反比例函数提高训练(能力提高)4.30 P1--4 5.4P5.6

合集下载

反比例函数提高练习题

反比例函数提高练习题

反比例函数提高练习题一一、选择题1. 如图,点A 在双曲线6y x=上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为()A. 47B.5C. 27 222.函数xky -=1与x y 2=的图象没有交点,则k 的取值范围为( ) A .0<k B .1<k C .0>k D .1>k3.双曲线x 10y =与x6y =在第一象限内的图象依次是M 和N ,设点P 在图像M 上,PC 垂直于X 轴于点C 交图象N 于点A 。

PD 垂直于Y 轴于D 点,交图象N 于点B ,则四边形PAOB 的面积为( )A. 8B. 6C.4D. 2 4.若反比例函数y =xk,当x <0时,y 随x 的增大而减小,则一次函数y =k(x -k)的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限 5.若反比例函数的图象经过点,其中,则此反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限6.如图,一次函数与反比例函数的图像相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( ) A .x <-1 B .-1<x <0,或x >2 C .x >2 D .x <-1,或0<x <27.函数m x y +=与)0(≠=m xmy 在同一坐标系内的图象可以ky x=(3)m m ,0m ≠ 2 x B-1 AO -1 2y 第6题O xyBO x yC. OxyD.O x yA .8.在同一直角坐标系中,函数y=kx+k ,与y=xk-(k 0≠)的图像大致为( )9.若反比例函数ky x=的图象经过点(-1,2),则这个函数的图象一定经过点( ) A.(2,-1) B.(1,2) C.(-2,-1) D.(12,2) 10.若点A (-2,y 1)、B (-1,y 2)、C (1,y 3)在反比例函数xy 1-=的图像上,则( ) A. y 1>y 2 >y 3 B.y 3> y 2 >y 1 C.y 2 >y 1 >y 3 D. y 1 >y 3> y 2 11.反比例函数xy 3=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,则1y ,2y ,3y 的大小关系是( )A .321y y y <<B .312y y y <<C .213y y y <<D .123y y y << 12.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数ky x=的图象上.若点A 的坐标为(-2,-2),则k 的值为 ( ) A .-2 B .2 C .3 D .4 二、填空题1.一次函数1y x =-+与反比例函数2y x=-,x 与y 的对应值如下表: x3- 2- 1- 1 2 3 1y x =-+ 43 2 0 1- 2-2y x=-32 122-1--32 不等式1x -+>-x2的解为 .2.如图,有反比例函数1y x =、1y x=-的图象和一个以原点为圆心,2为半径的圆,则S =阴影.3.如图,△OPQ 是边长为2的等边三角形,若反比例函 数的图象过点P ,则它的解析式是 .第2题4.如图,直角顶点P 1、P 2、 P 3、……在函数4y x=(x >0)图象上,点A 1、A 2、 A 3、……在x 轴的正半轴上,则点P 2010的横坐标为 .5.某中学要在校园内划出一块面积是 100m 2的矩形土地做花圃,设这个矩形的相邻两边的长分别为xm 和ym ,那么y 关于x 的函数解析式是_________________. 6.点P 既在反比例函数3(0)y x x=->的图像上,又在一次函数2y x =--的图像上,则P 点的坐标是___________. 7.已知反比例函数y =xk 的图象过点P(a ,b),且a 、b 是方程x 2+6x +4=0的两个根,则函数式为 ;8.我们知道,根据二次函数的平移规律,可以由简单的函数通过平移后得到较复杂的函数,事实上,对于其他函数也是如此.如一次函数,反比例函数等。

新湘教版《反比例函数》提高训练

新湘教版《反比例函数》提高训练

《反比例函数》提高训练一、选择题(本大题共5小题,共25.0分)1.(5分)下列问题中,两个变量成反比例的是()A.商一定时(不为零),被除数与除数B.等边三角形的面积与它的边长C.长方形的长a不变时,长方形的周长C与它的宽bD.货物的总价A一定时,货物的单价a与货物的数量x2.(5分)下列函数中,y与x之间是反比例函数关系的是()A.xy=B.3x+2y=0C.y=D.y=3.(5分)若函数y=kx k﹣2是反比例函数,则k=()A.1B.﹣1C.2D.34.(5分)若函数y=(m+1)是反比例函数,则m的值为()A.m=1B.m=﹣1C.m=±1D.m≠﹣1 5.(5分)下列函数中,不是反比例函数的是()A.xy=2B.y=﹣(k≠0)C.y=D.x=5y﹣1二、填空题(本大题共5小题,共25.0分)6.(5分)已知函数y=(m+1)是反比例函数,则m的值为.7.(5分)若函数y=(m+2)x|m|﹣3是反比例函数,则m的值为.8.(5分)若函数y=(m﹣2)x|m|﹣3是反比例函数,则m=;使分式有意义的x的取值范围是.9.(5分)判断下面哪些式子表示y是x的反比例函数?①;②y=5﹣x;③;④;解:其中是反比例函数,而不是.10.(5分)已知函数y=(k+1)x|k|﹣3是反比例函数,且正比例函数y=kx的图象经过第一、三象限,则k的值为.三、解答题(本大题共5小题,共50.0分)11.(10分)函数y=(m﹣2)x是反比例函数,则m的值是多少?12.(10分)列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1 500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.13.(10分)如果函数y=m是一个经过二、四象限的反比例函数,则求m 的值和反比例函数的解析式.14.(10分)给出下列四个关于是否成反比例的命题,判断它们的真假.(1)面积一定的等腰三角形的底边长和底边上的高成反比例;(2)面积一定的菱形的两条对角线长成反比例;(3)面积一定的矩形的两条对角线长成反比例;(4)面积一定的直角三角形的两直角边长成比例.15.(10分)已知关于x、y的反比例函数的解析式为y=,确定a的值,求这个函数关系式.《反比例函数》提高训练参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)下列问题中,两个变量成反比例的是()A.商一定时(不为零),被除数与除数B.等边三角形的面积与它的边长C.长方形的长a不变时,长方形的周长C与它的宽bD.货物的总价A一定时,货物的单价a与货物的数量x【分析】形如y=(k为常数,k≠0)的函数称为反比例函数.看两个变量是否具有反比例关系,主要看它们的乘积是否为非0常数.【解答】解:A、商一定时(不为零),被除数与除数是正比例函数,故A错误;B、等边三角形的面积与它的边长是二次函数,故B错误;C、长方形的长a不变时,长方形的周长C与它的宽b是一次函数,故C错误;D、货物的总价A一定时,货物的单价a与货物的数量x是反比例函数,故D正确;故选:D.【点评】本题考查了反比例函数,正确区分正比例函数与反比例函数是解题关键.判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系.2.(5分)下列函数中,y与x之间是反比例函数关系的是()A.xy=B.3x+2y=0C.y=D.y=【分析】根据反比例函数的定义,解析式符合y=(k≠0)的形式为反比例函数.【解答】解:A、xy=属于反比例函数,故此选项正确;B、3x+2y=0是一次例函数,故此选项错误;C、y=(k≠0),不属于反比例函数,故此选项错误;D、y=,是y与x+1成反比例,故此选项错误.故选:A.【点评】本题考查了反比例函数的定义,注意在解析式的一般式y=(k≠0)中,特别注意不要忽略k≠0这个条件.3.(5分)若函数y=kx k﹣2是反比例函数,则k=()A.1B.﹣1C.2D.3【分析】根据反比例函数的定义列出关于k的方程,然后解方程即可.【解答】解:根据题意,得k﹣2=﹣1,且k≠0,解得,k=1.故选:A.【点评】本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y =kx﹣1(k≠0)的形式.4.(5分)若函数y=(m+1)是反比例函数,则m的值为()A.m=1B.m=﹣1C.m=±1D.m≠﹣1【分析】根据反比例函数的定义.即y=(k≠0),只需令m2﹣2=﹣1、m+1≠0即可.【解答】解:由题意得:m2﹣2=﹣1且m+1≠0;解得m=±1,又m≠﹣1;∴m=1.故选:A.【点评】本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y =kx﹣1(k≠0)的形式.5.(5分)下列函数中,不是反比例函数的是()A.xy=2B.y=﹣(k≠0)C.y=D.x=5y﹣1【分析】根据反比例函数的定义,反比例函数的一般式是y=(k≠0)判定即可.【解答】解:A、B、D选项都符合反比例函数的定义;C选项不是反比例函数.故选:C.【点评】本题考查了反比例函数的定义,重点是掌握反比例函数解析式的一般式y=(k≠0).二、填空题(本大题共5小题,共25.0分)6.(5分)已知函数y=(m+1)是反比例函数,则m的值为1.【分析】根据反比例函数的定义知m2﹣2=﹣1,且m+1≠0,据此可以求得m的值.【解答】解:∵y=(m+1)x m2﹣2是反比例函数,∴m2﹣2=﹣1,且m+1≠0,∴m=±1,且m≠﹣1,∴m=1;故答案是:1.【点评】本题考查了反比例函数的定义,重点是将一般式y=(k≠0)转化为y=kx﹣1(k≠0)的形式.7.(5分)若函数y=(m+2)x|m|﹣3是反比例函数,则m的值为2.【专题】11:计算题.【分析】由于函数y=(m+2)x|m|﹣3是反比例函数,根据反比例函数的定义得到m+2≠0且|m|﹣3=﹣1,然后去绝对值和解不等式即可得到m的值.【解答】解:∵函数y=(m+2)x|m|﹣3是反比例函数,∴m+2≠0且|m|﹣3=﹣1,解得m=±2,∴m=2.故答案为2.【点评】本题考查了反比例函数的定义:若两个变量x与y满足y=(k≠0)的关系式,则y与x称为反比例函数.8.(5分)若函数y=(m﹣2)x|m|﹣3是反比例函数,则m=﹣2;使分式有意义的x的取值范围是x≥﹣2且x≠0.【分析】由反比例函数的定义得到|m|﹣3=﹣1且m﹣2≠0,由此求得m的值.根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:依题意得:|m|﹣3=﹣1且m﹣2≠0,解得m=﹣2.根据题意得:x+2≥0且x≠0,解得:x≥﹣2且x≠0.故答案为:﹣2;x≥﹣2且x≠0.【点评】本题考查了反比例函数的定义,反比例函数的一般形式是(k≠0)或y=kx﹣1.同时考查了分式、二次根式有意义的条件:分式有意义,分母不为0;二次根式的被开方数是非负数.应注意在求得取值后应排除不在取值范围内的值.9.(5分)判断下面哪些式子表示y是x的反比例函数?①;②y=5﹣x;③;④;解:其中①③④是反比例函数,而②不是.【分析】x,y相乘为一个常数,或者形如(k≠0)的函数为反比例函数,不属于上述两个形式的函数不是反比例函数.【解答】解:①x,y相乘为一个常数,可以整理为(k≠0)的形式,是反比例函数;③④符合(k≠0)的形式,是反比例函数;②不符合反比例函数的一般形式;故答案为①③④;②.【点评】考查反比例函数的定义,用到的知识点为:x,y相乘为一个常数,或者形如(k≠0)的函数为反比例函数.10.(5分)已知函数y=(k+1)x|k|﹣3是反比例函数,且正比例函数y=kx的图象经过第一、三象限,则k的值为2.【分析】此题应根据反比例函数的定义求得k的值,再由正比例函数图象的性质确定出k的最终取值.【解答】解:∵y=(k+1)x|k|﹣3是反比例函数,且正比例函数y=kx的图象经过第一、三象限,∴解之得k=2.【点评】本题考查了反比例函数的定义及正比例函数的性质,涉及的知识面较广,需重点掌握.三、解答题(本大题共5小题,共50.0分)11.(10分)函数y=(m﹣2)x是反比例函数,则m的值是多少?【分析】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的定义去判断.【解答】解:∵y=(m﹣2)x是反比例函数,∴3﹣m2=﹣1,m﹣2≠0,解得:m=﹣2.故m的值为﹣2.【点评】此题主要考查了反比例函数的定义,正确把握定义是解题关键.反比例函数的形式为y=kx﹣1(k为常数,k≠0).12.(10分)列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1 500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.【分析】根据反比例函数的定义,可得答案.【解答】解:(1)由平均数,得x=,即y=是反比例函数;(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数;(3)由路程与时间的关系,得t=,即t=是反比例函数.【点评】本题考查了反比例函数,利用反比例函数的定义是解题关键.13.(10分)如果函数y=m是一个经过二、四象限的反比例函数,则求m 的值和反比例函数的解析式.【分析】根据反比例函数的性质可知,反比例函数过二、四象限则比例系数为负数,据此即可写出函数解析式.【解答】解:∵反比例函数y=m是图象经过二、四象限,∴m2﹣5=﹣1,m<0,解得m=﹣2,∴解析式为y=.【点评】此题考查了反比例函数的图象和性质,解题的关键是利用定义列出方程.14.(10分)给出下列四个关于是否成反比例的命题,判断它们的真假.(1)面积一定的等腰三角形的底边长和底边上的高成反比例;(2)面积一定的菱形的两条对角线长成反比例;(3)面积一定的矩形的两条对角线长成反比例;(4)面积一定的直角三角形的两直角边长成比例.【分析】根据反比例函数的定义及形式y=(k≠0)可判断各个命题的真假.【解答】解:(1)∵等腰三角形的面积一定,∴底边长和底边上的高的乘积为非零常数.∴命题(1)正确;(2)∵菱形的面积是它的对角线长的乘积的一半,∴当菱形的面积一定时,对角线长的乘积也一定.∴它们成反比例.故正确.(3)∵矩形的面积一定时,它的对角线长的乘积并不一定,∴两对角线长不成反比例,∴命题(3)为假命题;(4)∵直角三角形的面积为直角边乘积的一半,∴当它的面积一定时,其直角边长的乘积也一定.∴两直角边长成反比例,∴命题(4)正确.【点评】本题考查了反比例函数的定义,属于基础题,关键是掌握反比例函数解析式的一般形式(k≠0).15.(10分)已知关于x、y的反比例函数的解析式为y=,确定a的值,求这个函数关系式.【分析】根据(k≠0)是反比例函数,可得答案.【解答】解:由反比例函数的解析式为y=,得,解得a=3,a=﹣3(不符合题意要舍去).【点评】本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y =kx﹣1(k≠0)的形式.。

中考数学总复习《反比例函数》专项提升训练题(带答案)

中考数学总复习《反比例函数》专项提升训练题(带答案)

中考数学总复习《反比例函数》专项提升训练题(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,4A -是反比例函数()0ky k x=≠图象上一点,则常数k 的值为( ) A .4 B .14-C .4-D .142.函数6y x=的图象位于第( )象限 A .一、二 B .一、三 C .二、三 D .二、四3.已知反比例函数2y x =图象上有三点()14,A y ,()22,B y 和31,2C y ⎛⎫⎪⎝⎭,则1y 、2y 和3y 的大小关系为( ) A .y y y >>₁₂₃B .y y y >>₂₁₃C .y y y >>₃₂₁D .y y y >>₃₁₂4.已知二次函数2y x bx c =++的图象如图所示,则一次函数y bx c =+与反比例函数bcy x=的图象可能..是( )A .B .B .C .D .5.如图,点P ,Q 在反比例函数4y x=的图象上,点M 在x 轴上,点N 在y 轴上,下列说法正确的是( )A .图1、图2中阴影部分的面积分别为2,4B .图1、图2中阴影部分的面积分别为1,2C .图1、图2中阴影部分的面积之和为8D .图1、图2中阴影部分的面积之和为3 6.下列各点中,不在反比例函数6y x=图像上的点是( ) A .()1,6B .()6,1--C .()6,1D .()2,3-7.如图,OAB 是面积为4的等腰三角形,底边OA 在x 轴上,若反比例函数图象过点B ,则它的解析式为( )A .2y x=B .-2y x=C .4y x =D .4y x=-8.已知如图,一次函数14y x =+图象与反比例函数25y x=图象交于()1,A n ,()5,B m -两点,则12y y >时x 的取值范围是( )A .5x 0-<<或1x >B .5x <-或01x <<C .5x 0-<<或01x <<D .51x -<<二、填空题9.在平面直角坐标系中,将点()2,3A 向下平移5个单位长度得到点B ,若点B 恰好在反比例函数的图象上,则此反比例函数的表达式为 .10.已知点()()1221A yB y --,,,和()34C y ,都在反比例函数8y x=的图象上,则123y y y ,,的大小关系为 .(用“<”连接)11.如图,点A 是反比例函数2y x=-的图象上一点,过点A 向y 轴作垂线,垂足为点B ,点C 、D 在x 轴上,且BC AD ∥,则四边形ABCD 的面积为 .12.如图,直线6y x =-+与y 轴交于点A ,与反比例函数ky x=图象交于点C ,过点C 作CB x ⊥轴于点B ,3AO BO =,则k 的值为 .13.如图,已知点(3,3)A 和(3,1)B ,反比例函数(0)ky k x=≠图象的一支与线段AB 有交点,写出一个符合条件的k 的整数值: .三、解答题14.如图,在ABCD 中(1,0)A -,(2,0)B 和(0,2)D ,反比例函数ky x=在第一象限内的图象经过点C .(1)点C 的坐标为 . (2)求反比例函数的解析式.(3)点E 是x 轴上一点,若BCE 是直角三角形,请直接写出点E 的坐标.15.科学课上,同学用自制密度计测量液体的密度.密度计悬浮在不同的液体中时,浸在液体中的高度()cm h 是液体的密度()3g /cm ρ的反比例函数,如图是该反比例函数的图象,且0ρ>.(1)求h 关于ρ的函数表达式;(2)当密度计悬浮在另一种液体中时25cm h =,求该液体的密度ρ.16.通过试验研究发现:一节40分钟的课堂,初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.如图,学生注意力指标y 随时间x (分钟)变化的函数图象,当010x ≤<和1020x ≤<时,图象是线段;当2040x ≤≤时,图象是反比例函数的一部分.(1)求反比例函数解析式和点A 、D 的坐标;(2)陈老师在一节课上讲解一道数学综合题需要16分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于32?请说明理由.17.某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x 元与日销售量y 之间满足某种函数关系. x (元)3 4 5 6y (个) 20 15 12 10(1)根据表中的数据请你写出请y 与x 之间的函数关系式;(2)设经营此贺卡的销售利润为w 元,试求出w 与x 之间的函数关系式,若物价局规定此贺卡的销售价每个最高不能超过10元,请你求出当日销售单价x 定为多少元时,才能使日销售获得最大利润?18.如图,一次函数()10y kx b k =+≠的图象与x 轴,y 轴分别交于点A ,B ,与反比例函数()20my x x=>的图象交于点()1,2C 和()2,D n .(1)分别求出两个函数的解析式; (2)当12y y >时,直接写出x 的取值范围. (3)连接OC ,OD ,求COD △的面积;(4)点P 是反比例函数上一点,PQ x ∥轴交直线AB 于Q ,且3PQ =请直接写出点P 的坐标.答案第1页,共1页参考答案:1.C 2.B 3.C 4.B 5.A 6.D 7.D 8.A9.4y x =-10.213y y y << 11.2 12.16-13.4(答案不唯一) 14.(1)()3,2 (2)6y x=(3)(3,0)或(7,0) 15.(1)20h ρ=(2)0.8ρ=16.(1)反比例函数的解析式为800y x=,()0,20A 和()40,20D (2)陈老师能经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于32 17.(1)60y x=(2)1018.(1)一次函数的解析式为13y x =-+,反比例函数的解析式为22y x=; (2)12x <<; (3)32; (4)()37,37P +-或()37,37P -+.。

八年级反比例函数能力提升经典例题

八年级反比例函数能力提升经典例题

反比例函数提升练习1.如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()A.一直增大 B.一直减小C.先增大后减小 D.先减小后增大2.左下图是反比例函数y=k/x(k为常数,且k)的图像则一次函数y=kx-k的图像大致是()3.如图,A、B两点在反比例函数y=4/x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A. 3 B. 4 C. 5 D. 64.如图,若反比例函数y=k/x与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为4.如图,Rt△AOB的一条直角边OB在x轴上,双曲线y=k/x经过斜边OA的中点C,与另一直角边交于点D.若S△OCD=9,则S△OBD的值为第4题图第5题图5.如图,已知A(﹣4,1/2),B(﹣1,2)是一次函数y=kx+b与反比例函数y=m/x(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.6.如图,一次函数y=kx+b与反比例函数y=6/x(x>0)的图象交于A(m,6),B(3,n)两点1)求一次函数的解析式;(2)根据图象直接写出kx+b-6/x<0的x的取值范围;(3)求△AOB的面积第6题图第7题图7.如图,双曲线y=k/x(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3).(1)确定k的值;(2)若点D(3,m)在双曲线上,求直线AD的解析式;(3)计算△OAB的面积.8.平面直角坐标系xOy中,点A、B分别在函数y1=4/x(x>0)与y2=﹣4/x(x<0)的图象上,A、B的横坐标分别为a、b(1)若AB∥x轴,求△OAB的面积;(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值;(3)作边长为3的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于4的任意实数a,CD边与函数y1=4/x(x>0)的图象都有交点,请说明理由。

中考数学(反比例函数提高练习题)压轴题训练附详细答案

中考数学(反比例函数提高练习题)压轴题训练附详细答案

中考数学(反比例函数提高练习题)压轴题训练附详细答案一、反比例函数1.如图,反比例函数y= 的图象与一次函数y= x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.(1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积;(2)设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.【答案】(1)解:k=4,S△PAB=15.提示:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图1,把x=4代入y= x,得到点B的坐标为(4,1),把点B(4,1)代入y= ,得k=4.解方程组,得到点A的坐标为(﹣4,﹣1),则点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△PAB=2S△AOP.设直线AP的解析式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,求得直线AP的解析式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC= OC•AR+ OC•PS= ×3×4+ ×3×1= ,∴S△PAB=2S△AOP=15;(2)解:过点P作PH⊥x轴于H,如图2.B(4,1),则反比例函数解析式为y= ,设P(m,),直线PA的方程为y=ax+b,直线PB的方程为y=px+q,联立,解得直线PA的方程为y= x+ ﹣1,联立,解得直线PB的方程为y=﹣ x+ +1,∴M(m﹣4,0),N(m+4,0),∴H(m,0),∴MH=m﹣(m﹣4)=4,NH=m+4﹣m=4,∴MH=NH,∴PH垂直平分MN,∴PM=PN,∴△PMN是等腰三角形;(3)解:∠PAQ=∠PBQ.理由如下:过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),直线AQ的解析式为y=px+q,则有,解得:,∴直线AQ的解析式为y= x+ ﹣1.当y=0时, x+ ﹣1=0,解得:x=c﹣4,∴D(c﹣4,0).同理可得E(c+4,0),∴DT=c﹣(c﹣4)=4,ET=c+4﹣c=4,∴DT=ET,∴QT垂直平分DE,∴QD=QE,∴∠QDE=∠QED.∵∠MDA=∠QDE,∴∠MDA=∠QED.∵PM=PN,∴∠PMN=∠PNM.∵∠PAQ=∠PMN﹣∠MDA,∠PBQ=∠NBE=∠PNM﹣∠QED,∴∠PAQ=∠PBQ.【解析】【分析】(1)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP 与y轴交于点C,如图1,可根据条件先求出点B的坐标,然后把点B的坐标代入反比例函数的解析式,即可求出k,然后求出直线AB与反比例函数的交点A的坐标,从而得到OA=OB,由此可得S△PAB=2S△AOP,要求△PAB的面积,只需求△PAO的面积,只需用割补法就可解决问题;(2)过点P作PH⊥x轴于H,如图2.可用待定系数法求出直线PB的解析式,从而得到点N的坐标,同理可得到点M的坐标,进而得到MH=NH,根据垂直平分线的性质可得PM=PN,即△PMN是等腰三角形;(3)过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),运用待定系数法求出直线AQ的解析式,即可得到点D的坐标为(c﹣4,0),同理可得E(c+4,0),从而得到DT=ET,根据垂直平分线的性质可得QD=QE,则有∠QDE=∠QED.然后根据对顶角相等及三角形外角的性质,就可得到∠PAQ=∠PBQ.2.如图,反比例函数y1= 的图象与一次函数y2= x的图象交于点A、B,点B的横坐标是4,点P(1,m)在反比例函数y1= 的图象上.(1)求反比例函数的表达式;(2)观察图象回答:当x为何范围时,y1>y2;(3)求△PAB的面积.【答案】(1)解:把x=4代入y2= x,得到点B的坐标为(4,1),把点B(4,1)代入y1= ,得k=4.反比例函数的表达式为y1=(2)解:∵点A与点B关于原点对称,∴A的坐标为(﹣4,﹣1),观察图象得,当x<﹣4或0<x<4时,y1>y2(3)解:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图,∵点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△PAB=2S△AOP.y1= 中,当x=1时,y=4,∴P(1,4).设直线AP的函数关系式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,则,解得.故直线AP的函数关系式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC= OC•AR+ OC•PS= ×3×4+ ×3×1= ,∴S△PAB=2S△AOP=15.【解析】【分析】(1)把x=4代入y2= x,得到点B的坐标,再把点B的坐标代入y1=,求出k的值,即可得到反比例函数的表达式;(2)观察图象可知,反比例函数的图象在一次函数图象上方的部分对应的自变量的取值范围就是不等式y1>y2的解集;(3)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,由点A与点B关于原点对称,得出OA=OB,那么S△AOP=S△BOP,S△PAB=2S△AOP.求出P点坐标,利用待定系数法求出直线AP的函数关系式,得到点C的坐标,根据S△AOP=S△AOC+S△POC求出S△AOP= ,则S△PAB=2S△AOP=15.3.已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,我们称这个正方形为此函数图象的“伴侣正方形”.例如:在图1中,正方形ABCD是一次函数y=x+1图象的其中一个“伴侣正方形”.(1)如图1,若某函数是一次函数y=x+1,求它的图象的所有“伴侣正方形”的边长;(2)如图2,若某函数是反比例函数(k>0),它的图象的“伴侣正方形”为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数的解析式;(3)如图3,若某函数是二次函数y=ax2+c(a≠0),它的图象的“伴侣正方形”为ABCD,C,D中的一个点坐标为(3,4),请你直接写出该二次函数的解析式.【答案】(1)解:(I)当点A在x轴正半轴、点B在y轴负半轴上时:正方形ABCD的边长为.(II)当点A在x轴负半轴、点B在y轴正半轴上时:设正方形边长为a,易得3a= ,解得a= ,此时正方形的边长为.∴所求“伴侣正方形”的边长为或(2)解:如图,作DE⊥x轴,CF⊥y轴,垂足分别为点E、F,易证△ADE≌△BAO≌△CBF.∵点D的坐标为(2,m),m<2,∴DE=OA=BF=m,∴OB=AE=CF=2﹣m.∴OF=BF+OB=2,∴点C的坐标为(2﹣m,2).∴2m=2(2﹣m),解得m=1.∴反比例函数的解析式为y=(3)解:实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合a、当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点为(4,1),对应的函数解析式是y=﹣ x2+ ;b、当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在,c、当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在d、当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点C为(﹣1,3),对应的函数的解析式是y= x2+ ;e、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(7,﹣3)时,对应的函数解析式是y=﹣ x2+ ;f、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D 的坐标是(﹣4,7)时,对应的抛物线为y= x2+ ;故二次函数的解析式分别为:y= x2+ 或y=﹣ x2+ 或y=﹣ x2+ 或y= x2+【解析】【分析】(1)先正确地画出图形,再利用正方形的性质确定相关点的坐标从而计算正方形的边长.(2)因为ABCD为正方形,所以可作垂线得到等腰直角三角形,利用点D(2,m)的坐标表示出点C的坐标,可求出m的值,即可得到反比例函数的解析式.(3)由抛物线开口既可能向上,也可能向下.当抛物线开口向上时,正方形的另一个顶点也是在抛物线上,这个点既可能在点(3,4)的左边,也可能在点(3,4)的右边,过点(3,4)向x轴作垂线,利用全等三角形确定线段的长即可确定抛物线上另一个点的坐标;当抛物线开口向下时也是一样地分为两种情况来讨论,即可得到所求的结论.4.如图,已知A是双曲线y= (k>0)在第一象限内的一点,O为坐标原点,直线OA交双曲线于另一点C,当OA在第一象限的角平分线上时,将OA向上平移个单位后,与双曲线在第一象限交于点M,交y轴于点N,若 =2,(1)求直线MN的解析式;(2)求k的值.【答案】(1)解:∵OA在第一象限的角平分线上,∴直线OA的解析式为y=x,∴将OA向上平移个单位后,N(0,),可设直线MN的解析式为y=x+b,把N(0,)代入,可得b= ,∴直线MN的解析式为y=x+(2)解:如图所示,过A作AB⊥y轴于B,过M作MD⊥y轴于D,则∠MDN=∠ABO=90°,由平移可得,∠MND=∠AOB=45°,∴△MDN∽△ABO,∴ = =2,设A(a,a),则AB=a,∴MD= a=DN,∴DO= a+ ,∴M( a, a+ ),∵双曲线经过点A,M,∴k=a×a= a×( a+ ),解得a=1,∴k=1.【解析】【分析】(1)第一三象限角平分线为y=x,向上平移为y=x+b,可求出N点坐标,代入y=x+b,即可求出;(2)通过作垂线构造相似三角形,即△MDN∽△ABO,把A、M坐标代入解析式即可求出a,进而求出k.5.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣ 2,﹣ 2),(,),…,都是梦之点,显然梦之点有无数个.(1)若点P(2,b)是反比例函数 (n为常数,n≠0)的图象上的梦之点,求这个反比例函数解析式;(2)⊙O的半径是,①求出⊙O上的所有梦之点的坐标;②已知点M(m,3),点Q是(1)中反比例函数图象上异于点P的梦之点,过点Q的直线l与y轴交于点A,∠OAQ=45°.若在⊙O上存在一点N,使得直线MN∥l或MN⊥l,求出m的取值范围.【答案】(1)解:∵P(2,b)是梦之点,∴b=2∴P(2,2)将P(2,2)代入中得n=4∴反比例函数解析式是(2)解:①设⊙O上梦之点坐标是(,)∴∴=1或 =-1∴⊙O上所有梦之点坐标是(1,1)或(-1,-1)②由(1)知,异于点P的梦之点Q的坐标为(-2,-2)由已知MN∥l或MN⊥l∴直线MN为y=-x+b或y=x+b当MN为y=-x+b时,m=b-3由图可知,当直线MN平移至与⊙O相切时,且切点在第四象限时,b取得最小值,此时MN记为,其中为切点,为直线与y轴的交点∵△O 为等要直角三角形,∴O =∴O =2∴b的最小值是-2,∴m的最小值是-5当直线MN平移至与⊙O相切时,且切点在第二象限时,b取得最大值,此时MN记为,其中为切点,为直线与y轴的交点。

八年级下反比例函数提高练习试卷含答案

八年级下反比例函数提高练习试卷含答案

八年级下反比例函数提高练习试卷含答案反比例函数 提高练习卷班级_________姓名_________学号______成绩______________一、选择题(每题2分,共20分)1.下列函数中,图象经过点(1,-1)的反比例函数解析式是 ( )A .1y x =B .1y x =-C .2y x =D .2y x=- 2.若反比例函数ky x=的图象经过点(-1,2),则这个函数的图象一定经过点( )A .(-2,-1)B .(12-,2)C .(2,-1)D .(12,2)3.在反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( )A .k >3B . k >0C .k <3D .k <0 4.在同一直角坐标系中,函数2y x=-与y=2x 图象的交点个数为 ( ) A .3 B . 2 C .1 D .0 5.反比例函数ky x=的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足为点N ,如果S △MON =2,那么k 的值为 ( )A .2B .-2C .4D .-4 6.如图,点P 在反比例函数1y x=(x >0)的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P ′,则在第一象限内,经过点P ′的反比例函数图象的解析式是 ( )A .5y x =-(x >0) B .5y x =(x >0) C .6y x =-(x >0) D .6y x=(x >0) 7.在下图中,反比例函数21k y x+=的图象大致是( )8.若A(a 1,b 1)、B(a 2,b 2)是反比例函数y =图象上的两个点,且a 1<a 2,则b 1与b 2的大小关系是( ).A .b1<b 2 B .b 1=b 2 C .b 1>b 2 D .大小不确定9.如图是一次函数y kx b =+与反比例函数2y x=的图象, 则关于x 的方程2kx b x+=的解为( ) A .x 1=1,x 2=2 B .x 1=-2,x 2=-1 C .x 1=1,x 2=-2 D .x 1=2,x 2=-1 10.函数y x m =+与my x=(m ≠0)在同一直角坐标系内的图象可能是( )二、填空题(每题3分,共24分) 11.反比例函数1y x=-的图象在第 象限. 12.已知y 与x 成反比例,且当x=2时,y=-1则当12y =时,x 的值是_________.13.已知反比例函数2k y x-=,其图象在第一、三象限内,则k 的取值范围为________. 14.如图,正比例函数与反比例函数的图象相交于A 、B 两点,分别以A 、B 两点为圆心,画与y 轴相切的两个圆,若点A 的坐标为(1,2),则图中两个阴影面积的和是________.第14题 第15题15.如图,直线l 与双曲线交于A 、C 两点,将直线l 绕点O 顶时针旋转α度角(0°<α≤45°),与双曲线交于B 、D 两点.则四边形ABCD 的形状一定是_____________形. 16.如图,已知点A 、B 在双曲线xky =(x >0)上,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,AC 与BD 交于点P ,P 是AC 的中点,若△ABP 的面积为3,则k = .第17题 第18题17.如图,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B(203-,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使点A 恰好落在对角线OB 上的点E 处,若点E 在一比例函数的图象上,那么该函数的解析式是__________________.18.如图,两个反比例函数y = k 1x 和y = k 2x (其中k 1>k 2>0)在第一象限内的图象依次是C 1和C 2,设点P 在C 1上,PC ⊥x 轴于点C ,交C 2于点A ,PD ⊥y 轴于点D ,交C 2于点B ,则四边形P AOB 的面积为______________.三、解答题(第19,20题每题8分,第21~24题每题10分,共56分)第16题19.已知一次函数y ax b =+的图像与反比例函数4y x=的图像交于A (2,2),B (-1,m ),求一次函数的表达式.20.一司机驾驶汽车从甲地去乙地,以80 km /h 的平均速度用6 h 到达目的地. (1)当他按原路匀速返回时,求汽车速度v(km /h)与时间t (h)之间的函数关系式; (2)如果该司机匀速返回时,用了4.8 h ,求返回时的速度.21.直线1y k x b =+与双曲线2k y x=只有一个交点A(1,2),且与x 轴、y 轴分别交于B 、C 两点,AD 垂直平分OB ,垂足为D ,求直线、双曲线的解析式.22.已知图中的曲线是反比例函数5m y x-=(m 为常数)图象的一支. (1)这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么?(2)若该函数的图象与正比例函数y=2x 的图象在第一象限内的交点为A ,过点A 作x 轴的垂线,垂足为B ,当△OAB 的面积为4时,求点A 的坐标及反比例函数的解析式.23.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y (千克)与销售价格x (元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y (千克)与销售价格x (元/千克)之间都满足这一关系.(1) 写出这个反比例函数的解析式,并补全表格;(2) 在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3) 在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?24.如图,点A(m ,m+1)、B(m+3,m -1)都在反比例函数ky x=的图象上. (1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A 、B 、M 、N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.参考答案11、二、四 12、-4 13、k >2 14、π 15、平行四边 16、12 17、12y x=-18、k 1-k 2 19、31y x =-20、(1)480v t=(2)v=100km/h 21、24y x =-+ 2y x =22、(1)m >5 (2)8y x=23、(1)函数解析式为12000yx =.填表如下:(2) 2 104-(30+40+48+50+60+80+96+100)=1 600,即8天试销后,余下的海产品还有1 600千克.……1分当x=150时,12000150y==80.1 600÷80=20,所以余下的这些海产品预计再用20天可以全部售出.(3) 1 600-80×15=400,400÷2=200,即如果正好用2天售完,那么每天需要售出200千克.当y=200时,12000200x==60.所以新确定的价格最高不超过60元/千克才能完成销售任务.24、(1)m=3 k=12 (2) 直线MN的函数表达式223y x=-+或223y x=--。

中考数学总复习《反比例函数》专项提升训练(带答案)

中考数学总复习《反比例函数》专项提升训练(带答案)

中考数学总复习《反比例函数》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________一、解答题1.如图,一次函数2y x =+与反比例函数ay x=的图象相交于A ,B 两点,且点A 的坐标为()1,m ,点B 的坐标为(),1n -.(1)求,m n 的值和反比例函数的解析式;(2)点A 关于原点O 的对称点为A ',在x 轴上找一点P ,使PA PB '+最小,求出点P 的坐标.2.如图,直线y =kx +b 与双曲线y =mx相交于A (1,2),B 两点,与x 轴相交于点C (4,0).(1)分别求直线AC 和双曲线对应的函数表达式; (2)连接OA ,OB ,求△AOB 的面积;(3)直接写出当x >0时,关于x 的不等式kx +b >mx的解集.5.已知蓄电池的电压为定值,使用该蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图像如图所示.(1)请求出这个反比例函数的解析式; (2)蓄电池的电压是多少?(3)如果以此蓄电池为电源的用电器限制电流不能超过10A ,那么用电器的可变电阻应控制在什么范围?6.如图,在平面直角坐标系中,OAC 的边OC 在y 轴上,反比例函数()0k y x x=>的图象经过点A 和点()2,6B ,且点B 为AC 的中点.(1)求k 的值和点C 的坐标; (2)求OAC 的周长.(2)在第一象限内,当21>y y 时,请直接写出x 的取值范围9.如图,二次函数211y x mx =++的图像与y 轴相交于点A ,与反比例函数2(0)ky x x=>的图像相交于点B (3,1).(1)求这两个函数的表达式;(2)当1y 随x 的增大而增大且12<y y 时,直接写出x 的取值范围;(3)平行于x 轴的直线l 与函数1y 的图像相交于点C 、D (点C 在点D 的左边),与函数2y 的图像相交于点E .若△ACE 与△BDE 的面积相等,求点E 的坐标.10.受第24届北京冬季奥林匹克运动会的影响,小勇爱上了雪上运动.一天,小勇在滑雪场训练滑雪,第一次他从滑雪道A 端以平均()2x +米/秒的速度滑到B 端,用了24秒;第二次从滑雪道A 端以平均()3x +米/秒的速度滑到B 端,用了20秒. (1)求x 的值;(2)设小勇从滑雪道A 端滑到B 端的平均速度为v 米/秒,所用时间为t 秒,请用含t 的代数式表示v (不要求写出t 的取值范围).x,使ABP周长的值最小.若存在,求出最小值;若不存在,请13.如图,一次函数94y kx =+(k 为常数,0k ≠)的图象与反比例函数(my m x =为常数,0)m ≠的图象在第一象限交于点()1,A n ,与x 轴交于点()3,0B -.(1)求一次函数和反比例函数的解析式.(2)点P 在x 轴上,ABP 是以AB 为腰的等腰三角形,请直接写出点P 的坐标.14.如图,在平面直角坐标系中,四边形OABC 是边长为2的正方形.点A ,C 在坐标轴上.反比例函数()0ky x x=>的图象经过点B .(1)求反比例函数的表达式;(2)点D 在反比例函数图象上,且横坐标大于2,3OBDS =求直线BD 的函数表达式.x,使ABP是以点的坐标;若不存在,请说明理由.轴的对称点,OAC17.如图,一次函数y mx n =+的图象与y 轴交于点A ,与反比例函数()60y x x=>的图象交于点()3,B a .(1)求点B 的坐标; (2)用m 的代数式表示n ;(3)当OAB 的面积为9时,求一次函数y mx n =+的表达式.18.如图,点A 在反比例函数()0ky x x=>的图象上,AB y ⊥轴于点B 1tan 2AOB =∠ 2AB =.(1)求反比例函数的解析式;(2)点C 在这个反比例函数图象上,连接AC 并延长交x 轴于点D ,且45ADO ∠=︒,求点C 的坐标.3x求AOB的面积;(3)请根据图象直接写出不等式k ax b x<+的解集.21.如图,在平面直角坐标系中,一次函数y mx n =+与反比例函数k y x=的图象在第一象限内交于(),4A a 和()4,2B 两点,直线AB 与x 轴相交于点C ,连接OA .(1)求一次函数与反比例函数的表达式;(2)当0x >时,请结合函数图象,直接写出关于x 的不等式k mx n x+≥的解集; (3)过点B 作BD 平行于x 轴,交OA 于点D ,求梯形OCBD 的面积.22.如图,已知坐标轴上两点()()0,4,2,0A B ,连接AB ,过点B 作BC AB ⊥,交反比例函数k y x=在第一象限的图象于点(,1)C a .k,求ACD的面积.24.如图,正比例函数112y x =和反比例函数2(0)k y x x =>的图像交于点(),2A m .(1)求反比例函数的解析式;(2)将直线OA 向上平移3个单位后,与y 轴交于点B ,与2(0)k y x x=>的图像交于点C ,连接AB AC ,,求ABC 的面积.25.如图,一次函数y kx b =+的图象与x 轴正半轴相交于点C ,与反比例函数2y x =-的图象在第二象限相交于点(1,)A m -,过点A 作AD x ⊥轴,垂足为D ,AD=CD .(1)求一次函数的表达式;(2)已知点(,0)E a 满足CE CA =,求a 的值.参考答案1.(1)m=3,n=-3,反比例函数的解析式为:3y x=; (2)()2.50-,; 【分析】(1)将点()1,A m ,点(),1B n -分别代入2y x =+之中,即可求出,m n 的值;然后再∴点A '的坐标为()13--, 又∵点()3,1B -- 点B 和点B '关于x 轴对称∴点B '点的坐标为()31-, 设直线A B ''的解析式为:()0y kx b k =+≠将点()13A '--, ()31B '-,代入y kx b =+ 得:331k b k b -+=-⎧⎨-+=⎩解得:25k b =-⎧⎨=-⎩ ∴直线A'B'的解析式为:25y x =--对于25y x =-- 当0y =时 2.5x =-∴点P 的坐标为()2.50-,. 【点睛】此题主要考查了一次函数与反比例函数的图象 利用轴对称求最短路线 熟练掌握待定系数法求函数的解析式 理解利用轴对称求最短路线的思路和方法是解答此题的关键.2.(1)y =23-x +83 y =2x; (2)△AOB 的面积为83; (3)1<x <3【分析】(1)将点A ( 1 2 )代入y =m x 求得m =2 再利用待定系数法求得直线的表达式即可;(2)解方程组求得点B 的坐标 根据AOB AOC BOC S S S ∆∆∆=- 利用三角形面积公式即可求解;(3)观察图象 写出直线的图象在反比例函数图象的上方的自变量的取值范围即可.【详解】(1)解:将点A ( 1 2 )代入y =m x得m =2 ∴双曲线的表达式为: y =2x把A (1 2)和C (4 0)代入y =kx +b 得:y =240k b k b +=⎧⎨+=⎩ 解得:2383k b ⎧=-⎪⎪⎨⎪=⎪⎩∴1a =∴()1,4A把()1,4A 代入反比例函数k y x =得41k = ∴4k =∴反比例函数的解析式是4y x=; (2)由(1)知A (1,4) C (2,0) 反比例函数解析式为4y x =∵BC x ⊥ B 在反比例函数4y x=图象上 ∴B (2 2),令D (m ,n )以A B C D 为顶点的四边形是平行四边形当AB 为一条对角线时 则21222m ++= 04222n ++= 解得m =1 n =6∴D (1,6)当AC 为一条对角线时 则21222m ++= 24022n ++= 解得m =1 n =2∴D (1,2)当AD 为一条对角线时 则12222m ++= 42022n ++= 解得m =3 n =-2∴D (3,-2)(舍去)综上所述 点D 的坐标是()1,2或()1,6. 【点睛】本题考查反比例函数与一次函数相交问题以及平行四边形存在性问题 解题关键是由题中的条件分别求出A B C 的坐标 再分类讨论求出平行四边形的第四个顶点坐标.4.(1)4y x= (2)()25,2+或()25,2-【分析】(1)作CG x ⊥轴于点G 如图 证明四边形OECG 是矩形 得到90ECG ∠=︒ 推∴点C 的坐标为()2,2 代入k y x= 得224k =⨯=; ∴反比例函数的解析式为4y x =; (2)解:当D 在A 点右侧时:如图1中图所示∵1,3OA OB == 90AOB ∠=︒∴221310AB =+=∵BC AC = 90ACB ∠=︒∴252AC BC AB === ∵CE x ∥轴∴CFA FAD ∠=∠∵AF 平分CAD ∠∴CAF DAF ∠=∠∴CAF CFA ∠=∠∴5CA CF ==∵2OE EC ==∴25EF =+∴点F 的坐标是()25,2+.(25F ∴+ 2) 当D 在A 点左侧时 如图2:CE x 轴 DAC ∠的平分线交直线EC 于点FF ∴点纵坐标为2 CAF DAF CFA ∠=∠=∠5CF AC ∴==(2,2)C∴点横坐标为F(2F∴-综上所述:函数知识解实际问题是解决本题的关键.6.(1)k =12 C (0 9)(2)14213+【分析】(1)将点()2,6B 代入反比例函数解析式可求得k 根据点A 点C 的位置分别设出点A (a 12a) 点C (0 c ) 分别过点A 作AE ⊥y 轴于点E 过点B 作BD ⊥y 轴于点D 根据三角形的中位线定理得AE =2BD CE =2CD 继而求出点C 的坐标;(2)在(1)的条件下利用勾股定理求出AC OA 利用数轴上两点间的距离求出OC 即可求出OAC 的周长.【详解】(1)解:∵()0k y x x =>的图象经过点()2,6B∴k =2×6=12即反比例函数解析式为12y x =∵反比例函数12y x =经过点A 点C 在y 轴上 ∴可设A (a 12a) C (0 c ) 如图 过点A 作AE ⊥y 轴于点E 过点B 作BD ⊥y 轴于点D∴E (0 12a) D (0 6) AE ∥BD BD =2 AE =a ∵点B 为AC 的中点∴AE =2BD CE =2CD∴a =4∴E (0 3)∴OAC的周长为【点睛】本题考查反比例函数图象上点的坐标特征上两点间的距离等.(1)y=-≤<(2)4x∴设直线AB 的解析式为25;y x =--(2)由图象知 当40x -≤<时 kx+b ≤m x ∴不等式kx +b ≤m x的解集为40x -≤<. 【点睛】本题考查了一次函数与反比例函数的交点问题 解题的关键是学会利用待定系数法确定函数解析式 学会利用图象确定自变量取值范围.8.(1)3,3k m ==(2)1x >【分析】(1)把点A (1 3)分别代入1k y x =和2y mx = 求解即可; (2)直接根据图象作答即可.【详解】(1)点A (1 3)是反比例函数1k y x =(k ≠0)的图象与直线2y mx =(m ≠0)的一个交点∴把点A (1 3)分别代入1k y x=和2y mx = 得3,311k m ==⨯ 3,3k m ∴==;(2)在第一象限内 21>y y∴由图像得1x >.【点睛】本题考查了待定系数法求反比例函数和正比例函数解析式 图象法解不等式 熟练掌握知识点并能够运用数形结合的思想是解题的关键.9.(1)2131y x x =-+;()230y x x=> (2)332x ≤< (3)3,22E ⎛⎫ ⎪⎝⎭【分析】(1)用待定系数法求出解析式即可;(2)由图像直接得出结论即可;(3)根据A 点和B 点的坐标得出两三角形等高 再根据面积相等得出CE DE = 进而确定)解:二次函数)解:二次函数的解析式为当()3,1BACE∴∆的ACE∆与CE DE∴=即E点是二次函数的对称轴与反比例函数的交点当32x=时3,22E ⎛∴⎝【点睛】本题主要考查二次函数和反比例函数的综合题 熟练掌握二次函数和反比例函数的图像及性质 三角形的面积 待定系数法求解析式等知识是解题的关键.10.(1)3x =(2)120v t=【分析】(1)根据第一次他从滑雪道A 端以平均()2x +米/秒的速度滑到B 端 用了24秒;第二次从滑雪道A 端以平均()3x +米/秒的速度滑到B 端 用了20秒同 列出方程求解即可;(2)称算出路程 再列出用含t 的代数式表示v 即可.【详解】(1)根据题意 得()()242203x x +=+解这个方程 得3x =(2)()2432120⨯+=120v t = 【点睛】本题考查了一元一次方程的应用及反比例函数的应用 解决本题的关键是根据题中的等量关系列出方程.11.(1)6y x = 142y x =-+ (2)在x 轴上存在一点()5,0P 使ABP 周长的值最小,最小值是2542+.【分析】(1)过点A 作AE x ⊥轴于点E 过点B 作BD x ⊥轴于点D 证明()AAS ACE CBD ≌ 则3,CD AE BD EC m ==== 由3OE m =-得到点A 的坐标是()3,3m - 由A ()6B m ,恰好落在反比例函数k y x=第一象限的图象上得到()336m m -= 解得1m = 得到点A 的坐标是()2,3 点B 的坐标是()6,1 进一步用待定系数法即可得到答案;(2)延长AE 至点A ' 使得EA AE '= 连接A B '交x 轴于点P 连接AP 利用轴对称的性质得到AP A P '= ()2,3A '- 则AP PB A B '+= 由25AB =知AB 是定值 此时ABP 的周长为AP PB AB AB A B '++=+最小 利用待定系数法求出直线A B '的解析式 求出点P 的坐∵ABC 是等腰直角三角形90ACB ∠=ACE ∠+∠ACE ∠=∠∴(AAS ACE CBD ≌3,CD AE BD EC ===3OE OC EC =-=-∴点A 的坐标是(3m -A ()6B m ,恰好落在反比例函数2361p q p q+=⎧⎨+=⎩ 解得124p q ⎧=-⎪⎨⎪=⎩, ∴直线AB 所对应的一次函数的表达式为142y x =-+ (2)延长AE 至点A ' 使得EA AE '= 连接A B '交x 轴于点P 连接AP∴点A 与点A '关于x 轴对称∴AP A P '= ()2,3A '-∵AP PB A P PB A B ''+=+=∴AP PB +的最小值是A B '的长度∵()()22263125AB =-+-= 即AB 是定值∴此时ABP 的周长为AP PB AB AB A B '++=+最小设直线A B '的解析式是y nx t =+则2361n t n t +=-⎧⎨+=⎩ 解得15n t =⎧⎨=-⎩∴直线A B '的解析式是5y x =-当0y =时 05x =- 解得5x =即点P 的坐标是()5,0此时()()222526312542AP PB AB AB A B '++=+=+-+--=+综上可知 在x 轴上存在一点()5,0P 使ABP 周长的值最小 最小值是2542+.【点睛】此题考查了反比例函数和一次函数的图象和性质 用到了待定系数法求函数解析式 勾股定理求两点间距离 轴对称最短路径问题 全等三角形的判定和性质等知识 数形结k=>4.8∴随Vp∴要使气球不会爆炸∴气球的半径至少为(2)由于车辆超载930,4k -+= 解得:34k =故一次函数的解析式为3944y x =+ 把点()1,A n 代入3944y x =+ 得39344n =+= (1,3)A ∴把点(1,3)A 代入m y x= 得3m = 故反比例函数的解析式为3y x =;(2)解:()3,0B - (1,3)A ()223135AB ⎡⎤=+--=⎣⎦ 当5AB PB ==时 (8,0)P -或(2,0)当PA AB =时 点,P B 关于直线1x =对称(5,0)P ∴综上所述:点P 的坐标为(8,0)-或(2,0)或(5,0).【点睛】本题是反比例函数综合题 主要考查了函数图象上点的坐标的特征 等腰三角形的性质等知识 运用分类思想是解题的关键.14.(1)4y x= (2)132y x =-+【分析】(1)根据四边形OABC 是边长为2的正方形求出点B 的坐标 代入k y x =求出k ; (2)设4,D a a ⎛⎫ ⎪⎝⎭ 过点D 作DH x ⊥轴 根据OBD OBH BHD ODH S S S S =+-面积列方程 求出点D 坐标 再由待定系数法求出直线BD 的函数表达式.【详解】(1)解:四边形OABC 是边长为2的正方形∴4OABC S xy ==正方形∴4k =;即反比例函数的表达式为4y x=. (2)解:设4,D a a ⎛⎫ ⎪⎝⎭过点D 作DH x ⊥轴点4⎛⎫OBH S=12BHD S =1ODH S =3OBD OBH BHD ODH S S S S =+-=∴4(2)232a a a-+-= 解得:14a = 21a =- 经检验a =(2)将一次函数与反比例函数联立方程组 求得交点坐标即可得出结果;(3)过点A 作AP BC ⊥交y 轴于点M 勾股定理得出点M 的坐标 在求出直线AP 的表达式 与反比例函数联立方程组即可.【详解】(1)解:把()4,0A ()0,2B 代入y kx b =+中得:402k b b +=⎧⎨=⎩∴122k b ⎧=-⎪⎨⎪=⎩ ∴直线y kx b =+的解析式为122y x =-+ 在122y x =-+中 当6x =时 1212y x =-+=- ∴()61C -,把()61C -,代入m y x=中得:16m -= ∴6m =-∴反比例函数的表达式6y x=-; (2)解:联立1226y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩解得61x y =⎧⎨=-⎩或23x y =-⎧⎨=⎩ ∴一次函数与反比例函数的两个交点坐标分别为()()6123--,、, ∴由函数图象可知 当<2x -或06x <<时 一次函数图象在反比例函数图象上方 ∴当m kx b x+>时 <2x -或06x <<; (3)解:如图所示 设直线AP 交y 轴于点()0M m ,∵()4,0A ()0,2B∴222244BM m m m =-=-+ 2222420AB 2222416AM m m =+=+∵ABP 是以点A 为直角顶点的直角三角形∴90BAM ∠=︒∴222BM BA AM =+∴22442016m m m -+=++解得8m =-结合OAC 的面积是)8k m = 从28x + 联立再解方程组即可.0)≠的图象上∴,k C m m⎛⎫- ⎪⎝⎭ ∵OAC 的面积是8.∴()182k m m m+= 解得:8k ;∴反比例函数解析式为:8y x=; (2)∵点A 的横坐标为2时∴842A y == 即()2,4A 则()2,4C -∵直线2y x b =+过点C∴44b -+=∴8b =∴直线为28y x =+∴828y x y x ⎧=⎪⎨⎪=+⎩解得:222442x y ⎧=-+⎪⎨=+⎪⎩或222442x y ⎧=--⎪⎨=-⎪⎩ 经检验 符合题意; ∴()222,442P -++或()222,442P ---.【点睛】本题考查的是一次函数与反比例函数的综合应用 轴对称的性质 一元二次方程的解法 熟练的利用图形面积建立方程求解是解本题的关键.17.(1)()3,2B(2)32n m =-+(3)863y x =-【分析】(1)把点()3,B a 代入()60y x x=> 从而可得答案; (2)把点()3,2B 代入y mx n =+ 从而可得答案;(3)利用三角形的面积先求解6OA = 可得A 的坐标 可得6n =- 代入再解决m 的值即1(2)()4,2C【分析】(1)利用正切值 求出4OB = 进而得到()2,4A 即可求出反比例函数的解析式;(2)过点A 作AE x ⊥轴于点E 易证四边形ABOE 是矩形 得到2OE = 4AE = 再证明AED △是等腰直角三角形 得到4DE = 进而得到()6,0D 然后利用待定系数法求出直线AD 的解析式为6y x =-+ 联立反比例函数和一次函数 即可求出点C 的坐标.【详解】(1)解:AB y ⊥轴90ABO ∴∠=︒1tan 2AOB =∠12AB OB ∴=2AB =4OB ∴=()2,4A ∴点A 在反比例函数()0ky x x =>的图象上248k ∴=⨯=∴反比例函数的解析式为8y x =;(2)解:如图 过点A 作AE x ⊥轴于点E90ABO BOE AEO ∠=∠=∠=︒∴四边形ABOE 是矩形2OE AB ∴== 4OB AE ==45ADO ∠=︒AED ∴是等腰直角三角形4DE AE ∴==246OD OE DE ∴=+=+=()6,0D ∴设直线AD 的解析式为y kx b =+点() A2,4()∴C4,2连接AD 如图 则AD OD =设(),0D m则()22234m m =-+ 解得256m =∴256OD =.【点睛】本题考查了一次函数与反比例函数的交点 线段垂直平分线的尺规作图和性质以及两点间的距离等知识 熟练掌握上述知识是解题的关键.20.(1)12y x=-332y x =-+; (2)9;(3)<2x -或04x <<.【分析】(1)把点B 代入反比例函数()0k y k x =≠ 即可得到反比例函数的解析式;把点A 代入反比例函数 即可求得点A 的坐标;把点A B 的坐标代入一次函数一次函数()0y ax b a =+<即可求得a b 的值 从而得到一次函数的解析式;(2)AOB 的面积是AOC 和BOC 的面积之和 利用面积公式求解即可;(3)利用图象 找到反比例函数图象在一次函数图象下方所对应的x 的范围 直接得出结论.【详解】(1)∵点()4,3B -在反比例函数k y x =的图象上 ∴34k -= 解得:12k =-∴反比例函数的表达式为12y x=-.AOB AOC BOC S S S =+12A B OC x OC x ⋅⋅+⋅⋅ 132342⨯⨯+⨯⨯ x【点睛】此题是反比例函数与一次函数的交点问题 考查了待定系数法求函数的解析式 三角形面积 函数与不等式的关系 求出两个函数解析式是解本题的关键.21.(1)反比例函数为:8y x =一次函数为6y x =-+. (2)24x ≤≤(3)9【分析】(1)利用()4,2B 可得反比例函数为8y x=再求解()2,4A 再利用待定系数法求解一次函数的解析式即可;(2)由一次函数的图象在反比例函数图象的上方 结合0x >可得答案;(3)求解OA 的解析式为:2y x = 结合过点B 作BD 平行于x 轴 交OA 于点D ()4,2B 可得()1,2D 413BD =-= 由AB 为6y x =-+ 可得()6,0C 6OC = 再利用梯形的面积公式进行计算即可.【详解】(1)解:∵反比例函数k y x =过()4,2B ∴8k∴反比例函数为:8y x =把(),4A a 代入8y x =可得:824a == ∴()2,4A ∴2442m n m n +=⎧⎨+=⎩ 解得:16m n =-⎧⎨=⎩∴一次函数为6y x =-+.(2)由一次函数的图象在反比例函数图象的上方 结合0x >可得不等式k mx n x+≥的解集为:24x ≤≤. (3)∵()2,4A 同理可得OA 的解析式为:2y x =∵过点B 作BD 平行于x 轴 交OA 于点D ()4,2B∴2D y =∴1D x = 即()1,2D∴413BD =-=∽利用相似三角形的性证明ABO BCD可得反比例函数解析式设的表达式;联立反比例函数的解析式即可求得交点坐标.∴ABO BCD ∽∴OABDOB CD =∵()()0,4,2,0A B∴4OA = 2OB =∴421BD=∴2BD =∴224OD =+=∴点()4,1C将点C 代入ky x =中可得4k =∴4y x =设OC 的表达式为y mx =将点()4,1C 代入可得14m =解得:14m =∴OC 的表达式为14y x =;(2)直线l 的解析式为1342y x =+当两函数相交时 可得13442x x +=解得12x =,8x =-,代入反比例函数解析式得1122x y =⎧⎨=⎩ 22812x y =-⎧⎪⎨=-⎪⎩∴直线l 与反比例函数图象的交点坐标为()2,2或18,2⎛⎫-- ⎪⎝⎭【点睛】本题考查了相似三角形的判定与性质 待定系数法求函数的解析式反比例函数与一次函数的交点问题 一次函数的平移问题 解一元二次方程等知识.23.(1)23k =-;12m =;()9,0CACD CDF CAF S S S =-求出结果即可.代入6y kx =+和(0m y m x=>解得:11328x y ⎧=⎪⎨⎪=⎩ 22121x y =⎧⎨=⎩ ∴点382,D ⎛⎫ ⎪⎝⎭设直线AD 的解析式为11y k x b =+ 把382,D ⎛⎫ ⎪⎝⎭()34A ,代入得: 111138234k b k b ⎧+=⎪⎨⎪+=⎩ 解得:118312k b ⎧=-⎪⎨⎪=⎩ ∴直线AD 的解析式为8123y x =-+ 把0y =代入8123y x =-+得80123x =-+ 解得:92x = ∴点F 的坐标为902,⎛⎫ ⎪⎝⎭∴99922CF =-= ∴ACD CDF CAF S S S =-1919842222=⨯⨯-⨯⨯ 9=.【点睛】本题主要考查了一次函数和反比例函数的综合应用 求一次函数解析式 反比例函数解析式 解题的关键是数形结合 熟练掌握待定系数法 能求出一次函数和反比例函数的交点坐标.24.(1)28y x=(2)3【分析】(1)待定系数法求函数解析式;(2)根据平移的性质求得平移后函数解析式 确定B 点坐标 然后待定系数法求直线AB 的解析式 从而利用三角形面积公式分析计算.k8∴反比例函数的解析式为)解:将直线Array15∴53422CN =-= ∴134322ABC S =⨯⨯=△. 【点睛】本题考查一次函数和反比例函数的交点问题 掌握待定系数法求函数解析式 运用数形结合思想解题是关键.25.(1)1y x =-+(2)122-或122+【分析】(1)将点A 坐标代入反比例函数解析式求出m 得(1,2)A - 由AD x ⊥轴可得2,1AD OD == 进一步求出点(1,0)C 将A C 点坐标代入一次函数解析式 用待定系数法即可求出一次函数的解析式;(2)由勾股定理求出AC 的长 再根据CE CA =且E 在x 轴上 分类讨论得a 的值.【详解】(1)解:(1)∵点(1,)A m -在反比例函数2y x=-的图象上 ∴221m =-=- ∴(1,2)A -∵AD x ⊥轴∴2,1AD OD ==∴2CD AD ==∴211OC CD OD =-=-=∴(1,0)C∵点(1,2),(1,0)A C -在一次函数y kx b =+的图象上∴20k b k b -+=⎧⎨+=⎩解得11k b =-⎧⎨=⎩ ∴一次函数的表达式为1y x =-+.(2)在Rt ADC 中,由勾股定理得 22222222AC AD CD =+=+=∴22AC CE ==当点E 在点C 的左侧时 122a =-。

最新《反比例函数》解题能力提升训练试题含答案

最新《反比例函数》解题能力提升训练试题含答案

《反比例函数》解题能力提升训练试题一.选择题1.反比例函数y=﹣中常数k 为( )A .﹣3B .2C .﹣D .﹣2.函数y=﹣图象上有两点A (x 1,y 1)和B (x 2,y 2),若y 1<y 2<0,则下列关于x 1、x 2的大小关系正确的是( )A .x 1>x 2B .x 1=x 2C .x 1<x 2D .无法确定3.若反比例函数y=图象经过点(5,﹣1),该函数图象在( )A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限4.在同一坐标系中函数y=kx 和y=的大致图象必是( )A .B .C .D .5.如图,平行四边形ABCD 中,点A 在反比例函数y=(k ≠0)的图象上,点D 在y 轴上,点B 、点C 在x 轴上.若平行四边形ABCD 的面积为10,则k 的值是( )A.﹣10 B.﹣5 C.5 D.10 6.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,=3.则k的值为()若S△AOCA.2 B.1.5 C.4 D.67.如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,且与直角边AB相交于点C.若点B的坐标为(4,6),则△AOC的面积为()A.3 B.6 C.9 D.129.已知直线y=x与函数y=(k≠0)图象的一个交点的横坐标为4,则另一个交点的纵坐标是()A.2 B.C.﹣D.﹣210.如图,点A在反比例函数y=(k≠0)的图象上,且点A是线段OB的中点,点D为x轴上一点,连接BD交反比例函数图象于点C,连接AC,若BC:CD=2:1,S△=.则k的值为()ADCA.B.16 C.D.10 二.填空题11.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,=3,则S 连接OA,BC,已知点C(2,0),BD=2,S△BCD= .△AOC12.若正比例函数y=﹣x的图象与反比例函数y=(k≠)的图象有公共点,则k的取值范围是13.如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD 的面积为6,则k= .14.如图,△ABC是等边三角形,顶点C在y轴的负半轴上,点A(1,),点B在第一象限,经过点A的反比例函数y=(x>0)的图象恰好经过顶点B,则△ABC的边长为.15.如图,在△AOB中,∠AOB=90°,点A的坐标为(4,2),BO=4,反比例函数y=的图象经过点B,则k的值为.16.如图:M为反比例函数y=图象上一点,MA⊥y轴于A,S=4时,k= .△MAO17.如图,已知反比例函数y=(x>0)的图象经过Rt△OAB 斜边OB的中点C,且与直角边AB交于点D,连接OD,若点B的坐标为(2,3),则△OAD的面积为.三.解答题18.如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n 为常数,且n≠0)的图象在第二象限交于点C.CD⊥x 轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.19.如图,已知A(﹣4,a),B(﹣1,2)是一次函数y1=kx+b与反比例函数y2=(m<0)图象的两个交点,AC⊥x轴于C.(1)求出k,b及m的值.(2)根据图象直接回答:在第二象限内,当y1>y2时,x的取值范围是.(3)若P是线段AB上的一点,连接PC,若△PCA的面积等于,求点P坐标.20.如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=(k≠0)的图象经过点B .(1)求反比例函数的解析式;(2)若点E 恰好落在反比例函数y=上,求平行四边形OBDC 的面积.21.如图,直线y 1=﹣x+4,y 2=x+b 都与双曲线y=交于点A (1,m ),这两条直线分别与x 轴交于B ,C 两点.(1)求y 与x 之间的函数关系式;(2)直接写出当x >0时,不等式x+b >的解集;(3)若点P 在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.22.已知一个长方体的体积是100cm3,它的长是ycm,宽是10cm,高是xcm.(1)写出y与x之间的函数关系式;(2)当x=2cm时,求y的值.23.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B (0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P 的坐标.参考答案一.选择题(共10小题)1.解:反比例函数y=﹣中常数k 为﹣, 故选:D .2.解:∵函数y=﹣中,k=﹣2,∴在每个象限内,y 随着x 的增大而增大, 又∵A (x 1,y 1)和B (x 2,y 2)中y 1<y 2<0, ∴点A 和点B 在第四象限,∴x 1<x 2,故选:C .3.解:∵反比例函数y=的图象经过点(5,﹣1), ∴k=5×(﹣1)=﹣5<0,∴该函数图象在第二、四象限.故选:D .4.解:在同一坐标系中函数y=kx 和y=的大致图象必是,故选:C .5.解:作AE ⊥BC 于E ,如图,∵四边形ABCD 为平行四边形,∴AD ∥x 轴,∴四边形ADOE 为矩形,∴S 平行四边形ABCD =S 矩形ADOE ,而S 矩形ADOE =|﹣k|,∴|﹣k|=10,∵k <0,∴k=﹣10.故选:A .6.解:如图,分别过点A 、B 作AF ⊥y 轴于点F ,AD ⊥x 轴于点D ,BG ⊥y 轴于点G ,BE ⊥x 轴于点E ,∵k >0,点A 是反比例函数图象上的点,∴S △AOD =S △AOF =|k|,∵A 、B 两点的横坐标分别是a 、3a ,∴AD=3BE ,∴点B 是AC 的三等分点,∴DE=2a ,CE=a ,∴S △AOC =S 梯形ACOF ﹣S △AOF =(OE+CE+AF )×OF ﹣|k|=×5a ×﹣|k|=3,解得k=1.5.故选:B .7.解:作DH ⊥OA 于H .∵B (4,6),OD=DB ,∴D (2,3),∴S △ODH =×2×3=3,∵S △AOC =S △ODH =,∴S △AOC =3,故选:A .8.解:A 、由反比例函数图象得函数y=(k 为常数,k ≠0)中k >0,根据一次函数图象可得﹣k >0,则k <0,则选项错误;B 、由反比例函数图象得函数y=(k 为常数,k ≠0)中k >0, 根据一次函数图象可得﹣k >0,则k <0,则选项错误;C 、由反比例函数图象得函数y=(k 为常数,k ≠0)中k <0,根据一次函数图象可得﹣k <0,则k >0,则选项错误;D 、由反比例函数图象得函数y=(k 为常数,k ≠0)中k >0,根据一次函数图象可得﹣k <0,则k >0,故选项正确. 故选:D .9.解:把x=4代入y=x ,可得y=2,即一个交点的坐标为(4,2),∵直线y=x 与函数y=(k ≠0)图象的两个交点关于原点对称,∴另一个交点为(﹣4,﹣2),∴另一个交点的纵坐标是﹣2,故选:D .10.解:作AE ⊥OD 于E ,CF ⊥OD 于F .∵BC :CD=2:1,S △ADC =,∴S △ACB =,∵OA=AB ,∴B (2m ,2n ),S △AOC =S △ACB =,∵A 、C 在y=上,BC=2CD ,∴C (m , n ),∵S △AOC =S △AOE +S 梯形AEFC ﹣S △OCF =S 梯形AEFC ,∴•(n+n )×m=,∴mn=16,故选:B .二.填空题(共7小题)11.解:∵BD ⊥CD ,BD=2,∴S △BCD =BD •CD=3,即CD=3,∵C (2,0),即OC=2,∴OD=OC+CD=2+3=5,∴B (5,2),代入反比例解析式得:k=10,即y=,则S △AOC =5,故答案为:512.解:∵正比例函数y=﹣x 的图象与反比例函数y=(k≠)的图象有公共点,∴﹣x=, ∴x 2+4k ﹣2=0有解,∴△=0﹣16k+8≥0,解得k ≤且k ≠∴k <故答案为:k <13.解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO =S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=﹣3故答案为:﹣314.解:如图延长AB到D,使得AB=BD,连接CD,作AH ⊥y轴于H,DE⊥y轴于E.设C(0,c).∵△ABC是等边三角形,∴AB=AC=BC,∵AB=BD,∴BA=BC=BD,∴△ACD是直角三角形,∵∠CAD=60°,∴DC=AC,∵∠ACD=∠AHC=∠DEC=90°,∴∠ACH+∠DCE=90°,∵∠ECD+∠CDE=90°,∴∠ACH=∠CDE,∴△ACH∽△CDE,∴===,∵A(1,),∴AH=1,CH=﹣c,∴EC=,DE=﹣c,∴D(﹣c,c﹣),∵BA=BD,∴B(,),∵A、B在y=上,∴=×,整理得:4c2﹣16c﹣11=0,解得c=﹣或(舍弃),∴C(0,﹣),∴AC===2,15.解:过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为C、D,则∠OCA=∠BDO=90°,∴∠DBO+∠BOD=90°,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠DBO=∠AOC,∴△DBO∽△COA,∴==,∵点A的坐标为(4,2),∴AC=2,OC=4,∴AO==2,∴==即BD=8,DO=4,∴B(﹣4,8),∵反比例函数y=的图象经过点B,∴k的值为﹣4×8=﹣32.16.解:∵MA⊥y轴,∴S=|k|=4,△AOM∵k<0,∴k=﹣8.故答案为﹣8.17.解:∵点B的坐标为(2,3),点C为OB的中点,∴C点坐标为(1,1.5),∴k=1×1.5=1.5,即反比例函数解析式为y=,∴S=×1.5=.△OAD故答案为:.三.解答题(共6小题)18.解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C 坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A (6,0),B (0,12)代入y=kx+b 得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x 1=10,x 2=﹣4当x=10时,y=﹣8∴点E 坐标为(10,﹣8)∴S △CDE =S △CDA +S △EDA =(3)不等式kx+b ≤,从函数图象上看,表示一次函数图象不高于反比例函数图象∴由图象得,x ≥10,或﹣4≤x <019.解:(1)把B (﹣1,2)代入y=得m=﹣1×2=﹣2,把A (﹣4,a )代入y=﹣得a=﹣=,把A (﹣4,),B (﹣1,2)代入y=kx+b ,得,解得:,∴k=,b=,m=﹣2;(2)结合图象可得:在第二象限内,当y 1>y 2时,x 的取值范围是﹣4<x <﹣1,故答案为﹣4<x <﹣1;(3)设点P 的横坐标为x P ,∵AC ⊥x 轴,点A (﹣4,),∴AC=.∵△PCA 的面积等于,∴××[x P ﹣(﹣4)]=,解得x P =﹣2,∵P 是线段AB 上的一点,∴y P =×(﹣2)+=,∴点P 的坐标为(﹣2,).20.解:(1)把B 坐标代入反比例解析式得:k=12,则反比例函数解析式为y=;(2)∵B(3,4),C(m,0),∴边BC的中点E坐标为(,2),将点E的坐标代入反比例函数得2=,解得:m=9,则平行四边形OBCD的面积=9×4=36.=﹣x+4,可得m=﹣1+4=3,21.解:(1)把A(1,m)代入y1∴A(1,3),把A(1,3)代入双曲线y=,可得k=1×3=3,∴y与x之间的函数关系式为:y=;(2)∵A(1,3),∴当x>0时,不等式x+b>的解集为:x>1;=﹣x+4,令y=0,则x=4,(3)y1∴点B的坐标为(4,0),=x+b,可得3=+b,把A(1,3)代入y2∴b=,=x+,∴y2令y=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=BC=,或BP=BC=,∴OP=3﹣=,或OP=4﹣=,∴P (﹣,0)或(,0).22.解:(1)由题意得,10xy=100,∴y=(x >0);(2)当x=2cm 时,y==5(cm ).23.解:(1)∵反比例函数y=(m ≠0)的图象过点A (3,1),∴3=∴m=3.∴反比例函数的表达式为y=.∵一次函数y=kx+b 的图象过点A (3,1)和B (0,﹣2).∴,解得:,∴一次函数的表达式为y=x ﹣2;(2)令y=0,∴x ﹣2=0,x=2,∴一次函数y=x ﹣2的图象与x 轴的交点C 的坐标为(2,0). ∵S △ABP =3,PC ×1+PC ×2=3.∴PC=2,∴点P的坐标为(0,0)、(4,0).。

反比例函数提高练习

反比例函数提高练习

反比例函数提高练习:
1、如图:P 是反比例函数x k y =图象上的一点,由P 分别向x 轴和y 轴引垂线,阴影部分面积为3,求函数的表达式。

2、如图:A ,B 是函数x
y 1=的图象上关于原点O 对称的任意两点。

AC 平行于y 轴,BC 平行于x 轴,求△ABC 的面积。

3、某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x (元)与日销售量y 日销售单价x (元)
3 4 5 6 日销售量y(个) 20 15 12 10
(1)猜测并确定y 与x 之间的函数关系式;
(2)设经营此贺卡的销售利润为W元,求出W与x 之间的函数关系式.若物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价x 定为多少时,才能获得最大日销售利润?
4、如图正比例函数y=k 1x x k y 2=交于点A ,从A 向所构成的正方形的面积为②求出正、③求△ODC 的面积。

反比例函数提高训练题(难)

反比例函数提高训练题(难)

反比例函数复习题一、选择题:1、如图,是我们学过的反比例函数图象,它的函数解析式可能是( ) A 、2y x = B 、4y x =C 、3y x =-D 、12y x = 2、若A (1x ,1y ),B (2x ,2y ),C (3x ,3y )是反比例函数3y x=图象上的点,且1230x x x <<<,则1y 、2y 、3y 的大小关系正确的是( ) A 、312y y y >> B 、123y y y >> C 、213y y y >> D 、321y y y >> 3、函数2y x=的图象是( )4、反比例函数3k y x-=的图象,当0x >时,y 随x 的增大而增大,则k 的取值范围是( ) A 、3k < B 、3k ≤ C 、3k > D 、3k ≥5、如果点A ()11,x y 和点B ()22,x y 是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是( )xxABCDxxxxABCD1A 2A 3B2B1B3C2C1C Oxy3A图76、若点A ()12,y -、B ()21,y -、C ()31,y 在反比例函数1y x=-的图象上,则( ) A 、123y y y >> B 、321y y y >> C 、213y y y >> D 、132y y y >> 二、填空题7、已知,点A 在双曲线ky x=上,AB ⊥x 轴于B ,且∆AOB 的面积为2,则k =8、已知点P (a ,b )在反比例函数2y x =的图象上,若点P 关于y 轴对称的点在反比例函数ky x=的图象上,则k 的值为 。

9、在反比例函数1my x-=的图象的每一条曲线上,y 都随x 的增大而减小,则m 的取值范围是 。

反比例函数提高题及答案解析

反比例函数提高题及答案解析

反比例函数提高题1、若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是()2、反比例函数的图象如图所示,点M是该函数图象上一点,MN垂直于x轴,垂足是点N ,如果=2,则k的值为()A.2 B.-2 C.4 D.-43、如图,A、B 是反比例函数上的两个点,轴于点C ,轴于点D,连结AD、BC,则△ADB与△ACB的面积大小关系是()A. B.C. D.不能确定4、如图,正方形OABC的面积是4,点O为坐标原点,点B 在函数(k<0,x<0)的图象上,点P(m,n)是函数(k<0,x<0)的图象上异于B的任意一点,过点P分别作x轴,y轴的垂线,垂足分别为E,F。

(1) 设矩形OEPF的面积为S1,判断S1与点P的位置是否有关(不必说理由)(2) 从矩形OEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为S2,写出S2与m的函数关系,并标明m的取值范围。

5、如图,已知直线上一点B,由点B分别向x轴、y轴作垂线,垂足为A、C,若A点的坐标为(0,5).(1)若点B也在一反比例函数的图象上,求出此反比例函数的表达式。

(2)若将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,求点E的坐标.6、(1)探究新知:如图,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由。

(2)结论应用:①如下左图,点M、N 在反比例函数的图像上,过点M作ME ⊥轴,过点N作NF⊥轴,垂足分别为E,F。

试证明:MN∥EF。

②若①中的其他条件不变,只改变点M,N的位置如上右图所示,请判断MN与EF是否平行。

7、已知双曲线与直线相交于A、B两点.第一象限上的点M(m,n)(在A 点左侧)是双曲线上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x 轴交双曲线于点E,交BD 于点C.(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.8、直线y=ax(a>0)与双曲线y =交于A(x1,y1)、B(x2,y2)两点,则4x1y2-3x2y1=______.9、如图,已知一次函数的图象与反比例函数的图象在第一象限相交于点,与轴相交于点轴于点,的面积为1,则的长为(保留根号).10、已知点A 、B在双曲线(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P是AC的中点,若△ABP的面积为3,则k=.11、如图所示,点、、在轴上,且,分别过点、、作轴的平行线,与反比例函数的图象分别交于点、、,分别过点作轴的平行线,分别与轴交于点,连接,那么图中阴影部分的面积之和为___________.12、如图,点A(m,m+1),B(m+3,m-1)都在反比例函数的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.(3)选做题:在平面直角坐标系中,点P的坐标为(5,0),点Q的坐标为(0,3),把线段PQ向右平移4个单位,然后再向上平移2个单位,得到线段P1Q1,则点P1的坐标为,点Q1的坐标为.13、已知点A(2,6)、B(3,4)在某个反比例函数的图象上.(1)求此反比例函数的解析式;(2)若直线与线段AB相交,求m的取值范围.14、如图,一次函数y=ax+b的图像与反比例函数的图像交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图像写出使反比例函数的值大于一次函数的值的x的取值范围.15、第一象限内的点A在一反比例函数的图象上,过A 作轴,垂足为B,连AO ,已知的面积为4。

(整理)反比例函数提高训练

(整理)反比例函数提高训练

一、选择题:1. 已知反比例函数xky =的图象经过点)2,1(,则函数kx y -=可确定为( ) A. x y 2-=B. x y 21-=C. x y 21=D. x y 2= 2. 反比例函数的图象经过点)2,3(,那么下列各点在此函数图象上的是( ) A. )23,2(-B. )32,9(C. )32,3(-D. )23,6( 3. 如右图,某个反比例函数的图象经过点P ,则它的解析式为( )A. )0(1>=x x yB. )0(1>-=x xyC. )0(1<=x xyD. )0(1<-=x xy4. 已知反比例函数xy 1-=的图象上有两点),(11y x A 、),(22y x B 21x x <,那么下列结论正确的是( )A. 21y y <B. 21y y >C. 21y y =D.1y 与2y 之间的大小关系不能确定5、已知反比例函数xky =的图象如下图,则函数2-=kx y 的图象是下图中的( )6、已知关于x 的函数)1(-=x k y 和xky -=(k ≠0),它们在同一坐标系内的图象大致是( )7、如图,点A 是反比例函数`4xy=图象上一点,AB ⊥y 轴于点B ,则△AOB 的面积是( ) A. 1B. 2C. 3D. 48.某闭合电路中,电源的电压为定值,电流I (A )与电阻R (Ω)成反比例. 右图表示的是该电路中电流I 与电阻R 之间的图象,则用电阻R 表示电流I 的函数解析式为( )A. RI 2=B. RI 3=C. R I 6=D. RI 6-=二、填空题: 9.点)6,1(在双曲线xky =上,则k =______________. 10.近视眼镜的度数y (度)与镜片焦距x (米)成反比例. 已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式是_____________.11.已知反比例函数xy 6-=的图象经过点),2(a P ,则a =__________.反比例函数提高训练1、直线y=mx 与双曲线y=xk交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ∆=2,则k 的值是( )A .2B 、m-2C 、mD 、42、如图,双曲线)0(>k xky =经过矩形QABC的边BC 的中点E ,交AB 于点D 。

反比例函数提高训练题(难)

反比例函数提高训练题(难)

反比例函数提高训练题(难)一、选择题:1、反比例函数的解析式为y=k/x,因此选项D正确。

2、根据反比例函数的性质可知,x越大,y越小,因此选项B正确。

3、根据反比例函数的性质可知,y=k/x,当x越大,y越小,因此选项D正确。

4、反比例函数y=k/x的图象是一个双曲线,开口朝右上方,因此选项C正确。

5、根据题目条件可知,XXX(x1y2-y1x2),因此选项B正确。

6、根据反比例函数的性质可知,y=k/x,当x越大,y越小,因此选项A正确。

二、填空题:1、反比例函数y=k/x的图象是一个双曲线,开口朝右上方,因此k>0.2、根据双曲线的性质可知,y=k/x的图象与x轴、y轴有渐近线,因此k≠0.3、根据反比例函数的性质可知,y=k/x,当x越大,y越小,因此m>0.4、根据双曲线的性质可知,y=k/x的图象与x轴、y轴有渐近线,因此k≠0.5、根据双曲线的性质可知,y=k/x的图象与x轴、y轴有渐近线,因此k≠0.6、根据反比例函数的性质可知,y=k/x,当x越大,y越小,因此m>0.7、根据双曲线的性质可知,y=k/x的图象与x轴、y轴有渐近线,因此k≠0.8、根据题目条件可知,点P关于y轴对称的点为(-a。

m/(a-1)),因此k=m/(a-1)。

9、根据反比例函数的性质可知,y=k/x,当x越大,y越小,因此m>0.10、根据题目条件可知,y2=8/(x-4),因此选项C正确。

11、根据题目条件可知,A1、A2、A3在x轴上,因此选项B正确。

1.将文章中的格式错误和明显有问题的段落删除,改写每段话如下:1.在图中,点B1、B2、B3分别交于x轴平行线,过点xB3、C2、C3、B1、B3,分别与y轴交于点C1、OB2、OB3.阴影部分的面积之和为连接OB1、OB2、OB3的三角形面积加上连接OB1、OB3、C3、C2、OB2的梯形面积。

2.已知点A(-1.y1)、B(1.y2)、C(2.y3)在反比例函数y=k/x 的图象上,其中ky2>y3.3.如图所示,点P在y=k1/x和y=k2/x的图象上,PC⊥x 轴于点C,交y=k1/x的图象于点A,PD⊥y轴于点D,交y=k2/x的图象于点B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数复习回顾一次函数的图像与性质:1.若两个变量x 、y 之间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 是函数).正比例函数y=kx (k ≠0)•是一次函数y=kx+b (k ≠0)特例.2.一次函数y=kx+b (k ≠0)的图象是一条直线,我们只要确定两个点,•再过这两个点作直线就可以作出一次函数的图象,它也称为直线y=kx+b .3.直线y=kx+b (k ≠0)可以看作由直线y=kx (k ≠0)上下平移│b │个单位长度而得到. 当b>0时,向上平移;当b<0时,向下平移. 4.一次函数y=kx+b (k ≠0)的性质当k>0时,y 的值随x 值的增大而增大;当k<0时,y 的值随x 值的增大而减小. 5.用待定系数法求一次函数的解析式的步骤:①设出函数解析式;②根据条件确定解析式中未知的系数;③写出解析式. 巩固练习:如图,在直角坐标系中,已知点A (6,0),又点B (x ,y )•在第一象限内,且x+y=8,设△AOB 的面积是S .(1)写出S 与x 之间的函数关系式,并求出x•的取值范围;(2)画出图象.反比例函数 一、基础知识1. 定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。

x ky =还可以写成kxy =1-2. 反比例函数解析式的特征:⑴等号左边是函数y ,等号右边是一个分式。

分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1.⑵比例系数0≠k⑶自变量x 的取值为一切非零实数。

⑷函数y 的取值是一切非零实数。

3. 反比例函数的图像⑴图像的画法:描点法① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ② 描点(有小到大的顺序) ③ 连线(从左到右光滑的曲线)⑵反比例函数的图像是双曲线,xky =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。

⑶反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=)。

⑷反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xky = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。

45. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出k ) 二、经典例题考点一 求函数的表达式例1、已知21y y y +=,x y 与1成正比例,22x y 与成反比例,且x=2时和x=3时。

y 的值都是19,求y 与x 之间的函数关系式。

针对训练:1、已知反比例函数xky =和一次函数y =ax +b 的图象的一个交点为A (-3,4),且一次函数的图象与x 轴的交点到原点的距离为5,求反比例函数与一次函数的解析式.O BxyCA2y x=xy OP 1P 2P 3 P 4 1 2342、如图,已知(4)A n -,,(24)B -,是一次函数y kx b =+的图象和反比例函数m y x=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;(3)求方程0=-+x mb kx 的解(请直接写出答案); (4)求不等式0<-+xmb kx 的解集(请直接写出答案)延伸训练、1、如图,A 、B 两点在函数()0m y x x=>的图象上.(1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数。

考点二 函数值的大小比较 例2、在函数1y x =的图象上有三个点的坐标分别为(1,1y )、(12,2y )、(3-,3y ),函数值y 1、y 2、y 3的大小关系是 . 针对训练:在反比例函数12my x-=的图象上有两点1122()()A x y B x y ,,,,当120x x <<时,有12y y <,则m 的取值范围是 。

考点三 k 的意义 例3、反比例函数xky =的图象如图所示,点M 是该函数图象上一点, MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为 .针对训练: 如图,A 、B 是函数2y x=的图象上关于原点对称的任 意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( ) A . 2S = B . 4S = C .24S << D .4S >延伸训练:1、在反比例函数2y x=(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++= .22、如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====, 过点12345A A A A A 、、、、分别作x 轴的垂线与反比例函数()20y x x=≠的图象相 交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、并设其面积分别为12345S S S S S 、、、、,则5S 的值为 ..3、如图,已知点A 、B 在双曲线xky =(x >0)上,AC ⊥x 轴于点C , BD ⊥y 轴于点D ,AC 与BD 交于点P ,P 是AC 的中点,若△ABP 的面积为3, 则k = .考点四 求点的坐标 例4如图6,直线1x 21y +=分别交x 轴、y 轴于点A ,C ,点P 是直线AC 与双曲线x ky =的交点,x PB ⊥轴,垂足为点B ,OB=m ,APB ∆的面积为4+ 14m 2,求点P 的坐标;针对训练:如图,()111P ,x y ,()222P ,x y ,……()P ,n n n x y 11P OA ∆,212P A A ∆,323P A A ∆,……1P A A n n n -∆23A A ,……1A A n n -都在x 轴上⑴求1P 的坐标⑵求12310y y y y ++++ 的值考点五 求三角形的面积 例5如图,函数xy 5=在第一象限的图象上有一点C (1,5),过点C 的直线y =-kx +b (k >0)与x 轴交于点A (a ,0).(1)写出a 关于k 的函数关系式; (2)当该直线与双曲线xy 5=在第一象限的另一交点D 的横坐标是9时,求△COA 的面积.针对训练 如图所示,反比例函数y=-8x与一次函数y=-x+2的图像交于A ,B 两点.(1)求A ,B 两点的坐标;(2)求△AOB 的面积.基础练习 一、填空题:1.观察函数xy 2-=的图象,当x =2时,y =________;当x <2时,y 的取值范围是________;当y ≥-1时,x 的取值范围是________. 2.如果双曲线xky =经过点),2,2(-那么直线y =(k -1)x 一定经过点(2,________). 3.在同一坐标系中,正比例函数y =-3x 与反例函数xky =(k >0)的图象有______个交点.4.如果(-t ,-2t )在双曲线xky =上,那么k ________0,双曲线在第________象限. 二、选择题:5.如图,点B 、P 在函数xy 4=(x >0)的图象上,四边形COAB 是正方形,四边形FOEP 是长方形,下列说法不正确的是( ). (A)长方形BCFG 和长方形GAEP 的面积相等 (B)点B 的坐标为(4,4)(C)x y 4=的图象关于过O 、B 的直线对称(D)长方形FOEP 和正方形COAB 面积相等三、解答题:6.已知点A (m ,2)、B (2,n )都在反比例函数xm y 3+=的图象上. (1)求m 、n 的值;(2)若直线y =mx -n 与x 轴交于点C ,求C 关于y 轴对称点C '的坐标. 能力练习一、填空题:7.如图,P 是反比例函数图象上第二象限内的一点,且矩形PEOF 的 面积为3,则反比例函数的解析式是________.8.如图,在直角坐标系中,直线y =6-x 与函数xy 5=(x >0)的图 象交于A ,B ,设A (x 1,y 1),那么长为x 1,宽为y 1的矩形的面积和周 长分别是________.二、选择题:9.若m <-1,则函数①),0(>=x xmy ②y =-mx +1, ③y =mx ,④y =(m +1)x 中,y 随x 增大而增大的是( ).(A)①④(B)②(C)①② (D)③④ 10.在同一坐标系中,y =(m -1)x 与xmy -=的图象的大致位置不可能的是( ).三、解答题:15.已知A 、B 两点是反比例函数)0(2>=xxy 的图象上任意两点,如图,过A 、B 两点分别作y 轴的垂线,垂足为C 、D ,连结AB 、AO 、BO ,求梯形ABDC 的面积与△ABO 的面积比.。

相关文档
最新文档