期末)下列正多边形,绕其中心旋转72°后,能和自身重合的是()A.B.C.D.【即学即练1】(2021秋•荆门期末)把如图的五角星绕着它的中心旋转一定角度后与自身重合,则这个旋转角度可能是()A.36°B.72°C.90°D.108°【即学即练2】(2021秋•丰润区期末)如图,五角星的五个顶点等分圆周,把这个图形绕着圆心顺时针旋转一定的角度后能与自身重合,那么这个角度至少为()A.60°B.72°C.75°D.90°知识点04中心对称(1)中心对称的定义把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点..(2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.【知识拓展4】(2021秋•淮南月考)如图,△ABC与△A′B'C'关于O成中心对称,下列结论中不成立的是()A.OC=OC′B.∠ABC=∠A'C'B'C.点B的对称点是B′D.BC∥B'C'【即学即练1】(2021秋•黄陂区期中)如图,点A,B分别是两个半圆的圆心,则该图案的对称中心是()A.点A B.点BC.线段AB的中点D.无法确定【即学即练2】(2021春•清苑区期末)如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′知识点05中心对称图形(1)定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形平行四边形、圆形、正方形、长方形等等.【知识拓展5】(2021秋•交城县期末)下列交通标志中,是中心对称图形的是()A.向右和向左转弯B.靠左侧道路行驶C.禁止驶入D.环岛行驶【即学即练1】(2021秋•铅山县期末)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.知识点06关于原点对称的点的坐标关于原点对称的点的坐标特点(1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.【知识拓展6】(2021秋•沙河口区期末)在平面直角坐标系中,点P、点Q关于原点对称,若点P的坐标是(2,3),则点Q的坐标是.【即学即练1】(2021秋•新吴区期末)若点P(a,2)点Q(﹣4,b)关于原点对称,则点M (a,b)在第象限.【即学即练2】(2021秋•开州区期末)平面直角坐标系中点P(7,﹣9)关于原点对称的点的坐标是()A.(﹣9,7)B.(﹣7,9)C.(7,9)D.(﹣7,﹣9)知识点07作图-旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.【知识拓展7】(2021秋•南开区期末)如图,已知点A(2,0),B(0,4),C(2,4),若在所给的网格中存在一点D,使得CD与AB垂直且相等.(1)直接写出点D的坐标;(2)将直线AB绕某一点旋转一定角度,使其与线段CD重合,则这个旋转中心的坐标为.【即学即练1】(2021秋•南沙区期末)如图,将△ABC绕点A顺时针旋转α,得到△ADE,若点D 恰好在CB的延长线上,则∠CDE等于()A.αB.90°+C.90°﹣D.180°﹣2α【即学即练2】(2021秋•铅山县期末)如图,在平面直角坐标系中,点A、B的坐标分别为A(﹣2,3)、B(﹣3,1).(1)画出△AOB绕点O顺时针旋转90°后的△A1OB1;(2)求四边形AOA1B1的面积.例题1.(2020·浙江八年级期末)如图,在Rt ABC 中,90C ∠=︒,点P 为AC 边上的一点,将线段AP 绕点A 顺时针方向旋转(点P 对应点'',P AP AP =).当AP 旋转至AP AB'⊥时,点'B P P ,,恰好在同一直线上,此时作'⊥P E AC 于点E .(1)求证:∠=∠CBP ABP ;(2)若4,8AB BC AC -==,求PBC 的面积;(3)在(2)的条件下,点N 为边BC 上一动点,点M 为边BP 上一个动点,连接MC MN ,,求MC MN +的最小值.能力拓展【变式1】(2021·河南郑州市·八年级期末)一副直角三角尺叠放如图1所示,现将45︒的三角尺ADE 固定不动,将含30的三角尺ABC 绕顶点A 顺时针转动,使两块三角尺至少有一组边互相平行.如图2:当角60CAE ∠=︒时,//BC DE .求其它所有可能符合条件的角()0180CAE CAE ∠︒<∠<︒的度数,画出对应的图形并证明.【变式2】(2021·内蒙古呼伦贝尔市·八年级期末)已知:如图1,AOB 和COD 都是等边三角形.(1)求证:①AC=BD ;②∠APB=60°;(2)如图2,在AOB 和COD 中,OA =OB ,OC =OD ,∠AOB=∠COD=α,则AC 与BD 间的等量关系为 ,∠APB的大小为模块三、中心对称例题1.(2020·辽宁锦州市·八年级期末)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC 的顶点都在格点上.请回答下列问题:(1)作出△ABC 向左平移4个单位长度后得到111A B C △,并写出1A 的坐标;(2)作出△ABC 关于原点O 对称的222A B C △并写出22B C ,点的坐标.【变式1】(2021·山东济南市·八年级期末)如图网格中,△AOB 的顶点均在格点上,点A 、B 的坐标分别是(3,2)A 、()1,3B .(1)点A 关于点O 中心对称点的坐标为(_______,_______);(2)△AOB 绕点O 顺时针旋转90︒后得到11AOB ,在方格纸中画出11AOB ,并写出点1B 的坐标(______,_______);(3)在y 轴上找一点P ,使得PA PB +最小,请在图中标出点P 的位置,并求出这个最小值.【变式2】(2021·山东烟台市·八年级期末)如图所示,网格中每个小正方冠的边长为1,请你认真观察图(1)中的三个网格中阴影部分构成的图案.解答下列问题:(1)图①中的三个图案面积都是,且都具有一个共同特征:都是对称图形;(2)请在图②中设计出一个面积与图①阴影部分面积相同,且具备上述共同特征的图案,要求所画图案不能与图①中所给出的图案相同.分层提分题组A 基础过关练一.选择题(共8小题)1.(2021秋•澄海区期末)如图,将△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,若∠AOB=25°,则∠AOB′的度数是()A.25°B.35°C.40°D.85°2.(2021秋•崆峒区期末)2022年2月4日﹣2月20日,北京冬奥会将隆重举行,如图是在北京冬奥会会徽征集过程中征集到的一幅图片.旋转图片中的“雪花图案”,旋转后要与原图形重合,至少需要旋转()A.180°B.120°C.90°D.60°3.(2021秋•雨花区期末)如图,△DEF是由△ABC绕点O旋转180°得到的,则下列结论不成立的是()A.点A与点D是对应点B.BO=EOC.∠ACB=∠FED D.AB∥DE4.(2021秋•沙河口区期末)下列图案是一些电视台的台标,是中心对称图形的是()A.B.C.D.5.(2021秋•澄海区期末)在平面直角坐标系中,点A(1,﹣2)和点B(m,2)关于原点对称,则m的值为()A.2B.﹣2C.1D.﹣16.(2021秋•铅山县期末)如图,将△ABC绕点A逆时针旋转80°,得到△ADE,若点D在线段BC的延长线上,则∠PDE的度数为()A.60°B.80°C.100°D.120°7.(2021秋•绥滨县期末)已知,如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D的长是()A.1.5cm B.3cm C.5cm D.2.5cm8.(2021秋•澄海区期末)如图,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′刚好落在BC边上,且AB′=CB′,若∠C=20°,则△ABC旋转的角度为()A.60°B.80°C.100°D.120°二.填空题(共1小题)9.(2021秋•杜尔伯特县期末)时针从数字“9”到“12”按时针方向旋转了90°.三.解答题(共9小题)10.(2021秋•大洼区期末)如图,将Rt△ABO绕点O顺时针旋转90°,在所给的直角坐标系中画出旋转后的Rt△A1B1O.11.(2021秋•昆明期末)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,3),B(﹣2,4),C(﹣1,1).(1)以x轴为对称轴画出△ABC的对称图形△A'B'C';(2)画出△ABC绕点C按顺时针旋转90°后的△A″B″C;(3)直接写出A'、A″点的坐标.12.(2021秋•尧都区期末)如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1),(2,1),将△BOC绕点O逆时针旋转90度,得到△B1OC1,画出△B1OC1,并写出B、C两点的对应点B1、C1的坐标,13.(2021秋•富县期中)如图,△ABC逆时针旋转一定角度后与△ADE重合,且点C在AD上.若∠B=21°,∠ACB=26°,求出旋转的度数,并指出旋转中心.14.(2021秋•新丰县期中)如图,在边长为1的小正方形格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为;(2)以原点O为对称中心,画出△AOB关于原点对称的△A1OB1.15.(2020秋•定南县期末)已知点P(2x+y,1)与点Q(﹣7,x﹣y)关于原点对称,求x,y的值.16.(2021春•绿园区期末)如图,将△ABC以点C为旋转中心,顺时针旋转180°,得到△DEC,过点A作AF∥BE,交DE的延长线于点F,试问:∠B与∠F相等吗?为什么?17.(2021春•商河县校级期末)如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)哪两个图形成中心对称?(2)已知△ADC的面积为4,求△ABE的面积;(3)已知AB=5,AC=3,求AD的取值范围.18.(2020春•肇源县期末)如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C (4,3).(1)在平面直角坐标系中画出△ABC,则△ABC的面积是;(2)若点D与点C关于原点对称,则点D的坐标为;(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.题组B 能力提升练一.选择题(共5小题)1.(2021秋•椒江区期末)如图,△DEC是由△ABC绕点C顺时针旋转30°所得,边DE,AC相交于点F.若∠A=35°,则∠EFC的度数为()A.50°B.55°C.60°D.65°2.(2021秋•铜官区期末)如图,将△ABC绕点C逆时针旋转α,得到△DEC,若点A恰好在DE的延长线上,则∠BAD的度数为()A.α﹣30°B.180°﹣αC.90°D.3.(2021秋•句容市期末)如图,边长为5的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN 长度的最小值是()A.B.1C.2D.4.(2021秋•宜州区期末)如图,将Rt△ABC绕点A顺时针旋转40°,得到Rt△AB′C′,点C′恰好落在斜边AB上,连接BB′,则∠ABB′的度数为()A.50°B.60°C.70°D.80°5.(2021秋•绵阳期末)如图,将△ABC绕点B顺时针旋转角α,得到△A1BC1,此时点A,点B,点C1在一条直线上,若∠A1BC=22°,则旋转角α=()A.79°B.80°C.78°D.81°二.填空题(共5小题)6.(2021秋•廉江市期末)如图,△DEC与△ABC关于点C成中心对称,AB=3,AC=1,∠D=90°,则AE的长是.7.(2021秋•山亭区期末)如图,将n个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为.8.(2021秋•滨城区期末)已知A(2x+1,3),B(﹣5,3y﹣3)关于原点对称,则x+y =.9.(2021秋•海门市期末)点M(﹣3,2)关于原点对称的点的坐标是.10.(2015秋•天津期末)点A(﹣2,3)与点B(a,b)关于坐标原点对称,则a+b的值为.三.解答题(共8小题)11.(2021秋•沙河口区期末)如图,正方形网格中每个小正方形的边长都是1.将△ABC绕点P逆时针旋转90°后得到△A'B'C',其中A和A',B和B',C和C'是对应点.(1)画出△A'B'C';(2)在该网格中建立平面直角坐标系,点P,A坐标分别为P(0,1),A(1,1),直接写出该坐标系下A',B',C'的坐标.12.(2021秋•喀什地区期末)如图,在每个小正方形边长都是1的方格纸中,点O,A,B都在格点上.(1)画出△AOB绕点O顺时针旋转90°后的△A1OB1;(2)求线段OB旋转到OB1时所扫过的扇形面积.13.(2021秋•芝罘区期末)如图,△ABC的顶点坐标分别为A(4,5),B(2,2),C(5,2).(1)将△ABC绕点(0,1)顺时针旋转180°,请画出旋转后的△A1B1C1;(2)将△ABC平移后得到△A2B2C2,若点A对应点A2坐标为(1,﹣2),请画出平移后的△A2B2C2,若△ABC内部一点P的坐标为(a,b),则点P的对应点P2的坐标是;(3)将△A1B1C1绕某一点M旋转可得到△A2B2C2,请画出点M的位置(保留痕迹),并直接写出点M的坐标.14.(2021秋•晋安区校级月考)如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O对称.求证:AE=CF.15.(2021•鄂温克族自治旗二模)如图,△ABC中,BC=2AB,D,E分别是边BC,AC的中点.将△CDE绕点E旋转180度,得△AFE.(1)判断四边形ABDF的形状,并证明;(2)已知AB=5,AD+BF=14,求四边形ABDF的面积S.16.(2021春•宽城区期末)如图,在△ABC中,AD是BC边上的中线,△A'BD与△ACD关于点D成中心对称.(1)直接写出图中所有相等的线段.(2)若AB=5,AC=3,求线段AD的取值范围.17.(2021秋•桓台县期末)如图,在直角坐标系内,已知点A(﹣1,0).(1)图中点B的坐标是;(2)点B关于原点对称的点D的坐标是;点A关于y轴对称的点C的坐标是;(3)四边形ABCD的面积是;(4)在y轴上找一点F,使S△ADF=S△ABC.那么点F的坐标为.18.(2021秋•建安区期中)数学兴趣小组活动时,提出了如下问题:如图1,在△ABC中若AB=5,AC=3,求BC边上的中线AD的取值范围.解决方法:延长AD到E.使得DE=AD.再连接BE(或将MCD绕点D逆时针旋转180°得到△EBD).把AB,AC,2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.迁移应用:请参考上述解题方法,证明下列命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.(1)求证:BE+CF>EF;(2)若∠A=90°,探索线段BE,CF,EF之间的等量关系,并加以证明.题组C 培优拔尖练一.填空题(共5小题)1.(2021秋•新抚区期末)如图,△ABC是边长为3的等边三角形,E在AC上且AE=2,D是直线BC 上一动点,线段ED绕点E逆时针旋转90°,得到线段EF,连接DF,AF,下列结论:①DF的最小值为;②AF的最小值是1+;③当CD=1时,DE∥AB;④当DE∥AB时,DE=1.正确结论的题号是.2.(2021秋•思明区校级期中)如图,在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A、C的对应点分别为点A′、C′,连接AA′、CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.则DE的最小值为.3.(2021•西湖区校级三模)如图,已知Rt△ACB,∠ACB=90°,∠B=60°,AC=4,点D在CB所在直线上运动,以AD为边作等边三角形ADE,则CB=.在点D运动过程中,CE的最小值.4.(2021春•龙岗区期末)如图,等腰△ABC中,∠BAC=150°,D是AB上一点,AD=1,BD=4,E点在边BC上,若点E绕点D逆时针旋转15°的对应点F恰好在AC上,则BE的长度为.5.(2019春•市南区期中)如图,一“L”型纸片是由5个边长都是10cm的正方形拼接而成,过点I的直线分别与AE,JN交于点P,Q,且“L”型纸片被直线PQ分成面积相等的上下两部分,将该纸片沿BG,CH,DI,IJ折成一个无盖的正方体盒子后,点P,Q之间的距离为cm.二.解答题(共7小题)6.(2021秋•沙坪坝区校级期末)(1)如图1,在6×6正方形网格中,有一格点△ABC(即△ABC 三个顶点都在小正方形的顶点处),其面积为7cm2,则这个方格纸的面积等于cm2;(2)若点M是图1中不同于点C的一个格点,且△ABC的面积与△ABM的面积相等,则满足条件的点M有个;(3)如图2,在12×12正方形网格中,每个小正方形的边长为1,给定了点D,E的位置,请先画一个△DEF,使DF,EF的长分别为,2,再画△DEF关于点O成中心对称的△D'E'F'.7.(2021秋•阳东区期中)直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.8.(2019春•港南区期中)如图,在△ABC中,点D是AB边上的中点,已知AC=4,BC=6,(1)画出△BCD关于点D的中心对称图形;(2)根据图形说明线段CD长的取值范围.9.(2017•中原区校级三模)有这样一个问题:探究函数y=的图象与性质.下面是小强的探究过程,请补充完整:(1)函数y=的自变量x的取值范围;(2)如表是y与x的几组对应值.x…﹣5 ﹣4 ﹣3 ﹣2 0 1 2 3 …y…﹣2 0 …﹣﹣﹣如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.①观察图中各点的位置发现:点A1和B1,A2和B2,A3和B3,A4和B4均关于某点中心对称,则该点的坐标为;②小文分析函数y=的表达式发现:当x<﹣1时,该函数的最大值为﹣2,则该函数图象在直线x=﹣1左侧的最高点的坐标为;(3)小强补充了该函数图象上两个点(﹣,),(﹣,﹣),①在上图中描出这两个点,并画出该函数的图象;②写出该函数的一条性质:.10.(2021秋•渝中区校级期末)已知,如图1,直线AB∥CD,E为直线AB上方一点,连接ED、BE,ED与AB交于P点.(1)若∠ABE=110°,∠CDE=70°,则∠E=;(2)如图1所示,作∠CDE的平分线交AB于点F,点M为CD上一点,∠BFM的平分线交CD于点H,过点H作HG⊥FH交FM的延长线于点G,GF∥BE,且2∠E=3∠DFH+20°,求∠EDF+∠G的度数.(3)如图2,在(2)的条件下,∠FDC=25°,将△FHG绕点F顺时针旋转,速度为每秒钟3°,记旋转中的△FHG为△FH′G′,同时∠FDE绕着点D顺时针旋转,速度为每秒钟5°,记旋转中的∠FDE为∠F′DE′,当∠FDE旋转一周时,整个运动停止.设运动时间为t(秒),则当△FH′G′其中一条边与∠F′DE′的其中一条边互相垂直时,直接写出t的值.11.(2021秋•南川区期中)在△ABC中,AB=10,AC=8,∠ACB=30°,将△ABC绕A按逆时针方向旋转,得到△ADE.(1)如图1,点F为BC与DE的交点,连接AF.求证:FA平分∠DFC;(2)如图2,点P为线段AB中点,点G是线段BC上的动点,在△ABC绕A按逆时针方向旋转的过程中,点G的对应点是点G1,求线段PG1长度的最大值与最小值.12.(2019春•宁波期中)知识背景:过中心对称图形的对称中心的任意一条直线都将其分成全等的两个部分.(1)如图①,直线m经过平行四边形ABCD对角线的交点O,则S四边形AEFB S四边形DEFC(填“>”“<”“=”);(2)如图②,两个正方形如图所示摆放,O为小正方形对角线的交点,求作过点O的直线将整个图形分成面积相等的两部分;(3)八个大小相同的正方形如图③所示摆放,求作直线将整个图形分成面积相等的两部分(用三种方法分割).。

八年级数学下册知识点复习专题讲练用坐标表示旋转含解析

八年级数学下册知识点复习专题讲练用坐标表示旋转含解析

用坐标表示旋转在坐标平面内,某一点绕原点旋转前后坐标的变化规律如下:1. 点A(a,b)绕原点旋转180°得点A'(-a,-b),即点A(a,b)关于原点对称的点的坐标是A'(-a,-b)。

2. 点A(a,b)绕原点旋转90°所得点A'的坐标是(-b,a)。

方法归纳:坐标系中的旋转问题通常构造全等三角形加以解决,而且一般是直角三角形。

因为图形的旋转问题都可以归结为点的旋转问题,而点的坐标可以表示某点到坐标的距离。

所以解决坐标系的旋转问题时经常过图形的顶点向坐标轴作垂线段,构造直角三角形来解决问题。

总结:1. 通过具体实例认识直角坐标系中图形的旋转变换,加深理解旋转变换的概念和基本性质,并能按要求作出简单平面图形绕坐标原点旋转90度、180度后的图形。

2. 通过多角度地认识旋转图形的形成过程,培养学生的发散思维能力。

例题1在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A. (1.4,-1)B. (1.5,2)C. (1.6,1)D. (2.4,1)解析:根据平移的性质得出,△ABC的平移方向以及平移距离,即可得出P1的坐标,进而利用中心对称图形的性质得出P2点的坐标。

答案:∵A点坐标为:(2,4),A1(-2,1),∴点P(2.4,2)平移后的对应点P1为(-1.6,-1),∵点P1绕点O逆时针旋转180°,得到对应点P2,∴P2点的坐标为(1.6,1)。

故选C。

点拨:此题主要考查了旋转的性质以及平移的性质,根据已知得出平移距离是解题关键。

例题2在如图所示的直角坐标系中,将△OAB绕点O顺时针旋转90°得△OA1B1,则线段A 1B 1所在直线l 的函数解析式为( )yxO ABA. y =32x -2B. y =-32x +2C. y =-32x -2D. y =32x +2解析:根据旋转方向及角度画出旋转后的三角形,求出对应点坐标,设直线的解析式为y =kx +b ,将点的坐标代入,用待定系数法确定其解析式。

图形的平移与旋转整章备课教案

图形的平移与旋转整章备课教案

东侨中学数学教案八年级数学组2011-2012学年上学期第周第课ABCDEFX Ya、AB∥EF AB=EF,BC∥FG,BC=FG。

并且:CD∥GH,CD=GH,DA∥HE,DA=HE。

b、AE∥BF∥CG∥DH。

因为AB∥EF,AB=EF,所以四边形ABFE是平行四边形,所以AE∥BF,同理可得AE∥BF∥CG∥DH。

c、相等的线段还有:AE=BF=CG=DH。

为什么呢?∠A=∠E, ∠B=∠F, ∠C=∠G, ∠D=∠H.d、图形经过平移后,只是位置发生了变化,即图形上的每个点都沿着同一个方向移动了相同的距离,而线段的长度、角的大小没有发生变化。

即:经过平移,对应线段、对应角分别相等,对应点的连线是平行的并且相等。

平移的性质:经过平移,对应线段、对应角分别相等,对应点的连线是平行且相等。

由平移的性质可得,相等的线段有两种,一是对应点的连线平行且相等,二是对应线段相等平行且相等。

4、平移的特征及性质的应用:如图:将△ABC沿着射线XY的方向移动一定距离后成为△DEF,找出图中存在的平行且相等的三条线段和全等三角形。

解析:有平移的特征:平移不改变图形的形状和大小。

可知△ABC与△DEF是全等的,有平移的性质可知相等的线段有两种,一是对应点的连线平行且相等,二是对应相等平行且相等。

(三)应用迁移,巩固新知:例1.如图所示,如果吊箱一共移动了300米,则ABCDEF(四)课堂练习:P70 随堂练习1,2.1. 如图所示,∠DEF是∠ABC经过平移得到的,∠ABC=33O,求∠DEF的度数。

2.下列B组中的图形能否由A组中的图形经过平移后得到?3. 观察下面两幅图案,并回答下列问题:a.这个图有什么特点?b.它可以通过什么“基本图案”经过怎样的平移而形成?c.在平移的过程中“基本图案”的大小、形状、位置是否发生了变化?BACO4.如图所示的正方体中,可以由线段AA1平移而得到的线段有哪些?5. 将图中的小船向左平移四格.(五)课堂小结:1.本节课我们通过具体的例子,认识了平移,理解了平移的特征和性质。

北师大版数学八年级上册教材目录

北师大版数学八年级上册教材目录
八年级上册
第一章勾股定理
1.探索勾股定理
2.能得到直角三角形吗
3.蚂蚁怎样走最近
回顾与思考
复习题1.数怎么又不够用了
2.平方根
3.立方根
4.公园有多宽
5.用计算器开方
6.实数
回顾与思考
复习题
第三章图形的平移与旋转
1.生活中的平移
2.简单的平移作图
3.生活中的旋转
4.简单的旋转作图
回顾与思考
复习题
总复习
第六章一次函数
1.函数
2.一次函数
3.一次函数的图象
4.确定一次函数表达式
5.一次函数图象的应用
回顾与思考
复习题
第七章二元一次方程组
1.谁的包裹多
2.解二元一次方程组
3.鸡兔同笼
4.增收节支
5.里程碑上的数
6.二元一次方程与一次函数
回顾与思考
复习题
第八章数据的代表
1.平均数
2.中位数与众数
3.利用计算器求平均数
5.它们是怎样变过来的
6.简单的图案设计
回顾与思考
复习题
第四章四边形性质探索
1.平行四边形的性质
2.平行四边形的判别
3.菱形
4.矩形、正方形
5.梯形
6.探索多边形的内角和与外角和
7.平面图形的密铺
8.中心对称图形
回顾与思考
复习题
第五章位置的确定
1.确定位置
2.平面直角坐标系
3.变化的鱼
回顾与思考
复习题

八年级数学下册第三章图形的平移与旋转知识总结北师大版

八年级数学下册第三章图形的平移与旋转知识总结北师大版

第三章图形的平移与旋转一、平移定义和规律1平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.关键:a. 平移不改变图形的形状和大小(也不会改变图形的方向,但改变图形的位置)。

b. 图形平移三要素:原位置、平移方向、平移距离。

2平移的规律(性质):经过平移,对应点所连的线段平行且相等,对应线段平行且相等、对应角相等。

注意:平移后,原图形与平移后的图形全等。

3简单的平移作图:平移作图要注意:①方向;②距离。

整个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动。

二、旋转的定义和规律1旋转的定义:在平面内,将一个图形饶一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这个定点称为旋转中心;转动的角称为旋转角.关键:a。

旋转不改变图形的形状和大小(但会改变图形的方向,也改变图形的位置)。

b。

图形旋转四要素:原位置、旋转中心、旋转方向、旋转角。

2旋转的规律(性质):经过旋转,图形上的每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.(旋转前后两个图形的对应线段相等、对应角相等。

)注意:旋转后,原图形与旋转后的图形全等.3简单的旋转作图:旋转作图要注意:①旋转方向;②旋转角度。

整个旋转作图,就是把整个图案的每一个特征点绕旋转中心按一定的旋转方向和一定的旋转角度旋转移动。

三、中心对称1.中心对称的有关概念:中心对称、对称中心、对称点把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。

2.中心对称的基本性质:(1).成中心对称的两个图形具有图形旋转的一切性质。

(2).成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

3.中心对称图形的有关概念:中心对称图形、对称中心把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形.这个点就是它的对称中心。

第三章 图形的平移与旋转

第三章 图形的平移与旋转

第三章图形的平移与旋转1.通过具体实例认识平移,探索它的基本性质:一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.2.认识并欣赏平移在自然界和现实生活中的应用.3.在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点坐标,并知道对应顶点坐标之间的关系.4.在直角坐标系中,探索并了解将一个多边形依次沿两个坐标轴方向平移后所得到的图形与原来的图形具有平移关系,体会图形顶点坐标的变化.5.通过具体实例认识平面图形关于旋转中心的旋转,探索它的基本性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等.6.了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.7.认识并欣赏自然界和现实生活中的中心对称图形.8.运用图形的平移、旋转、轴对称进行图案设计.1.经历有关平移与旋转的观察、操作、欣赏和设计的过程,进一步积累数学活动经验,增强动手实践能力,发展空间观念.2.经历借助图形思考问题的过程,初步建立几何直观.3.通过具体实例认识平移与旋转,探索它们的基本性质,会进行简单的平移、旋转画图.4.在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点坐标,并知道对应顶点坐标之间的关系.5.在直角坐标系中,探索并了解将一个多边形依次沿两个坐标轴方向平移后所得到的图形与原来的图形具有平移关系,体会图形顶点坐标的变化.6.了解中心对称、中心对称图形的概念,探索它的基本性质.1.在研究平移与旋转的过程中,进一步发展空间观念.2.认识并欣赏平移、旋转在自然界和现实生活中的应用,认识并欣赏自然界和现实生活中的中心对称图形.在前面的学习中学生已对诸如翻折、平移、旋转、轴对称等知识有了一定的认识与理解,只是平移和旋转的知识没有正式出现罢了,但这些变换的意识学生已经有了.学生学习了本章知识后对平移与旋转以及轴对称这三种常用的全等变换有了系统的认识,但学生把握这些全等变换的能力有待提升,特别是对组合图案的形成过程的分析是学生把握不好的地方,应加强训练.立足于学生已有的生活经验和初步的数学活动经验,首先从观察生活中的平移、旋转现象开始,直观的认识平移、旋转,并在此基础上,分析生活中的平移现象和旋转现象各自的规律,得到平移和旋转的基本性质;然后利用平移和旋转的基本性质进行简单的平移作图、旋转作图,通过分析简单平面图形的平移、旋转等变化关系,进一步体会平移、旋转的应用价值和丰富内涵;最后,通过简单的图案设计,将图形的平移、旋转、轴对称融合在图案的欣赏和设计活动中.具体地,教科书设计了4节内容:第1节“图形的平移”,立足于学生小学阶段的学习基础和已有的生活经验,通过分析各种平移现象的共性,直观地认识平移,探索平面图形平移的基本性质,利用平移的基本特征研究简单的平移画图.在此基础上,进一步研究沿坐标轴方向平移后的图形与原图形对应点坐标之间的关系,探索依次沿两个坐标轴方向平移后所得到的图形与原来图形之间的关系.第2节“图形的旋转”,通过具体活动认识平面图形的旋转,探索平面图形旋转的基本性质,利用旋转的基本特征研究简单的旋转画图.第3节“中心对称”,认识中心对称,探索成中心对称的基本性质,利用中心对称的基本特征研究中心对称的画图,认识并欣赏自然界和现实生活中的中心对称图形.第4节“简单的图案设计”,将图形的平移、旋转、轴对称融合在图案的欣赏和设计活动之中.应当指出的是,本章不同于变换几何中的平移、旋转变换,而是先通过观察具体的平移、旋转现象,分析、归纳并概括出平移、旋转的整体规律和基本性质,然后在平移和旋转的图案设计、欣赏、简单应用中,进一步深化对图形的三种基本变换的理解和认识.【重点】1.平移的定义.2.平移的性质及应用.3.简单的平移作图.4.旋转的定义.5.旋转的性质及应用.6.简单的旋转作图.7.中心对称和中心对称图形.【难点】1.平移作图.2.旋转作图.3.中心对称和中心对称图形的区别和联系.4.利用平移、旋转、轴对称进行简单的图案设计.1.着眼于发展学生的空间观念.使学生具备良好的空间观念是义务教育阶段数学教育的一个重要目标,培养学生的空间观念必须使学生经历、体验图形运动变化的过程,本章所研究的平移、旋转及中心对称是反映空间观念的重要内容.为此,教科书设计了一系列的实验、探索活动,如“探索平移基本性质的实验活动”“探索旋转基本性质的实验活动”“探索中心对称基本性质的实验活动”及“图形平移与坐标变化的关系的探索活动”“简单的图案设计活动”等.在这些活动中,学生将会想象物体与物体之间的位置关系,描述图形的运动和变化,依据语言的描述画出图形等,所有这些都是空间观念的重要表现.因此,教师应想方设法鼓励学生积极参与这些活动,通过观察、操作、归纳、猜想、交流等获得结论,并运用自己的语言描述探索过程和所得到的结论,发展空间观念.需要指出的是,培养空间观念是一种个人体验,需要大量的实践活动,以被动听讲和练习为主的方式,是难以形成空间观念的.学生要有充分的时间和空间观察、动手操作,对周围环境和实物产生直接感知,这些都不仅需要自主探索、亲身实践,更离不开大家一起动手、共同参与.观察、操作、归纳、类比、猜想、直观思考等对形成空间观念具有重要作用,只有在学生共同探讨、合作解决问题的过程中才能不断生成和发展,并得到提升.2.重视学生的观察、操作、探索和交流活动.教师创设情境、设计问题,引导学生自主探索、合作交流,让学生经历观察、操作、探索和交流的过程,能有效地激发学生的思考,有助于真正落实学生在学习活动中的主体地位,有助于学生理解和掌握基本知识和基本技能,同时也有助于学生感悟数学思想,积累数学活动经验.本章有许多内容需要学生对图形进行观察、操作、探索和交流,教学时不宜用教师的课堂讲解和演示代替学生的动手操作、主动探究与讨论交流.例如,有关平移、旋转的性质,教科书都设计了相应的实验过程,力图让学生通过动手操作,配合直观的观察和理性的思考探索相关的结论.教学时可以让学生分组进行,每组选用的图形形状可以不同,每次变化的方式也可以不同.学生的这些实验结果为接下来进行的抽象概括提供了很好的素材.在此基础上,全班交流,概括出图形变化(平移、旋转)的基本性质.在这一过程中,学生的手、眼、脑等多种感官都能得到较为充分的运用,既有助于学生理解和掌握相关知识的内涵,也可以使学生在做的过程和思考的过程中积累一定的数学活动经验,并逐步感悟其中所蕴含的数学思想.3.创造性地利用与图形平移、旋转有关的资源进行教学.在教学中,教师应根据学生实际、教学实际和当地实际,充分挖掘和利用现实生活中大量存在的平移、旋转及中心对称现象,尤其是具有地方特色的素材(如北方地区的雪橇、辘轳,农村地区的水车、石碾、风车,城市里的缆车、电梯等),并引导学生对其中的一些共同特征加以分析、总结.4.合理运用现代信息技术,注重教学手段的多样化.本章主要研究图形的变化,对图形的动态展示的要求更为强烈.因此,在条件允许的情况下,教学中都应合理运用现代信息技术,注重信息技术与本章内容的整合,以便有效地改变教与学的方式,提高课堂教学的效率.需要说明的是,现代信息技术真正的价值在于实现原有的教学手段难以达到的甚至达不到的效果,它不应、也不可能完全替代常规的教学手段.例如,教师可以在学生动手实践的基础上,借助计算机、多媒体向学生展示更加丰富的几何图形的运动变化过程,这样不仅为学生理解和掌握相关知识提供形象的支持,有利于增强学生的空间观念,同时也可以让学生获得视觉上的愉悦,增强好奇心,激发学习兴趣.但不能用计算机、多媒体的演示完全取代学生的动手操作活动.5.关注学生情感态度的发展.教师要把落实情感态度的目标作为自己的责任和义务,努力把情感态度目标有机地融合在本章教学过程之中.例如,在设计教学方案、进行课堂教学活动时,应当经常考虑如下问题:如何引导学生积极参与教学过程?如何组织学生观察、操作、探索、归纳?如何使学生愿意学、喜欢学,对本章内容感兴趣?如何让学生体验成功的喜悦,从而增强学好本章内容的自信心?如何引导学生善于与同伴合作交流,既能理解、尊重他人的意见,又能独立思考、大胆质疑?如何培养学生良好的学习习惯?1图形的平移3课时2图形的旋转2课时3中心对称1课时4简单的图案设计1课时回顾与思考1课时1图形的平移1.通过具体实例认识平移,理解平移的基本性质:一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.2.通过“变化的鱼”探究横向(或纵向)平移一次,其坐标变化的规律,认识图形变换与坐标之间的内在联系.1.经历观察、分析、操作、欣赏以及抽象、概括等过程,探索图形平移的基本性质.2.经历沿x轴、y轴方向和综合方向平移时位置和数量的关系,通过观察、分析以及抽象、概括等过程,发现平移时坐标变化的特点.通过收集自己身边“平移”的实例,感受“生活处处有数学”,激发学生学习数学的兴趣;通过欣赏生活中图形平移的现象与学生自己设计的平移图案,使学生感受数学的美.【重点】探索和理解平移的基本性质.【难点】坐标变换和图形平移的关系.第课时1.认识平移,说出平移的定义,理解平移的基本内涵.2.理解并能说出平移的性质,即一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.1.经历观察、分析、操作、欣赏以及抽象、概括等过程,探索图形平移的基本性质.2.感悟平移前后图形的变化,从点、线、角、位置、大小等不同角度说出平移前后图形的变化关系.通过探究,归纳平移的定义、特征、性质,积累数学活动经验,进一步发展空间观念,增强空间想象力.【重点】1.认识平移在现实生活中的广泛应用.2.探索和理解平移的基本性质.【难点】平移基本性质的探索和理解.【教师准备】实际生活中的平移图片.【学生准备】复习翻折、平移、旋转、轴对称等知识.导入一:1.同学们,你们小时候去过游乐园吗?在游乐园中你们玩过哪些游乐项目?在玩这些游乐项目时你们想过什么?你们想过它里面蕴含着数学知识吗?2.找一找这些项目中,哪些项目的运动形式是一样的,观看游乐园内的一些项目,引出第三章内容,并进行初步分类,引出本节课研究内容:板书课题——图形的平移.[设计意图]由学生喜闻乐见的游乐场引入课题,容易激发学生的学习兴趣.导入二:请你判断: 小明跟着妈妈乘观光电梯上楼,一会儿,小明兴奋地大叫起来:“妈妈!妈妈!你看我长高了!我比对面的大楼还要高!”小明说的对吗?为什么?[设计意图]较好地发挥了“情景导入”的作用,却又找不到足够的理由说服持有不同观点的同学.此情此景,在好奇心的驱动之下,学生欲罢不能,很容易就产生了继续学习、探索新知识的欲望.导入三:请大家仔细观察如图所示的图案,你觉得漂亮吗?这个图案的特点是由一个“基本图案”通过平移得到的,你能找到这个“基本图案”吗?这节内容我们就来研究一种几何变换——平移.一、平移的定义[过渡语](针对导入三)刚才我们看到的美丽图案,它是由12个完全一样的图形组成的,这个图案可以看成是由一个基本图形按照一定方式移动得到的.这样的图形运动称作什么呢?这就是我们本课时要研究的——图形的平移.思路一(1)我们再来感受一下平移.上面我们提到的游乐场中的滑梯等,你们在上面玩耍的时候,哪些方面是不变的?哪些方面是变化的?(2)什么是平移呢?引导学生探讨并在班内交流,达成共识后,得出平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.平移不改变图形的形状和大小.[设计意图]引导学生通过观察,发现图形间的变化规律,得出平移的定义.思路二教师通过多媒体展示(展示画面)现实生活中平移的具体实例:(1)箱子在传送带上移动的过程.(2)手扶电梯上人移动的过程.教师提问:①你能发现传送带上的箱子、手扶电梯上的人在移动前后什么没有改变,什么发生了改变吗?②在传送带上,如果箱子的某一部分向前移动了80 cm,那么箱子的其他部位向什么方向移动?移动了多少距离?学生自由发言,各抒己见.平移前后两个图形的形状和大小没有改变,位置发生了改变.根据上述分析,你能说明什么样的图形运动称为平移吗?平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.平移不改变图形的形状和大小.平移三要素: 基本图形,平移方向,平移距离.[设计意图]数学来源于实际生活,使学生感受到生活中处处有数学.利用课本上的两个实例,进一步感受平移的实质,渗透平移的三要素,即“基本图形、平移方向、平移距离”.如图所示,△ABC经过平移得到△A'B'C'.我们把点A与点A'叫做对应点,线段AB与线段A'B'叫做对应线段,∠A与∠A'叫做对应角.此时:点B的对应点是点B' ;点C的对应点是点C' ;线段AC的对应线段是线段A'C' ;线段BC的对应线段是线段B'C' ;∠B的对应角是∠B' ;∠C的对应角是∠C' .△ABC平移的方向就是由点B到点B'的方向,平移的距离就是线段BB'的长度.二、平移的性质[过渡语]一个图形和它经过平移所得到的图形中,对应点所连的线段有什么关系,对应线段和对应角有什么关系?同学们通过刚才的观察,总结出一个结论,即:“图形的位置改变了,但形状和大小没有改变”.现在我们一起来探索:平移前后对应点、对应线段以及对应角之间在做怎样的变化.教师提出问题:想一想,将左图的四边形硬纸片按某一方向平移一定的距离,右图画出了平移前的四边形ABCD和平移后的四边形EFGH.问题:(1)在上图中,线段AE,BF,CG,DH有怎样的关系?(2)图中每对对应线段之间有怎样的关系?(3)图中有哪些相等的线段、相等的角?学生分成四人一组,共同探讨平移的性质.讨论分析:①变换前后对应点所连线段平行(或在一条直线上)且相等.平移变换是图形的每一个点的变换,一个图形沿某个方向移动一定距离,那么每一个点也沿着这个方向移动相同距离,所以对应点所连线段平行(或在一条直线上)且相等.②变换前后的图形全等.平移变换是由一个图形沿着某个方向移动一定距离,所以平移前后的图形是全等的.③变换前后对应角相等.④变换前后对应线段平行(或在一条直线上)且相等.学生归纳总结,教师板书平移的性质:一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.[设计意图]这个活动是探索平移的性质,对学生有点难度,通过设置问题的回答,使学生直接观察得出性质.操作性强又富有挑战性的数学活动,激发了学生学习的兴趣,对平移的基本内涵和基本性质这两个重点,学生能掌握得更好.三、例题讲解[过渡语]刚才我们了解了平移的相关概念和平移的基本性质,我们能用学到的知识解答一些问题吗?(1)指出平移的方向和平移的距离;(2)画出平移后的三角形;(3)请在图(2)中找出平行且相等的线段,以及相等的角(找出对应角即可).解:(1)如图(2)所示,连接AD,平移的方向是点A到点D的方向,平移的距离是线段AD的长度.(2)如图(2)所示,分别过点B,C按射线AD的方向作线段BE,CF,使得它们与线段AD平行且相等,连接DE,DF,EF,△DEF就是△ABC平移后的图形.(3)图中平行且相等的线段有:AB与DE,BC与EF,AC与DF,AD与BE,AD与CF,BE与CF;相等的角有:∠BAC与∠EDF, ∠ABC与∠DEF, ∠ACB与∠DFE.[设计意图]让学生进一步体会确定平移的两个要素:平移的方向和平移的距离,加深对平移性质的理解和应用.[知识拓展]平移作图.平移作图是平移基本性质的应用,利用平移可以得到许多美丽的图案.在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺序连接对应点.说明:平移作图实际上是平移基本性质的实际应用.注意:(1)平移作图的方法是由平移的性质而来,但必须注意两个条件,一是平移的方向,二是平移的距离.(2)平移的作图要抓住以下几个特征:①平移前后对应点连线平行(或共线)且相等.②对应线段平行(或共线)且相等.③对应角相等.1.平移是运动的一种形式,是图形变换的一种.2.图形的平移有两个要素:一是图形平移的方向;二是图形平移的距离.这两个要素是图形平移的依据.3.图形的平移是指图形整体的平移.经过平移后的图形与原图形相比,只改变了位置,而不改变图形的形状和大小,这个特征是得出图形平移的基本性质的依据.1.下列运动属于平移的是()A.急刹车时汽车在地面上的滑动B.冷水加热中,小气泡上升为大气泡C.随风飘动的风筝在空中的运动D.随手抛出的彩球的运动解析:A中汽车向前滑动,方向和大小都没有改变,属于平移;B中气泡大小发生了变化,不属于平移;C中风筝在空气中运动方向不断变化,不属于平移;D中彩球运动方向不能确定.故选A.2.如图所示,O是正六边形ABCDEF的中心,下列图形中可由三角形OBC平移得到的是 ()A.三角形OCDB.三角形OABC.三角形FAOD.以上都不对解析:根据平移的定义与特征知,平移后图形的形状、大小不改变,对应线段平行(或在一条直线上)且相等,对应角相等,三角形OBC是等边三角形,与其他五个三角形的形状、大小相同,关键是看其他三角形的对应边是否符合平移的特征.故选C.3.如图所示的四个小三角形都是等边三角形,边长都为1 cm,能通过平移三角形ABC得到三角形FAE 和三角形ECD吗?若能,请指出平移的方向和平移的距离.解析:三角形FAE与三角形ABC都是等边三角形,则有AF=BA=BC=AE=FE=AC,满足平移后图形的大小和形状不变.平移的方向为点A到点F的方向,平移的距离为AF的长度(1 cm).同理可得△ABC与△ECD 的关系.解:能.三角形ABC平移到三角形FAE的平移方向为点A到点F的方向,平移的距离为1 cm;三角形ABC平移到三角形ECD的平移方向为点A到点E的方向,平移的距离为1 cm.4.如图所示,图形ABCD平移到图形EFGH,试根据该图,回答下列问题.(1)在图中,线段AE与BF,CG与DH有怎样的位置关系?(2)图中线段AB与EF,AD与EH有怎样的位置关系?(3)说出图中相等的角(说出对应角即可).解析:AE,BF,CG,DH是对应点所连的线段,AB与EF,AD与EH是对应线段,由平移的特征可知它们的位置关系是平行.对应角相等.解:(1)平行.(2)平行.(3)∠BAD=∠FEH,∠ADC=∠EHG,∠DCB=∠HGF,∠ABC=∠EFG.5.经过平移,三角形ABC的边AB移到了A'B',作出平移后的三角形A'B'C'.解析:本题已知原图形和平移后的一条线段,就相当于已知原图形和平移的方向、平移的距离,所以根据平移前后两三角形全等可以作出平移后的三角形,具体的作法有很多种.解法1:如图(1)所示,分别过点A',B',作出与AC,BC平行且相等的线段A'C',B'C',两条线段相交于点C',三角形A'B'C'即为所求.解法2:如图(2)所示,分别以A',B'为圆心,以线段AC,BC的长为半径画弧,交于点C',连接A'C',B'C'即得△A'B'C'.解法3:如图(3)所示,连接AA',过点C按照射线AA'的方向作射线CC',使CC'∥AA'并截取CC'=AA',则连接A'C',B'C'所得的三角形A'B'C'即为所求作的三角形.第1课时一、平移的定义二、平移的性质三、例题讲解一、教材作业【必做题】教材第67页习题3.1的1,2题.【选做题】教材第68页习题3.1的3,4题.二、课后作业【基础巩固】1.下列说法正确的是()A.两个全等的图形可看做其中一个是由另一个平移得到的B.由平移得到的两个图形对应点连线互相平行(或共线)C.由平移得到的两个等腰三角形周长一定相等,但面积未必相等D.边长相等的两个正方形一定可以通过平移得到2.如图所示,下列每组图形中的两个三角形不是通过平移得到的是()3.下列现象:①电风扇的转动;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上瓶装饮料的移动.其中属于平移的是.【能力提升】4.如图所示,一张白色正方形纸片的边长是10 cm,被两张宽为2 cm的阴影纸条分为四个白色的长方形部分,请你利用平移的知识求出图中白色部分的面积.5.如图所示,AD∥BC,∠ABC=80°,∠BCD=50°,利用平移的知识讨论BC与AD+AB的数量关系.6.如图所示,将Rt△ABC沿直角边AB的方向向右平移2个单位长度得到△DEF,如果BG=CG,AB=4,∠ABC=90°,且△ABC的面积为6,求图中阴影部分的面积.7.如图所示,△ABC沿射线MN方向平移一定距离后成为△A'B'C'.找出图中相等的线段以及全等的三角形.8.A,B两点间有一条传输速度为每分钟5米的传送带,由A点向B点传送货物.一只蚂蚁不小心爬到了传送带上,它以每分钟1.5米的速度从A点爬向B点,3分钟后,蚂蚁爬到了B点,你能求出A,B两点间的距离吗? 【拓展探究】9.如图所示,∠BAC=30°,∠B'A'C'=45°,且AB∥A'B',直线AC与直线A'C'相交于点O,求∠COC''的度数.10.如图所示,有一条光滑曲线,画出将它沿数轴向左平移2个单位长度后的图形.。

八年级上册数学学案 利用图形的平移、旋转和轴对称设计图案(冀教版,含答案)

八年级上册数学学案 利用图形的平移、旋转和轴对称设计图案(冀教版,含答案)

利用图形的平移、旋转和轴对称设计图案学习目标:1.利用旋转、轴对称或平移进行简单的图案设计.(重点)2.认识和欣赏平移、旋转在现实生活中的应用.3.灵活运用平移与旋转组合的方式进行一些图案设计.(难点)学习重点:利用旋转、轴对称或平移进行图案设计理.学习难点:运用平移与旋转组合的方式进行图案设计.知识链接观察下列图片中的图案,想想它们是如何设计出来的.二、新知预习2.如图,请将这个图形沿着箭头所示的方向和距离平移三次(保留作图痕迹).3.如图,将这个三角形绕两条虚线的交点,先旋转90°,再将整个图形旋转180°,画出旋转后的图形(保留作图痕迹).4.观察下图中的图案,请你分别说出图案的变化过程.图案设计与日常生活息息相关,它通常是利用基本图形的变换来进行图案设计,图形之间的基本关系有_______、_______、_______这三种基本形式,但较多的形式都是经过组合变化而成的.自学自测旦前,市园林部门准备在文化广场摆设直径均为4米的八个圆形花坛,在坛内放置面积相同的两种颜色的盆栽花草,要求各个花坛内两种花草的摆设不能相同,如图所示的(1)(2),请你再设计出至少四种方案.四、我的疑惑_____________________________________________________________________________ _____________________________________________________________________________ _要点探究探究点:利用平移、旋转和轴对称设计图案问题1:分析左边的树形图案,经过怎样的图形变换就可能得到右边的树形图案.【归纳总结】形的变换可以通过选择不同的变换方式得到,可能需要旋转、轴对称、平移等多种变换组合才能得到完美的图案,希望同学们认真分析,精心设计一定也能设计出漂亮的图案来.【针对训练】如图,若要将图①变成图②,经过的变换过程可能是( )A.旋转、平移B.轴对称、旋转C.平移、旋转D.轴对称、平移问题2:用四块如图(1)所示的正方形卡片拼成一个新的正方形,使拼成的图案是一个轴对称图形,请你在图(2)、图(3)、图(4)中各画出一种拼法(要求三种画法各不相同,且其中至少有一个既是轴对称图形,又是中心对称图形).【归纳总结】求解时只要符合题意即可,另外,在平时的学习生活中一定要留意身边的各种形状的图案,这样才能在具体求解问题时如鱼得水,一蹴而就.【针对训练】如图是某地板厂生产的一种地面砖,有一下四种样式:请你选其中的几种用来铺设地面,并组成一个优美的图案,要求构成这个图案的基本图形既是轴对称图形又是中心对称图形.二、课堂小结1.如图所示,该图案可以看做是一个菱形通过_______次旋转得到的,每次旋转______度.2.如图,把边长为3的正方形,按下图①~④的方式进行变换后拼成图⑤,则图⑤的面积等于______.当堂检测参考答案:1.6 602.363.图略。

超级画板旋转功能的应用

超级画板旋转功能的应用

超级画板旋转功能的应用几何画板软件以它强大的功能被数学教师赞美。

旋转功能更被数学教师用来作各种图形的旋转动画。

但遗憾的是,几何画板使用起来很不方便。

数学教师为制作一个能体现图形动态变化过程的动画,往往投入很多时间,花费很大精力,增加了数学教师的备课难度。

随着我国基础教育改革的深入,信息技术逐步走进普通中学数学课堂。

为了减轻数学教师的工作压力,让他们从繁忙的劳动中解脱出来,在教育部的支持下,一款由我国计算机技术人员研制的数学教育软件——超级画板应运而生。

超级画板使用方便、简单快捷、省时省力。

本文仅对旋转功能用具体实例说明超级画板的这些优点。

1 用超级画板制作平面图形的旋转动画1.1 函数图像的旋转例1 将函数2x y =的图像旋转得到x y =2的图像。

用几何画板不能直接完成函数的图像旋转,只能用技巧方法间接做到,并且步骤多[1],数学老师很是辛苦。

下面我们用超级画板完成旋转,其简单的过程会让你惊叹。

(1)打开超级画板→作图→函数或参数方程曲线,在弹出的对话框中函数栏目输入“2^x ”。

则绘出函数2x y =的图像;(2)选中原点→变换→指定旋转或放缩中心;(3)选中抛物线→变换→旋转角或放缩参数,在弹出的对话框中设旋转角为-t ;(4)作图→动画,在弹出的对话框中选择运动类型为“一次运动”,最小值为“0”,最大值为“pi/2”(pi 代表π)。

完成按钮制作如图1所示。

点击动画按钮,抛物线按顺时针方向旋转90°后自动停止。

分析这是图像绕顶点旋转的例子。

由此例可以看出,与文献[1]比较,同样是旋转,达到的效果相同,几何画板操作步骤多,而且画面杂乱,需要隐藏的对象很多;相比之下,超级画板操作步骤非常少,而且画面简单,不需要隐藏任何对象。

1.2 平面几何图形的旋转图1 旋转抛物线图2 旋转平行四边形例2 演示平行四边形中心对称。

(1)打开超级画板,隐藏坐标系,用智能画笔作三个点A、B、C;(2)选中点A、B、C→作图→常见多边形→平行四边形,则平行四边形ABCD作出;(3)选中点A、C→作图→点→线段的中点,则线段AC和中点E同时作出;(4)选中点E指定E为旋转中心,指定旋转参数为t;(5)选择所有对象→变换→旋转几何对象,则作出与平行四边形MNKL;(6)击右键→动画→运动参数设为t,运动类型选择“一次运动”,运动范围设为0到pi;(7)选择点A、B、C、D→作图→多边形→填充颜色→增加颜色透明度,如图2所示。

北师大版八年级数学下册《图形的平移》图形的平移与旋转PPT精品课件(第1课时)

北师大版八年级数学下册《图形的平移》图形的平移与旋转PPT精品课件(第1课时)

实践探究,交流新知
( 1 ) 变换前后对应点的连线平行且相等:平移变换 是图形的每一个点的变换,一个图形沿某个方向移 动一定的距离,那么每一个点也沿着这个方向移动 相同的距离,所以对应点的连线平行且相等. ( 2 ) 变换前后的图形全等:平移变换是由一个图形 沿着某个方向移动一定的距离,所以平移前后的图 形是全等的. (3)变换前后对应角相等. (4)变换前后对应线段平行且相等.
学习重点
探索图形平移的主要特征和基本性质,会画简单图形的平移图.
学习Hale Waihona Puke 点探索和理解平移的基本性质.
创设情境,导入新课
请同学们观察如图所示的两幅图片.
问题1:你能发现传送带上的箱子和手扶电梯上的人在移动前后什么没有改变, 什么发生了改变吗? 问题2:在传送带上,如果箱子的把手向前移动了80 cm,那么箱子的其他部位 向什么方向移动?移动的距离是多少? 问题3:如果把移动前后的同一个箱子看成长方体,那么移动前后的长方体各 个面的形状、大小是否相同?
北师大版 八年级下册
第三章 图形的平移与旋转
图形的平移(第1课时)
前言
学习目标
1. 通过具体实例认识平移,理解平移的基本内涵,理解和运用平移的基本性质. 2.认识平面图形的平移,探索平移的基本性质,会进行简单的平移画图. 3.通过收集自己身边“平移”的实例,感受“生活处处有数学”,激发学生学习数学的兴趣; 通过欣赏生活中的平移图案,使学生感受数学美.
实践探究,交流新知
探究2 平移的性质 如图,将△ABC沿射线XY的方向平移一定距离后得到△DEF.
问题1:(1)平移前后的两个图形有什么关系? (2)在上图中,线段AD,BE,CF有怎样的位置关系和数量关系? (3)图中每对对应线段之间有怎样的位置关系和数量关系? (4)图中的对应角有什么关系?

北师大版数学八年级下册知识点汇总

北师大版数学八年级下册知识点汇总

北师大版数学八年级下册知识点汇总第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。

二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。

推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。

(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。

等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1. 有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。

)推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。

2. 反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。

这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形的两锐角互余直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。

2、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线、角平分线1、线段的垂直平分线。

性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

山西初中数学八年级上册目录

山西初中数学八年级上册目录

山西初中数学八年级上册目录第一章: 勾股定理
●1、探索勾股定理
●2、能得到直角三角形吗
●3、蚂蚁怎样走最近
第二章: 实数
●1、数怎么又不够用了
●2、平方根
●3、立方根
●4、公园有多宽
●5、用计算器开方
●6、实数
第三章: 图形的平移与旋转
●1、生活中的平移
●2、简单的平移作图
●3、生活中的旋转
●4、简单的旋转作图
●5、它们是怎样变过来的
●6、简单的图案设计
第四章: 四边形的性质探索●1、平行四边形的性质
●2、平行四边形的判别
●3、菱形
●4、矩形、正方形
●5、梯形
●6、探索多边形的内角和与外角和●7、平面图形的密铺
●8、中心对称图形
第五章: 位置的确定
●1、确定位置
●2、平面直角坐标系
●3、变化的鱼
第六章: 一次函数
●1、函数
●2、一次函数
●3、一次函数的图象
●4、确定一次函数表达式
●5、一次函数图象的应用
第七章: 二元一次方程组●1、谁的包裹多
●2、解二元一次方程组
●3、鸡免同笼
●4、增收节支
●5、里程碑上的数
●6、二元一次方程与一次函数
第八章: 数据的代表
●1、平均数
●2、中位数与众数
●3、利用计算器求平均数。

(完整版)北师大版八年级下册3.2图形的平移与旋转讲义(无答案)

(完整版)北师大版八年级下册3.2图形的平移与旋转讲义(无答案)

八年级数学精讲——第三章:图形的平移与旋转【基础知识】1.平移的定义与规律(1)定义:在平面内将一个图形沿某个方向移动一定的距离,•这样的图形运动称为平移.关键:平移不改变图形的形状和大小,也不会改变图形的方向.(2)平移的规律:经过平移,对应线段、对应角分别相等,•对应点所连的线段平行且相等(或共线且相等).(3)简单作图平移的作图主要关注要点:1.方向,2.距离.整个平移的作图,就象把整个图案的每个特征点放在一套平行的轨道上滑动一样,每个特征点滑过的距离是一样的.2.旋转的定义与规律(1)定义:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,•这样的图形运动称为旋转.关键:旋转不改变图形的大小和形状,但改变图形的方向.(2)旋转的规律经过旋转,图形上的每一点,都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.(3)简单的旋转作图旋转作图关键有两点:①旋转方向,②旋转角度.主要分四步:边、转、截、连.旋转就象把每个特征点与旋转中心用线连住的风筝,每个点转的角度是相同的,每个点与旋转中心的距离是不会改变的,即对应点与旋转中心距离相等.3.图案的分析与设计首先找到图中的基本图案,然后分析其图案与它的关系,即由它作何种运动变换而形成的,我们主要遇到的变换有:轴对称、平移、旋转.在相似形一章里还会学到图形的放大与缩小等.【典例剖析】1、请你完成下列问题.图形的操作过程(本题中四个长方形的水平方向的边长均为a,•竖直方向的边长均为b);在图1中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分);(1)(2)(3)在图2中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).(1)在图3中,请你类似地画一条有两个折点的折线,同样向右平移一个单位,•从而得到一个封闭图形,并用斜线画出阴影.(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:S1=_____,S2=_______,S3=_______;(3)联想与探索如图4,在一块长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少,并说明你的猜想是正确的.2、如图,有边长为1的等边三角形ABC和顶角为120°的等腰△DBC,•以D为顶点作60°角,两边分别交AB、AC于M、N的三角形,连结MN,试说明△AMN的周长为2.3、如图,小正六边形沿着大正六边形的边缘顺时针滚动,小正六边形的边长是大正六边形边- 1 - / 8- 2 - / 8长的一半,当小正六边形由图①位置滚动到图②位置时,线段OA 绕点O 顺时针转过的角度为 度.4、如图,已知ABC △中,AB AC =,90BAC ∠=o ,直角EPF ∠的顶点P 是BC中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,给出以下五个结论:①AE CF=②APE CPF ∠=∠③EPF△是等腰直角三角形④EF AP=⑤12AEPFABC S S =四边形△;当EPF ∠在ABC △内绕顶点P 旋转时(点E 不与A ,B 重合),上述结论中始终正确的序号有5、如图,P 是正三角形ABC 内的一点,且68PA PB ==,,10PC =.若将PAC△绕点A 逆时针旋转后,得到P AB '△,则点P 与点P '之间的距离为 ,APB ∠=第4题 第5题变式:△ABC 是等腰直角三角形,BC 是斜边,P 为△ABC 内一点,将△ABP 绕点A 逆时针旋转后与△ACP /重合,如果AP=3,那么线段P P /的长是多少?6、如图,ABC△中,90301B C AB ∠=∠==o o ,,,将ABC △绕顶点A 旋转180o ,点C 落在C '处,则CC '的长为 。

初中数学知识点精讲精析 简单的旋转作图 (2)

初中数学知识点精讲精析  简单的旋转作图 (2)

第四节简单的旋转作图
要点精讲
旋转的内涵:图形绕一定点沿顺时针或逆时针方向转动一定角度.
旋转的性质:对应点与旋转中心的连线所成的角相等;对应点到旋转中心的距离相等.
作图工具:尺、规、笔.
基本作图技能:
作一条直线平行于已知直线;
作一线段等于已知线段;
作一角等于已知角。

点的旋转作法:以旋转中心为圆心,旋转中心到待旋转点的距离为半径画圆,连接旋转中心到待旋转点的半径,过旋转中心按指定方向作另一半径,使与前一半径的夹角等于已知角,该半径交于圆上的点即为所求作。

线段的旋转作法:将线段两端点分别旋转,然后将两个旋转后的点连成线段,即为原线段旋转后的线段。

典型例题
【例1】将A点绕O点沿顺时针方向旋转60˚。

【答案】作法:
1. 以点O为圆心,OA长为半径画圆;
2. 连接OA, 用量角器或三角板(限特殊角)作出∠AOB,与圆周交于B点;
3. B点即为所求作。

60˚。

【答案】作法:
将点A绕点O顺时针旋转60˚,得点C;
2. 将点B绕点O顺时针旋转60 ˚,得点D ;
3. 连接CD, 则线段CD即为所求作。

【解析】
针对训练
1.如图,把绕O点逆时针旋转120°、240°,试一试画出的图形是怎样的图形.2.如图,画出长方形ABCD绕点C顺时针旋转120°所得到的图形.
3.如图,画出绕点O顺时针旋转100°所得到的图形.
4.如图,你能把圆O绕P点顺时针旋转90°吗?
5.画一个三角形,使通过这个三角形的旋转得到一个正方形,指出这是一个什么三角形,旋转中心是什么,每次旋转的角度,需要旋转多少次才能完成这个图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
q7电玩游戏有什么技巧
[单选,A型题]下列哪种片剂可避免肝脏的首过作用()A、泡腾片B、分散片C、舌下片D、普通片E、溶液片 [单选,A2型题,A1/A2型题]2型糖尿病发病机制是().A.胰岛素拮抗激素分泌增多B.胰岛素B细胞遗传缺陷C.胰岛素抵抗和胰岛素分泌缺陷D.胰岛B细胞破坏,胰岛素绝对不足E.胰岛B细胞自身免疫反应性损伤 [单选,A1型题]隐形义齿戴牙后固位不良,可能原因如下,除外()A.患者基牙过短B.戴牙时调磨过多C.义齿变形D.基牙倒凹过大E.义齿卡环部分过薄 [单选]关于朊毒体蛋白PrPsc,下列说法不正确的是()A.由宿主染色体编码B.有2种异构体C.不同重叠的株型之间基因同源性很高D.能抵抗尿酸、苯酚等变性剂E.可以自行复制 [单选]下列()是氧化还原反应。A.Zn+2HCL=ZnCL2B.CaCO2煅烧CaO+CO2C.BaCL2+H2SO4↓+2HCL↑D.AgNO3+NaCL=AgCL+NaNO3 [单选,A2型题,A1/A2型题]CT扫描时,球管连续旋转曝光,检查床不停顿单向移动并采集数据的方式是()A.步进扫描B.螺旋扫描C.间隔扫描D.持续扫描E.高速扫描 [单选]关于资产负债表的格式,下列说法不正确的是()。A.资产负债表主要有账户式和报告式B.我国的资产负债表采用报告式C.账户式资产负债表分为左右两方,左方为资产,右方为负债和所有者权益D.负债和所有者权益按照求偿权的先后顺序排列 [单选]变更控制过程中,对于需求变更的确立,监理人员必须遵守的规则是()。①每一个项目变更必须用变更申请单提出,它包括对需要批准的变更的描述以及该项变更在计划、流程、预算、进度或可交付的成果上可能引起的变更②在准备审批变更申请单前,监理工程师必须与总监理工程师商 [单选]常见的癫痫持续状态系指()A.一侧肢体抽搐不止B.长期用药仍不时发作C.抽搐频繁发作,发作间期意识不清D.精神运动性发作持续数日E.连续小发作 [单选]在传染过程中,隐性感染增加时,其流行病学意义在于()A.轻型患者增加B.带菌状态增加C.潜伏性感染增加D.免疫人群扩大E.显性感染减少 [单选]施工图以外的零量项目或工作应列入()。A.暂列金额B.暂估价C.总承包服务费D.计日工 [单选]厨房人员在厨房内的占地面积不得小于()平方米。A、1.8B、1.5C、1.7D、1.4 [单选]某患者80岁,记忆力障碍,对答不切题,常外出后无法救回家,你建议该患者最好做什么筛查()A.汉语失语症检查法B.构音障碍检查法C.简易精神状态检查(MMSE.D.韦氏记忆量表(WMS)E.韦氏成人智力量表(WAIS) [问答题]在野外怎样避震? [单选]从胎儿娩出到胎盘娩出,不应超过().A.15分钟B.20分钟C.30分钟D.45分钟E.60分钟 [判断题]某些病原菌生长过程中能产生对动物体有害的毒素,称为类毒素。()A.正确B.错误 [名词解释]微观市场营销学 [单选]β+粒子与物质作用耗尽动能后,将与物质中的电子结合,正负电荷相互抵消,两个电子的质量转换为两个方向相反、能量各为0.511MeV的γ光子。这个过程被称为()A.&gamma;湮灭辐射B.韧致辐射C.弹性散射D.激发E.光电效应 [单选]炮眼深度超过1m时,封泥长度不得小于()。A.0.3mB.0.4mC.0.5m [填空题]文学的特殊对象是以______________为中心的具有审美意义的社会生活整体。 [单选,A1型题]佝偻病预防要点不应包括()A.多晒太阳B.提倡母乳喂养C.必要时给予药物预防D.及时添加辅食E.给予大量维生素D制剂 [单选,A4型题,A3/A4型题]该患者曾反复用过多种助消化药物,均效果一般。最可能的疾病诊断是()A.十二指肠球后溃疡B.胃高位溃疡C.功能性消化不良D.慢性胰腺炎E.慢性胃炎、十二指肠球炎 [单选]()是消费者为了某种目的选择餐厅作为见面和会谈的场所而外出就餐的动机。A.寻求便利动机B.寻求满足特殊需要的场合的动机C.会面机会动机D.俱乐部动机 [单选]()未经县级以上建设行政主管部门审查批准,不得使用。A.施工安全技术措施B.施工组织设计C.勘察文件D.施工图设计文件 [单选]工程建设国家标准是由()发布的。A.国务院工程建设行政主管部门B.国务院标准化行政主管部门C.国务院D.国务院标准化行政主管部门和国务院工程建设行政主管部门联合 [名词解释]联机分析处理 [多选]下列各项中,应计入营业外收入的有()。A.出售固定资产取得的净收益B.转让长期股权投资的净收益C.赔款收入D.盘盈存货取得的净收益 [单选]投资活动的复杂性,决定了投资项目类型的多样性。按照()分为新建项目、扩建项目、改建项目、迁建项目的投资项目类型。A.项目的性质B.投资来源C.经济特征D.项目的用途 [单选]驾驶员饮酒后行车会影响(),所以容易发生交通事故。A、消化系统B、中枢神经系统C、呼吸系统 [单选]最常用的盐析剂是哪种饱和度的硫酸铵()A.10%~20%B.10%~33%C.33%~50%D.70%~80%E.100% [填空题]由于盾构机的工作环境复杂,为了保障盾构机在工作时设备及人员的安全,盾构机的接地系统应做到万无一失。盾构机的接地系统包括()、()、()及等电位接地等。 [单选]以下哪一部份不属于我国社会主义职业道德“五爱”的范畴()A.受劳动B.爱科学C.爱党D.爱人民 [单选,A2型题,A1/A2型题]椎间孔由()A.椎体和椎弓围成B.椎弓根和椎弓板围成C.所有椎孔连接而成D.由所有横突孔连接而成E.相邻椎骨的上、下切迹围成 [多选]()是知觉的基本特征A.分散性B.理解性C.恒常性D.选择性 [名词解释]交换 [单选]下列关于职务作品的表述正确的有()A.著作权归作者享有的职务作品,自完成起两年内,未经单位同意,作者不得许可第三人使用该作品B.著作权归作者享有的职务作品,作品完成两年后,单位在其业务范围内继续使用的应取得作者或者其他著作权人的许可并向其支付报酬C.单位不可能 [单选]通过遥控器的以下组合来操作高清变焦摄像机的录制视频()A、shift键↑+滚转指令&rarr;B、shift键↑+俯仰指令↓↑C、shift键↑+滚转指令&larr;D、shift键↑+油门指令↓↑ [单选,A2型题,A1/A2型题]骨髓检查原始单核细胞35%,原始粒细胞24%,幼稚单核细胞15%,早幼粒细胞8%,诊断()A.急非淋白血病M5aB.急非淋白血病M5bC.急非淋白血病M4D.急非淋白血病M3E.以上都不正确 [单选,A2型题,A1/A2型题]女性,66岁,糖尿病病史10余年,长期口服降糖药治疗,血糖控制差。查体:身高158cm,体重76kg,给予人胰岛素(总量60U/d)治疗2周后,血糖仍为11.3~18.6mmol/L。目前首先考虑患者存在()。A.胰岛素抵抗B.胰岛素抗药性C.胰岛素过敏D.胰岛素过量E.黎明 [问答题,简答题]道碴、片
相关文档
最新文档