人教版九年级数学上册 22.1---22.3 练习题
人教版 九年级数学上册 22.1 --22.3同步测试题(含答案)
人教版九年级数学上册22.1 --22.3同步测试题(含答案)22.1 二次函数的图象和性质一、选择题1. 二次函数y=(x-1)2+3的图象的顶点坐标是()A.(1,3) B.(1,-3)C.(-1,3) D.(-1,-3)2. 将抛物线y=-5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=-5(x+1)2-1 B.y=-5(x-1)2-1C.y=-5(x+1)2+3 D.y=-5(x-1)2+33. 二次函数y=x2-2x-3的图象如所示,当y<0时,自变量x的取值范围是()A.-1<x<3 B.x<-1C.x>3 D.x<-1或x>34. 已知二次函数y=a(x-1)2+c的图象如图,则一次函数y=ax+c的图象大致是()5. 若抛物线y=x2-2x+3不动,将平面直角坐标系........xOy先沿水平方向向右平移1个单位,再沿铅直方向向上平移3个单位,则原抛物线图象的解析式应变为()A. y=(x-2)2+3B. y=(x-2)2+5C. y=x2-1D. y=x2+46. 若二次函数y=ax2+bx+c的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断正确的是()A.a>0 B.b2-4ac≥0C.x1<x0<x2D.a(x0-x1)(x0-x2)<07. 如图是二次函数y=ax2+bx+c的图象,有下列说法:①ac>0;②2a+b>0;③4ac<b2;④a+b+c<0;⑤当x>0时,y随x的增大而减小.其中正确的是()A.①②③B.①②④C.②③④D.③④⑤8. (2019•嘉兴)小飞研究二次函数y=–(x–m)2–m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=–x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当–1<x<2时,y随x的增大而增大,则m的取值范围为m≥2其中错误结论的序号是A.①B.②C.③D.④9. 二次函数y=ax2+bx+c的图象如图所示,下列结论中正确的有()①abc<0;②b2-4ac<0;③2a>b;④(a+c)2<b2.A.1个B.2个C.3个D.4个10. 如图,在Rt △PMN 中,∠P =90°,PM =PN ,MN =6 cm ,在矩形ABCD 中,AB =2 cm ,BC =10 cm ,点C 和点M 重合,点B ,C(M),N 在同一直线上,令Rt △PMN 不动,矩形ABCD 沿MN 所在直线以每秒1 cm 的速度向右移动,至点C 与点N 重合为止.设移动x s 后,矩形ABCD 与△PMN 重叠部分的面积为y cm 2,则y 关于x 的大致图象是( )二、填空题11. (2019•武汉)抛物线2y ax bx c =++经过点(3,0)A -、(4,0)B 两点,则关于x 的一元二次方程2(1)a x c b bx -+=-的解是__________.12. 二次函数y =-2x 2-4x +5的最大值是________.13. 抛物线y =ax 2+bx +c 经过点A (-3,0),对称轴是直线x =-1,则a +b +c =________.14. 将抛物线y =2x 2向左平移1个单位长度,再向下平移2个单位长度,所得抛物线的解析式为________________.15. 如图,已知抛物线过A ,B ,C 三点,点A 的坐标为(-1,0),点B 的坐标为(3,0),且3AB =4OC ,则此抛物线的解析式为__________________.16. 已知抛物线y =ax 2+bx +c(a >0)经过A(-1,1),B(2,4)两点,顶点坐标为(m ,n),有下列结论:①b<1;②c<2;③0<m<12;④n≤1.则所有正确结论的序号是________.17. 如图,已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的纵坐标为-2,现将抛物线向右平移2个单位长度,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是________.(写出所有正确结论的序号)①b>0;②a-b+c<0;③阴影部分的面积为4;④若c=-1,则b2=4a.三、解答题18. 2018·南京已知二次函数y=2(x-1)(x-m-3)(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?19. 已知二次函数y=ax2-2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP∶PD=2∶3.(1)求A、B两点的坐标;(2)若tan∠PDB=54,求这个二次函数的关系式.20. 如图,已知抛物线y=x2-(m+3)x+9的顶点C在x轴正半轴上,一次函数y =x+3与抛物线交于A、B两点,与x、y轴分别交于D、E两点.(1)求m的值;(2)求A、B两点的坐标;(3)点P(a,b)(-3<a<1)是抛物线上一点,当△P AB的面积是△ABC面积的2倍时,求a、b的值.人教版九年级数学上册23.1 二次函数的图象和性质课时训练-答案一、选择题1. 【答案】A2. 【答案】A[解析] 已知原抛物线的顶点坐标为(0,1),平移后的顶点坐标是(-1,-1),因此平移后的抛物线的解析式为y=-5(x+1)2-1.故选A.3. 【答案】A[解析] 在抛物线y=x2-2x-3上,y<0的所有点在x轴的下方,这些点对应的x值为-1<x<3,所以自变量x的取值范围为-1<x<3.4. 【答案】B[解析] 根据二次函数的图象开口向上,得a>0,根据c是二次函数图象顶点的纵坐标,得出c<0,故一次函数y=ax+c的图象经过第一、三、四象限.故选B.5. 【答案】C【解析】由抛物线y=x2-2x+3得y=(x-1)2+2.保持抛物线不动,将平面直角坐标系先沿水平方向向右平移1个单位,其实质相当于抛物线向左平移1个单位,再将平面直角坐标系向上平移3个单位,则相当于抛物线向下平移3个单位,根据抛物线平移规律:左加右减,上加下减,可得新的抛物线解析式为y=(x-1+1)2+2-3=x2-1.6. 【答案】D7. 【答案】C[解析] ①由图象可知:a>0,c<0,∴ac<0,故①错误;②由对称轴可知:-b2a<1,∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴Δ=b2-4ac>0,即4ac<b2,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤当x>-b2a时,y随着x的增大而增大,故⑤错误.故选C.8. 【答案】C【解析】把(m,–m+1)代入y=–x+1,–m+1=–m+1,左=右,故①正确;当–(x–m)2–m+1=0时,x1=1m m--,x2=1m m+-,若顶点与x轴的两个交点构成等腰直角三角形,则1–m+(1–m)2+1–m+(1–m)2=4(1–m),即m2–m=0,∴m=0或1时,∴存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;故②正确;当x1<x2,且x1、x2在对称轴右侧时,∵–1<0,∴在对称轴右侧y随x的增大而减小,即y1>y2,故③错误;∵–1<0,∴在对称轴左侧y随x的增大而增大,∴m≥2,故④正确,故选C.9. 【答案】A[解析] ①由抛物线的开口方向向下知a<0,由对称轴在y轴的左侧得a,b 同号,∴b<0.由抛物线与y轴交于正半轴得c>0,∴abc>0,故结论①错误.②由抛物线与x轴有两个交点得b2-4ac>0,故结论②错误.③由图象知对称轴x=-b2a>-1得b2a<1;由a<0,结合不等式的性质三可得b>2a,即2a<b,故结论③错误.④由图象知:当x=1时,y<0,即a+b+c<0;当x=-1时,y>0,即a-b+c>0,∴(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,∴(a+c)2<b2.故结论④正确.故选A.10. 【答案】A[解析] (1)当点D位于PM上时,x=2.当0≤x<2时,重叠部分是等腰直角三角形,y=12x2,图象是顶点为(0,0)且开口向上的抛物线的一部分.(2)当点D位于PN上时,x =4.当2≤x≤4时,重叠部分是直角梯形,y =12×(x -2+x)×2=2x -2,图象是直线的一部分;(3)当4<x≤6时,重叠部分是一个五边形,y =12×(2+6)×2-12(6-x)2=8-12(6-x)2,图象是顶点为(6,8)且开口向下的抛物线的一部分.故选A.二、填空题11. 【答案】12x =-,25x =【解析】依题意,得:9301640a b c a b c -+=⎧⎨++=⎩,解得:12b ac a =-⎧⎨=-⎩,所以,关于x 的一元二次方程a(x-1)2+c=b-bx 为:2(1)12a x a a ax --=-+, 即:2(1)121x x --=-+, 化为:23100x x --=, 解得:12x =-,25x =, 故答案为:12x =-,25x =.12. 【答案】713. 【答案】0 [解析] ∵抛物线y =ax 2+bx +c 经过点A(-3,0),对称轴是直线x =-1,∴抛物线y =ax 2+bx +c 与x 轴的另一交点的坐标为(1,0), ∴a +b +c =0.14. 【答案】y =2(x +1)2-215. 【答案】 y =-x2+2x +316. 【答案】①②④ [解析] ∵抛物线过点A(-1,1),B(2,4),∴⎩⎪⎨⎪⎧a -b +c =1,4a +2b +c =4, ∴b =-a +1,c =-2a +2. ∵a >0,∴b <1,c <2,∴结论①②正确;∵抛物线的顶点坐标为(m ,n),∴m =-b 2a =--a +12a =12-12a ,∴m <12,∴结论③不正确;∵抛物线y =ax 2+bx +c(a >0)经过A(-1,1),顶点坐标为(m ,n), ∴n≤1,∴结论④正确. 综上所述,正确的结论是①②④. 故答案为①②④.17. 【答案】③④ [解析] ∵抛物线开口向上,∴a >0.又∵对称轴为直线x =-b2a >0,∴b <0,∴结论①不正确;∵当x =-1时,y >0,∴a -b +c >0,∴结论②不正确;根据抛物线的对称性,可将阴影部分的面积进行转化,从而求得阴影部分的面积=2×2=4,∴结论③正确;∵4ac -b 24a =-2,c =-1,∴b 2=4a ,∴结论④正确.综上,正确的结论是③④.三、解答题18. 【答案】解:(1)证明:当y =0时,2(x -1)(x -m -3)=0, 解得x 1=1,x 2=m +3.当m +3=1,即m =-2时,方程有两个相等的实数根; 当m +3≠1,即m ≠-2时,方程有两个不相等的实数根. 综上,不论m 为何值,该函数的图象与x 轴总有公共点. (2)当x =0时,y =2(x -1)(x -m -3)=2m +6, ∴该函数的图象与y 轴交点的纵坐标为2m +6,∴当2m +6>0,即m >-3时,该函数的图象与y 轴的交点在x 轴的上方.19. 【答案】解:(1)y =ax 2-2ax +c=a(x 2-2x)+c =a(x -1)2+c -a ∴P 点坐标为(1,c -a).(2分)如图,过点C 作CE ⊥PQ ,垂足为E ,延长CE 交BD 于点F ,则CF ⊥BD. ∵P(1,c -a), ∴CE =OQ =1. ∵PQ ∥BD ,∴△CEP ∽△CFD , ∴CP CD =CE CF .又∵CP ∶PD =2∶3, ∴CE CF =CP CD =22+3=25,∴CF =2.5,(4分) ∴OB =CF =2.5,∴BQ =OB -OQ =1.5, ∴AQ =BQ =1.5,∴OA =AQ -OQ =1.5-1=0.5, ∴A(-0.5,0),B(2.5,0).(5分)(2)∵tan ∠PDB =54, ∴CF DF =54,∴DF =45CF =45×2.5=2,(6分) ∵△CFD ∽△CEP , ∴PE DF =CE CF ,∴PE =DF·CE CF =2×12.5=0.8. ∵P(1,c -a),C(0,c),∴PE =PQ -OC =c -(c -a)=a , ∴a =0.8,(8分) ∴y =0.8x 2-1.6x +c.把A(-0.5,0)代入得:0.8×(-0.5)2-1.6×(-0.5)+c =0, 解得c =-1.(9分)∴这个二次函数的关系式为:y =0.8x 2-1.6x -1.(10分)20. 【答案】解:(1)∵抛物线y =x 2-(m +3)x +9的顶点在x 轴的正半轴上, ∴方程x 2-(m +3)x +9=0有两个相等的实数根, ∴b 2-4ac =[-(m +3)]2-4×9=0,解得m =3或m =-9, 又∵抛物线对称轴大于0,即m +3>0,∴m =3.(3分)(2)由(1)可知抛物线解析式为y =x 2-6x +9,联立一次函数y =x +3, 可得⎩⎨⎧y =x 2-6x +9y =x +3,解得⎩⎨⎧x =1y =4或⎩⎨⎧x =6y =9,∴A(1,4),B(6,9).(6分)(3)如解图,分别过A 、B 、P 三点作x 轴的垂线,垂足分别为R 、S 、T ,解图∵A(1,4),B(6,9),C(3,0),P(a ,b),∴AR =4,BS =9,RC =3-1=2,CS =6-3=3,RS =6-1=5,PT =b ,RT =1-a ,ST =6-a ,∴S △ABC =S 梯形ABSR -S △ARC -S △BCS =12×(4+9)×5-12×2×4-12×3×9=15,S △PAB =S 梯形PBST -S 梯形ARTP -S 梯形ARSB =12(9+b)(6-a)-12(b +4)(1-a)-12×(4+9)×5=12(5b -5a -15).(8分) 又∵S △PAB =2S △ABC , ∴12(5b -5a -15)=30,即b -a =15, ∴b =15+a ,∵P 点在抛物线上, ∴b =a 2-6a +9,∴15+a =a 2-6a +9,解得a =7±732, ∵-3<a<1, ∴a =7-732, ∴b =15+7-732=37-732.(10分)22.2《二次函数与一元二次方程》1.抛物线与两坐标轴的交点个数为( ) A.个B.个C.个D.个2.如图,以为顶点的二次函数的图象与轴负半轴交于点,则一元二次方程的正数解的范围是()A. B. C. D.3.下列表格是二次函数的自变量与函数值的对应值,判断方程,,,为常数)的一个解的范围是()A. B. C. D.4.关于的方程的两个相异实根均大于且小于,那么的取值范围是()A. B. C.或 D.5.函数的图象如图所示,那么关于的方程的根的情况是()A.有两个不相等的实数根B.有两个异号实数根C.有两个相等实数根D.无实数根6. 二次函数中,自变量与函数的对应值如下表:…………若,则一元二次方程的两个根,的取值范围是()A.,B.,C.,D.,7.利用函数图象求方程的实数根(精确到),要先作函数________的图象,如图所示,它与轴的公共点的横坐标大约是、,所以方程的实数根为________,________.8.二次函数的图象与轴交点的横坐标是________.9.若二次函数的图象与轴有两个交点,则实数的取值范围是________.10.若抛物线与轴有两个交点,则的取值范围是________.11.二次函数的图象与轴的交点坐标是________.12.已知二次函数的图象与轴交于、,顶点到轴的距离为,求函数的解析式.13.某商场计划购进两种新型节能台灯共盏,已知购进型台灯盏,型台灯盏需元;购进型台灯盏,项台灯盏需元.(1)填空.进价/(元/盏) 售价/(元/盏)型型(2)若商场购进型台灯不超过盏,预计进货款不多于元,则一共有多少种购买方案?(3)在的购买方案中,哪种方案能使商场在销售完这批台灯时获利最多?此时利润为多少元?14.求证:方程的一个根大于,另一个小于.15.如图,抛物线交轴于点、,交轴于点,其中点、的坐标分别为、.(1)求抛物线的解析式,并用配方法把其化为的形式,写出顶点坐标;(2)已知点在第二象限的抛物线上,求出的值,并直接写出点关于直线的对称点的坐标.16. 如图,已知的图象与的图象交于、两点且与轴,轴分别交于、两点,为坐标轴原点.(1)求点、的坐标;(2)求的值.参考答案1.【答案】B2.【答案】C3.【答案】C4.【答案】A5.【答案】C6.【答案】A7.【答案】,,8.【答案】和9.【答案】且10.【答案】且11.【答案】,12.解:由题意知,顶点为或.设抛物线的表达式为.①当顶点为时,∵抛物线过,∴,∴.∴抛物线解析式为,即;②当顶点为时,∵抛物线过,∴,∴.∴抛物线解析式为,即.13.解:(1)填表如下:进价/(元/盏) 售价/(元/盏)型型设项台灯的进价是元/盏,型台灯的进价是元/盏,根据题意列方程组,得解得故型台灯的进价是元/盏,型台灯的进价是元/盏.(2)设商场购进型台灯盏,型台灯的进价是元/盏,根据题意得,解得,故取直范围是.因为是正整数,所以,故共有种购买方案.(3)设商场销售完议批台灯可获利元,则∵∴随的增大而减小,∴当时,取得最大值,为.答:在()的购买方案中,商场购进型台灯盏,型台灯盏时,销售完这批台灯获利最多,此时利润为元.14.证明:的两个根为,,则方程一定有两个根,设方程的两根为,,当时,,当时,,当时,,则方程、的根一定一根大于,一根小于.15.解:(1)抛物线经过、两点,∴,解得.∴此抛物线的解析式为.(2)∵点在抛物线上,∴,解得,.∵点在第二象限,∴.令,解得,.∴.∴.连接,易知,,.∴.∴.过点作于,延长交轴于,∴.∴.∴.∴点即为点关于直线的对称点.∴,∴∴.16.解:(1)∵的图象与的图象交于、两点,∴解方程组,解得,故点的坐标为,点的坐标为.(2)作垂直与轴与点,垂直与轴与点将代入得,∴点的坐标为又∵点的坐标为,点的坐标为∴,,∴故的值为.22.3《实际问题与二次函数》一.选择题1.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60(300+20x)B.y=(60﹣x)(300+20x)C.y=300(60﹣20x)D.y=(60﹣x)(300﹣20x)2.用一根长60cm的铁丝围成一个矩形,那么矩形的面积y(cm2)与它的一边长x(cm)之间的函数关系式为()A.y=x2﹣30x(0<x<30)B.y=﹣x2+30x(0≤x<30)C.y=﹣x2+30x(0<x<30)D.y=﹣x2+30x(0<x≤30)3.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,若a+b=5,则Rt△ABC的面积S关于边长c的函数关系式为()A.S=B.S=C.S=D.S=4.如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,水面下降2.5m,水面宽度增加()A.1 m B.2 m C.3 m D.6 m5.黄山市某塑料玩具生产公司,为了减少空气污染,国家要求限制塑料玩具生产,这样有时企业会被迫停产,经过调研预测,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=﹣n2+14n﹣24,则没有盈利的月份为()A.2月和12月B.2月至12月C.1月D.1月、2月和12月6.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球运动的时间为6s;③小球抛出3秒时,速度为0;④当t=1.5s时,小球的高度h=30m.其中正确的是()A.①④B.①②C.②③④D.②④7.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,动点P从点A开始沿边AB向B以1cm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以2cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过()秒,四边形APQC的面积最小.A.1B.2C.3D.48.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或9.已知二次函数y=ax2+bx+c(a<0)的图象如图,当﹣5≤x≤0时,下列说法正确的是()A.有最小值﹣5、最大值0B.有最小值﹣3、最大值6C.有最小值0、最大值6D.有最小值2、最大值610.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF =CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为()A.B.C.D.11.如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当﹣3<x<2时,ax2+kx<b,其中正确的结论是()A.①②B.①②⑤C.②③④D.①②④⑤二.填空题12.中国“一带一路”倡议给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年年人均收入300美元,预计2019年年人均收入将达到y美元.设2017年到2019年该地区居民年人均收入平均增长率为x,那么y与x的函数关系式是.13.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加m.14.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是m.15.如图所示,矩形ABCD中,AB=8,BC=6,P是线段BC上一点(P不与B重合),M 是DB上一点,且BP=DM,设BP=x,△MBP的面积为y,则y与x之间的函数关系式为.16.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是.三.解答题17.某店销售一种小工艺品.该工艺品每件进价12元,售价为20元.每周可售出40件.经调查发现,若把每件工艺品的售价提高1元,就会少售出2件.设每件工艺品售价提高x 元,每周从销售这种工艺品中获得的利润为y元.(1)填空:每件工艺品售价提高x元后的利润为元,每周可售出工艺品件,y关于x的函数关系式为;(2)若y=384,则每件工艺品的售价应确定为多少元?18.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为m 的Q处时,乙扣球成功,求a的值.19.已知二次函数y=x2+bx+c(b,c为常数).(1)当b=2,c=﹣3时,求二次函数的最小值;(2)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(3)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.20.已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,y=(60﹣x)(300+20x),故选:B.2.解:由题意得:矩形的另一边长=60÷2﹣x=30﹣x,矩形的面积y(cm2)与它的一边长x(cm)之间的函数关系式为y=x(30﹣x)=﹣x2+30x (0<x<30).故选:C.3.解:∵∠C=90°,BC=a,AC=b,AB=c,∴a2+b2=c2,∵Rt△ABC的面积S,∴S=ab,∵a+b=5,∴(a+b)2=25,∴a2+b2+2ab=25,∴c2+4S=25,∴S=.故选:A.4.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,把A点坐标(﹣2,0)代入得a=﹣0.5,∴抛物线解析式为y=﹣0.5x2+2,当水面下降2.5米,通过抛物线在图上的观察可转化为:当y=﹣2.5时,对应的抛物线上两点之间的距离,也就是直线y=﹣2.5与抛物线相交的两点之间的距离,可以通过把y=﹣2.5代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,2×3﹣4=2,所以水面下降2.5m,水面宽度增加2米.故选:B.5.解:∵y=﹣n2+14n﹣24=﹣(n﹣2)(n﹣12),1≤n≤12且n为整数,∴当y=0时,n=2或n=12,当y<0时,n=1,故选:D.6.解:①由图象可知,小球在空中达到的最大高度为40m,则小球在空中经过的路程一定大于40m,故①错误;②由图象可知,小球6s时落地,故小球运动的时间为6s,故②正确;③小球抛出3秒时达到最高点,即速度为0,故③正确;④设函数解析式为h=a(t﹣3)2+40,将(0,0)代入得:0=a(0﹣3)2+40,解得a=﹣,∴函数解析式为h=﹣(t﹣3)2+40,∴当t=1.5s时,h=﹣(1.5﹣3)2+40=30,∴④正确.综上,正确的有②③④.故选:C.7.解:设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Scm2,则有:S=S△ABC﹣S△PBQ=×12×6﹣(6﹣t)×2t=t2﹣6t+36=(t﹣3)2+27.∴当t=3s时,S取得最小值.故选:C.8.解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选:C.9.解:由二次函数的图象可知,∵﹣5≤x≤0,∴当x=﹣2时函数有最大值,y最大=6;当x=﹣5时函数值最小,y最小=﹣3.故选:B.10.解:设正方形的边长为m,则m>0,∵AE=x,∴DH=x,∴AH=m﹣x,∵EH2=AE2+AH2,∴y=x2+(m﹣x)2,y=x2+x2﹣2mx+m2,y=2x2﹣2mx+m2,=2[(x﹣m)2+],=2(x﹣m)2+m2,∴y与x的函数图象是A.故选:A.11.解:①抛物线y=ax2,利用顶点坐标公式得:顶点坐标为(0,0),本选项正确;②根据图象得:直线y=kx+b(k≠0)为增函数;抛物线y=ax2(a≠0)当x>0时y的值随的x的增大而增大,则x>0时,直线与抛物线函数值都随着x的增大而增大,本选项正确;③由A、B横坐标分别为﹣2,3,若AB=5,可得出直线AB与x轴平行,即k=0,与已知k≠0矛盾,故AB不可能为5,本选项错误;④若OA=OB,得到直线AB与x轴平行,即k=0,与已知k≠0矛盾,∴OA≠OB,即△AOB不可能为等边三角形,本选项错误;⑤直线y=﹣kx+b与y=kx+b关于y轴对称,如图所示:可得出直线y=﹣kx+b与抛物线交点C、D横坐标分别为﹣3,2,由图象可得:当﹣3<x<2时,ax2<﹣kx+b,即ax2+kx<b,则正确的结论有①②⑤.故选:B.二.填空题12.解:设2017年到2019年该地区居民年人均收入平均增长率为x,那么根据题意得2019年年人均收入为:300(x+1)2,y与x的函数关系式是为:y=300(x+1)2.故答案为y=300(x+1)2.13.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,代入A点坐标(﹣2,0),得:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度增加到2米,比原先的宽度当然是增加了2﹣4,故答案为:(2﹣4).14.解:设抛物线的解析式为:y=ax2+b,由图得知:点(0,2.4),(3,0)在抛物线上,∴,解得:,∴抛物线的解析式为:y=﹣x2+2.4,∵菜农的身高为1.8m,即y=1.8,则1.8=﹣x2+2.4,解得:x=±,故他在不弯腰的情况下,横向活动范围是:3米,故答案为:3.15.解:∵AB=8,BC=6,∴CD=8,∴BD=10,∵DM=x,∴BM=10﹣x,如图,过点M作ME⊥BC于点E,∴ME∥DC,∴△BME∽△BDC,∴=,∴ME=8﹣x,而S△MBP=×BP×ME,∴y=x2+4x,P不与B重合,那么x>0,可与点C重合,那么x≤6.故填空答案:y=x2+4x(0<x≤6).16.解:作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=5,MG=|10﹣2x|,在Rt△MNG中,由勾股定理得:MN2=MG2+GN2,即y2=52+(10﹣2x)2.∵0<x<10,∴当10﹣2x=0,即x=5时,y2最小值=25,∴y最小值=5.即MN的最小值为5;故答案为:5.三.解答题17.解:(1)∵该工艺品每件进价12元,售价为20元,∴每件工艺品售价提高x元后的利润为:(20﹣12+x)=(8+x)(元),∵把每件工艺品的售价提高1元,就会少售出2件,∴每周可售出工艺品:(40﹣2x)(件),∴y关于x的函数关系式为:y=(40﹣2x)(8+x))=﹣2x2+24x+320;故答案为:8+x;40﹣2x;y=﹣2x2+24x+320;(2)∵y=384,∴384=﹣2x2+24x+320,整理得出:x2﹣12x+32=0,(x﹣4)(x﹣8)=0,解得:x1=4,x2=8,4+20=24,8+20=28,答:每件工艺品的售价应确定为24元或28元.18.解:(1)①当a=﹣时,y=﹣(x﹣4)2+h,将点P(0,1)代入,得:﹣×16+h=1,解得:h=;②把x=5代入y=﹣(x﹣4)2+,得:y=﹣×(5﹣4)2+=1.625,∵1.625>1.55,∴此球能过网;(2)把(0,1)、(7,)代入y=a(x﹣4)2+h,得:,解得:,∴a=﹣.19.解:(1)当b=2,c=﹣3时,二次函数的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴当x=﹣1时,二次函数取得最小值﹣4;(2)当c=5时,二次函数的解析式为y=x2+bx+5,由题意得,x2+bx+5=1有两个相等是实数根,∴△=b2﹣16=0,解得,b1=4,b2=﹣4,∴二次函数的解析式y=x2+4x+5,y=x2﹣4x+5;(3)当c=b2时,二次函数解析式为y═x2+bx+b2,图象开口向上,对称轴为直线x=﹣,①当﹣<b,即b>0时,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+b2=3b2为最小值,∴3b2=21,解得,b1=﹣(舍去),b2=;②当b≤﹣≤b+3时,即﹣2≤b≤0,∴x=﹣,y=b2为最小值,∴b2=21,解得,b1=﹣2(舍去),b2=2(舍去);③当﹣>b+3,即b<﹣2,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值,∴3b2+9b+9=21.解得,b1=1(舍去),b2=﹣4;∴b=时,解析式为:y=x2+x+7b=﹣4时,解析式为:y=x2﹣4x+16.综上可得,此时二次函数的解析式为y=x2+x+7或y=x2﹣4x+16.20.解:(1)∵二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),∴根据题意,得,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4得,D点坐标为(1,4),定义抛物线y=﹣x2+2x+3.令y=0,﹣x2+2x+3=0,解得x=﹣1或3,∴A(﹣1,0),B(3,0),∴CD==,BC==3,BD==2,∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(3)存在.y=﹣x2+2x+3对称轴为直线x=1.①若以CD为底边,则P1D=P1C,设P1点坐标为(x,y),根据勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2,因此x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x.又P1点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1,应舍去,∴x=,∴y=4﹣x=,即点P1坐标为(,).②若以CD为一腰,∵点P2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为(,)或(2,3).。
人教版 九年级数学上册 22.1---22.3练习(含答案)
人教版九年级数学上册22.1---22.3练习(含答案)22.1 二次函数的图象性质一、选择题1. 二次函数y=2x2,y=-2x2,y=12x2的共同性质是()A.其图象开口都向上B.其图象的对称轴都是y轴C.其图象都有最高点D.y随x的增大而增大2. 抛物线y=x2+2x+3的对称轴是()A. 直线x=1B. 直线x=-1C. 直线x=-2D. 直线x=23. 对于函数y=-2(x-m)2,下列说法不正确的是()A.其图象开口向下B.其图象的对称轴是直线x=mC.最大值为0D.其图象与y轴不相交4. 若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A. x1=0,x2=6B. x1=1,x2=7C. x1=1,x2=-7D. x1=-1,x2=75. 如图,已知抛物线y=x2+bx+c的对称轴为直线x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()A.(2,3) B.(3,2) C.(3,3) D.(4,3)6. 如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a +3b +c <0;③c >-1;④关于x 的方程ax 2+bx +c =0(a ≠0)有一个根为-1a .其中正确的结论个数有( )A. 1个B. 2个C. 3个D. 4个7. 已知二次函数y =ax 2+bx +c 的图象如图所示,OA =OC ,由抛物线的特征写出如下含有a ,b ,c 三个字母的等式或不等式:①4ac -b 24a =-1;②ac +b +1=0;③abc >0;④a -b +c >0.其中正确的个数是( )A .4B .3C .2D .18. 如图,△ABC是等腰直角三角形,∠A =90°,BC =4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动.过点P 作PD ⊥BC 于点D ,设BD =x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )9. 如图,二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA=OC.有下列结论:①abc<0;②b 2-4ac 4a >0;③ac -b +1=0;④OA·OB =-ca .其中正确的结论有( )A .4个B .3个C .2个D .1个10. 如图,在Rt △PMN 中,∠P =90°,PM =PN ,MN =6 cm ,在矩形ABCD 中,AB =2 cm ,BC =10 cm ,点C 和点M 重合,点B ,C(M),N 在同一直线上,令Rt △PMN 不动,矩形ABCD 沿MN 所在直线以每秒1 cm 的速度向右移动,至点C 与点N 重合为止.设移动x s 后,矩形ABCD 与△PMN 重叠部分的面积为y cm 2,则y 关于x 的大致图象是( )二、填空题11.抛物线y =-8x 2的开口向________,对称轴是________,顶点坐标是________;当x >0时,y 随x 的增大而________,当x <0时,y 随x 的增大而________.12. 某学习小组为了探究函数y =x 2-|x |的图象与性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m =________.13. 二次函数y =-x 2+6x -5的图象开口________,对称轴是________,顶点坐标是________;与x 轴的两个交点坐标分别是________,与y 轴的交点坐标是________;在对称轴左侧,即x ________时,y 随x 的增大而________,在对称轴右侧,即x ________时,y 随x 的增大而________,当x =________时,y 有最________值为________;抛物线y =-x 2+6x -5是由抛物线y =-x 2向________(填“左”或“右”)平移________个单位长度,再向________(填“上”或“下”)平移________个单位长度得到的.14. (2019•徐州)已知二次函数的图象经过点(2,2)P ,顶点为(0,0)O 将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为__________.15. 如图,在平面直角坐标系中,抛物线y =ax 2(a >0)与y =a (x -2)2交于点B ,抛物线y =a (x -2)2交y 轴于点E ,过点B 作x 轴的平行线与两条抛物线分别交于D ,C 两点.若A 是x 轴上两条抛物线顶点之间的一点,连接AD ,AC ,EC ,ED ,则四边形ACED 的面积为________.(用含a 的代数式表示)16. 如图,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A (1,0)和B (3,2),不等式x 2+bx +c >x +m 的解集为____________.17. 如图,抛物线y =ax 2+bx +c(a ,b ,c 是常数,a≠0)与x 轴交于A ,B 两点,顶点为P(m ,n).给出下列结论:①2a +c <0;②若(-32,y 1),(-12,y 2),(12,y 3)在抛物线上,则y 1>y 2>y 3;③若关于x 的方程ax 2+bx +k =0有实数解,则k >c -n ;④当n =-1a 时,△ABP 为等腰直角三角形.其中正确的结论是________.(填序号)18. 如图,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx (a >0)的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线y =ax 2(a >0)交于点B .若四边形ABOC 是正方形,则b 的值是________.三、解答题19. 画出函数y=-x2的图象,并回答问题.解:(1)列表(请完成下面的填空):x …-2-1-0.500.512…y …-0.250-0.25-1-4…(2)描点、连线;(3)由函数图象可以看出,当x<0时,y随着x的增大而________.(填“增大”或“减小”)20. 在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(-2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=-12x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.21. 如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N(3,5).(1)试判断该抛物线与x轴的交点情况;(2)平移这条抛物线,使平移后的抛物线经过点A(-2,0),且与y轴交于点B,同时满足以A,O,B为顶点的三角形是等腰直角三角形,请你写出平移过程.22. 抛物线y=ax2+bx+c向右平移2个单位长度得到抛物线y=a(x-3)2-1,且平移后的抛物线经过点A(2,1).(1)求平移后的抛物线的解析式;(2)设原抛物线与y轴的交点为B,顶点为P,平移后的抛物线的对称轴与x轴交于点M,求△BPM的面积.人教版九年级数学22.1 二次函数的图象性质课后训练-答案一、选择题1. 【答案】B2. 【答案】B【解析】已知解析式为抛物线解析式的一般式,利用对称轴公式直接求解.抛物线y=x2+2x+3的对称轴是直线x=-b2a=-22×1=-1 .3. 【答案】D4. 【答案】D【解析】∵二次函数y =x 2+mx 的对称轴为x =-m2=3,解得m =-6,则关于x 的方程为x 2-6x =7,解得,x 1=-1,x 2=7.5. 【答案】D6. 【答案】C【解析】由图象开口向下,可知a <0,与y 轴的交点在x 轴的下方,可知c <0,又对称轴方程为x =2,所以-b2a =2>0,所以b >0,∴abc >0,故①正确;由图象可知当x =3时,y >0,∴9a +3b +c >0,故②错误;由图象可知OA <1,∵OA =OC ,∴OC <1,即-c <1,∴c >-1,故③正确;假设方程的一个根为x =-1a ,把x =-1a 代入方程可得1a -ba +c =0,整理可得ac -b +1=0,两边同时乘c 可得ac 2-bc +c =0,即方程有一个根为x =-c ,由②可知-c =OA ,而x =OA 是方程的根,∴x =-c 是方程的根,即假设成立,故④正确;综上可知正确的结论有三个.7. 【答案】A [解析] (1)∵抛物线的顶点的纵坐标是-1,∴4ac -b 24a =-1.故①正确.(2)∵OA =OC =|c|,∴A(c ,0),∴ac 2+bc +c =0.又c≠0,∴ac +b +1=0.故②正确.(3)从图象中易知a >0,b <0,c <0,∴abc >0.故③正确.(4)当x =-1时,y =a -b +c ,由图象知点(-1,a -b +c)在第二象限,∴a -b +c >0.故④正确.综上所述,4个结论均正确,故选A.8. 【答案】B【解析】∵△ABC 是等腰直角三角形,∴∠A =90°,∠B =∠C =45°.(1)当0≤x ≤2时,点P 在AB 边上,△BDP 是等腰直角三角形,∴PD =BD =x ,y =12x 2 (0≤x ≤2),其图象是抛物线的一部分; (2)当2<x ≤4时,点P 在AC 边上,△CDP 是等腰直角三角形,∴PD =CD =4-x ,∴y =12BD ·PD =12x (4-x ) (2<x ≤4),其图象也是抛物线的一部分.综上所述,两段图象均是抛物线的一部分,因此选项B 的图象能大致反映y 与x 之间的函数关系.9. 【答案】B [解析] ∵抛物线开口向下,∴a <0.∵抛物线的对称轴在y 轴的右侧,∴b >0.∵抛物线与y 轴的交点在x 轴上方,∴c >0, ∴abc <0,故①正确.∵抛物线与x 轴有两个交点,∴Δ=b 2-4ac >0, 而a <0,∴b 2-4ac4a <0,故②错误.∵C(0,c),OA =OC ,∴A(-c ,0).把(-c ,0)代入y =ax 2+bx +c ,得ac 2-bc +c =0, ∴ac -b +1=0,故③正确. 设A(x 1,0),B(x 2,0),∵二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点, ∴x 1和x 2是方程ax 2+bx +c =0的两根, ∴x 1·x 2=ca .又∵x 1<0,∴OA·OB =-ca ,故④正确.故选B.10. 【答案】A [解析] (1)当点D 位于PM 上时,x =2.当0≤x <2时,重叠部分是等腰直角三角形,y =12x2,图象是顶点为(0,0)且开口向上的抛物线的一部分.(2)当点D 位于PN 上时,x =4.当2≤x≤4时,重叠部分是直角梯形,y =12×(x -2+x)×2=2x -2,图象是直线的一部分;(3)当4<x≤6时,重叠部分是一个五边形,y =12×(2+6)×2-12(6-x)2=8-12(6-x)2,图象是顶点为(6,8)且开口向下的抛物线的一部分.故选A.二、填空题11. 【答案】下 y 轴 (0,0) 减小 增大12. 【答案】0.75【解析】根据表格可得该图象关于y 轴对称,故当x =1.5和x=-1.5时,y 的值相等.∴m =0.75.13. 【答案】向下 直线x =3 (3,4) (1,0),(5,0) (0,-5) <3 增大 >3 减小 3 大 4 右 3 上 414. 【答案】21(4)2y x =- 【解析】设原来的抛物线解析式为:2y ax =(0)a ≠,把(2,2)P 代入,得24a =, 解得12a =, 故原来的抛物线解析式是:212y x =, 设平移后的抛物线解析式为:21()2y x b =-, 把(2,2)P 代入,得212(2)2b =-,解得0b =(舍去)或4b =, 所以平移后抛物线的解析式是:21(4)2y x =-, 故答案为:21(4)2y x =-.15. 【答案】8a[解析] ∵抛物线y =ax 2(a >0)与y =a(x -2)2交于点B ,∴BD =BC =2, ∴DC =4.∵y =a(x -2)2=ax 2-4ax +4a , ∴E(0,4a),∴S 四边形ACED =S △ACD +S △CDE =12DC·OE =12×4×4a =8a.16. 【答案】x<1或x>3 【解析】∵直线y =x +m 和抛物线y =x 2+bx +c 都经过点A(1,0)和B(3,2),∴根据图象可知,不等式x 2+bx +c >x +m 的解集为x <1或x >3.17. 【答案】②④ [解析] (1)当x =-1时,y =a -b +c >0.由x =-b 2a <12和a >0可得-b<a.∴0<a -b +c <a +a +c =2a +c ,即2a +c >0,①错误; (2)结合图象易知②正确;(3)方程ax 2+bx +k =0有实数解,即ax 2+bx +c =c -k 有实数解.∵y =ax 2+bx +c≥n ,∴c -k≥n ,即k≤c -n ,③错误;(4)设抛物线的解析式为y =-1n (x -m)2+n(n <0).令y =0,得-1n (x -m)2+n =0.∴n 2-(x -m)2=0,∴(n -x +m)(n +x -m)=0.∴x 1=m +n ,x 2=m -n.AB =|x 1-x 2|=-2n.设对称轴交x 轴于点H ,则AH =BH =PH =-n ,∴△ABP 为等腰直角三角形,④正确.18. 【答案】-2 [解析] 抛物线y =ax 2+bx 的顶点C 的坐标为(-b 2a ,-b 24a).把x =-b 2a 代入y =ax 2,得点B 的坐标为(-b 2a ,b 24a ).在y =ax 2+bx 中,令y =0,则ax 2+bx =0,解得x 1=0,x 2=-b a ,∴A(-ba ,0).∵四边形ABOC 为正方形,∴BC =OA ,∴2·b 24a =-b a ,即b 2+2b =0.解得b =-2或b =0(不符合题意,舍去).三、解答题19. 【答案】解:(1)-4 -1 (2)如图:(3)增大20. 【答案】解:(1)把B(-2,6),C(2,2)代入抛物线的解析式得: ⎩⎨⎧6=a·(-2)2+b·(-2)+22=a·22+b·2+2,(1分)解得⎩⎪⎨⎪⎧a =12b =-1,(2分)∴抛物线的解析式为y =12x 2-x +2.(3分)(2)抛物线解析式化为顶点式:y =12(x -1)2+32,则抛物线顶点D(1,32),(4分) 如解图①所示,过点B 、D 、C 分别向x 轴作垂线,垂足分别为点M 、N 、H ,则有:S △BCD =S 梯形BMHC -S 梯形BMND -S 梯形DNHC=12(6+2) ×4-12(6+32)×3-12(32+2) ×1 =3.(6分)解图①解图② (3)如解图②所示,连接BC ,∵直线BC 斜率k BC =2-62-(-2)=-1<-12,∴过点C 作直线MN 与直线y =-12x 平行,设直线MN 的解析式为y =-12x +b 1,代入C(2,2), ∴b 1=3.(7分)作直线EF 与抛物线相切,且与直线y =-12x 平行,设直线EF 的解析式为y =-12x +b 2,联立抛物线解析式得,⎩⎪⎨⎪⎧y =12x 2-x +2y =-12x +b 2, ∴x 2-x +4-2b 2= 0, ∵直线EF 与抛物线相切,∴b 2-4ac =0,即(-1)2-4(4-2b 2)=0,(9分)∴b 2=158,(11分)∴158<b ≤3.(12分)注:斜率知识为高中知识,但常渗透于中考压轴题,与二次函数相结合考查,做题时注意其性质的应用.21. 【答案】解:(1)由题意,得⎩⎪⎨⎪⎧a +b +5=3,9a +3b +5=5.解得⎩⎪⎨⎪⎧a =1,b =-3.∴抛物线的解析式为y =x2-3x +5.∵Δ=b2-4ac =(-3)2-4×1×5=9-20=-11<0,∴抛物线与x 轴没有交点. (2)∵△AOB 是等腰直角三角形,A(-2,0),点B 在y 轴上, ∴点B 的坐标为(0,2)或(0,-2).设平移后的抛物线的解析式为y =x2+mx +n. ①若抛物线过点A(-2,0),B(0,2),有⎩⎪⎨⎪⎧4-2m +n =0,n =2.解得⎩⎪⎨⎪⎧m =3,n =2. ∴平移后的抛物线的解析式为y =x2+3x +2, ∴该抛物线的顶点坐标为(-32,-14).而原抛物线的顶点坐标为(32,114),∴将原抛物线先向左平移3个单位长度,再向下平移3个单位长度即可获得符合条件的抛物线(其他平移方式合理也可).②若抛物线过点A(-2,0),B(0,-2),有⎩⎪⎨⎪⎧4-2m +n =0,n =-2.解得⎩⎪⎨⎪⎧m =1,n =-2.∴平移后的抛物线的解析式为y =x2+x -2, ∴该抛物线的顶点坐标为(-12,-94).而原抛物线的顶点坐标为(32,114),∴将原抛物线先向左平移2个单位长度,再向下平移5个单位长度即可获得符合条件的抛物线(其他平移方式合理也可).22. 【答案】解:(1)把(2,1)代入y =a(x -3)2-1, 得1=a(2-3)2-1,整理,得1=a -1,解得a =2.故平移后的抛物线的解析式为y =2(x -3)2-1.(2)由(1)知,平移后的抛物线的解析式为y =2(x -3)2-1,则M(3,0). ∵抛物线y =ax 2+bx +c 向右平移2个单位长度得到抛物线y =2(x -3)2-1, ∴平移前的抛物线的解析式为y =2(x -1)2-1, ∴P(1,-1).在y =2(x -1)2-1中,令x =0,得y =1, 故B(0,1),∴BM =10,BP =PM = 5. ∵BM 2=BP 2+PM 2,∴△BPM 为直角三角形,且∠BPM =90°, ∴S △BPM =12BP·PM =12×5×5=52.22.2 二次函数与一元二次方程1.已知二次函数y =x 2-3x +m(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程x 2-3x +m =0的两个实数根是( ) A .x 1=1,x 2=-1 B .x 1=1,x 2=2 C .x 1=1,x 2=0 D .x 1=1,x 2=32.如图,已知抛物线y =ax 2+bx +c 与x 轴的一个交点为A(1,0),对称轴是直线x =-1,则ax 2+bx +c =0的解是( )A .x 1=-3,x 2=1B .x 1=3,x 2=1C .x =-3D .x =-2 3.二次函数y =x 2-2x -3与x 轴的两个交点之间的距离为____. 4.下列抛物线中,与x 轴有两个交点的是( )A .y =3x 2-5x +3B .y =4x 2-12x +9C .y =x 2-2x +3D .y =2x 2+3x -45.已知抛物线y =ax 2-2x +1与x 轴没有交点,那么该抛物线的顶点所在的象限是( )A .第四象限B .第三象限C .第二象限D .第一象限 6.若抛物线y =kx 2-2x +1的图象与x 轴: (1)只有一个交点,则k =____;(2)有两个交点,则k 的取值范围是 .7.根据下列表格的对应值,判断方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)一x3.233.243.253.26ax2+bx+c -0.06 -0.02 0.03 0.09A. 3<x<3.23 B.3.23<x<3.24 C.3.24<x<3.25 D.3.25<x<3.26 8.二次函数y=x2-x-2的图象如图所示,则函数值y<0时x的取值范围是( ) A.x<-1 B.x>2 C.-1<x<2 D.x<-1或x>29.画出二次函数y=x2-2x的图象,利用图象回答:(1)方程x2-2x=0的解是什么?(2)x取什么值时,函数值大于0?(3)x取什么值时,函数值小于0?10.已知抛物线y=x2-2x+1与x轴的一个交点为(m,0),则代数式m2-2m+2017的值为( ) A.2015 B.2016C.2017 D.201811.抛物线y=2x2-22x+1与坐标轴的交点个数是( )A.0 B.1 C.2 D.312.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是( )A.-1<x<5 B.x>5 C.x<-1 D.x<-1或x>513.若m,n(n<m)是关于x的一元二次方程1-(x-a)(x-b)=0的两个根,且b<a,则m,n,b,a的大小关系是( )A.m<a<b<n B.a<m<n<b C.b<n<m<a D.n<b<a<m14.如图,抛物线y=-x2+2x+m(m<0)与x轴相交于点A(x1,0),B(x2,0),点A在点B的左侧.当x=x2-2时,y____0.(填“>”“=”或“<”)15.若关于x的一元二次方程a(x+m)2-3=0的两个实数根分别为x1=-1,x2=3,则抛物线y=a(x+m-2)2-3与x轴的交点坐标为.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.17.已知二次函数y=2x2-mx-m2.(1)求证:对于任意实数m,二次函数y=2x2-mx-m2的图象与x轴总有公共点;(2)若这个二次函数的图象与x轴有两个公共点A,B,且B点坐标为(1,0),求A点坐标.18.已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于A(x1,0),B(x2,0)(x1<x2)两点,与y轴交于点C,x1,x2是方程x2+4x-5=0的两根.(1)若抛物线的顶点为D,求S△ABD∶S△ABC的值;(2)若∠ADC=90°,求二次函数的解析式.答案:1. B2. A3. 44. D5. D6. (1) 1 (2) k<1且k≠07. C8. C9. 解:画图象略(1)x1=0,x2=2(2)x<0或x>2(3)0<x<210. B 11. C 12. D 13. D 14. <15. (1,0),(5,0)16. 解:(1) x 1=1,x 2=3 (2) 1<x<3 (3) x>2 (4) k<2 17. (1) 解:令y =0,则2x 2-mx -m 2=0, Δ=(-m)2-4×2×(-m 2)=9m 2≥0,∴对于任意实数m ,该二次函数的图象与x 轴总有公共点(2) 解:由题意得2×12-m -m 2=0,整理得m 2+m -2=0,解得m 1=1,m 2=-2,当m =1时,二次函数为y =2x 2-x -1,当y =0时,2x 2-x -1=0,解得x 1=1,x 2=-12,∴A(-12,0);当m =-2时,二次函数为y =2x 2+2x -4,令y =0时,则2x 2+2x -4=0,解得x 1=1,x 2=-2,∴A(-2,0).综上所述,A 点坐标为(-12,0)或(-2,0)18. 解:(1)解方程x 2+4x -5=0得x 1=-5,x 2=1,∴A(-5,0),B(1,0),可设抛物线为y =a(x +5)(x -1),即y =ax 2+4ax -5a ,则D(-2,-9a),C(0,-5a),∴S △ABD ∶S △ABC =(12×6×|-9a|)∶(12×6×|-5a|)=9∶5(2)连接AC ,因为∠ADC =90°,则AC 2=AD 2+CD 2,∴52+25a 2=22+16a 2+32+81a 2,∴a 2=16,∵a>0,∴a =66,故二次函数的解析式为y =66(x +5)(x -1), 即y =66x 2+263x -56622.3 实际问题与二次函数一、选择题(本大题共8道小题)1. 某企业生产季节性产品,当产品无利润时,企业自动停产,经过调研,它一年中每月获得的利润y (万元)和月份n 之间满足函数关系式y =-n 2+12n -11,则企业停产的月份为( ) A .1月和11月 B .1月、11月和12月C .1月D .1月至11月2. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A .50 mB .100 mC .160 mD .200 m3. 如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数解析式是y=-112x 2+23x +53,则该运动员此次掷铅球的成绩是( )A .6 mB .12 mC .8 mD .10 m4. (2020·山西)竖直上抛物体离地面的高度h (m )与运动时间t (s )之间的关系可以近似地用公式h =-5t 2+v 0t +h 0表示,其中h 0 (m)是物体抛出时离地面的高度,v 0(m/s )是物体抛出时的速度.某人将一个小球从距地面1.5m 的高处以20m/s 的速度竖直向上抛出,小球达到的离地面的最大高度为( ) A .23.5m B .22.5m C .21.5m D .20.5m5. 一位篮球运动员在距离篮圈中心水平距离4 m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m 时,达到最大高度3.5 m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05 m ,在如图 (示意图)所示的平面直角坐标系中,下列说法正确的是( )A .此抛物线的解析式是y =-15x 2+3.5 B .篮圈中心的坐标是(4,3.05) C .此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2 m6. 一种包装盒的设计方法如图所示,四边形ABCD是边长为80 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四点重合于图中的点O,得到一个底面为正方形的长方体包装盒.设BE=CF=x cm,要使包装盒的侧面积最大,则x应取()A.30 B.25 C.20 D.157. (2020·绵阳)三孔桥横截面的三个孔都呈抛物线,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米.若大孔水面宽度为20米,则单个小孔的水面宽度为()A.43B.2C.13D.7米8. (2020·长沙)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p与加工煎炸的时间t(单位:分钟)近似满足函数关系式:cbtatp++=2(0a,a,b,c为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为··································································()A.3.50分钟B.4.05分钟C.3.75分钟D.4.25分钟0tP430.80.950.6二、填空题(本大题共8道小题)9. 如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF 分开.已知篱笆的总长为900 m(篱笆的厚度忽略不计),当AB=________m时,矩形ABCD的面积最大.10. (2020·天门仙桃潜江)某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为元.11. 已知一个直角三角形两直角边长的和为30,则这个直角三角形的面积最大为________.12. 某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t·为正整数....)的增大而增大,a 的取值范围应为________.13. 某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:(1)月销量y(件)与售价x(元/件)的关系满足y=-2x+400;(2)工商部门限制售价x满足70≤x≤150(计算月利润时不考虑其他成本).给出下列结论:①这种文化衫的月销量最小为100件;②这种文化衫的月销量最大为260件;③销售这种文化衫的月利润最小为2600元;④销售这种文化衫的月利润最大为9000元.其中正确的是________.(把所有正确结论的序号都填上)14. 竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.15. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B 两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.16. 如图,小明的父亲在相距2 m的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高度都是2.5 m,绳子自然下垂呈抛物线状,身高1 m的小明距较近的那棵树0.5 m时,头部刚好接触到绳子,则绳子的最低点到地面的距离为________m.三、解答题(本大题共4道小题)17. 某服装店购进一批秋衣,价格为每件30元.物价部门规定其销售价格不得高于每件60元,不得低于每件30元.(1)请求出下列各小题中日销售量y(件)与销售单价x(元/件)之间的函数关系式(写出自变量的取值范围).①y是x的一次函数,且当x=60时,y=80;x=50时,y=100.②当销售单价为30元/件时,日销售量为140件,若售价每件每提高1元,日销售量就会减少2件.③y与x的部分对应值如下表:(2)①求该服装店销售这批秋衣日获利w(元)与销售单价x(元/件)之间的函数关系式;②当销售单价为多少时,该服装店日获利最大?最大日获利是多少元?③当x取何值时,服装店日获利不少于1200元?18. 把一个足球垂直于水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米),适用公式h=20t-5t2(0≤t≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t的值;(3)若存在实数t1和t2(t1≠t2),当t=t1或t2时,足球距离地面的高度都为m(米),求m的取值范围.19. 2018·荆州为响应荆州市“创建全国文明城市”的号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18 m,另外三边由36 m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=x m,面积为y m2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160 m2,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).则丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.20. 如图,排球运动员站在O处练习发球,将球从点O正上方2米的点A处发出,把球看成点,其运行的高度y(米)与运行的水平距离x(米)满足解析式y=a(x -6)2+h.已知球网与点O的水平距离为9米,高度为2.43米,球场的边界距点O的水平距离为18米.(1)当h=2.6时,求y与x之间的函数解析式;(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,则h的取值范围是多少?人教版九年级数学22.3 实际问题与二次函数培优训练-答案一、选择题(本大题共8道小题)1. 【答案】B[解析] 由题意知,利润y和月份n之间的函数关系式为y=-n2+12n-11,∴y=-(n-6)2+25,当n=1时,y=0;当n=11时,y=0;当n=12时,y<0.故停产的月份是1月、11月和12月.故选B.2. 【答案】C[解析] 以2 m长线段所在直线为x轴,以其垂直平分线为y轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.3. 【答案】D[解析] 把y=0代入y=-112x2+23x+53,得-112x2+23x+53=0,解得x1=10,x2=-2.又∵x>0,∴x=10. 故选D.4. 【答案】C【解析】本题考查二次函数的实际应用.依题意,得h 0=1.5m ,v 0=20m/s ,∴高度h (m )与运动时间t (s )之间的关系可以近似地表示为h =-5t 2+20t +1.5=-5(t -2)2+21.5,所以某人将一个小球从距地面1.5m 的高处以20m/s 的速度竖直向上抛出,小球达到的离地面的最大高度为21.5m ,故选C.5. 【答案】A [解析] ∵抛物线的顶点坐标为(0,3.5), ∴可设抛物线的函数解析式为y =ax 2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,∴3.05=a×1.52+3.5.解得a =-15.∴y =-15x 2+3.5.可见选项A 正确.由图示知,篮圈中心的坐标是(1.5,3.05),可见选项B 错误. 由图示知,此抛物线的顶点坐标是(0,3.5),可见选项C错误.将x =-2.5代入抛物线的解析式,得y =-15×(-2.5)2+3.5=2.25,∴这次跳投时,球出手处离地面2.25 m 可见选项D 错误. 故选A.6. 【答案】C[解析] 如图,设BE =CF =x cm ,则EF =(80-2x )cm.∵△EFM 和△CFN 都是等腰直角三角形,∴MF =22EF =(40 2-2x )cm ,FN =2CF =2x cm ,∴包装盒的侧面积=4MF ·FN =4·2x (40 2-2x )=-8(x -20)2+3200, 故当x =20时,包装盒的侧面积最大.7. 【答案】B【解析】如图所示,建立平面直角坐标系.设大孔对应的函数关系式为y =ax 2+c ,过B (5,c -1.5),F (7,0),则 1.525049c a c a c-=+⎧⎨=+⎩,解得0.062.94a c =-⎧⎨=⎩,∴大孔对应的函数关系式为y =-0.06x 2+2.94.当x =10时,y =-0.06×102+2.94=-3.06,∴H (0,-3.06).设右边小孔顶点坐标为D (10,1.44),则右边小孔对应的函数关系式为y =m (x -10)2+1.44,过点G (12,0),则0= m (12-10)2+1.44,解得m =-0.36,∴右边小孔对应的函数关系式为y =-0.36(x -10)2+1.44,当y =-3.06时,-3.06=-0.36(x -10)2+1.44,解得x =,∴大孔水面宽度为20米,时单个小孔的水面宽度为B 正确.8. 【答案】C【解析】本题考查了二次函数实际应用问题,根据题意,题中的“可食用率”p 应该是最大时为最佳时间,所以先把图中三个点代入c bt at p ++=2,可得到a ,b ,c 的三元一次方程组⎪⎩⎪⎨⎧c b a c b a c b a ++=++=++=5256.04169.0398.0,解得⎪⎩⎪⎨⎧9.15.12.0=-==-c b a ,所以p 应该最大时()75.32.025.12=-=-=-⨯a b t ,因此本题选C .8道小题)AB =x m ,则AB =EF =CD =x m ,所以AD =BC =12(900的面积为y m 2,则y =x·12(900-3x)=-32x 2+450x(0<x <0,所以y 有最大值,且当x =-b2a =-4502×(-32)=故当AB =150 m 矩形ABCD 的面积最大.10. 【答案】70【解析】.设每顶头盔的售价为x元,由题意,得:w=(x-50)×[(200+ (80-x) ×20],=(x-50)×(-20x+1800)=-20x2+2800x-90000,x=-280070 2220ba-=-=-⨯,∴当销售单价定为70元时,每月可获得最大利润.因此本题答案为70.11. 【答案】225 212. 【答案】0<a≤5【解析】设未来30天每天获得的利润为y,y=(110-40-t)(20+4t)-(20+4t)a化简,得y=-4t2+(260-4a)t+1400-20a,每天缴纳电商平台推广费用后的利润随天数t(t为整数)的增大而增大,则-(260-4a)2×(-4)≥30,解得a≤5,又∵a>0,∴a的取值范围是0<a≤5.13. 【答案】①②③[解析] 由题意知,当70≤x≤150时,y=-2x+400,∵-2<0,∴y随x的增大而减小,∴当x=150时,y取得最小值,最小值为100,故①正确;当x=70时,y取得最大值,最大值为260,故②正确;设销售这种文化衫的月利润为W元,则W=(x-60)(-2x+400)=-2(x-130)2+9800,∵70≤x≤150,∴当x=70时,W取得最小值,最小值为-2(70-130)2+9800=2600,故③正确;当x=130时,W取得最大值,最大值为9800,故④错误.故答案为①②③.14. 【答案】1.6 秒【解析】本题主要考查了二次函数的对称性问题.由题意可知,各自抛出后1.1秒时到达相同最大离地高度,即到达二次函数图象的顶点处,故此二次函数图象的对称轴为t=1.1;由于两次抛小球的时间间隔为1秒,所以当第一个小球和第二个小球到达相同高度时,则这两个小球必分居对称轴左右两侧,由于高度相同,则在该时间节点上,两小球对应时间到对称轴距离相同. 故该距离为0.5秒,所以此时第一个小球抛出后t=1.1+0.5=1.6秒时与第二个小球的离地高度相同.15. 【答案】48[解析] 建立如图所示的平面直角坐标系,设AB与y轴交于点H.∵AB=36 m,∴AH=BH=18 m.由题可知:OH=7 m,CH=9 m,∴OC=9+7=16(m).设该抛物线的解析式为y=ax2+k.∵抛物线的顶点为C(0,16),∴抛物线的解析式为y=ax2+16.把(18,7)代入解析式,得7=18×18a+16,∴7=324a+16,∴a=-1 36,∴y=-136x2+16.当y=0时,0=-136x2+16,∴-136x2=-16,解得x=±24,∴E(24,0),D(-24,0),∴OE=OD=24 m,∴DE=OD+OE=24+24=48(m).16. 【答案】0.5[解析] 以抛物线的对称轴为纵轴,向上为正,以对称轴与地面的交点为坐标原点建立平面直角坐标系,则抛物线的解析式可设为y=ax2+h.由于抛物线经过点(1,2.5)和(-0.5,1),于是求得a=2,h=0.5.三、解答题(本大题共4道小题)17. 【答案】解:(1)①设y与x之间的函数关系式为y=kx+b.∵当x=60时,y=80;当x=50时,y=100,∴⎩⎨⎧80=60k +b ,100=50k +b , 解这个方程组,得⎩⎨⎧k =-2,b =200,∴y =-2x +200(30≤x ≤60).②y =140-(x -30)×2=-2x +200(30≤x ≤60).③由表格所给的信息,可猜想y 是x 的一次函数,设y =mx +n . ∵当x =35时,y =130;x =40时,y =120, ∴⎩⎨⎧130=35m +n ,120=40m +n ,解这个方程组,得⎩⎨⎧m =-2,n =200,∴y =-2x +200.当x =45时,y =-2×45+200=110; 当x =50时,y =-2×50+200=100; 当x =55时,y =-2×55+200=90, 均符合题意.∴y =-2x +200(30≤x ≤60).(2)①w =(x -30)(-2x +200)-450=-2x 2+260x -6450(30≤x ≤60). ②w =-2x 2+260x -6450=-2(x -65)2+2000. ∵30≤x ≤60,∴当x =60时,w 最大,最大值为1950.故当销售单价为60元/件时,该服装店日获利最大,最大日获利为1950元. ③∵a =-2,且对称轴为直线x =65, ∴当30≤x ≤60时,w 随x 的增大而增大.由-2(x -65)2+2000=1200,解得x 1=85(舍去),x 2=45, ∴当45≤x ≤60时,服装店日获利不少于1200元.18. 【答案】解:(1)当t =3时,h =20t -5t 2=20×3-5×9=15(米), ∴此时足球距离地面的高度为15米.(2分) (2)∵h =10,∴20t-5t2=10,即t2-4t+2=0,解得t1=2+2,t2=2-2,∴经过2+2或2- 2 秒时,足球距离地面的高度为10米.(4分)(3)∵m≥0,由题意得t1和t2是方程20t-5t2=m的两个不相等的实数根,∴b2-4ac=(-20)2-20m>0,∴m<20,∴m的取值范围是0≤m<20.(8分)19. 【答案】解:(1)y=-2x2+36x(9≤x<18).(2)由题意得-2x2+36x=160,解得x1=10,x2=8(不符合题意,舍去).∴x的值为10.(3)∵y=-2x2+36x=-2(x-9)2+162,∴x=9时,y有最大值162.设购买乙种绿色植物a棵,购买丙种绿色植物b棵,由题意得14(400-a-b)+16a+28b=8600,∴a+7b=1500,∴b的最大值为214,即丙种植物最多可以购买214棵,此时a=2,需要种植的面积=0.4×(400-214-2)+1×2+0.4×214=161.2(m2)<162 m2,∴这批植物可以全部栽种到这块空地上.20. 【答案】解:(1)当h=2.6时,y=a(x-6)2+2.6.因为点A(0,2)在抛物线上,所以2=a(0-6)2+2.6,解得a=-1 60,所以y与x之间的函数解析式为y=-160(x-6)2+2.6.(2)球能越过球网且会出界.理由:当x=9时,y=-160(9-6)2+2.6=2.45>2.43,所以球能越过球网;。
人教版九年级上册数学 22.2--- 22.3:同步练习题
人教版九年级上册数学 22.2--- 22.3:同步练习题22.2 二次函数与一元二次方程一.选择题1.已知直线l经过点(0,6)且平行于x轴,抛物线y=ax2+c(a≠0)与直线l相交于点A,B,与y轴交于点C(0,﹣2),且∠ACB为直角,则当y<0时,自变量x的取值范围是()A.﹣4<x<4 B.x>4 C.x<﹣4 D.﹣2<x<42.若二次函数y=ax2+bx﹣1的最小值为﹣2,则方程|ax2+bx﹣1|=2的不相同实数根的个数是()A.2 B.3 C.4 D.53.关于x的二次函数y=﹣2x2+4x+m2+2m,下列说法正确的是()A.该二次函数的图象与x轴始终有两个交点 B.当x>0时,y随x的增大而增大C.当该二次函数的图象经过原点时,m=﹣2 D.该二次函数的顶点的纵坐标无最小值4.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0) D.(2,0)5.已知二次函数y=﹣x2+2x+4,则下列关于这个函数图象和性质的说法,正确的是()A.图象的开口向上 B.图象的顶点坐标是(1,3)C.当x<1时,y随x的增大而增大 D.图象与x轴有唯一交点6.如图,一段抛物线:y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3…如此变换进行下去,若点P(21,m)在这种连续变换的图象上,则m的值为()A.2 B.﹣2 C.﹣3 D.37.对于函数y=x2﹣2|x|﹣3,下列说法正确的有()个①图象关于y轴对称;②有最小值﹣4;③当方程x2﹣2|x|﹣3=m有两个不相等的实数根时,m>﹣3;④直线y=x+b与y=x2﹣2|x|﹣3的图象有三个交点时,﹣<b≤﹣3.A.1 B.2 C.3 D.48.函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.以下结论正确的是()①abc>0;②函数y=ax2+bx+c(a≠0)在x=1和x=﹣2处的函数值相等;③函数y=kx+1的图象与y =ax2+bx+c(a≠0)的函数图象总有两个不同交点;④函数y=ax2+bx+c(a≠0)在﹣3≤x≤3内既有最大值又有最小值.A.①③B.①②③C.①④D.②③④9.已知y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=2.若x1,x2是一元二次方程ax2+bx+c =0(a≠0)的两个根,且x1<x2,﹣1<x1<0,则下列说法正确的是()A.x1+x2<0 B.4<x2<5 C.b2﹣4ac<0 D.ab>010.如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴的正半轴交于点C,顶点为D,则下列结论:①2a+b=0;②2c<3b;③当△ABC是等腰三角形时,a的值有2个;④当△BCD是直角三角形时,a=﹣.其中正确的有()A.1个B.2个C.3个D.4个11.关于二次函数y=x2﹣6x+a+27,下列说法错误的是()A.若将图象向上平移10个单位,再向左平移2个单位后过点(4,5),则a=﹣5B.当x=12时,y有最小值a﹣9C.x=2对应的函数值比最小值大7D.当a<0时,图象与x轴有两个不同的交点12.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A.ab<0 B.一元二次方程ax2+bx+c=0的正实数根在2和3之间C.a= D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>时,y1<y2二.解答题13.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和B(3,0),与y轴交于点C.(I)求二次函数的表达式.(2)求二次函数图象的顶点坐标和对称轴.14.如图,抛物线与x轴交于点A(﹣1,0)与点B(3,0),与y轴交于点C(0,3),P为抛物线上的点.(1)求该抛物线的函数解析式.(2)若△PAB的面积为,求P点的坐标.15.如图,抛物线y=x2+bx﹣3与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点M是对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.22.3实际问题与二次函数一.选择题1.当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.1 B.2 C.1或2 D.0或32.如图,已知二次函数y=(x+1)2﹣4,当﹣2≤x≤2时,则函数y的最小值和最大值()A.﹣3和5 B.﹣4和5 C.﹣4和﹣3 D.﹣1和53.二次函数y=﹣x2+2x﹣5有()A.最大值﹣5 B.最小值﹣5 C.最大值﹣4 D.最小值﹣44.设函数y=﹣x2+2ax﹣1在﹣1≤x≤1的范围内的最大值记为n,下列说法错误的是()A.当a≤﹣1时,n=﹣2a﹣2 B.当﹣1≤a≤1时,n=a2﹣1C.当a≥1时,n=2a﹣2 D.n的最小值为05.若min{a,b,c}表示a,b,c三个数中的最小值,当y=min{x2,x+2,8﹣x}(x≥0)时,则y的最大值是()A.4 B.5 C.6 D.76.如图,抛物线y=x+2交x轴于点A,B,交y轴于点C,当△ABC纸片上的点C沿着此抛物线运动时,则△ABC纸片随之也跟着水平移动,设纸片上BC的中点M坐标为(m,n),在此运动过程中,n 与m的关系式是()A.n=(m﹣)2﹣B.n=(m﹣)2C.n=(m﹣)2﹣D.n=(m﹣)2﹣7.国家决定对某药品分两次降价,若设平均每次降价的百分比为x,该药品的原价为33元,降价后的价格为y元,则y与x之间的函数关系为()A.y=66(1﹣x)B.y=33(1﹣x)C.y=33(1﹣x2)D.y=33(1﹣x)28.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m.已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线表达式是y=﹣(x﹣6)2+4.则选取点B为坐标原点时的抛物线表达式是()A.y=(x+6)2+4 B.y=﹣(x+6)2+4C.y=(x+6)2﹣4 D.y=﹣(x+6)2﹣49.巴人广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管最大高度为3米,此时喷水水平距离为米,在如图所示的坐标系中,这支喷泉的函数关系式是()A. B.C. D.10.如图1,是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作抛物线,在如图2所示的平面直角坐标系中,已知运动员垫球时(图中点A)离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B)越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点C)距球网的水平距离为2.5米,则排球运动路线的函数表达式为()A.y=﹣x2﹣x+B.y=﹣x2+x+C.y=x2﹣x+D.y=x2+x+二.填空题11.已知直角三角形的两条直角边的和等于12,则该直角三角形面积的最大值是.12.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为.13.在△ABC中,∠A,∠B所对的边分别为a,b,∠C=30°.若二次函数y=(a+b)x2+(a+b)x﹣(a ﹣b)的最小值为﹣,则∠A=.14.合肥市2018年平均房价为6500元/m2.若2019年和2020年房价平均增长率为x,则预计2020年的平均房价y(元/m2)与x之间的函数关系式为.15.某宾馆有40个房间供游客居住,当每个房间每天的定价为160元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.设每间每天房价定为x元,宾馆每天利润为y元,则y与x的函数关系式为.三.解答题16.如图,在平面直角坐标系中,点A,B是一次函数y=x图象上两点,它们的横坐标分别为a,a+3,其中a>0,过点A,B分别作y轴的平行线,交抛物线y=x2﹣4x+8于点C,D.(1)若AD=BC,求a的值;(2)点E是抛物线上的一点,求△ABE面积的最小值.17.如图,四边形的对角线AC、BD互相垂直,AC+BD=10,当AC、BD的长是多少时,四边形ABCD的面积最大?18.如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向点B以2mm/s的速度移动,动点Q从点B开始沿边BC向点C以4mm/s的速度移动.如果P、Q两点分别A、B两点同时出发,那么△PBQ的面积S随出发时间t如何变化?(1)写出S关于t的函数解析式及t的取值范围;(2)当t取何值时,△PBQ的面积S有最大值.19.某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.20.某厂生产某种零件,该厂为鼓励销售商订货,提供了如下信息:①每个零件的成本价为40元;②若订购量不超过100个,出厂价为60元;若订购量超过100个时,每多订1个,订购的全部零件的出厂单价就降低0.02元;③实际出厂单价不能低于51元.根据以上信息,解答下列问题:(1)当一次订购量为个时,零件的实际出厂单价降为51元.(2)设一次订购量为x个时,零件的实际出厂单价为P元,写出P与x的函数表达式.(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂价﹣成本).。
人教版初中数学九年级上册《课本习题参考答案》第九页-六六页
第14页练习答案练习第1题答案练习第2题答案第16页练习答案练习题答案第22章习题22.1第1题答案解:设宽为x,面积为y,则y=2x2习题22.1第2题答案y=2(1-x)2习题22.1第3题答案列表:描点、连线,如下图所示:习题22.1第4题答案解:抛物线y=5x2的开口向上,对称轴是y轴,顶点坐标是(0,0)抛物线y= -1/5x2的开口向下,对称轴是y轴,顶点坐标是(0,0)习题22.1第5题答案提示:图像略(1)对称轴都是y轴,顶点依次是(0,3)(0, -2)(2)对称轴依次是x=-2,x=1,顶点依次是(-2,-2)(1,2)习题22.1第6题答案(1)∵a=-3,b=12,c=-3∴-b/2a=-12/(2×(-3))=2,(4ac-b2)/4a=(4×(-3)×(-3)-122)/(4×(-3))=9∴抛物线y=-3x2+12x-3的开口向下,对称轴为直线x=2,顶点坐标是(2,9)(2)∵a=4,b=-24,c=26∴- b/2a=-(-24)/(2×4)=3, (4ac-b2)/4a=(4×4×26-(-24)2)/(4×4)=-10∴抛物线y=4x2 - 24x+26的开口向上,对称轴为直线x=3,顶点坐标是(3, -10)(3)∵a=2,b=8,c=-6∴- b/2a=-8/(2×2)=-2, (4ac-b2)/4a= (4×2×(-6)-82)/(4×2)= -14∴抛物线y=2x2 +8x-6的开口向上,对称轴是x=-2,顶点坐标为(-2,-14)(4)∵a=1/2,b =-2,c=-1∴- b/2a=-(-2)/(2×1/2)=2, (4ac-b2)/4a=(4×1/2×(-1)- (-2)2)/(4×1/2)=-3∴抛物线y=1/2x2-2x-1的开口向上,对称轴是x=2,顶点坐标是(2, -3).图略习题22.1第7题答案(1)-1;-1(2)1/4;1/4习题22.1第8题答案解:由题意,可知S=1/2×(12-2t)×4t=4t(6-t)∴S=-4t2+24t,即△PBQ的面积S与出发时间t之间的关系式是S=-4t2+24t又∵线段的长度只能为正数∴∴0<t<6,即自变量t的取值范围是0<t<6习题22.1第9题答案解:∵s=9t+1/2t2∴当t=12时,s=9×12+1/2×122=180,即经过12s汽车行驶了180m当s=380时,380=9t+1/2t2∴t1=20,t2=-38(不合题意,舍去),即行驶380m需要20s习题22.1第10题答案(1)抛物线的对称轴为(-1+1)/2=0,设该抛物线的解析式为y=ax2+k(a≠0)将点(1,3)(2,6)代入得∴函数解析式为y=x2+2(2)设函数解析式为y=a x2+bx+c(a≠0),将点(-1,-1)(0,-2)(1,1)代入得∴函数解析式为y=2x2+x-2(3)设函数解析式为y=a(x+1)(x-3) (a≠0),将点(1,-5)代入,得-5=a(1+1)(1-3)解得a=5/4∴函数解析式为y=5/4(x+1)(x-3),即y=5/4x2-5/2x-15/4(4)设函数解析式为y=a x2+ bx+c(a≠0),将点(1,2)(3,0)(-2,20)代入得∴函数解析式为y=x2-5x+6习题22.1第11题答案解:把(-1,-22)(0,-8)(2,8)分别代入y=a x2+bx+c,得a=-2,b=12, c=-8所以抛物线的解析式为y=-2x2+12x-8将解析式配方,得y=-2(x-3)2+10又a=-2<0所以抛物线的开口向下,对称轴为直线x=3,顶点坐标为(3,10)习题22.1第12题答案(1)由已知vt=v0+at=0+1.5t=1.5t,s=vt=(v0+vt)/2t=1.5t/2t=3/4t2,即s=3/4t2(2)把s=3代入s=3/4t2中,得t=2(t=-2舍去),即钢球从斜面顶端滚到底端用2s第29页练习答案练习第1题答案练习第2题答案习题22.2第1题答案(1)图像如下图所示:(2)有图像可知,当x=1或x=3时,函数值为0习题22.2第2题答案(1)如下图(1)所示:方程x2-3x+2=0的解是x1=1,x2=2(2)如下图所示:方程-x2-6x-9=0的解是x1=x2=-3习题22.2第3题答案(1)如下图所示:(2)由图像可知,铅球推出的距离是10m习题22.2第4题答案解法1:由抛物线的轴对称性可知抛物线的对称轴是直线x=(-1+3)/2=1 解法2:设抛物线的解析式为y=a(x+1)(x-3),即y=ax2-2ax-3a,∴x=-(-2a)/2a=1,即这条抛物线的对称轴是直线x=1习题22.2第5题答案提示:图像略(1)x1=3,x2=-1(2)x<-1或x>3(3)-1<x<3习题22.2第6题答案提示:(1)第三或第四象限或y轴负半轴上(2)x轴上(3)第一或第二象限或y轴正半轴上,当a<0时(1)第一或第二象限或y轴正半轴上(2)x轴上(3)第三或第四象限或y轴负半轴上第32页练习答案练习题答案习题22.3第1题答案(1)∵a=-4<0∴抛物线有最高点∵x=-3/[2×(-4)]=3/8,y=[4×(-4)×0-32]/[2×(-4)]=9/16∴抛物线最高点的坐标为(3/8,9/16)(2)∵a=3>0∴抛物线有最低点∵x=-1/(2×3)=-1/6,y=(4×3×6-12)/(4×3)=71/12∴抛物线最低点的坐标为(-1/6,71/12)习题22.3第2题答案解:设所获总利润为y元.由题意,可知y=(x-30)(100-x),即y=-x2+130x-3000 =-(x-65)2+1225∴当x=65时,y有最大值,最大值是1225,即以每件65元定价才能使所获利润最大习题22.3第3题答案解:s=60t-1.5t2=-1.5(t2-40t+400)+1.5×400=-1.5(t-20)2+600∴当t=20时,s取最大值,且最大值是600,即飞行着陆后滑行600m才能停下来习题22.3第4题答案解:设一条直角边长是x,那么另一条直角边长是8-x设面积为y,则y=1/2x•(8-x),即y=-(1/2)x2+4x对称轴为直线x=-b/2a=-4/(2×(-1/2))=4当x=4时,8-x=4,ymax=8∴当两条直角边长都为4时,面积有最大值8习题22.3第5题答案解:设AC的长为x,四边形ABCD 的面积为y.由题意,可知y=1/2AC•BD ∴y= 1/2 x(10-x), 即y=-1/2x2+5x=-1/2(x-5)2+25/2∴当x=5时,y有最大值,y最大值=25/2此时,10-x=10-5=5,故当AC=BD=5时,四边形ABCD的面积最大,最大面积为25/2习题22.3第6题答案解:∵∠A=30°,∠C=90°,且四边形CDEF是矩形∴FE//BC,ED//AC∴∠DEB=30°在Rt△AFE中,FE=1/2AE在Rt△EDB中,BD=1/2EB,设AE=x,则FE=1/2x令矩形CDEF的面积为S,则S=FE•ED= 1/2 x •/2(12-x)=/4(12x- x2)∴当x=6时,S最大值=9,此时AE=6,EB=12-x=6∴AE=EB,即点E是AB的中点时,剪出的矩形CDEF面积最大习题22.3第7题答案解:设AE=x,AB=a,正方形EFGH的面积为S,由正方形的性质可知AE=DH,即AH=a-x在Rt△AEH中:HE2=AH2+AE2=(a-x)2+x2=2x2-2ax+a2=2(x-1/2 a) 2+1/2a2∴当x=1/2a时,S有最小值,且S最小值=1/2a2,此时AE=1/2a,EB=1/2a,即点E是AB边的中点∴当点E是AB边的中点时,正方形EFGH的面积最小习题22.3第8题答案解:设房价定为每间每天增加x元,宾馆利润为y元由题意可知,y=(180+x-20)(50-x/10)=-1/10x2+34x+8000=-1/10(x-170)2+10890∴当x=170时,y取最大值,且y最大值=10890,此时180+x=350(元)∴房间每天每间定价为350元时,宾馆利润最大习题22.3第9题答案解:用定长为L的线段围成矩形时,设矩形的一边长为x则S矩形=x•(1/2L-x)=-x2+1/2 Lx=-(x-1/4L)2+1/16L2,当x=1/4 L时,S最大值=1/16L2用定长为L的线段围成圆时,设圆的半径为R,则2R=L,S圆=R2=(L/2)2=L2/4ᅲ∵1/16L2=/16L2,L2/4=4/16L2,且π<4∴1/16L2<L2/4∴S矩形<S圆∴用定长为L的线段围成圆的面积大第33页练习答案练习题答案复习题第1题答案解:由题意可知,y=(4+x)(4-x)= -x2+16,即y与x之间的关系式是y=-x2+16 复习题第2题答案解:由题意可知,y=5000(1+x)2=5000x2+10000x+5000,即y与x之间的函数关系式为:y=5000x2+10000x+5000复习题第3题答案D(1)∵a=1>0∴抛物线开口向上又∵x=-2/(2×1)=-1,y=(4×1×(-3)-22)/(4×1)=-4∴抛物线的对称轴是直线x=-1,顶点坐标是(-1,-4).图略(2)∵a=-1<0∴抛物线开口向下又∵x=-6/(2×(-1))=3,y=(4×(-1)×1-62)/(4×(-1))=10∴抛物线的对称轴是直线x=3,顶点坐标是(3,10).图略(3)∵a=1/2>0∴抛物线开口向上又∵x=-2/(2×1/2)=-2, y= (4×1/2×1-22)/(4×1/2)=-1∴抛物线的对称轴是直线x=-2,顶点坐标是(-2,-1).图略(4)∵a=-1/4<0∴抛物线开口向下又∵x=-1/(2×(-1/4))=2,y=(4×(-1/4)×(-4)-12)/(4×(-1/4))=-3 ∴抛物线的对称轴是直线x=2,顶点坐标是(2, -3).图略解:∵s=15t-6t2∴当t=-15/(2×(-6))=5/4时,s最大值=(4×(-6)×0-152)/(4×(-6))=75/8,即汽车刹车后到停下来前进了75/8m复习题第6题答案(1)分别把(-3,2),(-1,-1),(1,3)代入y=ax2+bx+c得a=7/8,b=2,c=1/8所以二次函数的解析式为y=7/8x2+2x+1/8(2)设二次函数的解析式为y=a(x+1/2)(x-3/2)把(0, -5)代入,得a=20/3所以二次函数的解析式为y=20/3x2-20/3 x-5复习题第7题答案解:设垂直于墙的矩形一边长为xm,则平行于墙的矩形的另一边长为(30-2x)m设矩形的面积为ym2,则y=x(30-2x)=-2x2+30x=-2(x-15/2)2+112.5 ∴当x=15/2时,y有最大值,最大值为112.5,此时30-2x=15∴当菜园垂直于墙的一边长为15/2m,平行于墙的另一边长为15m时,面积最大,最大面积为112.5m2复习题第8题答案解:设矩形的长为x cm,则宽为(18-x)cm,S侧=2x•(18-x)=-2x2+36x=-2(x-9)2+162当x=9时,圆柱的侧面积最大,此时18-x=18-9=9当矩形的长与宽都为9cm时旋转形成的圆柱的侧面积最大复习题第9题答案(1)证明:∵四边形ABCD是菱形∴AB=BC=CD=AD又∵BE=BF=DG=DH∴AH=AE=CG=CF∴∠AHE∠AEH,∠A+∠AEH+∠AHE=180,∠A+2∠AHE=180〬又∵∠A+∠D=180〬∴∠D=2∠AHE,同理可得∠A=2∠DHG∴2∠AHE+2∠DHG=180〬∴∠AHE+∠DHG=90〬∴∠EHG=90〬,同理可得∠HGF=∠GFE=90〬∴四边形EFGH是矩形(2)解:连接BD交EF于点K,如图7所示,设BE的长为x,BD=AB=a∴四边形ABCD为菱形,∠A=60〬∴∠EBK=60〬,∠KEB=30〬在Rt△BKE中,BE=x,则BK=1/2x,EK=/2xS矩形EFGH=EF•FG=2EK•(BD-2BK)=2×/2 x(a-2×1/2x)=x(a-x)=-(x2-ax)=-(x2-ax+a2/4-a2/4)=-(x-a/2)2+/4a2当x=a/2时,即BE=a/2时,矩形EFGH的面积最大第35页练习答案第37页练习答案第39页练习答案第40页练习答案练习第1题答案练习第2题答案第23章习题23.1第1题答案(1)如下图所示:(2)如下图所示:(3)如下图所示:(4)如下图所示:习题23.1第2题答案解:如下图所示,旋转中心为O点,旋转角为OA所转的角度习题23.1第3题答案解:如下图所示:习题23.1第4题答案解:旋转图形分别为△A₁B₁C₁,△A₂B₂C₂,如下图所示:习题23.1第5题答案(1)旋转中心为O₁点,旋转角为60〬,如下图所示:(2)旋转中心为O₂点,旋转角为90〬,如下图所示:习题23.1第6题答案提示:旋转角就是以旋转中心为顶点的周角被均匀地等分问题(360〬÷5=72〬,360〬÷3=120〬)解:(1)旋转角为72°,114°,216°,288°,360°时,旋转后的五角星与自身重合(2)等边三角形绕中心点O旋转120〬,240〬,360〬时与自身重合习题23.1第7题答案风车图案由四个全等的基本图形构成,可由其中一个基本图形绕中心旋转90〬,180〬,270〬得到习题23.1第8题答案提示:旋转中心在等腰三角形的外部解:五角星中间的点为旋转中心,旋转角为72〬,114〬,216〬,288〬习题23.1第9题答案(1)如下图所示:(2)∵BC=3,AC=4,∠C=90〬习题23.1第10题答案提示:线段BE与DC在形状完全相同的两个三角形中,可考虑旋转变换,点A是两个三角形的公共点,因此点A是旋转中心解:BE=DC,理由如下:因为△ABD与△ACE都是等边三角形所以AE=AC, AB=AD,∠DAB=∠CAE=60〬所以∠DAB+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE所以△BAE绕点A顺时针旋转60〬时,BA与DA重合,AE与AC重合,则△BAE 与△DAC完全重合所以BE=DC第59页练习答案练习第1题答案练习第2题答案练习第3题答案习题23.2第1题答案如下图所示:习题23.2第2题答案解:依题可知,是中心对称图形的有:禁止标志、风轮叶片、正方形、正六边形它们的对称中心分别是圆心,叶片的轴心,正方形对角线的交点,正六边形任意两条最长的对角线的交点习题23.2第3题答案如下图所示,四边形ABCD关于原点O对称的四边形为A\\\\\\\'B\\\\\\\'C\\\\\\\'D\\\\\\\'习题23.2第4题答案解:∵A(a,1)与A\\\\\\\'(5,b)关于原点O对称习题23.2第5题答案解:依题意可知此图形时中心对称图形,对称中心是O₁O₂的中点习题23.2第6题答案解:如下图所示,做出△ABC以BC的中点O为旋转中心旋转180〬°后的图形△DCB,则四边形ABCD即为以AC,AB为一组邻边的平行四边形习题23.2第7题答案解:如下图(1)中的△DCE是由△ACB以C为旋转中心,顺时针旋转90〬得到的.在下图(2)中,先以AC为对称轴作△ABC的轴对称图形△AFC,再把△AFC以C为旋转中心,逆时针旋转90〬,即可得到△DCE习题23.2第8题答案解:依题意知这两个梯形是全等的因为菱形是以它的对角线的交点为对称中心的中心对称图形根据中心对称的性质过对称中心的任意一条直线都将图形分成两个全等的图形所以它们全等习题23.2第9题答案不一定当两个全等的梯形的上底与下底之和等于它的一条腰长的时候,这两个全等的梯形可以拼成一个菱形,其他情况不行习题23.2第10题答案解:如下图所示:连接BE,DF,EF,BD,AC,BD与EF交于点O∵四边形ABCD是平行四边形∴AD//BC,AD=BC∴∠1=∠2∵△ADE是等边三角形∴DE=AD,∠3=60〬∵△BCF为等边三角形∴BC=BF,∠4=60〬∴DE=BF∴∠1+∠3=∠2+∠4,即∠BDE=∠DBF∴DE//BF∴四边形BEDF为平行四边形∴BD与EF互相平分于点O又∵四边形BEDF为平行四边形∴BD与AC互相平分于点O,即OD=OB,OE=OF,OA=OC ∴△ADE和△BCF成中心对称第61页练习答案练习第2题答案练习第3题答案复习题第1题答案如下图所示:复习题第2题答案解:图(2)是由图(1)这个基本图案绕着图案的中心旋转90〬,180〬, 270〬后与原图形所形成的复习题第3题答案解:图中这4个图形都是中心对称图形,其对称中心为O点,如下图所示:复习题第4题答案如下图所示:解:依题意可知△EBC可以看做是△DAC以点C为旋转中心、逆时针旋转60〬°得到的复习题第6题答案解:依题意可知:右边倾斜的树以其根部为旋转中心,旋转一定的角度使树成直立的状态,再以与树干平行的一条直线为对称轴作树的对称图形,即可得到左边直立的树复习题第7题答案解:矩形FABE,菱形EBCD都为中心对称图形,过对称中心的任意一条直线,都可将图形分成面积相等的两部分如下图所示,直线MN可把这张纸分成面积相等的两部分复习题第8题答案解:当梯形是下底角为60〬且上底等于腰长的等腰梯形时,可以经过旋转和轴对称形成题中图(2)的图案第62页练习答案练习题答案第66页练习答案练习第1题答案练习第2题答案。
最新人教版九年级数学上册第22章同步测试题及答案
最新人教版九年级数学上册第22章同步测试题及答案第二十二章二次函数22.1二次函数的图象和性质一、选择题1. 二次函数的图象一定不经过A. 第一象限B. 第二象限C. 第三象限D. 第四象限.2. 抛物线的顶点坐标是A. ,B. ,C. ,D. ,3. 已知抛物线,是常数且,下列选项中可能是它大致图象的是A. B.C. D.4. 下列函数中,y的值随着x逐渐增大而减小的是A. B. C. D.5. 将抛物线向下平移2个单位后,所得抛物线解析式为A. B. C. D.6. 如果抛物线经过点,和,,那么对称轴是直线A. B. C. D.7. 函数是二次函数时,则a的值是A. 1B.C.D. 08. 将抛物线先向左平移1个单位,再向上平移4个单位后,与抛物线重合,现有一直线与抛物线相交,当时,利用图象写出此时x的取值范围是A. B. C. D.9. 将抛物线向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为A. B. C. D.10. 小明将图中两水平线与的其中一条当成x轴,且向右为正方向;两铅垂线与的其中一条当成y 轴,且向上为正方向,并且在此平面直角坐标系上画出二次函数的图象,则关于他选择x 轴与y轴的叙述正确的是A. 为x轴,为y轴B. 为x轴,为y轴C. 为x轴,为y轴D. 为x轴,为y轴二、解答题11. 已知:抛物线经过,、,两点,顶点为A.求:抛物线的表达式;顶点A的坐标.12. 已知抛物线.求这个抛物线的对称轴和顶点坐标;将这个抛物线平移,使顶点移到点,的位置,写出所得新抛物线的表达式和平移的过程.13. 在平面直角坐标系xOy中如图,已知抛物线,经过点,、,.求此抛物线顶点C的坐标;联结AC交y轴于点D,联结BD、BC,过点C作,垂足为点H,抛物线对称轴交x轴于G,联结HG,求HG的长.14. 如图,在平面直角坐标系中,抛物线与y轴交于点,,与x轴交于点,,点B坐标为,.求二次函数解析式及顶点坐标;过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点点P在AC上方,作PD平行于y 轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积.答案一、选择题1. 【答案】A【解析】∵二次函数y=ax2-2x-3(a<0)的对称轴为直线x,∴其顶点坐标在第二或第三象限.∵当x=0时,y=-3,∴抛物线一定经过第四象限,∴此函数的图像一定不经过第一象限.故选A.2. 【答案】C【解析】根据抛物线的顶点式:y=a(x-h)2+k,(a≠0),则抛物线的顶点坐标为(h,k)可得:抛物线y=-(x+1)2+3的顶点坐标为(-1,3),所以C选项的结论正确.故选C.【点睛】抛物线的顶点式:y=a(x-h)2+k,(a≠0),则抛物线的顶点坐标为(h,k).3. 【答案】B【解析】∵抛物线y=ax2+3x+(a-2),a是常数且a<0,∴图象开口向下,a-2<0,∴图象与y轴交于负半轴,∵a<0,b=3,∴抛物线对称轴在y轴右侧.故选B.4. 【答案】D【解析】A选项:函数y=2x的图象是y随着x增大而增大,故本选项错误;B选项:函数函数y=x2的对称轴为x=0,当x≤0时y随着x增大而减小,故本选项错误;C选项:函数,当x<0或x>0时,y 随着x增大而增大,故本选项错误;D选项:函数,当x>0时,y随着x增大而减小,故本选项错误;故选D.5. 【答案】D【解析】抛物线y=(x+2)2的顶点坐标为(-2,0),向下平移2个单位后的顶点坐标是(-2,-2),所以,平移后得到的抛物线解析式为y=(x+2)2-2.故选D.【点睛】本题考查了二次函数图象与几何变换,利用顶点的变换确定出函数解析式是此类题目常用的方法,一定要熟练掌握并灵活运用,平移规律“左加右减,上加下减”.6. 【答案】B【解析】∵抛物线y=ax2+bx+c与x轴两交点的坐标为(-1,0)和(3,0),而抛物线y=ax2+bx+c与x轴两交点是对称点,∴抛物线的对称轴为直线x=1.故选B.【点睛】本题考查了二次函数的图象的性质:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=-;抛物线与y轴的交点坐标为(0,c);当b2-4ac>0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac<0,抛物线与x轴没有交点.7. 【答案】B【解析】依题意,得a2+1=2且a-1≠0,解得a=-1.故选B.8. 【答案】C【解析】y1=x2-2x-3=(x-1)2-4,则它的顶点坐标为(1,-4),所以抛物线y1=x2-2x-3先向左平移1个单位,再向上平移4个单位后的解析式为y=x2,解方程组==得==或 ,所以当-1≤x≤3.故选C.9.【答案】D【解析】因为y=x2-4x-4=(x-2)2-8,所以抛物线y=x2-4x-4的顶点坐标为(2,-8),把点(2,-8)向左平移3个单位,再向上平移5个单位所得对应点的坐标为(-1,-3),所以平移后的抛物线的函数表达式为y=(x+1)2-3.故选D.10. 【答案】D【解析】y=-x2-2x+1=-(x+1)2+2,故抛物线的对称轴为:直线x=-1,顶点坐标为:(-1,2),则关于他选择x轴与y轴的叙述正确的是:l2为x轴,l4为y轴.故选D.【点睛】此题主要考查了二次函数的图象,正确求出二次函数的对称轴与顶点坐标是解题关键.二、解答题11. 【答案】(1)(2),【解析】(1)直接把B(3,0)、C(0,3)代入y=-x2+bx+c得到关于b、c的方程组,解方程组求出b、c,可确定抛物线的解析式;(2)把(1)的解析式进行配方可得到顶点式,然后写出顶点坐标即可.解:把,、,代入,解得.故抛物线的解析式为;(2)=,所以顶点A的坐标为,.12.【答案】(1) 对称轴是直线,顶点坐标为,;(2) 平移过程为:向右平移3个单位,向下平移3个单位【解析】(1)将抛物线整理成顶点式形式,然后解答即可;(2)根据向右平移横坐标加,向下平移纵坐标减解答.解:,,,所以,对称轴是直线,顶点坐标为,;新顶点,,,,,平移过程为:向右平移3个单位,向下平移3个单位.13. 【答案】(1), (2).【解析】(1)已知抛物线过A,B两点,可将A,B的坐标代入抛物线的解析式中用待定系数法即可求出抛物线的解析式.然后可根据抛物线的解析式得出顶点C的坐标.(2)本题介绍三种解法:方法一:分别求直线AC的解析式和BD的解析式,直线AC:y=-x-1,直线BD:y=x-1,可得D和P的坐标,证明△BPG∽△CPH 和△HPG∽△CPB,列比例式可得HG的长;方法二:如图2,过点H作HM⊥CG于M,先根据勾股定理的逆定理证明∠BCD=90°,利用面积法求CH的长,再证明△OBD∽△MCH,列比例式可得CM的长,从而可得结论;方法三:直线AC:y=-x-1,求CH和BD的解析式,联立方程组可得H的坐标,由勾股定理可得GH的长.解:把,、,代入抛物线解析式,得:,解得:,抛物线的解析式为:,顶点,方法一:设BD与CG相交于点P,设直线AC的解析式为:把,和,代入得:解得:则直线AC:,,,同理可得直线BD:,,,∽,∽,,,;方法二:如图2,过点H作于M,,,,,,,,,∽,,,,,由勾股定理得:,方法三:直线AC:,,,直线BD:,,,直线CH:,联立解析式:,解得:,,.14. 【答案】(1), (2),【解析】(1)用待定系数法求抛物线解析式,并利用配方法求顶点坐标;(2)先求出直线AB解析式,设出点P坐标(x,-x2+4x+5),建立函数关系式S四边形APCD=-2x2+10x,根据二次函数求出极值;可得P的坐标.解:把点,,点B坐标为,代入抛物线中,得:,解得:,抛物线的解析式为:,顶点坐标为,;设直线AB的解析式为:,,,,,,解得:,直线AB的解析式为:,设,,则,,,点C在抛物线上,且纵坐标为5,,,,,四边形,有最大值,当时,S有最大值为,此时,【点睛】本题是二次函数综合题,主要考查了待定系数法求函数关系式,函数极值额确定方法,平行四边形的性质和判定,解本题的关键是建立函数关系式求极值.22.2二次函数与一元二次方程一、选择题1. 下列命题:若,则;若,则一元二次方程有两个不相等的实数根;若,则一元二次方程有两个不相等的实数根;若,则二次函数的图象与坐标轴的公共点的个数是2或3.其中正确的是A. 只有B. 只有C. 只有D. 只有2. 二次函数的图象如图所示,若一元二次方程有实数根,则m的取值范围是A. B. C. D.3. 已知二次函数的图象上部分点的横坐标x与纵坐标y的对应值如下表:A. 开口向上B. 与x轴的另一个交点是,C. 与y轴交于负半轴D. 在直线的左侧部分是下降的4. 在平面直角坐标系xOy中,开口向下的抛物线的一部分图象如图所示,它与x轴交于,,与y轴交于点B,,则a的取值范围是A. B. C. D.5. 二次函数的图象如图所示,那么一元二次方程,为常数且的两根之和为A. 1B. 2C. -1D. -26. 已知二次函数,当自变量x取m时对应的值大于0,当自变量x分别取、时对应的函数值为、,则、必须满足A. 、B. 、C. 、D. 、7. 如图,教师在小黑板上出示一道题,小华答:过点,;小彬答:过点,;小明答:;小颖答:抛物线被x轴截得的线段长为你认为四人的回答中,正确的有A. 1个B. 2个C. 3个D. 4个8. 已知函数,其中、为常数,且,若方程的两个根为、,且,则、、、的大小关系为A. B.C. D.9. 抛物线的顶点为,,与x轴的一个交点A在点,和,之间,其部分图象如图,其中错误的结论为A. 方程的根为B.C. D.10. 已知抛物线的对称轴为,若关于x的一元二次方程在的范围内有解,则c的取值范围是A. B. C. D.二、解答题11. 抛物线经过点,、,两点.(1)求抛物线顶点D的坐标;(2)抛物线与x轴的另一交点为A,求的面积.12. 在平面直角坐标系xOy中(如图),已知抛物线,经过点,、,.(1)求此抛物线顶点C的坐标;(2)联结AC交y轴于点D,联结BD、BC,过点C作,垂足为点H,抛物线对称轴交x轴于G,联结HG,求HG的长.13. 已知抛物线的对称轴是直线,(1)求证:;(2)若关于x的方程,有一个根为4,求方程的另一个根.14. 抛物线与y轴交于点,.(1)求抛物线的解析式;(2)求抛物线与坐标轴的交点坐标;(3)①当x取什么值时,?当x取什么值时,y的值随x的增大而减小?15. 如图,在平面直角坐标系中,点A是抛物线与x轴正半轴的交点,点B在抛物线上,其横坐标为2,直线AB与y轴交于点点M、P在线段AC上不含端点,点Q在抛物线上,且MQ平行于x 轴,PQ平行于y轴设点P横坐标为m.(1)求直线AB所对应的函数表达式.(2)用含m的代数式表示线段PQ的长.(3)以PQ、QM为邻边作矩形PQMN,求矩形PQMN的周长为9时m的值.答案一、选择题1.【答案】B【解析】①b2-4ac=(-a-c)2-4ac=(a-c)2≥0,正确;②若b>a+c,则△的大小无法判断,故不能得出方程有两个不等实根,错误;③b2-4ac=4a2+9c2+12ac-4ac=4(a+c)2+5c2,因为a≠0,故(a+c)2与c2不会同时为0,所以b2-4ac>0,正确;④二次函数y=ax2+bx+c与y轴必有一个交点,而这个交点有可能跟图象与x轴的交点重合,故正确.故选B.2.【答案】A【解析】由图可知:y≥-3,即ax2+bx≥-3,∵ax2+bx+m=0,∴ax2+bx=-m,∴-m≥-3,∴m≤3.故选A. 3. 【答案】B【解析】A、由表格知,抛物线的顶点坐标是(1,4).故设抛物线解析式为y=a(x-1)2+4.将(-1,0)代入,得a(-1-1)2+4=0,解得a=-1.∵a=-1<0,∴抛物线的开口方向向下,故本选项错误;B、抛物线与x轴的一个交点为(-1,0),对称轴是x=1,则抛物线与x轴的另一个交点是(3,0),故本选项正确;C、由表格知,抛物线与y轴的交点坐标是(0,3),即与y轴交于正半轴,故本选项错误;D、抛物线开口方向向下,对称轴为x=1,则在直线x=1的左侧部分是上升的,故本选项错误;故选B.点睛:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.4. 【答案】B【解析】根据图象得:a<0,b<0,∵抛物线与x轴交于A(1,0),与y轴交于点B (0,3),∴==,∴a+b=-3,∵b<0,∴-3<a<0,故选B.5. 【答案】D【解析】∵抛物线与x轴的两交点坐标为(-3,0),(1,0),∴一元二次方程ax2+bx+c=0的两根分别为x1=-3,x2=1,∴-3+1=-,即=2,∴一元二次方程ax2+bx+c-m=0的两根之和=-=-2.故选D.6. 【答案】B【解析】令y=−x2+x−=0,解得:x=,∵当自变量x取m时对应的值大于0,∴<m<,∵点(m+1,0)与(m-1,0)之间的距离为2,大于二次函数与x轴两交点之间的距离,∴m-1的最大值在左边交点之左,m+1的最小值在右边交点之右.∴点(m+1,0)与(m-1,0)均在交点之外,∴y1<0、y2<0.故选B.7. 【答案】C【解析】∵抛物线过(1,0),对称轴是x=2,∴==,解得a=1,b=-4,∴y=x2-4x+3,当x=3时,y=0,小华正确;当x=4时,y=3,小彬也正确,小明也正确;∵抛物线被x轴截得的线段长为2,已知过点(1,0),∴另一点为(-1,0)或(3,0),∴对称轴为y轴或x=2,此时答案不唯一,∴小颖错误.故选C.8. 【答案】C【解析】函数y=(x-x1)(x-x2)的图象与x轴的交点的横坐标分别是x1、x2;函数y=(x-x1)(x-x2)-2的图象是由函数y=(x-x1)(x-x2)的图象向下平移2个单位得到的,则方程(x-x1)(x-x2)-2=0[或方程(x-x1)(x-x2)=2]的两根x3、x4即为函数y=(x-x1)(x-x2)-2的图象与x轴的交点的横坐标,它们的大致图象如图所示,根据图象知,x3<x1<x2<x4.故选C.9. 【答案】A【解析】∵x=-1时,y≠0,∴方程ax2+bx+c=0的根为-1这种说法不正确,∴结论A不正确;∵二次函数y=ax2+bc+c的图象与x轴有两个交点,∴△>0,即b2-4ac>0,∴结论B正确;∵x=-,∴b=2a,∴顶点的纵坐标是=2,∴a=c-2,∴结论C正确;∵二次函数y=ax2+bc+c的图象的对称轴是x=-1,与x 轴的一个交点A在点(-3,0)和(-2,0)之间,∴与x轴的另一个交点A在点(0,0)和(1,0)之间,∴x=1时,y<0,∴a+b+c<0,∴结论D正确;∴不正确的结论为:A.故选A.点睛:二次函数的图象与系数的关系:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a 与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).10. 【答案】D【解析】由抛物线y=x2+bx+c的对称轴为x=1,∴−=1,−=1,解得:b=-2,∴x2-bx-c=x2+2x-c,令y1=x2+2x-c,可求其对称轴为:x=-1,根据题意,当x=2时,y1>0,x2+2x-c>0,且当x=-1时,y1≤0,x2+2x-c≤0,或当x=-3时,y>0,9-6-c>0,且当x=-1时,y1≤0,x2+2x-c≤0,解得:-1≤c<8,或-1≤c <3,综上所述,-1≤c<8.故选D.二、解答题11. 【答案】(1)D(1,4);(2)6.【解析】(1)利用待定系数法代入求出a,c的值,进而利用配方法求出D点坐标即可;(2)首先求出图象与x轴的交点坐标,进而求出△ABC的面积.解:(1)由题意,得==,解得==,则y=-x2+2x+3=-(x-1)2+4,则D(1,4);(2)由题意,得-x2+2x+3=0,解得x1=-1,x2=3;则A(-1,0),又∵B(3,0)、C(0,3),∴S△ABC=×4×3=6.12. 【答案】(1)C(2,-3);(2).【解析】(1)已知抛物线过A,B两点,可将A,B的坐标代入抛物线的解析式中用待定系数法即可求出抛物线的解析式.然后可根据抛物线的解析式得出顶点C的坐标.(2)分别求直线AC的解析式和BD的解析式,直线AC:y=-x-1,直线BD:y=x-1,可得D和P的坐标,证明△BPG∽△CPH和△HPG∽△CPB,列比例式可得HG的长解:(1)把A(-1,0)、B(5,0)代入抛物线解析式,得:==,解得:==,∴抛物线的解析式为:y=x2−x−= (x−2)2−3,∴顶点C(2,-3)(2)设BD与CG相交于点P,设直线AC的解析式为:y=kx+b把A(-1,0)和C(2,-3)代入得:==,解得:==则直线AC:y=-x-1,∴D(0,-1),同理可得直线BD:y=x-1,∴P(2,−)∵∠CHP=∠PGB=90°,∠GPB=∠CPH∴△BPG∽△CPH,∴=,∴△HPG∽△CPB,∴=,∴=,∴HG=.13. 【答案】(1)见解析;(2)方程的另一个根为x=-2.【解析】(1)根据抛物线的对称轴为x=-=1可得;(2)根据抛物线的对称性得到抛物线与x轴的另一个交点可得答案.解:(1)∵抛物线的对称轴为直线x=1,∴-=1,∴2a+b=0;(2)∵关于x的方程ax2+bx-8=0,有一个根为4,∴抛物线与x轴的一个交点为(4,0),∵抛物线的对称轴为x=1,∴抛物线与x轴的另一个交点为(-2,0),∴方程的另一个根为x=-2.14.【答案】(1);(2)x轴:,、,;Y轴:,(3)见解析. 【解析】(1)将点(0,3)代入抛物线的解析式中,即可求得m的值;(2)可以令y=0,可得出一个关于x的一元二次方程,方程的解就是抛物线与x轴交点的横坐标;(3)根据(2)中抛物线与x轴的交点以及抛物线的开口方向即可求得x的取值范围.解:(1)将点(0,3)代入抛物线y=-x2+(m-1)x+m,m=3,∴抛物线的解析式y=-x2+2x+3;(2)令y=0,-x2+2x+3=0,解得x1=3,x2=-1;x轴:A(3,0)、B(-1,0);y轴:C(0,3)(3)抛物线开口向下,对称轴x=1;所以)①当-1<x<3时,y>0;②当x≥1时,y的值随x的增大而减小.15. 【答案】(1)直线AB的解析式为;(2)见解析;(3)m的值为或.【解析】(1)先利用二次函数解析式求出A点和B点坐标,然后利用待定系数法求直线AB的解析式;(2)设P(m,-m+8),则Q(m,-m2+4m),讨论:当0<m≤2时,PQ=m2-5m+8;当2<m<8时,PQ=-m2+5m-8;(3)先表示出M(m2-4m+8,-m2+4m),讨论:当0<m≤2,QM=m2-5m+8,利用矩形周长列方程得到(m2-5m+8+m2-5m+8)=9,然后解方程求出满足条件m的值;当2<m<8,QM=-m2+5m-8,利用矩形周长列方程得到2(-m2+5m-8-m2+5m-8)=9,然后解方程求出满足条件m的值.解:(1)当y=0时,-x2+4x=0,解得x1=0,x2=8,则A(8,0);当x=2时,y=-x2+4x=6,则B(2,6),设直线AB所对应的函数表达式为y=kx+b,将A(8,0),B(2,6)代入可得==,解得==,所以直线AB的解析式为y=-x+8;(2)设P(m,-m+8),则Q(m,-m2+4m),当0<m≤2时,PQ=-m+8-(-m2+4m)=m2-5m+8;当2<m<8时,PQ=-m2+4m-(-m+8)=-m2+5m-8;(3)∵MQ∥x轴,∴M点的纵坐标为-m2+4m,∴M点的横坐标为m2-4m+8,即M(m2-4m+8,-m2+4m),当0<m≤2,QM=m2-4m+8-m=m2-5m+8,∵2(PQ+QM)=9,∴2(m2-5m+8+m2-5m+8)=9,整理得2m2-20m+23=0,解得m1=,m2=(舍去);当2<m<8,QM=m-(m2-4m+8)=-m2+5m-8,∵2(PQ+QM)=9,∴2(-m2+5m-8-m2+5m-8)=9,整理得2m2-20m+41=0,解得m1=,m2=(舍去);综上所述,m的值为或.22.3实际问题与二次函数一、课堂学习检测1. 矩形窗户的周长是6m,写出窗户的面积y(m2)与窗户的宽x(m)之间的函数关系式,判断此函数是不是二次函数,如果是,请求出自变量x的取值范围,并画出函数的图象.2. 如图,有一座抛物线型拱桥,已知桥下在正常水位AB时,水面宽8m,水位上升3m,就达到警戒水位CD,这时水面宽4m,若洪水到来时,水位以每小时0.2m的速度上升,求水过警戒水位后几小时淹到桥拱顶.3. 如图,足球场上守门员在O处开出一高球,球从离地面1m的A处飞出(A在y轴上),运动员乙在距O 点6m的B处发现球在自己头的正上方达到最高点M,距地面约4m高.球第一次落地后又弹起.据试验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取,)二、综合、运用、诊断4. 如图,有长为24m的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a=10m).(1)如果所围成的花圃的面积为45m2,试求宽AB的长;(2)按题目的设计要求,能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.5. 某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数m=162-3x.(1)写出商场卖这种商品每天的销售利润y(元)与每件的销售价x(元)间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最为合适?最大销售利润为多少?6. 某工厂现有80台机器,每台机器平均每天生产384件产品.现准备增加一批同类机器以提高生产总量.在试生产中发现,由于其他生产条件没有改变,因此,每增加一台机器,每台机器平均每天将减少生产4件产品.(1)如果增加x台机器,每天的生产总量为y件,请写出y与x之间的函数关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?7. 某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润为多少万元?三、拓展、探究、思考8. 已知:在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a>0)的图象与x轴交于A,B两点,点A 在点B的左侧,与y轴交于点C,且OC=OB=3OA.(1)求这个二次函数的解析式;(2)设点D是点C关于此抛物线对称轴的对称点,直线AD,BC交于点P,试判断直线AD,BC是否垂直,并证明你的结论;(3)在(2)的条件下,若点M,N分别是射线PC,PD上的点,问:是否存在这样的点M,N,使得以点P,M,N为顶点的三角形与△ACP全等?若存在请求出点M,N的坐标;若不存在,请说明理由.答案一、课堂学习检测1. 【答案】y=-x2+3x(0<x<3),图见解析.【解析】(1)根据矩形周长=2×(长+宽),可由周长为6m和宽为xm把矩形表示出来.再由矩形面积=矩形的长×矩形的宽就可列出函数关系式;(2)根据“矩形的宽大于0,而小于矩形周长的一半”可求出x的取值范围,并由此可画出函数的图像.解:由题意可得:y=(3-x)x=-x2+3x,故此函数是二次函数,自变量取值范围为:0<x<3,其图象如图所示:.2.【答案】5小时.【解析】首先在图中建立合适的坐标系(这里选择AB所在的直线为x轴,AB的垂直平分线为y轴,也可另外建立),然后根据题目中的已知条件可得A,B,C,D四点的坐标,设出解析式,代入相应点的坐标建立方程(组),解方程(组)求得待定系数的值得到解析式,由解析式可得到顶点E的坐标,再结合题中条件可解得答案.解:如上图,以AB所在直线为x轴,AB的垂直平分线为y轴建立平面直角坐标系,则由已知得A(4,0),D(2,3),设抛物线解析式为:,把A、D坐标代入解析式可得:,解得:,∴抛物线解析式为:,∴顶点E的坐标为(0,4),设CD与y轴的交点为点F,∴EF=4-3=1(m),∵1÷0.2=5(小时),∴水过警戒水位后5小时淹到桥拱顶.3. 【答案】(1);(2)17米.【解析】(1)依题意代入x的值可得抛物线的表达式.(2)先求出OC的长,根据图示可得第二次足球弹出后的距离为CD,相当于将抛物线AEMFC向下平移了2个单位可得2=-(x-6)2解得x的值即可知道CD、BD.解:(1)如图,设足球开始飞出到第一次落地时,抛物线的表达式为y=a(x-h)2+k,∵h=6,k=4,∴y=a(x-6)2+4,由已知:当x=0时y=1,即1=36a+4,∴a=-,∴表达式为y=-(x-6)2+4=-x2+x+1;(2)令y=0,-(x-6)2+4=0,∴(x-6)2=48,解得:x1=+6≈13,x2=-+6<0(舍去),∴OC≈13,如图,第二次足球弹出后的距离为CD,根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位),∴2=-(x-6)2+4,解得:x1=6-,x2=6+,∴CD=|x1-x2|=≈10,∴BD=13-6+10=17(米).二、综合、运用、诊断4. 【答案】(1)AB长为5米;(2)围成长为10米,宽为米的矩形ABCD花圃时,其最大面积为【解析】(1)由题意可知围成该花圃需要用到篱笆的宽有三条,而长只有一条,设宽AB的长为xm,则长BC为(24-3x)m,再设长方形面积为y,由矩形面积公式可得:y关于x的函数关系式,由y=45解得对应的x的值,可得答案;(2)把(1)中所得解析式配方化为顶点式,然后结合自变量的取值范围可求得y 的最大值,把最大值与45比较可得结论,并进一步可由自变量的取值范围和解析式求得最大面积;解:(1)设花圃的宽AB=x米,知BC应为(24-3x)米,故面积y与x的关系式为y=x(24-3x)=-3x2+24x.当y=45时,-3x2+24x=45,解出x1=3,x2=5.当x2=3时,BC=24-3×3>10,不合题意,舍去;当x2=5时,BC=24-3×5=9,符合题意.故AB长为5米.(2)能围成面积比45m2更大的矩形花圃.由(1)知,y=-3x2+24x=-3(x-4)2+48,∵,∴,由抛物线y=-3(x-4)2+48知,在对称轴x=4的右侧,y随x的增大而减小,∴当时,y=-3(x-4)2+48有最大值,且最大值为此时,BC =10m,即围成长为10米,宽为米的矩形ABCD花圃时,其最大面积为点睛:象本题这种实际问题中涉及到二次函数最值的问题,我们要在自变量取值范围内根据函数的增减性来确定其最值是在自变量取何值时取得的,再根据函数解析式来进行计算求得相应的最值,而不能直接用顶点的纵坐标代替最值.5. 【答案】(1)y=-3x2+252x-4860;(2)当x=42时,最大利润为432元.【解析】(1)根据:每天销售利润y(元)=单件商品利润每天销售量、单件商品利润=商品售价-商品进价,结合题中条件可得y与x间的函数关系式;再根据单件商品利润不低于0,销售量不低于0可求得自变量的取值范围;(2)把(1)中所得函数解析式配方化为顶点式,结合自变量的取值范围和函数的增减性可求得答案;解:(1)由题意得,每件商品的销售利润为(x-30)元,那么m件的销售利润为y=m(x-30),又∵m=162-3x,∴y=(x-30)(162-3x),即y=-3x2+252x-4860,∵x-30≥0,∴x≥30.又∵m≥0,∴162-3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=-3x2+252x-4860(30≤x≤54).(2)由(1)得y=-3x2+252x-4860=-3(x-42)2+432,又∵30≤x≤54,∴可得售价定为42元时获得的利润最大,最大销售利润是432元.6. 【答案】(1)y=-4x2+64x+30720;(2)增加8台机器,可以使每天的生产总量最大,最大生产总量为30976件.【解析】(1)生产总量=每台机器生产的产品数×机器数;(2)根据函数性质求最值.解:(1)由题意得y=(80+x)(384-4x)=-4x2+64x+30720;(2)∵y=-4x2+64x+30720=-4(x-8)2+30976,∴当x=8时,y有最大值,为30976,即增加8台机器,可以使每天的生产总量最大,最大生产总量为30976件.【点睛】本题考查了二次函数的应用,解题的关键是弄清题意,根据题意列出函数关系式.7. 【答案】(1);(2)截止到10月末,公司累积利润可达到30万元;(3)第8个月公司获利润5.5万元.【解析】(1)由图可知:函数图象经过了点(1,-1.5)、点(2,-2)和点(5,2.5),设解析式为,代入三点的坐标,列出方程组,就可求得、、的值,从而得的解析式;(2)把代入(1)中所求得的解析式,解出的值,并结合实际意义可得答案;(3)把,分别代入(1)中所得的解析式,求出对应的的值,用可得8月份的利润;解:(1)设s与t的函数关系式为s=at2+bt+c,图象上三点坐标分别为(1,-1.5),(2,-2),(5,2.5).分别代入,得∴解得,∴(2)把s=30代入解得t1=10,t2=-6(舍去).即截止到10月末,公司累积利润可达到30万元.(3)把t=7代入得7月末的累积利润为s7=10.5(万元).把t=8代入得8月末的累积利润为s8=16(万元).∴s8-s7=16-10.5=5.5(万元).即第8个月公司获利润5.5万元.三、拓展、探究、思考8. 【答案】(1)y=x2-2x-3;(2)AD⊥BC,理由见解析;(3)存在,M1(1,-2),N1(4,-3).或M2(0,-3),N2(3,-4).【解析】(1)由题中条件:二次函数y=ax2+bx-3(a>0)的图象与x轴交于A,B两点,点A在点B的左侧,与y轴交于点C,且OC=OB=3OA,可得点C(0,-3)、点A(-1,0)、点B(3,0),把A、B两点的坐标代入解析式可求得a、b的值,就可得到解析式了;(2)把(1)中所求解析式配方化为顶点式,得到对称轴方程,就可得到D的坐标,再由A、B、C、D四点的坐标列方程组可求得直线AD和直线BC的解析式,计算两解析式中“k”的值的乘积是否为“-1”就可判断两直线是否垂直了;(3)如图,由(2)中所得AD、BC的解析式可列方程组解得P的坐标,由射线BC和射线AD互相垂直,垂足为点P,可知△APC和△PMN 都是直角三角形;然后分以下两种情况讨论:①当PN=PA,M与C重合时,△APC与△PMN全等;②当PM=PA,N与D重合时,△APC与△PMN全等,并求出相应的点M、N的坐标.解:(1)∵二次函数y=ax2+bx-3(a>0)与y轴交于点C,∴点C的坐标为(0,-3),∴OC=3,又∵OC=OB=3OA,∴OB=3,OA=1,又∵二次函数y=ax2+bx-3(a>0)的图象与x轴交于A,B两点,点A在点B的左侧,∴点A、B的坐标分别为(-1,0)、(3,0),把A、B的坐标代入解析式y=ax2+bx-3(a>0)得:,解得:,∴二次函数解析式为:;(2)由可知,该抛物线的对称轴为直线;,。
初三数学上册第二章一元一次方程各节练习题 (附答案)
练习一【22.1 一元二次方程】一、选择题1.在下列方程中,一元二次方程的个数是().①3x2+7=0 ②a x2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=0A.1个 B.2个 C.3个 D.4个2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为(). A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,63.px2-3x+p2-q=0是关于x的一元二次方程,则().A.p=1 B.p>0 C.p≠0 D.p为任意实数4.方程x(x-1)=2的两根为().A.x1=0,x2=1 B.x1=0,x2=-1 C.x1=1,x2=2 D.x1=-1,x2=25.方程ax(x-b)+(b-x)=0的根是().A.x1=b,x2=a B.x1=b,x2=1aC.x1=a,x2=1aD.x1=a2,x2=b26.已知x=-1是方程a x2+bx+c=0的根(b≠0)().A.1 B.-1 C.0 D.2二、填空题1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.2.一元二次方程的一般形式是_____ _____.3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.4.如果x2-81=0,那么x2-81=0的两个根分别是x1=________,x2=__________.5.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________.6.方程(x+1)2(x+1)=0,那么方程的根x1=______;x2=________.三、综合提高题1.a满足什么条件时,关于x的方程a(x2+x)(x+1)是一元二次方程?2.如果x=1是方程a x2+bx+3=0的一个根,求(a-b)2+4ab的值.练习二【22.2.1-2 直接开平方法及配方法】一、选择题1.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-2 2.方程3x2+9=0的根为().A.3 B.-3 C.±3 D.无实数根3.用配方法解方程x2-23x+1=0正确的解法是().A.(x-13)2=89,x=13±3B.(x-13)2=-89,原方程无解C.(x-23)2=59,x1=23+3,x2=23D.(x-23)2=1,x1=53,x2=-134.将二次三项式x2-4x+1配方后得().A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-35.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1 C.x2+8x+42=1 D.x2-4x+4=-11 6.如果m x2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于(). A.1 B.-1 C.1或9 D.-1或97.配方法解方程2x2-43x-2=0应把它先变形为().A.(x-13)2=89B.(x-23)2=0 C.(x-13)2=89D.(x-13)2=1098.下列方程中,一定有实数解的是().A.x2+1=0 B.(2x+1)2=0 C.(2x+1)2+3=0 D.(12x-a)2=a9.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是().A.1 B.2 C.-1 D.-2二、填空题1.若8x2-16=0,则x的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.3.如果a、b b2-12b+36=0,那么ab的值是_______. 4.如果x2+4x-5=0,则x=_______.5.无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是_______数.6.方程x 2+4x-5=0的解是________.7.代数式2221x x x ---的值为0,则x 的值为________. 8.已知(x+y )(x+y+2)-8=0,求x+y 的值,若设x+y=z ,则原方程可变为_______,•所以求出z 的值即为x+y 的值,所以x+y 的值为______.9.如果16(x-y )2+40(x-y )+25=0,那么x 与y 的关系是________.三、综合提高题1.解关于x 的方程(x+m )2=n . 2.如果x 2-4x+y 2,求(xy )z 的值.3.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m ),•另三边用木栏围成,木栏长40m .(1)鸡场的面积能达到180m 2吗?能达到200m 吗?(2)鸡场的面积能达到210m 2吗?4.已知三角形两边长分别为2和4,第三边是方程x 2-4x+3=0的解,求这个三角形的周长.5.用配方法解方程.(1)9y 2-18y-4=0 (2)x 26.已知:x 2+4x+y 2-6y+13=0,求222x y x y -+的值.练习三【22.2.3-4 公式法及判别根的情况】一、选择题1.用公式法解方程4x2-12x=3,得到().A... D.2x2=0的根是().A.x1,x2 B.x1=6,x2 C.x1,x2.x1=x23.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是().A.4 B.-2 C.4或-2 D.-4或24.以下是方程3x2-2x=-1的解的情况,其中正确的有().A.∵b2-4ac=-8,∴方程有解 B.∵b2-4ac=-8,∴方程无解C.∵b2-4ac=8,∴方程有解 D.∵b2-4ac=8,∴方程无解5.一元二次方程x2-ax+1=0的两实数根相等,则a的值为().A.a=0 B.a=2或a=-2 C.a=2 D.a=2或a=06.已知k≠1,一元二次方程(k-1)x2+kx+1=0有根,则k的取值范围是().A.k≠2 B.k>2 C.k<2且k≠1 D.k为一切实数7.下列命题①方程k x2-x-2=0是一元二次方程;②x=1与方程x2=1是同解方程;③方程x2=x与方程x=1是同解方程;④由(x+1)(x-1)=3可得x+1=3或x-1=3,其中正确的命题有().A.0个 B.1个 C.2个 D.3个8.如果不为零的n是关于x的方程x2-mx+n=0的根,那么m-n的值为().A.-12B.-1 C.12D.1二、填空题1.一元二次方程a x2+bx+c=0(a≠0)的求根公式是________,条件是________.2.当x=______时,代数式x2-8x+12的值是-4.3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.4.已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________.5.不解方程,判定2x2-3=4x的根的情况是__ ____6.已知b≠0,试判定关于x的一元二次方程x2-(2a+b)x+(a+ab-2b2)•=0的根的情况是________.7.x2-5x因式分解结果为____ ___;2x(x-3)-5(x-3)因式分解的结果是_ _____.8.方程(2x-1)2=2x-1的根是________.三、综合提高题1.用公式法解关于x的方程:x2-2ax-b2+a2=0. 2.已知(x+y)(x+y-1)=0,求x+y的值.2.设x1,x2是一元二次方程a x2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=-ba,x1·x2=ca;(2)•求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.4.不解方程,试判定下列方程根的情况.(1)2+5x=3x2(2)x2-()(3)x2-2kx+(2k-1)=05.当c<0时,判别方程x2+bx+c=0的根的情况.6.用因式分解法解下列方程.(1)3y2-6y=0 (2)25y2-16=0 (3)x2-12x-28=0 (4)x2-12x+35=0练习四【22.3 实际问题与一元二次方程】一、选择题1.2005年一月份越南发生禽流感的养鸡场100家,后来二、•三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x,依题意列出的方程是().A.100(1+x)2=250 B.100(1+x)+100(1+x)2=250C.100(1-x)2=250 D.100(1+x)22.一台电视机成本价为a元,销售价比成本价增加25%,因库存积压,•所以就按销售价的70%出售,那么每台售价为().A.(1+25%)(1+70%)a元 B.70%(1+25%)a元C.(1+25%)(1-70%)a元 D.(1+25%+70%)a元3.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,•售价的折扣(即降低的百分数)不得超过d%,则d 可用p 表示为( ).A .100p p +B .pC .1001000p p -D .100100p p+ 4.直角三角形两条直角边的和为7,面积为6,则斜边为( ).A B .5 C .7二、填空题1.某农户的粮食产量,平均每年的增长率为x ,第一年的产量为6万kg ,•第二年的产量为_______kg ,第三年的产量为_______,三年总产量为_______.2.某糖厂2002年食糖产量为at ,如果在以后两年平均增长的百分率为x ,•那么预计2004年的产量将是________.3.•我国政府为了解决老百姓看病难的问题,•决定下调药品价格,•某种药品在1999年涨价30%•后,•2001•年降价70%•至a•元,•则这种药品在1999•年涨价前价格是__________.4.矩形的周长为1,则矩形的长和宽分别为________.练习五【22.3 实际问题与一元二次方程】一、选择题1.从正方形铁片,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁片的面积是( ).A .8cmB .64cmC .8c m 2D .64cm 22.一个两位数等于它的个位数的平方,且个位数字比十位数字大3,•则这个两位数为( ).A .25B .36C .25或36D .-25或-363.某种出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费);超过3km 以后,每增加1km ,加收2.4元(不足1km 按1km 计),某人乘出租车从甲地到乙地共支付车费19元,则此人从甲地到乙地经过的路程( ).A .正好8kmB .最多8kmC .至少8kmD .正好7km4.一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共( ).A .12人B .18人C .9人D .10人5.某一商人进货价便宜8%,而售价不变,那么他的利润(按进货价而定)可由目前x 增加到(x+10%),则x 是( ).A .12%B .15%C .30%D .50%6.育才中学为迎接香港回归,从1994年到1997年四年内师生共植树1997棵,已知该校1994年植树342棵,1995年植树500棵,如果1996年和1997年植树的年增长率相同,那么该校1997年植树的棵数为().A.600 B.604 C.595 D.605二、填空题1.长方形的长比宽多4cm,面积为60cm2,则它的周长为________.2.一个产品原价为a元,受市场经济影响,先提价20%后又降价15%,现价比原价多_______%.3.甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返卖给甲,但乙损失了10%,•最后甲按乙卖给甲的价格的九折将这手股票卖出,在上述股票交易中,甲盈了_________元.4.一个容器盛满纯药液63L,第一次倒出一部分纯药液后用水加满,•第二次又倒出同样多的药液,再加水补满,这时容器内剩下的纯药液是28L,设每次倒出液体xL,•则列出的方程是________.。
人教版初中九年级数学上册课堂同步试题及答案全册
21.1二次根式(1)中学初三数学备课组一、选择题1.以下式子中,必然是二次根式的是()A.BC D.x2.以下式子中,不是二次根式的是()A BC D.1 x3.已知一个正方形的面积是5,那么它的边长是()A.5 B C.15D.以上皆不对4必然是二次根式的个数是().A.4 B.3 C.2 D.1二、填空题5.形如________的式子叫做二次根式.6.面积为a的正方形的边长为________.三、解答题7.某工厂要制作一批体积为1m3的产品包装盒,其高为,按设计需要,•底面应做成正方形,试问底面边长应是多少?8=0,求x y的值.21.1二次根式(2)中学初三数学备课组一、选择题1.以下各式中必然是二次根式的是( )A.10- B.22-aC.327D.132+x2.以下计算正确的选项是( ) A.()2552=B.()332-=-C.416±=D.749=3.若是a 为任意实数,那么以下各式中正确的选项是( ) A.a ≥0 B.a -≥0C.2a ≥0D.a -≥0二、填空题4.若a 的算式平方根是21,那么a =_______________. 5.计算:(1)()=222-_______;(2)=⎪⎭⎫⎝⎛--221________. 6.已知一个直角三角形的两直角边别离为x 和y ,那么斜边用代数式表示为_________________;当x =6,y =8时,斜边长为__________.三、解答题7.当x 是多少时,以下各式在实数范围内成心义?(1)x 2-;(2)121-x .8.当5=a 时,求式子221a a a +-+的值.21.2二次根式的乘除(1)中学 初三数学备课组一、选择题1.已知12)1(2-•=-x x ,那么有( )A.x >1 B.x <1C.x ≥1D.x ≤12.计算xx 2•的结果是( ) A.xB.2C.xD.23.以下计算正确的选项是( ) A.3163838=⨯ B.652535=⨯C.562234=⨯D.15125236=⨯二、填空题4.=⨯44__________,.__________62=⨯ 5.化简38)2(2⨯⨯-的结果是____________.三、解答题6.化简:(1)16925⨯;(2)429y x .7.假设直角三角形两条直角边长别离为15cm 和12cm ,求此直角三角形的面积.21.2二次根式的乘除(2)中学 初三数学备课组一、选择题1.以下各式是最简二次根式的为( )A.12+xB.32y xC.12- D.5.22.化简231+的结果为( )A.23+B.23-C.2 D.13.已知a aaa -=-112,那么a 的取值范围是( ) A.a ≤0 B.a <0C.0<a ≤1D.a >0二、填空题4.__________2385=÷,___________3=÷a b a .5.___________3625=,___________3611214=⨯.三、解答题6.把以下各式化为最简二次根式(1)326-;(2)328aa.7.已知长方形的面积是48,一边长是12,那么另一边长是多少?21.2二次根式的乘除(3)中学 初三数学备课组一、选择题1.以下化简中,正确的选项是( )A.1535925=⨯=⨯B.632=⨯C.222543=+D.33-12=2.以下计算正确的选项是( )A .3232--=-- B .a a 3313= C .a a=33D .a a333= 3.把(a -1)11-a根号外的因式移入根号内,其结果是( ) A .1-a B .-1-a C .a -1 D .-a -1二、填空题4.= . 5.把aa 1-中根号外面的因式移到根号内的结果是三、解答题6.计算:(1)213675÷⨯7.已知x+y=4,xy=2.求;xyy x 的值。
人教版 九年级数学 22.1 --22.3测试题(含答案)
人教版 九年级数学 22.1 --22.3(含答案)22.1 二次函数的图象和性质一、选择题1. (2019•哈尔滨)将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为 A .22(2)3y x =++ B .22(2)3y x =-+ C .22(2)3y x =-- D .22(2)3y x =+-2. 在平面直角坐标系中,抛物线y =(x +5)(x -3)经过变换后得到抛物线y =(x +3)(x -5),则这个变换可以是( ) A .向左平移2个单位长度 B .向右平移2个单位长度 C .向左平移8个单位长度D .向右平移8个单位长度3.已知二次函数y =a (x -1)2+c 的图象如图,则一次函数y =ax +c 的图象大致是( )4. 已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如下表:x -1 0 2 3 4 y5-4-3有下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x =2;③当0<x<4时,y>0;④抛物线与x 轴的两个交点间的距离是4;⑤若A(x 1,2),B(x 2,3)是抛物线上的两点,则x 1<x 2.其中正确的个数是()A.2 B.3 C.4 D.55. 2018·潍坊已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或66.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动.过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是( )7. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2>4ac;②abc<0;③2a+b-c>0;④a+b+c<0.其中正确的是()A.①④B.②④C.②③D.①②③④8. (2019•岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是A.c<-3 B.c<-2C.c<14D.c<19. 如图是二次函数y=ax2+bx+c的图象,有下列说法:①ac>0;②2a+b>0;③4ac<b2;④a+b+c<0;⑤当x>0时,y随x的增大而减小.其中正确的是()A.①②③B.①②④C.②③④D.③④⑤10. 某国家足球队在某次训练中,一名队员在距离球门12米处挑射,正好射中了2.4米高的球门横梁,若足球运动的路线是抛物线y=ax2+bx+c的一部分(如图),有下列结论:①a<-160;②-160<a<0;③a-b+c>0;④a<b<-12a.其中正确的是()A.①③B.①④C.②③D.②④二、填空题11.将抛物线y=-(x+2)2向________平移________个单位长度,得到抛物线y=-(x -1)2.12.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数解析式为y=__________.13. 若抛物线y=x2+bx+25的顶点在x轴上,则b的值为________.14. 如图所示,抛物线y=ax2-3x+a2-1经过原点,那么a的值是________.15. 抛物线y=ax2+bx+c经过点A(-3,0),对称轴是直线x=-1,则a+b+c =________.三、解答题16. 如图,已知抛物线的顶点为A(1,4),与y轴交于点B(0,3),与x轴交于C,D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式;(2)当PA+PB的值最小时,求点P的坐标.17. 如图,已知抛物线经过A(-3,0),B(0,3)两点,且其对称轴为直线x=-1.(1)求此抛物线的解析式;(2)若P是抛物线上点A与点B之间的动点(不包括点A,B),求△P AB的面积的最大值,并求出此时点P的坐标.18. (2019·山东东营)已知抛物线24y ax bx +=﹣经过点()()20,40AB ,-,,与y 轴交于点C .(1)求这条抛物线的解析式;(2)如图1,点P 是第三象限内抛物线上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标;(3)如图2,线段AC 的垂直平分线交x 轴于点E ,垂足为,D M 为抛物线的顶点,在直线DE 上是否存在一点G ,使CMG 的周长最小?若存在,求出点G 的坐标;若不存在,请说明理由.人教版 九年级数学 22.1 二次函数的图象和性质 培优课时训练-答案一、选择题 1. 【答案】B【解析】将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为()2223y x =-+, 故选B .2. 【答案】B[解析] y =(x +5)(x -3)=(x +1)2-16,顶点坐标是(-1,-16).y =(x +3)(x -5)=(x -1)2-16,顶点坐标是(1,-16).所以将抛物线y =(x +5)(x -3)向右平移2个单位长度得到抛物线y =(x +3)(x -5),故选B.3.【答案】B [解析]根据二次函数的图象开口向上,得a >0,根据c 是二次函数图象顶点的纵坐标,得出c<0,故一次函数y=ax+c的图象经过第一、三、四象限.故选B.4. 【答案】B[解析] 先根据二次函数的部分对应值在坐标系中描点、连线,由图象可以看出抛物线开口向上,所以结论①正确.由图象(或表格)可以看出抛物线与x轴的两个交点分别为(0,0),(4,0),所以抛物线的对称轴为直线x=2且抛物线与x轴的两个交点间的距离为4,所以结论②和④正确.由图象可以看出当0<x<4时,y<0,所以结论③错误.由图象可以看出当抛物线上的点的纵坐标为2或3时,对应的点均有两个,若A(x1,2),B(x2,3)是抛物线上两点,既有可能x1<x2,也有可能x1>x2,所以结论⑤错误.5. 【答案】B[解析] 当h<2时,有-(2-h)2=-1,解得h1=1,h2=3(舍去);当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;当h>5时,有-(5-h)2=-1,解得h3=4(舍去),h4=6.综上所述,h的值为1或 6.6. 【答案】B 【解析】∵△ABC是等腰直角三角形,∴∠A=90°,∠B=∠C=45°.(1)当0≤x≤2时,点P在AB边上,△BDP是等腰直角三角形,∴PD=BD=x,y=12x2(0≤x≤2),其图象是抛物线的一部分;(2)当2<x≤4时,点P在AC边上,△CDP是等腰直角三角形,∴PD=CD=4-x,∴y=12BD·PD=12x(4-x)(2<x≤4),其图象也是抛物线的一部分.综上所述,两段图象均是抛物线的一部分,因此选项B的图象能大致反映y与x之间的函数关系.7. 【答案】A[解析] ①因为图象与x轴有两个不同的交点,所以b2-4ac>0,即b2>4ac,故①正确.②图象开口向下,故a<0.图象与y轴交于正半轴,故c>0.因为对称轴为直线x=-1,所以-b2a=-1,所以2a=b,故b<0,所以abc>0,故②错误.③因为a<0,b<0,c>0,所以2a+b-c<0,故③错误.④当x=1时,y=a+b+c,由图可得,当x=-3时,y<0.因为抛物线的对称轴为直线x=-1,所以由对称性可知,当x=1时,y<0,即a+b+c<0,故④正确.综上所述,①④正确,故选A.8. 【答案】B【解析】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,所以x1、x2是方程x2+2x+c=x的两个不相等的实数根,整理,得:x2+x+c=0,所以∆=1–4c>0,又x2+x+c=0的两个不相等实数根为x1、x2,x1<1<x2,所以函数y=x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,综上则140 110cc->⎧⎨++<⎩,解得c<-2,故选B.9. 【答案】C[解析] ①由图象可知:a>0,c<0,∴ac<0,故①错误;②由对称轴可知:-b2a<1,∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴Δ=b2-4ac>0,即4ac<b2,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤当x>-b2a时,y随着x的增大而增大,故⑤错误.故选C.10. 【答案】B[解析] 用排除法判定.易知c=2.4.把(12,0)代入y=ax2+bx+c中,可得144a+12b+2.4=0,即12a+15+b=0.由图象可知a<0,对称轴为直线x =-b 2a ,且0<-b2a <6, ∴b>0,∴12a +15<0,∴a<-160,即①成立,②不成立,故不可能选C 与D. ∵-b2a <6,∴b<-12a. ∵a<0,b>0,∴a<b<-12a ,∴④正确,而a -b +c 的取值不确定, ∴③不正确.故选B.二、填空题11. 【答案】右 3 12. 【答案】a(1+x)213. 【答案】±1014. 【答案】-1[解析] 因为抛物线经过原点(0,0),所以a 2-1=0,即a =±1.因为抛物线的开口向下,所以舍去a =1.故a =-1.15. 【答案】0[解析] ∵抛物线y =ax 2+bx +c 经过点A(-3,0),对称轴是直线x =-1,∴抛物线y =ax 2+bx +c 与x 轴的另一交点的坐标为(1,0), ∴a +b +c =0.三、解答题16. 【答案】解:(1)∵抛物线的顶点坐标为(1,4), ∴设此抛物线的解析式为y =a(x -1)2+4. ∵抛物线过点B(0,3),∴3=a(0-1)2+4,解得a =-1,∴y =-(x -1)2+4,即此抛物线的解析式为y =-x2+2x +3.(2)作点B 关于x 轴的对称点E(0,-3),连接AE 交x 轴于点P ,此时PA +PB 的值最小.设直线AE 的解析式为y =kx +b , 则⎩⎨⎧k +b =4,b =-3,解得⎩⎨⎧k =7,b =-3, ∴直线AE 的解析式为y =7x -3.当y =0时,x =37,∴当PA +PB 的值最小时,点P 的坐标为(37,0).17. 【答案】解:(1)设抛物线的解析式为y =ax 2+bx +c. 根据题意,得⎩⎪⎨⎪⎧9a -3b +c =0,c =3,-b2a=-1,解得⎩⎪⎨⎪⎧a =-1,b =-2,c =3. 所以抛物线的解析式为y =-x 2-2x +3.(2)易知直线AB 的表达式为y =x +3,设P(m ,-m 2-2m +3),过点P 作PC ∥y 轴交AB 于点C ,则C(m ,m +3),PC =(-m 2-2m +3)-(m +3)=-m 2-3m , 所以S △PAB =12×(-m 2-3m)×3=-32(m 2+3m)=-32(m +32)2+278, 所以当m =-32时,S △PAB 有最大值278,此时点P 的坐标为(-32,154).18. 【答案】(1)∵抛物线4y ax bx +-=经过点()()2,0,40A B -,, 424016440a b a b +-=⎧∴⎨--=⎩,解得1,21a b ⎧=⎪⎨⎪=⎩ ∴抛物线解析式为2142y x x --=;(2)如图1,连接OP ,设点21,42P x x x ⎛⎫+- ⎪⎝⎭,其中40x -<<,四边形ABPC 的面积为S ,由题意得0,4C -(),AOCOCPOBPS SSS∴++=()1124422x =⨯⨯+⨯⨯-2114422x x ⎛⎫+⨯⨯--+ ⎪⎝⎭,24228x x x ---+=,2412x x -+=-,()2216x ++=.10﹣<,开口向下,S 有最大值,∴当2x =-时,四边形ABPC 的面积最大,此时,4y =-,即()2,4P --.因此当四边形ABPC 的面积最大时,点P 的坐标为()2,4--. (3)()2211941222y x x x =+-=+-, ∴顶点91,2M ⎛⎫-- ⎪⎝⎭.如图2,连接AM 交直线DE 于点G ,此时,CMG 的周长最小.设直线AM 的解析式为y kx b +=,且过点20A (,),91,2M ⎛⎫-- ⎪⎝⎭,20,92k b k b +=⎧⎪∴⎨-+=-⎪⎩∴直线AM 的解析式为332y x =-. 在Rt AOC中,AC ==.D 为AC的中点,12AD AC ∴== ADE AOC ∽,AD AEAO AC∴=,2=5AE ∴=,523OE AE AO ∴--===,()30E ∴-,, 由图可知()1,2D -设直线DE 的函数解析式为y mx n =+,2,30m n m n +=-⎧∴⎨-+=⎩解得:12,32m n ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线DE 的解析式为1322y x =--. 1322,332y x y x ⎧=--⎪⎪∴⎨⎪=-⎪⎩解得:34,158x y ⎧=⎪⎪⎨⎪=-⎪⎩315,48G ⎛⎫∴- ⎪⎝⎭.22.2 二次函数与一元一次方程一、选择题1. 二次函数y =x 2-2x -2的图象与坐标轴的交点个数是( ) A .0 B .1 C .2 D .32.已知二次函数y =ax 2+bx +c 的图象如图所示,则一元二次方程ax 2+bx +c =0的解是( )A.x1=-3,x2=1 B.x1=3,x2=1C.x=-3 D.x=-23. 从地面竖直向上抛出一个小球,小球的上升高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=24t-4t2,那么小球从抛出至回落到地面所需的时间是()A.6 s B.4 s C.3 s D.2 s4. 已知二次函数y=x2-x+14m-1的图象与x轴有交点,则m的取值范围是( )A.m≤5 B.m≥2 C.m<5 D.m>25.下面的表格列出了函数y=ax2+bx+c(a,b,c是常数,且a≠0)的x与y的部分对应值,那么方程ax2+bx+c=0的一个根x的取值范围是( )x … 6.17 6.18 6.19 6.20…y …-0.03-0.010.020.04…A.6<x<6.17 B.6.17<x<6.18C.6.18<x<6.19 D.6.19<x<6.206.函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是( )A.x<-4或x>2 B.-4<x<2C.x<0或x>2 D.0<x<27. 根据下列表格中的对应值,判断方程ax2+bx+c=0(a≠0)的一个根x的取值范围是()A.1.23<x <1.24 B .1.24<x <1.25C .1.25<x <1.26D .1<x <1.238. 王芳将如图所示的三条水平直线m 1,m 2,m 3中的一条记为x 轴(向右为正方向),三条竖直直线m 4,m 5,m 6中的一条记为y 轴(向上为正方向),并在此坐标平面内画出了抛物线y =ax 2-6ax -3,则她所选择的x 轴和y 轴分别为( )A .m 1,m 4B .m 2,m 5C .m 3,m 6D .m 4,m 59. 已知二次函数y =-x 2+x +6及一次函数y =-x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数图象(如图),当直线y =-x +m 与新图象有4个交点时,m 的取值范围是( )A .-254<m<3 B .-254<m<2 C .-2<m <3D .-6<m <-210. 如图,抛物线y =12x 2-7x +452与x 轴交于点A ,B ,把抛物线在x 轴及其下方的部分记作C 1,将C 1向左平移得到C 2,C 2与x 轴交于点B ,D ,若直线y =12x +m 与C 1,C 2共有3个不同的交点,则m 的取值范围是( )A .-458<m <-52B .-298<m <-12C .-298<m <-52D .-458<m <-12二、填空题11. 若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为____________.12. 如图,已知抛物线y =x 2+2x -3与x 轴的两个交点分别是A ,B (点A 在点B的左侧).(1)点A 的坐标为__________,点B 的坐标为________; (2)利用函数图象,求得当y <5时x 的取值范围为________.13.已知二次函数y =3x 2+c 与正比例函数y =4x 的图象只有一个交点,则c 的值为________.14.如图,抛物线y =ax 2与直线y =bx +c 的两个交点分别为A (-2,4),B (1,1),则方程ax 2=bx +c 的解是____________.15. 已知二次函数y =kx 2-6x -9的图象与x 轴有两个不同的交点,则k 的取值范围为____________.三、解答题16. 已知抛物线y =x 2-2bx +c.(1)若抛物线的顶点坐标为(2,-3),求b ,c 的值;(2)若b +c =0,是否存在实数x ,使得相应的y 的值为1?请说明理由; (3)若c =b +2且抛物线在-2≤x≤2上的最小值是-3,求b 的值.17. 利用图象解一元二次方程x 2-2x -1=0时,我们采用的一种方法是在直角坐标系中画出抛物线y =x 2和直线y =2x +1,两图象交点的横坐标就是该方程的解.(1)请你再给出一种利用图象求方程x 2-2x -1=0的解的方法;(2)已知函数y =x 3的图象(如图),求方程x 3-x -2=0的解(精确到0.1).18. 已知抛物线l :y =(x -h )2-4(h 为常数).(1)如图22-B -2(a),当抛物线l 恰好经过点P (1,-4)时,l 与x 轴从左到右的交点为A ,B ,与y 轴交于点C .①求l 的解析式,并写出l 的对称轴及顶点坐标.②在l 上是否存在点D (与点C 不重合),使S △ABD =S △ABC ?若存在,请求出点D 的坐标;若不存在,请说明理由.③M 是l 上任意一点,过点M 作ME ⊥y 轴于点E ,交直线BC 于点D ,过点D 作x 轴的垂线,垂足为F ,连接EF ,当线段EF 的长度最短时,求出点M 的坐标.(2)设l与直线y=35x-245有个交点的横坐标为x0,且满足3≤x0≤5,通过l位置随h变化的过程,直接写出h的取值范围.19. 在平面直角坐标系中,设二次函数y1=(x+a)(x-a-1),其中a≠0.(1)若函数y1的图象经过点(1,-2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上.若m<n,求x0的取值范围.20.某班“数学兴趣小组”对函数y=x2-2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;(3)观察函数图象,写出两条函数的性质;(4)进一步探究函数图象发现:①函数图象与x轴有________个交点,所以对应的方程x2-2|x|=0有________个实数根;②方程x2-2|x|=2有________个实数根;③关于x的方程x2-2|x|=a有4个实数根时,a的取值范围是________.人教版九年级数学22.2 二次函数与一元一次方程针对训练-答案一、选择题1. 【答案】D2. 【答案】 A [解析] ∵抛物线与x轴的一个交点的坐标是(1,0),对称轴是直线x=-1,∴抛物线与x轴的另一个交点的坐标是(-3,0).故一元二次方程ax2+bx+c=0的解是x1=-3,x2=1.故选A.3. 【答案】A4. 【答案】 A [解析] ∵抛物线y=x2-x+1 4m-1与x轴有交点,∴b2-4ac≥0,即(-1)2-4×1×(14m-1)≥0,解得m≤5.5. 【答案】 C [解析] 由表格中的数据,得在6.17<x<6.20范围内,y随x的增大而增大,当x=6.18时,y=-0.01,当x=6.19时,y=0.02,故方程ax2+bx+c=0的一个根x的取值范围是6.18<x<6.19.6. 【答案】 A [解析] 抛物线的对称轴是直线x=-2a 2a=-1,∴抛物线与x轴的另一个交点坐标是(-4,0).∵a<0,∴抛物线开口向下,∴使y<0成立的x的取值范围是x<-4或x>2.故选A.7. 【答案】B8. 【答案】A[解析] ∵y =ax 2-6ax -3=a (x -3)2-3-9a ,∴抛物线的对称轴为直线x =3, ∴王芳选择的y 轴为直线m 4.∵抛物线y =ax 2-6ax -3与y 轴的交点为(0,-3), ∴抛物线与y 轴的交点在x 轴的下方, ∴王芳选择的x 轴为直线m 1.9. 【答案】D【解析】 如图,当y =0时,-x 2+x +6=0,解得x 1=-2,x 2=3,则A (-2,0),B (3,0).将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方的部分图象的解析式为y =(x +2)(x -3),即y =x 2-x -6(-2≤x ≤3).当直线y =-x +m 经过点A (-2,0)时,2+m =0,解得m =-2;当直线y =-x +m 与抛物线y =x 2-x -6有唯一公共点时,方程x 2-x -6=-x +m 有两个相等的实数根,解得m =-6.所以当直线y =-x +m 与新图象有4个交点时,m 的取值范围为-6<m <-2.10. 【答案】C【解析】 如图.∵抛物线y =12x 2-7x +452与x 轴交于点A ,B ,∴B (5,0),A (9,0).∴抛物线C 1向左平移4个单位长度得到C 2,∴平移后抛物线的解析式为y =12(x -3)2-2.当直线y =12x +m 过点B 时,有2个交点, ∴0=52+m ,解得m =-52;当直线y =12x +m 与抛物线C 2只有一个公共点时,令12x +m =12(x -3)2-2,∴x 2-7x +5-2m = 0,∴Δ=49-20+8m =0,∴m =-298,此时直线的解析式为y =12x -298,它与x 轴的交点为(294,0),在点A 左侧,∴此时直线与C 1,C 2有2个交点,如图所示.∴当直线y =12x +m 与C 1,C 2共有3个不同的交点时,-298<m <-52.二、填空题11. 【答案】-1或2或1 【解析】 ∵函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,∴当函数为二次函数时,16-4(a -1)×2a =0, 解得a 1=-1,a 2=2;当函数为一次函数时,a -1=0,解得a =1. 故答案为-1或2或1.12. 【答案】(1)(-3,0)(1,0) (2)-4<x <2【解析】(1)当x 2+2x -3=0时,解得x 1=-3,x 2=1,∴A (-3,0),B (1,0). (2)当y =5时,x 2+2x -3=5,x 2+2x -8=0,解得x 1=-4,x 2=2. 由函数图象可得,当-4<x <2时,y <5.13.【答案】43【解析】本题考查了已知二次函数的图象与一次函数的图象的交点个数,求字母未知数的值.把y =3x 2+c 与y =4x 联立方程组并消去y 得3x 2+c =4x ,化简得3x 2-4x +c =0,由于它们的图象只有一个交点,故此方程有两个相等的实数根,所以b 2-4ac =(-4)2-4×3c =0,解得c =43. 14. 【答案】x 1=-2,x 2=1 [解析] 方程ax 2=bx +c 的解即抛物线y =ax 2与直线y =bx +c 交点的横坐标.∵交点是A(-2,4),B(1,1),∴方程ax 2=bx +c 的解是x 1=-2,x 2=1.15. 【答案】k >-1且k ≠0三、解答题16. 【答案】解:(1)∵抛物线y =x 2-2bx +c , ∴a =1.∵抛物线的顶点坐标为(2,-3), ∴y =(x -2)2-3.∵y =(x -2)2-3=x 2-4x +1, ∴b =2,c =1. (2)存在.理由:由y =1,得x 2-2bx +c =1, ∴x 2-2bx +c -1=0.∵Δ=4b 2+4b +4=(2b +1)2+3>0, ∴存在两个实数x ,使得y =1.(3)若c =b +2,则抛物线可化为y =x 2-2bx +b +2,其对称轴为直线x =b . ①若b ≤-2,则抛物线在x =-2时取得最小值,此时-3=(-2)2-2×(-2)b +b +2,解得b =-95,不合题意,舍去;②若b ≥2,则抛物线在x =2时取得最小值,此时-3=22-2×2b +b +2,解得b =3;③若-2<b <2,则抛物线在x =b 时取得最小值,此时4(b +2)-4b 24=-3,化简,得b 2-b -5=0,解得b 1=1+212(不符合题意,舍去),b 2=1-212. 综上所述,b 的值为3或1-212.17. 【答案】解:(1)答案不唯一,如在直角坐标系中画出抛物线y =x 2-1和直线y =2x ,其交点的横坐标就是方程的解.(2)在图中画出直线y =x +2,与函数y =x 3的图象交于点B ,得点B 的横坐标x ≈1.5, ∴方程的解为x ≈1.5.18. 【答案】解:(1)①将P(1,-4)代入y=(x-h)2-4,得(1-h)2-4=-4,解得h=1,∴抛物线l的解析式为y=(x-1)2-4,∴抛物线l的对称轴为直线x=1,顶点坐标为(1,-4).②存在.将x=0代入y=(x-1)2-4,得y=-3,∴点C的坐标为(0,-3),∴OC=3.∵S△ABD=S△ABC,∴点D的纵坐标为3或-3.当y=-3时,(x-1)2-4=-3,解得x1=2,x2=0(舍去),∴点D的坐标为(2,-3).当y=3时,(x-1)2-4=3,解得x1=1+7,x2=1-7,∴点D的坐标为(1+7,3)或(1-7,3).综上所述,在抛物线l上存在点D(与点C不重合),使S△ABD=S△ABC,点D的坐标为(2,-3)或(1+7,3)或(1-7,3).③如图(a)所示:∵∠EOF=∠OED=∠OFD=90°,∴四边形OEDF为矩形,∴OD=EF.依据垂线段的性质可知:当OD⊥BC时,OD有最小值,即EF有最小值.把y=0代入抛物线的解析式,得(x-1)2-4=0,解得x1=-1,x2=3,∴B(3,0),∴OB=OC.又∵OD⊥BC,∴CD=BD.∴点D的坐标为(32,-32).将y=-32代入y=(x-1)2-4,得(x-1)2-4=-32,解得x1=-102+1,x2=102+1,∴点M的坐标为(-102+1,-32)或(102+1,-32).(2)∵y=(x-h)2-4,∴抛物线的顶点在直线y=-4上.对于直线y=35x-245,当3≤x0≤5时,-3≤y0≤-9 5,即抛物线l与直线y=35x-245在G(3,-3),H(5,-95)之间的一段有一个交点.当抛物线经过点G时,(3-h)2-4=-3,解得h=2或h=4.当抛物线经过点H时,(5-h)2-4=-95,解得h=5+555或h=5-555.随h的逐渐增加,l的位置随之向右平移,如图(b)所示.由函数图象可知:当2≤h≤5-555或4≤h≤5+555时,抛物线l与直线在3≤x0≤5段有一个交点.19. 【答案】【思维教练】由图象过点(1,-2),将其带入y1的函数表达式中,解方程即可;(2)由y1=(x+a)(x-a-1)可得出y1过x轴上的两点的坐标,然后分两种情况讨论即可;(3)先求出y1=(x+a)(x-a-1)的对称轴,根据开口向上的二次函数,离对称轴越近,函数值越小即可得解.解:(1)∵函数y1=(x+a)(x-a-1)图象经过点(1,-2),∴把x=1,y=-2代入y1=(x+a)(x-a-1)得,-2=(1+a)(-a),(2分)化简得,a2+a-2=0,解得,a1=-2,a2=1,∴y1=x2+x-2;(4分)(2)函数y1=(x+a)(x-a-1)图象在x轴的交点为(-a,0),(a+1,0),①当函数y2=ax+b的图象经过点(-a,0)时,把x=-a,y=0代入y2=ax+b中,得a2=b;(6分)②当函数y2=ax+b的图象经过点(a+1,0)时,把x=a+1,y=0代入y2=ax+b中,得a2+a=-b;(8分)(3)∵抛物线y1=(x+a)(x-a-1)的对称轴是直线x=-a+a+12=12,m<n,∵二次项系数为1,∴抛物线的开口向上,∴抛物线上的点离对称轴的距离越大,它的纵坐标也越大,∵m<n,∴点Q离对称轴x=12的距离比P离对称轴x=12的距离大,(10分)∴|x0-12|<1-12,∴0<x0<1.(12分)20. 【答案】解:(1)m=0.(2分)(2)如解图所示:(4分)(3)①函数图象有两个最低点,坐标分别是(-1,-1)以及(1,-1).②函数图象是轴对称图形,对称轴是直线x=0(y轴).(6分)③从图象信息直接看出:当x<-1或0<x<1时,函数值随自变量的增大而减小;当-1<x<0或x>1时,函数值随自变量的增大而增大.④在x<-2或x>2时,函数值大于0,在-2<x<0或0<x<2时,函数值小于0等.(答案不唯一,合理即可)(4)①3,3;②2; ③-1<a<0.(10分)【解法提示】①观察图象可知函数图象与x轴有3个交点,∴方程x2-2|x|=0有3个不相等的实数根;②把抛物线y=x2-2|x|向下平移2个单位,得抛物线y=x2-2||x-2,则抛物线y=x2-2|x|-2与x轴只有2个交点,∴方程x2-2|x|-2=0有2个不相等的实数根;③把抛物线y=x2-2|x|向上平移0<h<1时,抛物线与x轴有4个交点,∴抛物线解析式y=x2-2|x|-a中,0<-a<1,∴-1<a<0.22.3 实际问题与二次函数第1课时最优化问题1.已知一个直角三角形两直角边之和为20 cm,则这个直角三角形的最大面积为( )(A)25 cm2 (B)50 cm2 (C)100 cm2 (D)不确定2.(2019天门)矩形的周长等于40,则此矩形面积的最大值是.3.小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元.设该纪念品的销售单价为x(元),日销量为y(件).(1)求y与x的函数关系式;(2)要使日销售利润为720元,销售单价应定为多少元?4.如图,在△ABC中,∠C=90°,AB=10 cm,BC=8 cm,点P从点A沿AC 向点C以1 cm/s的速度运动,同时点Q从点C沿CB向点B以2 cm/s 的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为( )(A)19 cm2 (B)16 cm2 (C)15 cm2 (D)12 cm25.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,饲养室的长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2 m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2 m就行了.”请你通过计算,判断小敏的说法是否正确.6.(核心素养—数学建模)(2019云南)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价 x(元/千克)的函数关系如图所示.(1)求y与x的函数解析式;(2)求这一天销售西瓜获得的利润W的最大值.第2课时生活中的抛物线1.(2019临沂)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40 m;②小球抛出3 s后,速度越来越快;③小球抛出3 s时速度为0;④小球的高度h=30 m时,t=1.5 s.其中正确的是( )第1题图(A)①④(B)①②(C)②③④(D)②③2.如图是抛物线形拱桥,当拱顶离水面2 m时,水面宽4 m,若水面下降2 m,则水面宽度增加m.第2题图3.平时我们在跳绳时,绳子甩到最高处的形状可近似看作抛物线,如图建立直角坐标系,抛物线的函数解析式为y=-x2+x+,绳子甩到最高处时刚好通过站在x=2处跳绳的学生小明的头顶,则小明的身高为米.4.如图,杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=-x2+3x+1的一部分.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.5.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1 m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数解析式y=a(x-4)2+h,已知点O与球网的水平距离为5 m,球网的高度为1.55 m.(1)当a=-时,①求h的值;②通过计算判断此球能否过网;(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7 m,离地面的高度为 m的Q处时,乙扣球成功,求a的值.6.如图所示,隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用 y=-x2+bx+c表示,且抛物线上的点C到墙面OB的水平距离为3 m时,到地面OA的距离为 m.(1)求该抛物线的函数解析式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6 m,宽为4 m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8 m,那么两排灯的水平距离最小是多少?22.3 实际问题与二次函数第1课时最优化问题1.已知一个直角三角形两直角边之和为20 cm,则这个直角三角形的最大面积为( B )(A)25 cm2 (B)50 cm2 (C)100 cm2 (D)不确定2.(2019天门)矩形的周长等于40,则此矩形面积的最大值是100 .3.小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元.设该纪念品的销售单价为x(元),日销量为y(件).(1)求y与x的函数关系式;(2)要使日销售利润为720元,销售单价应定为多少元?解:(1)根据题意,得y=200-10(x-8)=-10x+280,故y与x的函数关系式为y=-10x+280(8<x≤12).(2)根据题意,得(x-6)(-10x+280)=720,解得x1=10,x2=24(不合题意,舍去).答:要使日销售利润为720元,销售单价应定为10元.4.如图,在△ABC中,∠C=90°,AB=10 cm,BC=8 cm,点P从点A沿AC 向点C以1 cm/s的速度运动,同时点Q从点C沿CB向点B以2 cm/s 的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为( C )(A)19 cm2 (B)16 cm2 (C)15 cm2 (D)12 cm25.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,饲养室的长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2 m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2 m就行了.”请你通过计算,判断小敏的说法是否正确.解:(1)因为饲养室的长为x m,则宽为()m,所以y=x·=-(x-25)2+.所以当x=25时,y取得最大值.所以饲养室的长x为25 m时,占地面积y最大.(2)因为饲养室的长为x m,则宽为[] m,所以y=x·=-(x-26)2+338.所以当x=26时,y取得最大值.所以饲养室的长x为26 m时,占地面积y最大.因为26-25=1≠2,所以小敏的说法不正确.6.(核心素养—数学建模)(2019云南)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价 x(元/千克)的函数关系如图所示.(1)求y与x的函数解析式;(2)求这一天销售西瓜获得的利润W的最大值.解:(1)当6≤x≤10时,设y与x的解析式为y=kx+b(k≠0),根据题意,得解得所以y=-200x+2 200,当10<x≤12时,y=200,故y与x的函数解析式为y=(2)当6≤x≤10时,W=(x-6)y=(x-6)(-200x+2 200)=-200(x-)2+1 250,因为-200<0,所以抛物线的开口向下,所以x=时,W取最大值,此时W=1 250;当10<x≤12时,W=(x-6)·200=200x-1 200,因为W随x的增大而增大,所以x=12时W取得最大值,此时W=200×12-1 200=1 200.综上所述,W的最大值为1 250元,即当销售价格为8.5元/千克时,取得最大利润,最大利润为1 250元.第2课时生活中的抛物线1.(2019临沂)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40 m;②小球抛出3 s后,速度越来越快;③小球抛出3 s时速度为0;④小球的高度h=30 m时,t=1.5 s.其中正确的是( D )第1题图(A)①④(B)①②(C)②③④(D)②③2.如图是抛物线形拱桥,当拱顶离水面2 m时,水面宽4 m,若水面下降2 m,则水面宽度增加(4-4) m.第2题图3.平时我们在跳绳时,绳子甩到最高处的形状可近似看作抛物线,如图建立直角坐标系,抛物线的函数解析式为y=-x2+x+,绳子甩到最高处时刚好通过站在x=2处跳绳的学生小明的头顶,则小明的身高为1.5 米.4.如图,杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=-x2+3x+1的一部分.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.解:(1)y=-x2+3x+1=-(x-)2+,所以当x=时,y有最大值,所以演员弹跳离地面的最大高度是4.75米.(2)能表演成功.理由如下:当x=4时,y=-×42+3×4+1=-9.6+13=3.4,即点B(4,3.4)在抛物线y=-x2+3x+1上,所以能表演成功.5.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1 m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数解析式y=a(x-4)2+h,已知点O与球网的水平距离为5 m,球网的高度为1.55 m.(1)当a=-时,①求h的值;②通过计算判断此球能否过网;(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7 m,离地面。
人教版九年级数学上册第22章同步测试题含答案
人教版九年级数学上册第22章同步测试题含答案22.1.2二次函数y=ax2的图象和性质基础导练1.关于函数23x y = 的性质的叙述,错误的是( )A .对称轴是y 轴B .顶点是原点C .当0>x 时,y 随x 的增大而增大D .y 有最大值2.在同一坐标系中,抛物线22221,,x y x y x y =-==的共同点是( ) A .开口向上,对称轴是y 轴,顶点是原点B .对称轴是y 轴,顶点是原点C .开口向下,对称轴是y 轴,顶点是原点D .有最小值为03.在同一平面直角坐标系中,同一水平线上开口最大的抛物线是( )A.2x y -=B.231x y -=C.233x y -=D.22x y -= 能力提升4.下列函数中,具有过原点,且当0>x 时,y 随x 增大而减小,这两个特征的有( ) ①)0(2>-=a ax y ;②)1()1(2<-=a x a y ;③)0(22≠+-=a a x y ; ④)0(23≠-=a a x y A .1个 B .2个 C .3个 D .4个5.二次函数223x y -=,当x 1>x 2>0时,试比较1y 和2y 的大小:1y 2y (填“>”,“<”或“=”)6.二次函数12-=m mx y 在其图象对称轴的左则,y 随x 的增大而增大,=m . 参考答案1.D2.B3.B4.B5.<6.22.1.3二次函数y=a(x-h)2+k 的图象和性质(第1课时)基础导练1.抛物线122+=x y 的顶点坐标是( )A.(0,1)B. (0,-1)C. (1,0)D. (-1,0)2.抛物线)0(2≠+=a b ax y 与x 轴有两个交点,且开口向下,则b a ,的取值范围分别是( )A.0,0>>b aB.0,0<>b aC.0,0<<b aD.0,0><b a3.将抛物线322-=x y 平移后得到抛物线22x y =,平移的方法可以是( )A.向下平移3个单位长度B.向上平移3个单位长度C.向下平移2个单位长度D.向下平移2个单位长度 能力提升4.把二次函数2x y =的图象向右平移3个单位长度,得到新的图象的函数表达式是( )A.32+=x yB.32-=x yC.2)3(+=x yD.2)3(-=x y5.已知二次函数2)1(3+=x y 的图象上有三点 ),2(),,2(),,1(321y C y B y A - ,则321,,y y y 的大小关系为( )A.321y y y >>B.312y y y >>C.213y y y >>D.123y y y >>6.已知二次函数2)(h x a y -=,当2=x 时有最大值,且此函数的图象经过点)3,1(-,求此二次函数的解析式,并指出当x 为何值时,y 随x 的增大而增大?参考答案1.A2.D3.B4.D5.B22.1.3二次函数y=a(x-h)2+k 的图象和性质(第2课时)基础导练1.抛物线21)1(22+--=x y 的顶点坐标为( ) A.(-1,21) B.(1,21) C.(-1,—21) D.(1,—21) 2.对于2)3(22+-=x y 的图象,下列叙述正确的是( )A.顶点坐标为(-3,2)B.对称轴是直线3-=yC.当3≥x 时,y 随x 的增大而增大D.当3≥x 时,y 随x 的增大而减小3.将抛物线2x y =向右平移一个单位长度,再向上平移3个单位长度后,所得抛物线的解析式为( )A.3)1(2++=x yB.3)1(2+-=x yC.3)1(2-+=x yD.3)1(2--=x y能力提升4.设A (-1,1y )、B (1,2y )、C (3,3y )是抛物线k x y +--=2)21(21上的三个点,则1y 、2y 、3y 的大小关系是( )A.1y <2y <3yB.2y <1y <3yC.3y <1y <2yD.2y <3y <1y5.若二次函数.当≤l 时,随的增大而减小,则的取值范围是( )的增大而增大随时,当代入上式把是函数取最大值当x y x x y a a x a y h x 2)2(333)21()3,1()2(22.2222<--=∴-=∴-=---=∴=∴= 2()1y x m =--x y x m 6.解:A .=lB .>lC .≥lD .≤l6.二次函数n m x a y ++=2)(的图象如图所示,则一次函数n mx y +=的图象经过( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限7.在直角坐标系中,二次函数图象的顶点为A (1、-4),且经过点B (3,0).(1)求该二次函数的解析式;(2)当33<<-x 时,函数值y 的增减情况;(3)将抛物线怎样平移才能使它的顶点为原点.参考答案1.B2.C3.B4.C5.C6.C22.1.4二次函数y=ax2+bx+c 的图象和性质基础导练1.抛物线742++-=x x y 的顶点坐标为( )A.(-2,3)B.(2,11)C.(-2,7)D.(2,-3)2.若抛物线c x x y +-=22与y 轴交于点(0,-3),则下列说法不正确的是( )A.抛物线开口方向向上B.抛物线的对称轴是直线1=xC.当1=x 时,y 的最大值为-4D.抛物线与x 轴的交点为(-1,0),(3,0)m m m m 顶点为原点个单位即可实现抛物线个单位,再向上平移向左平移)将抛物线(的增大而增大随时,的增大而减小,当随时,当开口向上抛物线对称轴为直线解得),(二次函数图象过点又设二次函数的解析式为),(二次函数的图象顶点为)、解:(414)1(33113,1)2()41(104)13(03B 4)1(41A 142222--=<≤<<-∴=--=∴==--∴--=∴-x y x y x x y x x x y a a x a y 7.)3.要得到二次函数222-+-=x x y 的图象,需将2x y -=的图象( )A.向左平移2个单位,再向下平移2个单位B.向右平移2个单位,再向上平移2个单位C.向左平移1个单位,再向上平移1个单位D.向右平移1个单位,再向下平移1个单位能力提升4.抛物线c bx x y ++=2的图象向右平移2个单位,再向下平移3个单位,所得图象的解析式为322--=x x y ,则b 、c 的值为( )A.2,2==c bB.0,2==c bC.1,2-=-=c bD.2,3=-=c b5.已知二次函数)0(2≠++=a c bx ax y 的图象如图所示对称轴为x =.下列结论中,正确的是( )A .0>abcB .0=+b aC .02>+c bD .b c a 24<+6.已知抛物线c bx ax y ++=2的对称轴为2=x ,且经过点(1,4)和(5,0),试求该抛物线的表达式.参考答案1.B2.C3.D4.B5.D6.解:由已知得:12-2,24,2550.-b a a b c a b c ⎧=⎪⎪++=⎨⎪++=⎪⎩解得:1,22,5.2a b c ⎧=-⎪⎪=⎨⎪⎪=⎩ 所以该抛物线的表达式为2152.22y x x =-++22.2二次函数与一元二次方程基础导练1.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为 (只写一个),此类函数都有______值(填“最大”“最小”).2.若抛物线y =x 2-(2k +1)x +k 2+2,与x 轴有两个交点,则整数k 的最小值是______.3.等腰梯形的周长为60 cm ,底角为60°,当梯形腰x =______时,梯形面积最大,等于______.能力提升4.关于二次函数y =ax 2+bx +c 的图象有下列命题,其中是假命题的个数是( )①当c =0时,函数的图象经过原点; ②当b =0时,函数的图象关于y 轴对称; ③函数的图象最高点的纵坐标是a b ac 442-;④当c >0且函数的图象开口向下时,方程ax 2+bx +c =0必有两个不相等的实根.A.0个B.1个C.2个D.3个5.抛物线y =kx 2-7x -7的图象和x 轴有交点,则k 的取值范围是( )A.k >-47;B.k ≥-47且k ≠0;C.k ≥-47;D.k >-47且k ≠0 6.利用二次函数的图象求下列一元二次方程的根.(1)4x 2-8x +1=0; (2)x 2-2x -5=0;(3)2x 2-6x +3=0; (4)x 2-x -1=0.参考答案1.y =-x 2+x -1 最大2. 23. 15 cm4.B5.B6.解:(1)x 1≈1.9,x 2≈0.1;(2)x 1≈3.4,x 2≈-1.4;(3)x 1≈2.4,x 2≈0.6;(4)x 1≈1.6,x 2≈-0 .622.3实际问题与二次函数基础导练1.如图所示,在一个直角三角形的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( )A.424 m B.6 m C.15 m D.25 m 2.二次函数y =x 2-4x +3的图象交x 轴于A 、B 两点,交y 轴于点C ,△ABC 的面积为( )A.1B.3C.4D.63.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为( )A.y=25x+15B.y=2.5x+1.5C.y=2.5x+15D.y=25x+1.5能力提升4.某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足关系:m=140-2x.(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?5.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x m.(1)要使鸡场面积最大,鸡场的长度应为多少m?(2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少m?比较(1)(2)的结果,你能得到什么结论?参考答案1.D2.B3.C4.解:(1)y =-2x 2+180x -2800.(2)y =-2x 2+180x -2800=-2(x 2-90x )-2800=-2(x -45)2+1250.当x =45时,y 最大=1250.∴每件商品售价定为45元最合适,此销售利润最大,为1250元.5.解:(1)依题意得鸡场面积y =.350312x x +- ∵y =-31x 2+350x =31-(x 2-50x ) =-31(x -25)2+3625, ∴当x =25时,y 最大=3625, 即鸡场的长度为25 m 时,其面积最大为3625m 2. (2)如中间有n 道隔墙,则隔墙长为502x n -+m.∴y =502x n -+·x =-12n +x 2+502n +x=-12n +(x 2-50x )=-12n +(x -25)2+6252n +,当x =25时,y 最大=6252n +,即鸡场的长度为25 m 时,鸡场面积为6252n + m 2.结论:无论鸡场中间有多少道篱笆隔墙,要使鸡场面积最大,其长都是25 m.。
人教版数学九年级上册第22章22.2---22.3基础检测 带答案
22.2二次函数与一元二次方程一.选择题1.若二次函数y=ax2+bx﹣1的最小值为﹣2,则方程|ax2+bx﹣1|=2的不相同实数根的个数是()A.2B.3C.4D.52.二次函数y=x2+2x+4与坐标轴有()个交点.A.0B.1C.2D.33.在平面直角坐标系中,已知a≠b,设函数y=(x﹣a)(x﹣b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图形与x轴有N个交点,则()A.M=N﹣1或M=N+1B.M=N﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣14.已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是()(1)2a+b=0;(2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;(3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;(4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是﹣<m<0.A.1B.2C.3D.45.已知抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,x1、x2是关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的两根,则(x1+x2)的值为()A.0B.﹣4C.4D.26.已知一个直角三角形的两边长分别为a和5,第三边长是抛物线y=x2﹣10x+21与x轴交点间的距离,则a的值为()A.3B.C.3或D.不能确定7.小强从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条结论:你认为其中正确结论的个数有()(1)a<0;(2)b>0;(3)a﹣b+c>0;(4)2a+b<0.A.1个B.2个C.3个D.4个8.若二次函数y=ax2﹣2ax+c的图象经过点A(0,﹣1),B(﹣2,y1),C(3,y2),D(,y3),且与x轴没有交点,则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y1>y3>y2 C.y2>y1>y3 D.y3>y2>y19.对于二次函数y=kx2﹣(4k+1)x+3k+3.下列说法正确的是()①对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点;②该函数图象与x轴必有交点;③若k<0,当x≥2时,y随x的增大而减小;④若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=﹣1.A.①②③B.①②④C.②③④D.①③④10.设抛物线y=ax2+bx+c(ab≠0)的顶点为M,与y轴交于N点,连接直线MN,直线MN与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1.()A.y=﹣3(x﹣1)2+1B.y=2(x﹣0.5)(x+1.5)C.y=x+1D.y=(a2+1)x2﹣4x+2(a为任意常数)二.填空题11.抛物线y=ax2+bx+c经过点A(﹣2,0)、B(1,0)两点,则关于x的一元二次方程a(x﹣3)2+c=3b﹣bx的解是.12.若方程ax2﹣2ax+c=0(a≠0)有一个根为x=﹣1,那么抛物线y=ax2﹣2ax+c与x轴两交点间的距离为.13.若抛物线y=x2﹣2mx+4m﹣8与x轴交点的横坐标均为整数,则整数m的值为.14.已知抛物线y=3x2+2x+c,当﹣1≤x≤1时,抛物线与x轴有且只有一个公共点,则c的取值范围.15.已知关于x的一元二次方程m(x﹣h)2﹣k=0(m、h,k均为常数且m≠0)的解是x1=2,x2=5,则抛物线y=m(x﹣h+3)2与直线y=k的交点的横坐标是.三.解答题16.已知二次函数的图象经过点(3,0),对称轴是直线x=﹣2,与y轴的交点(0,﹣3).(1)求抛物线与x轴的另一个交点坐标;(2)求抛物线的解析式.17.已知关于x的一元二次方程x2﹣(m﹣3)x﹣m=0,(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(1,0),B(t,0)两点,求m的值.18.已知二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)画出该二次函数的图象;(2)连接AC、CD、BD,则四边形ABCD的面积为.19.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C.请解答下列问题:(1)求抛物线的函数解析式并直接写出顶点M坐标;(2)连接AM,N是AM的中点,连接BN,求线段BN长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).20.已知抛物线y=x2﹣(4﹣k)x﹣3的对称轴是直线x=1,此抛物线与x轴交于A、B两点,与y 轴交于点C.(Ⅰ)求△ABC的面积;(Ⅱ)若抛物线的顶点为P,求线段PC的长.参考答案一.选择题1.解:由题意可知,二次函数y=ax2+bx﹣1的图象开口向上,经过定点(0,﹣1),最小值为﹣2,则二次函数y=ax2+bx﹣1 的大致图象如图1所示,函数y=|ax2+bx﹣1|的图象则是由二次函数y=ax2+bx﹣1位于x轴上方的图象不变,位于x轴下方的图象向上翻转得到的,如图2所示,由图2可知,方程|ax2+bx﹣1|=2 的不相同实数根的个数是3个,故选:B.2.解:∵二次函数y=x2+2x+4,∴当y=0时,0=x2+2x+4=(x+1)2+3,此时方程无解,当x=0时,y=4,∴二次函数y=x2+2x+4与坐标轴有1个交点,故选:B.3.解:当y=0时,(x﹣a)(x﹣b)=0,解得x1=a,x2=b,抛物线y=(x﹣a)(x﹣b)与x 轴的交点为(a,0),(b,0),所以M=2,当y=0时,(ax+1)(bx+1)=0,当a≠0,b≠0,解得x1=﹣,x2=﹣,抛物线y=(ax+1)(bx+1)与x轴的交点为(﹣,0),(﹣,0),此时N=2,当a=0,b≠0,或b=0,a≠0时,函数y=(ax+1)(bx+1)为一次函数,则N=1,所以M=N,M=N+1.故选:C.4.解:(1)∵不等式ax+b>0的解集为x<2,∴a<0,﹣=2,即b=﹣2a,∴2a+b=0,故结论正确;(2)函数y=ax2+bx+c中,令y=0,则ax2+bx+c=0,∵即b=﹣2a,∴△=b2﹣4ac=(﹣2a)2﹣4ac=4a(a﹣c),∵a<0,c>a,∴△=4a(a﹣c)>0,∴当c>a时,函数y=ax2+bx+c的图象与x轴有两个公共点,故结论错误;(3)∵b=﹣2a,∴﹣=1,==c﹣a,∴抛物线y=ax2+bx+c的顶点为(1,c﹣a),当x=1时,直线y=ax+b=a+b=a﹣2a=﹣a>0当c>0时,c﹣a>﹣a>0,∴抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方,故结论正确;(4)∵b=﹣2a,∴由2a﹣mb﹣m=0,得到﹣b﹣mb﹣m=0,∴b=﹣,如果b<3,则0<﹣<3,∴﹣<m<0,故结论正确;故选:C.5.解:∵抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,∴抛物线的对称轴为直线x=0,即﹣=0,∴b=0,∴25a+c=0,∵a(x﹣2)2+c=2b﹣bx,a(x﹣2)2+c=0,∴a(x﹣2)2=25a,∴(x﹣2)2=25,解得x1=7,x2=﹣3,即关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的解为x1=7,x2=﹣3.∴x1+x2=4.故选:C.6.解:∵y=x2﹣10x+21=(x﹣3)(x﹣7),∴当y=0时,x1=3,x2=7,∵7﹣3=4,∴直角三角形的第三边长为4,当5为斜边时,a==3,当a为斜边时,a==,由上可得,a的值为3或,故选:C.7.解:(1)如图,抛物线开口方向向下,则a<0,故结论正确;(2)如图,抛物线对称轴位于y轴右侧,则a、b异号,故b>0,故结论正确;(3)如图,当x=﹣1时,y<0,即a﹣b+c<0,故结论错误;(4)由抛物线的对称性质知,对称轴是直线x=﹣>0.结合a<0知,2a+b<0,故结论正确.综上所述,正确的结论有3个.故选:C.8.解:∵抛物线过A(0,﹣1),而抛物线与x轴没有交点,∴抛物线开口向下,即a<0,∵抛物线的对称轴为直线x=﹣=1,而B点到直线x=1的距离最大,D点到直线x=1的距离最小,∴y1<y2<y3.故选:D.9.解:∵y=kx2﹣(4k+1)x+3k+3=[kx﹣(k+1)](x﹣3)=[k(x﹣1)﹣1](x﹣3),∴对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点,故①正确;对于任何满足条件的k,该二次函数中当x=3时,y=0,即该函数图象与x轴必有交点,故②正确;∵二次函数y=kx2﹣(4k+1)x+3k+3的对称轴是直线x==2+,∴若k<0,则2+<2,该函数图象开口向下,∴若k<0,当x≥2时,y随x的增大而减小,故③正确;∵y=kx2﹣(4k+1)x+3k+3=[kx﹣(k+1)](x﹣3)=[k(x﹣1)﹣1](x﹣3),∴当y=0时,x1=+1,x2=3,∴若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=±1,故④错误;故选:A.10.解:对于y=﹣3(x﹣1)2+1,M(1,1),N(0,﹣2),直线MN的解析式为y=3x﹣2,直线MN与x轴的交点坐标为(,0),此时S=×2×=;对于y=2(x﹣0.5)(x+1.5),则y=2(x+)2﹣2,M(﹣,﹣2),N(0,﹣),直线MN的解析式为y=x﹣,直线MN与x轴的交点坐标为(,0),此时S=×(﹣)×=;对于y=x2﹣x+1,则y=(x﹣2)2﹣,M(2,﹣),N(0,1),直线MN的解析式为y=﹣x+1,直线MN与x轴的交点坐标为(,0),此时S=×1×=;故选:D.二.填空题11.解:∵a(x﹣3)2+c=3b﹣bx,∴a(x﹣3)2+b(x﹣3)+c=0,∵抛物线y=ax2+bx+c经过点A(﹣2,0)、B(1,0),∴x﹣3=﹣2或1,∴a(x﹣3)2+c=3b﹣bx的解是1或4,故答案为:x1=1,x2=4,12.解:抛物线的对称轴是直线x=﹣=1.∴方程ax2﹣2ax+c=0(a≠0)的另一根为x=3.则两交点间的距离为4.故答案是:4.13.解:当y=0时,x2﹣2mx+4m﹣8=0,∴x=m±;∵抛物线y=x2﹣2mx+4m﹣8与x轴交点的横坐标均为整数,∴为整数,∴m2﹣4m+8为整数的完全平方数,即(m﹣2)2+4为整数的完全平方数,∵m为整数,∴m﹣2=0,即m=2.故答案为2.14.解:抛物线为y=3x2+2x+c,与x轴有且只有一个公共点.对于方程3x2+2x+c=0,判别式△=4﹣12c=0,有c=.①当c=时,由方程3x2+2x+=0,解得x1=x2=﹣.此时抛物线为y=3x2+2x+与x轴只有一个公共点(﹣,0);②当c<时,x1=﹣1时,y1=3﹣2+c=1+c;x2=1时,y2=3+2+c=5+c;由已知﹣1<x<1时,该抛物线与x轴有且只有一个公共点,考虑其对称轴为x=﹣,应有y1<0,且y2≥0即1+c<0,且5+c≥0.解得:﹣5≤c<﹣1.综合①,②得n的取值范围是:c=或﹣5<c≤﹣1,故答案为c=或﹣5≤c<﹣1.15.解:由得,m(x﹣h+3)2﹣k=0,∵关于x的一元二次方程m(x﹣h)2﹣k=0(m、h,k均为常数且m≠0)的解是x1=2,x2=5,∴方程m(x﹣h+3)2﹣k=0中的根满足x3+3=2,x4+3=5,解得,x3=﹣1,x4=2,即抛物线y=m(x﹣h+3)2与直线y=k的交点的横坐标是﹣1或2,故答案为:﹣1或2.三.解答题16.解:(1)∵抛物线与x轴的一个交点坐标为(3,0),对称轴是直线x=﹣2,∴抛物线与x轴的另一个交点坐标为(﹣7,0);(2)设抛物线解析式为y=a(x+7)(x﹣3),把(0,﹣3)代入得a(0+7)(0﹣3)=﹣3,解得a=,∴抛物线解析式为y=(x+7)(x﹣3),即y=x2+x﹣3.17.解:(1)△=[﹣(m﹣3)]2﹣4(﹣m)=m2﹣2m+9=(m﹣1)2+8,∵(m﹣1)2≥0,∴△=(m﹣1)2+8>0,∴原方程有两个不等实数根;(2)将x=1代入一元二次方程x2﹣(m﹣3)x﹣m=0中得12﹣(m﹣3)﹣m=0,解得m=2.18.解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4,抛物线的顶点坐标为(1,﹣4),解方程x2﹣2x﹣3=0,解得x1=﹣1,x2=3,抛物线与x轴的交点坐标为(﹣1,0),(3,0),当x=0时,y=x2﹣2x﹣3=﹣3,则抛物线与y轴的交点坐标为(0,﹣3),如图,(2)连接OD,如图,四边形ABCD的面积=S△AOC +S△OCD+S△OBD=×1×3+×3×1+×3×4=9.故答案为9.19.解:(1)抛物线解析式为y=﹣(x+4)(x﹣2),即y=﹣x2﹣x+2,∵y=﹣(x+1)2+,∴抛物线的顶点坐标为(﹣1,);(2)∵N是AM的中点,∴N点的坐标为(﹣,),∴BN==.20.解:(Ⅰ)由抛物线对称轴是直线x=1得到:﹣=1,得k=2.∴抛物线的解析式为y=x2﹣2x﹣3.解方程x2﹣2x﹣3=0得:x1=3,x2=﹣1.∴AB=4.当x=0时,y=3,∴C(0,﹣3).所以△ABC的面积S==6.(Ⅱ)y=x2﹣2x﹣3=(x﹣1)2﹣4,所以顶点P的坐标为P(1,﹣4).∴PC==.22.3 实际问题与二次函数一、选择题(本大题共10道小题)1. 小敏用一根长为8 cm的细铁丝围成矩形,则矩形的最大面积是()A.4 cm2B.8 cm2C.16 cm2D.32 cm22. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50 m B.100 mC.160 m D.200 m3. 从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.有下列结论:①小球在空中经过的路程是40 m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30 m时,t=1.5 s.其中正确的是()A.①④B.①②C.②③④D.②③4. 如图,利用一面墙,其他三边用80米长的篱笆围成一块矩形场地,墙长为30米,则围成矩形场地的最大面积为()A.800平方米B.750平方米C.600平方米D.2400平方米5. 如图,△ABC 是直角三角形,△A =90°,AB =8 cm ,AC =6 cm ,点P 从点A 出发,沿AB 方向以2cm/s 的速度向点B 运动;同时点Q 从点A 出发,沿AC 方向以1 cm/s 的速度向点C 运动,当其中一个动点到达终点时,另一个动点也停止运动,则四边形BCQP 面积的最小值是( )A .8 cm 2B .16 cm 2C .24 cm 2D .32 cm 26. 中环桥是省城太原的一座跨汾河大桥(如图①),它由五个高度不同,跨径也不同的抛物线形钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图①所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系.则此抛物线形钢拱的函数解析式为( )A .y =26675x 2B .y =-26675x 2C .y =131350x 2D .y =-131350x 27. 如图,在①ABC 中,①C =90°,AB =10 cm ,BC =8 cm ,点P 从点A 沿AC 向点C 以1 cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2 cm/s 的速度运动(点Q 运动到点B 时,两点同时停止运动),在运动过程中,四边形P ABQ 的面积的最小值为 ( )A .19 cm 2B .16 cm 2C .15 cm 2D .12 cm 28. 在羽毛球比赛中,羽毛球的运动路线可以看作是抛物线y =-14x 2+bx +c 的一部分(如图),其中出球点B 离地面点O 的距离是1 m ,球落地点A 到点O 的距离是4 m ,那么这条抛物线的解析式是( )A .y =-14x 2+34x +1B .y =-14x 2+34x -1C .y =-14x 2-34x +1D .y =-14x 2-34x -19. 一位篮球运动员在距离篮圈中心水平距离4 m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m 时,达到最大高度3.5 m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为 3.05 m ,在如图 (示意图)所示的平面直角坐标系中,下列说法正确的是( )A .此抛物线的解析式是y =-15x 2+3.5 B .篮圈中心的坐标是(4,3.05) C .此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2 m10. 一种包装盒的设计方法如图所示,四边形ABCD是边长为80 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四点重合于图中的点O,得到一个底面为正方形的长方体包装盒.设BE=CF=x cm,要使包装盒的侧面积最大,则x应取()A.30 B.25 C.20 D.15二、填空题(本大题共7道小题)11. 某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为________ m2.12. 已知一个直角三角形两直角边长的和为30,则这个直角三角形的面积最大为________.13. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为________m2.14. 某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t·为正整数....)的增大而增大,a的取值范围应为________.15. 如图所示是一座抛物线形拱桥,当水面宽为12 m时,桥拱顶部离水面4 m,以水平方向为x轴,建立平面直角坐标系.若选取点A为坐标原点时的抛物线解析式为y=-1 9(x-6)2+4,则选取点B为坐标原点时的抛物线解析式为________________.16. 竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.17. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE①AB,点E到直线AB的距离为7 m,则DE的长为________m.三、解答题(本大题共4道小题)18. 某商场销售一批名牌衬衫,每件进价为300元,若每件售价为420元,则平均每天可售出20件.经调查发现,每件衬衫每降价10元,商场平均每天可多售出1件,为了扩大销售,增加盈利,减少库存,商场决定采取适当的降价措施.设每件衬衫降价x元.(1)每件衬衫的盈利为多少?(2)用含x的代数式表示每天可售出的衬衫件数.(3)若商场每天要盈利1920元,请你帮助商场算一算,每件衬衫应降价多少元?(4)这次降价活动中,1920元是最高日盈利吗?若是,请说明理由;若不是,试求最高日盈利值.19. 如图,工人师傅用一块长为10 dm,宽为6 dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形(厚度不计).(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕,并求长方体底面面积为12 dm2时,裁掉的正方形的边长;(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长为多少时,总费用最低,最低为多少元?20. 如图,某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m.设饲养室的长为x(m),占地面积为y(m2).(1)如图①,当饲养室的长x为多少时,占地面积y最大?(2)如图①,现要求在图中所示位置留2 m宽的门,且仍使饲养室的占地面积最大.小敏说:“只要饲养室的长比(1)中的长多2 m就行了.”请你通过计算,判断小敏的说法是否正确.21. 有一块形状如图所示的五边形余料ABCDE,AB=AE=6,BC=5,①A=①B=90°,①C=135°,①E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.人教版 九年级数学 22.3 实际问题与二次函数 同步训练-答案一、选择题(本大题共10道小题)1. 【答案】A [解析] 设矩形的一边长为x cm ,则另一边长为()4-x cm ,故矩形的面积S =x ()4-x =-x 2+4x =-(x -2)2+4,所以当x =2时,S 最大值=4.故矩形的最大面积为4 cm 2.2. 【答案】C[解析] 以2 m 长线段所在直线为x 轴,以其垂直平分线为y 轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.3. 【答案】D [解析] ①由图象知小球在空中达到的最大高度是40 m ,故①错误;②小球抛出3秒后,速度越来越快,故②正确;③∵小球抛出3秒时达到最高点,∴速度为0,故③正确; ④设函数解析式为h =a(t -3)2+40, 把O(0,0)代入得0=a(0-3)2+40.解得a =-409,∴函数解析式为h =-409(t -3)2+40.把h =30代入解析式,得30=-409(t -3)2+40,解得t =4.5或t =1.5,∴小球的高度h =30 m 时,t =1.5 s 或4.5 s ,故④错误.故选D.4. 【答案】B [解析] 设矩形场地中平行于墙的边长为x 米,则垂直于墙的边长为80-x2米,围成矩形场地的面积为y 平方米,则y =x ·(80-x )2=-12x 2+40x =-12(x -40)2+800. ∵a <0,∴x <40时,y 随x 的增大而增大,由于墙长为30米,∴0<x ≤30,∴当x =30时,y 取得最大值,为-12×(30-40)2+800=750.5. 【答案】A [解析] 设运动时间为t s ,四边形BCQP 的面积为S m 2,则S =AB ·AC 2-AP ·AQ 2=8×62-2t ×t2=-t 2+24.∵点P 从点A 出发,沿AB 方向以2 m/s 的速度向点B 运动,同时点Q 从点A 出发,沿AC 方向以1 cm/s 的速度向点C 运动,当其中一个动点到达终点时,另一个动点也停止运动,8÷2=4,6÷1=6,∴0<t ≤4,∴当t =4时,S 取得最小值,最小值为-42+24=8(cm 2).6. 【答案】B[解析] 设二次函数的解析式为y =ax 2.由题可知,点A 的坐标为(-45,-78),代入解析式可得-78=a(-45)2,解得a =-26675,∴二次函数解析式为y =-26675x 2.故选B.7. 【答案】C[解析] 在Rt①ABC 中,∠C =90°,AB =10 cm ,BC =8 cm ,∴AC =AB 2-BC 2=6 cm.设运动时间为t s(0<t≤4),则PC =(6-t)cm ,CQ =2t cm ,∴S 四边形PABQ =S ①ABC -S ①CPQ =12AC·BC -12PC·CQ =12×6×8-12(6-t)×2t =t 2-6t +24=(t -3)2+15,∴当t =3时,四边形PABQ 的面积取得最小值,最小值为15 cm 2. 故选C.8. 【答案】A [解析] A ,B 两点的坐标分别为(4,0),(0,1),把(4,0),(0,1)分别代入y =-14x 2+bx +c ,求出b ,c 的值即可.9. 【答案】A[解析] ∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数解析式为y =ax 2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,∴3.05=a×1.52+3.5.解得a =-15.∴y =-15x 2+3.5.可见选项A 正确.由图示知,篮圈中心的坐标是(1.5,3.05),可见选项B 错误. 由图示知,此抛物线的顶点坐标是(0,3.5),可见选项C 错误.将x =-2.5代入抛物线的解析式,得y =-15×(-2.5)2+3.5=2.25,∴这次跳投时,球出手处离地面2.25 m 可见选项D 错误. 故选A.10. 【答案】C [解析] 如图,设BE =CF =x cm ,则EF =(80-2x )cm.∵△EFM 和△CFN 都是等腰直角三角形, ∴MF =22EF =(402-2x )cm ,FN =2CF =2x cm ,∴包装盒的侧面积=4MF ·FN =4·2x (40 2-2x )=-8(x -20)2+3200,故当x =20时,包装盒的侧面积最大.二、填空题(本大题共7道小题)11. 【答案】144【解析】①围墙的总长为50 m ,设3间饲养室合计长x m ,则饲养室的宽=48-x 4 m ,∴总占地面积为y =x·48-x 4=-14x 2+12x(0<x <48),由y =-14x 2+12x=-14(x -24)2+144,∵x =24在0<x <48范围内,a =-14<0,∴在0<x≤24范围内,y 随x 的增大而增大,∴x =24时,y 取得最大值,y 最大=144 m 2.12. 【答案】225213. 【答案】75[解析] 设与墙垂直的一边的长为x m ,则与墙平行的一边的长为27-(3x-1)+2=(30-3x)m.因此饲养室总占地面积S =x(30-3x)=-3x 2+30x ,∴当x =-302×(-3)=5时,S 最大,S最大值=-3×52+30×5=75.故能建成的饲养室总占地面积最大为75 m 2.14. 【答案】0<a ≤5【解析】设未来30天每天获得的利润为y ,y =(110-40-t)(20+4t)-(20+4t)a 化简,得y =-4t 2+(260-4a)t +1400-20a ,每天缴纳电商平台推广费用后的利润随天数t(t 为整数)的增大而增大,则-(260-4a )2×(-4)≥30,解得a ≤5,又∵a >0,∴a 的取值范围是0<a ≤5.15. 【答案】y =-19(x +6)2+416. 【答案】1.6秒 【解析】本题主要考查了二次函数的对称性问题.由题意可知,各自抛出后1.1秒时到达相同最大离地高度,即到达二次函数图象的顶点处,故此二次函数图象的对称轴为t =1.1;由于两次抛小球的时间间隔为1秒,所以当第一个小球和第二个小球到达相同高度时,则这两个小球必分居对称轴左右两侧,由于高度相同,则在该时间节点上,两小球对应时间到对称轴距离相同. 故该距离为0.5秒, 所以此时第一个小球抛出后t =1.1+0.5=1.6秒时与第二个小球的离地高度相同.17. 【答案】48[解析] 建立如图所示的平面直角坐标系,设AB 与y 轴交于点H.∵AB =36 m ,∴AH =BH =18 m. 由题可知:OH =7 m ,CH =9 m , ∴OC =9+7=16(m).设该抛物线的解析式为y =ax 2+k. ∵抛物线的顶点为C(0,16),∴抛物线的解析式为y=ax2+16.把(18,7)代入解析式,得7=18×18a+16,∴7=324a+16,∴a=-136,∴y=-136x2+16.当y=0时,0=-136x2+16,∴-136x2=-16,解得x=±24,∴E(24,0),D(-24,0),∴OE=OD=24 m,∴DE=OD+OE=24+24=48(m).三、解答题(本大题共4道小题)18. 【答案】解:(1)由题意可得每件衬衫的盈利为420-300-x=(120-x)元.(2)每天可售出的衬衫件数为20+x10×1=(0.1x+20)件.(3)由题意可得(0.1x+20)(120-x)=1920,解得x1=-120(舍去),x2=40.答:每件衬衫应降价40元.(4)这次降价活动中,1920元不是最高日盈利.设日盈利为w元,则w=(0.1x+20)(120-x)=-0.1(x+40)2+2560,∴当x>-40时,w随x的增大而减小.∵x≥0,∴当x=0时,w取得最大值,此时w=2400,即最高日盈利值是2400元.19. 【答案】解:(1)如图所示:设裁掉的正方形的边长为x dm.由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x1=2,x2=6(舍去).答:当裁掉的正方形的边长为2 dm时,长方体底面面积为12 dm2.(2)∵长方体的底面长不大于底面宽的五倍,∴10-2x≤5(6-2x),解得x≤2.5,∴0<x≤2.5.设总费用为w元,由题意可知w=0.5×2x(16-4x)+2(10-2x)(6-2x)=4x2-48x+120=4(x-6)2-24.∵此函数图象的对称轴为直线x=6,图象开口向上,∴当0<x≤2.5时,w随x的增大而减小,∴当x=2.5时,w有最小值,最小值为25.答:当裁掉的正方形边长为2.5 dm 时,总费用最低,最低为25元.20. 【答案】解:(1)∵y =x·50-x 2=-12(x -25)2+6252, ∴当x =25时,占地面积y 最大,即当饲养室的长x 为25 m 时,占地面积y 最大. (2)∵y =x·50-(x -2)2=-12(x -26)2+338,∴当x =26时,占地面积y 最大,即当饲养室的长x 为26 m 时,占地面积y 最大. ∵26-25=1≠2,∴小敏的说法不正确.21. 【答案】解:(1)①若所截矩形材料的一条边是BC ,如图①所示:过点C 作CF ⊥AE 于点F ,则S 1=AB·BC =6×5=30; ②若所截矩形材料的一条边是AE ,如图②所示:过点E作EF∥AB交CD于点F,过点F作FG⊥AB于点G,过点C作CH⊥FG于点H,则四边形AEFG为矩形,四边形BCHG为矩形,∴AE=FG=6,HG=BC=5,BG=CH,∠BCH=90°.∵∠BCD=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴BG=CH=FH=FG-HG=6-5=1,∴AG=AB-BG=6-1=5,∴S2=AE·AG=6×5=30.(2)能.如图③,在CD上取点F,过点F作FM⊥AB于点M,FN⊥AE于点N,过点C作CG ⊥FM于点G,则四边形ANFM为矩形,四边形BCGM为矩形,∴MG=BC=5,BM=CG,∠BCG=90°.∵∠BCD=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴FG=CG.设AM=x,矩形AMFN的面积为S,则BM=6-x,∴FM=GM+FG=GM+CG=BC+BM=11-x,∴S=AM·FM=x(11-x)=-x2+11x=-(x-5.5)2+30.25,∴当x=5.5时,S取得最大值,最大值为30.25.故这些矩形材料面积的最大值为30.25.。
人教版数学九年级上册第22章二次函数测试题
20 180 3600(元) .
答:想要每月获得的利润不低于 2000 元,每月的成本最少为 3600 元.
26.解:( 1)由题意知, B 场地宽为( 30- x ) m, ∴ y=x(30 -x)= - x2+30x. 当 y=0 时,即- x2+30x=0,∴ x1=0, x2=30.
y(面积: m2)
24
1时,函数在 x 1 时, y 随 x
m 取何值,函数图象都经过同一个点 . 其中所有的正确结论为 _________。 (填写正确
结论序号 )
16.已知实数 x, y满足 x 2 3x y 3 0,则 x y 的最大值为
17.飞机着陆后滑行的距离 s(单位: 米)与滑行的时间 t(单位:秒)之间的函数关系式是
y
1
-5-4-3-2-1 O 1 2 3 4 5 x -1
图7 24. 已知二次函数 y x 2 bx c 的图象与 x 轴两交点的坐标分别为(
( 1)证明 4c 3b2 ;
( 2)若该函数图象的对称轴为直线 x 1 ,试求二次函数的最小值.
m , 0),( 3m ,0)( m
0 ).
25.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件
B y 轴同侧;
() .有两个交点,且它们分别在
D .无交点. y
y 轴两侧;
x … -1 y … -1
01 7 4 -2
2… 7 4…
A(1,4) B(4,4)
CO
Dx
(第 10 题)
10.如图,点 A, B的坐标分别为( 1, 4)和( 4, 4) , 抛物线 y a ( x m) 2 n 的顶点在线段 AB上运动, 与 x 轴交于 C、 D两点( C在 D的左侧),点 C的横坐标最小值为 3 ,则点 D的横坐标最大值为 ( )
人教版九年级数学上册:22.1---22.3同步期末复习题含答案
22.1 二次函数的图象性质 知识点:1.用描点发画函数图象的步骤是 , , 。
2.二次函数图象是 ,开口方向由 决定,开口大小的程度又是由谁决定的?3.一般地,抛物线2ax y =的对称轴是 ,顶点坐标是 .当0>a 时,抛物线开口向 ,顶点是抛物线的 ,a 越大,抛物线的开口越 ;当0<a 时,抛物线开口向 ,顶点是抛物线的 ,a 越大,抛物线的开口越 。
一.选择题1.关于函数23x y = 的性质的叙述,错误的是( ). A .对称轴是y 轴 B .顶点是原点 C .当0>x 时,y 随x 的增大而增大 D .y 有最大值2.在同一坐标系中,抛物线22221,,x y x y x y =-==的共同点是( ). A .开口向上,对称轴是y 轴,顶点是原点 B .对称轴是y 轴,顶点是原点C .开口向下,对称轴是y 轴,顶点是原点D .有最小值为03.函数2ax y =与b ax y +-=的图象可能是( )A .B .C .D .4.在同一平面直角坐标系中,同一水平线上开口最大的抛物线是( )A. 2x y -=B. 231x y -= C. 233x y -= D. 22x y -= 5.下列函数中,具有过原点,且当0>x 时,y 随x 增大而减小,这两个特征的有( ).①)0(2>-=a ax y ;②)1()1(2<-=a x a y ;③)0(22≠+-=a a x y ;④)0(23≠-=a a x y A .1个 B .2个 C .3个 D .4个6.若对任意实数x,二次函数2)1(x a y +=的值总是非负数,则a 的取值范围是( ).A .1-≥aB .1-≤aC .1->aD .1-<a 7.下列说法错误的是( ).A .在二次函数23x y = 中,当0>x 时,y 随x 的增大而增大B .在二次函数26x y -= 中,当0=x 时,y 有最大值0 C .a 越大图象开口越小,a 越小图象开口越大D .不论a 是正数还是负数,抛物线)0(2≠=a ax y 的顶点一定是坐标原点8.已知点),2(),,1(),,3(321y C y B y A --在抛物线232x y = 上,则321,,y y y 的大小关系 是( ).A .321y y y <<B .321y y y >>C .231y y y <<D .132y y y << 二.填空题1.抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,抛物线上的点都在x 轴的 方,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x = 时,该函数有最 值是 。
2022年秋人教版九年级数学上册随堂练——22
22.1二次函数的图象与性质一、选择题1.已知二次函数y=a(x﹣h)2+k(a>0)的图象过点A(0,1)、B(8,2),则h的值可以是()A.3 B.4 C.5 D.6 2.已知二次函数的图象(0≤x≤3)如图所示,关于该函数在自变量取值范围内,下列说法正确的是( )A.有最小值0,有最大值3 B.有最小值-1,有最大值0C.有最小值-1,有最大值3 D.有最小值-1,无最大值3.已知二次函数y=ax2+bx+c的图象经过点(0,m).(4,m)和(1,n),若n<m,则()A.a>0且4a+b=0B.a<0且4a+b=0C.a>0且2a+b=0D.a<0且2a+b=04.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5) B.(﹣2,﹣5)C .(2,5)D .(2,﹣5)5.如图所示为抛物线2y ax bx c =++的图象,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是( )A .1a b +=-B .1a b -=-C .2b a <D .0ac < 6.一次函数y=ax +b (a ≠0)与二次函数y=ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .7.已知抛物线y=x 2+bx+c 的部分图象如图所示,若y <0,则x 的取值范围是( )A .﹣1<x <4B .﹣1<x <3C .x <﹣1或x >4D .x <﹣1或x >3 二、填空题8.已知二次函数对称轴为x =2,且在x 轴上截得的线段长为6,与y 轴交点为(0,-2),则此二次函数的解析式为 . 9.已知点(1,4)、(3,4)在二次函数的图象上,则此二次函数图象的顶点坐标是_________.10.抛物线y=x 2+6x+5的顶点坐标是 .11.如图所示,已知二次函数2y x bx c =++的图象经过点(-1,0),(1,-2),该图象与x 轴的另一个交点为C ,则AC 长为________.12.如图,在平面直角坐标系中,点A 在抛物线y=x 2﹣2x+2上运动.过点A 作AC ⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连结BD ,则对角线BD 的最小值为 .232y x kx k =+-13.把抛物线y=2x2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是三、解答题14.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.15.如图,抛物线经过直线与坐标轴的两个交点,此抛物线与轴的另一个交点为,抛物线的顶点为.(1)求此抛物线的解析式;(2)点为抛物线上的一个动点,求使的点的坐标.16.已知抛物线y=-x2+2x+2.(1)写出它的开口方向.对称轴和顶点坐标;(2)在如图3的直角坐标系内画出y=-x2+2x+2的图象.17.已知二次函数y=x2+4x+3.(1)用配方法将二次函数的表达式化为y=a (x﹣h)2+k 的形式;(2)在平面直角坐标系xOy中,画出这个二次函数的图象;(3)根据(2)中的图象,写出一条该二次函数的性质.答案1. A 2. C 3. A 4. C 5. B 6. C 7. B 8. 228255y x x =-- 9. (2,12)10. (﹣3,﹣4) . 11. 3 12. 113. 1)2(22-+=x y14. 解:(1)∵抛物线y=x 2+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点, ∴方程x 2+bx+c=0的两根为x=﹣1或x=3, ∴﹣1+3=﹣b , ﹣1×3=c , ∴b=﹣2,c=﹣3,∴二次函数解析式是y=x 2﹣2x ﹣3.(2)∵y=﹣x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴x=1,顶点坐标(1,﹣4).(3)设P的纵坐标为|y P|,∵S△PAB=8,∴AB•|y P|=8,∵AB=3+1=4,∴|y P|=4,∴y P=±4,把y P=4代入解析式得,4=x2﹣2x﹣3,解得,x=1±2,把y P=﹣4代入解析式得,﹣4=x2﹣2x﹣3,解得,x=1,∴点P在该抛物线上滑动到(1+2,4)或(1﹣2,4)或(1,﹣4)时,满足S△PAB=8.15. (1)直线与坐标轴的交点,.则解得此抛物线的解析式.(2)抛物线的顶点,与轴的另一个交点.设,则.化简得.当,得或. 或当时,即,此方程无解.综上所述,满足条件的点的坐标为或.16.解:(1)开口向下,对称轴是直线x=1,顶点坐标是(1,3).(2)列表如下:17.解:(1)y=x2+4x+3=x2+4x+22﹣22+3=(x+2)2﹣1;(2)列表:如图,(3)当x<﹣2时,y随x的增大而减小,当x>﹣2时,y随x的增大而增大.22.2二次函数与一元二次方程一、选择题1.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4 B.x1=1,x2=5C.x1=1,x2=﹣5 D.x1=﹣1,x2=52.下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧3.二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x 2+mx ﹣t =0(t 为实数)在1<x <5的范围内有解,则t 的取值范围是( )A .t >﹣5B .﹣5<t <3C .3<t ≤4D .﹣5<t ≤44. 二次函数y=ax 2+bx +c 的图象如图所示,下列选项中正确的是( )A .a >0B .b >0C .c <0D .关于x 的一元二次方程ax 2+bx +c=0没有实数根5.已知函数2(3)21y k x x =-++的图象与x 轴有交点,则k 的取值范围是( )A .k <0B .k ≤4C .k <4且k ≠3D .k ≤4且k ≠36.若函数y =mx 2+(m+2)x+m+1的图象与x 轴只有一个交点,那么m 的值为( ) A .0B .0或2C.2或﹣2 D.0,2或﹣27.已知二次函数y=ax2+bx+c的部分图象如图所示,则关于x的一元二次方程ax2+bx+c=0的解为()A.x=0 B.x=1 C.x=3 D.x1=3,x2=-18.抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:①b2-4ac<0;②a+b+c<0;③c-a=2;④方程ax2+bx+c-2=0有两个相等的实数根.其中正确结论的个数为()A.1个B.2个C.3个D.4个9.已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是()x …﹣1 0 1 2 …y …﹣3 1 3 1 …A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x=3时,y>0D.方程ax2+bx+c=0的正根在2与3之间二、填空题10.若二次函数y=x2+2x+m的图象与x轴没有公共点,则m的取值范围是.11.如图所示,函数y=(k-8)x2-6x+k的图象与x轴只有一个公共点,则该公共点的坐标为.12.如图是抛物线y=ax2+bx+c的图象的一部分,请你根据图象写出方程ax2+bx+c=0的两根是.13.如图抛物线y=ax2+bx+c(a≠0),过点(﹣1,0),对称轴为直线x=2,则下列结论:①b=﹣4a;②a+c+c>0;③5a﹣2b+c>0;④方程ax2+bx+c=0(a≠0)有两个不相等的实数根;其中正确的是(填题号)14.二次函数的图象如图,对称轴为x =1.若关于x 的一元二次方程x 2+bx ﹣t =0(b 、t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是 .三、解答题15.已知函数261y mx x =-+(m 是常数)(1)求证:不论m 为何值,该函数的图象都经过y 轴上的一个定点;(2)若该函数的图象与x 轴只有一个交点,求m 的值.16.已知二次函数y=x 2﹣2mx+m 2+3(m 是常数).(1)求证:不论m 为何值,该函数的图象与x 轴没有公共点;(2)把该函数的图象沿y 轴向下平移多少个单位长度后,得到的函数的图象与x 轴只有一个公共点?17.已知抛物线y =(x ﹣m )2﹣(x ﹣m ),其中m 是常数.(1)求证:不论m 为何值,该抛物线与x 轴一定有两个公共点;(2)若该抛物线的对称轴为直线x =.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.答案1. D2. D3. D4. B5. B6. D7. D8. C9. D10.m>111.1,03⎛⎫-⎪⎝⎭12.x1=﹣3,x2=113.①③④14.﹣1≤t<815. (1)当x=0时,y=1,所以不论m为何值,函数261y mx x=-+的图象经过y轴上的一个定点(0,1).(2)①当m =0时,函数61y x =-+的图象与x 轴只有一个交点; ②当m ≠0时,若函数261y mx x =-+的图象与x 轴只有一个交点,则方程2610mx x -+= 有两个相等的实数根,所以△=(-6)2-4m =0,m =9. 综上,若函数261y mx x =-+的图象与x 轴只有一个交点,则m 的值为0或9.16. 证明:∵△=(﹣2m )2﹣4×1×(m 2+3)=4m 2﹣4m 2﹣12=﹣12<0, ∴方程x 2﹣2mx+m 2+3=0没有实数解,即不论m 为何值,该函数的图象与x 轴没有公共点;(2)解:y=x 2﹣2mx+m 2+3=(x ﹣m )2+3, 把函数y=(x ﹣m )2+3的图象沿y 轴向下平移3个单位长度后,得到函数y=(x ﹣m )2的图象,它的顶点坐标是(m ,0), 因此,这个函数的图象与x 轴只有一个公共点,所以,把函数y=x 2﹣2mx+m 2+3的图象沿y 轴向下平移3个单位长度后,得到的函数的图象与x 轴只有一个公共点.17. (1)证明:y =(x ﹣m )2﹣(x ﹣m )=x 2﹣(2m+1)x+m 2+m , ∵△=(2m+1)2﹣4(m 2+m )=1>0, ∴不论m 为何值,该抛物线与x 轴一定有两个公共点;(2)解:①∵x =﹣=,∴m =2,∴抛物线解析式为y =x 2﹣5x+6; ②设抛物线沿y 轴向上平移k 个单位长度后,得到的抛物线与x 轴只有一个公共点,则平移后抛物线解析式为y=x2﹣5x+6+k,∵抛物线y=x2﹣5x+6+k与x轴只有一个公共点,∴△=52﹣4(6+k)=0,∴k=,即把该抛物线沿y轴向上平移个单位长度后,得到的抛物线与x轴只有一个公共点.22.3 实际问题与二次函数一、选择题1.某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要每间隔0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m,如图所示,则防护栏不锈钢支柱的总长度至少为( )A.50mB.100mC.160mD.200m2.某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y(元)与销售单价x (元)满足关系y=﹣x2+70x﹣800,要想获得最大利润,则销售单价为()A.30元B.35元C.40元D.45元3.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是()A.y=x2B.y=4﹣x2C.y=x2﹣4 D.y=4﹣2x4.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A.点火后 9s 和点火后 13s 的升空高度相同B.点火后 24s 火箭落于地面C.点火后 10s 的升空高度为 139mD.火箭升空的最大高度为 145m5.某公司的生产利润原来是a元,经过连续两年的增长达到了y万元,如果每年增长的百分数都是x,那么y与x的函数关系是()A.y=a+x2B.y=(a+x)2C.y=a(1﹣x)2D.y=a(1+x)26.心理学家发现,学生对概念的接受能力y和提出概念所用的时间x(单位:分)之间大致满足函数关系式:2=-++(0≤x≤30),y的值0.1 2.643y x x越大,表示接受能力越强,那么学生的接受能力达到最强时,概念提出所用的时间是( ).A.10分 B.30分 C.13分 D.15分7.若某商品的利润y(元)与售价x(元)之间的函数关系式是y=-x2+8x+9,且售价x的范围是1≤x≤3,则最大利润是( )A.16元B.21元C.24元D.25元8.某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A.B.C.D.9.一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,该件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( )A.5元 B.10元C.0元 D.6元二、填空题10.在平面直角坐标系xOy中,二次函数C1:y=ax2+bx+c的图象与C2:y=2x2-4x+3的图象关于y轴对称,且C1与直线y=mx+2交与点A(n,1).则m的值为 .11.用一根长为16m的木条做一个长方形的窗框,若宽为x(m),则该窗户的面积y(m2)与x(m)之间的函数关系式为.12.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t 为正整数)的增大而增大,a的取值范围应为.13.一个足球被从地面向上踢出,它距地面的高度h(m)与足球被踢出后经过的时间t(s)之间具有函数关系h=at2+19.6t,已知足球被踢出后经过4 s 落地,则足球距地面的最大高度是m.14.要组织一次篮球联赛,赛制为单循环形式(每两队之间都要赛一场),计划安排15场比赛,应邀请支球队参加比赛.三、解答题15.一经销商按市场价收购某种海鲜1000斤放养在池塘内(假设放养期内每个海鲜的重量基本保持不变),当天市场价为每斤30元,据市场行情推测,此后该海鲜的市场价每天每斤可上涨1元,但是平均每天有10斤海鲜死去.假设死去的海鲜均于当天以每斤20元的价格全部售出.(1)用含x 的代数式填空:①x 天后每斤海鲜的市场价为 元;②x 天后死去的海鲜共有 斤;死去的海鲜的销售总额为 元; ③x 天后活着的海鲜还有 斤;(2)如果放养x 天后将活着的海鲜一次性出售,加上已经售出的死去的海鲜,销售总额为y 1,写出y 1关于x 的函数关系式;(3)若每放养一天需支出各种费用400元,写出经销商此次经销活动获得的总利润y 2关于放养天数x 的函数关系式.16.某镇地理位置偏僻,严重制约着经济发展,丰富的花木产品只能在本地销售,乡政府对花木产品每投资x 万元,所获利润为21(30)1050P x =--+(万元).为了响应我国西部大开发的宏伟决策,乡政府在制定经济发展的10年规划时,拟定开发此花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元.若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路,且5年修通.公路修通后,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每投资x 万元可获利润249194(50)(50)308505Q x x =--+-+(万元). (1)若不进行开发,求10年所获利润的最大值是多少?(2)若按此规划进行开发,求10年所获利润的最大值是多少?(3)根据(1)、(2)计算的结果,请你用一句话谈谈你的想法.17.如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?18.投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;(2)若菜园面积为384m2,求x的值;(3)求菜园的最大面积.答案1. C2. B3. B4. D5. D6. C7. C8.A9. A10. 111. y=﹣x2+8x.12.0<a<613. 19.614. 615.解:(1)由题意可得:①x天后每斤海鲜的市场价为:(30+x)元;②x天后死去的海鲜共有:10x斤;死去的海鲜的销售总额为:200x元;③x天后活着的海鲜还有:(1000﹣10x)斤;故答案为:30+x;10x;200x;1000﹣10x;(2)根据题意可得:y1=(1000﹣10x)(30+x)+200x=﹣10x2+900x+30000;(3)根据题意可得:y 2=y 1﹣30000﹣400x =﹣10x 2+500x .16. 解:(1)若不开发此产品,按照原来的投资方式,由21(30)1050P x =--+知,只需从50万元专款中拿出30万元投资,每年即可获得最大利润10万元,则10年的最大利润为M 1=10×10=100(万元).(2)若对该产品进行开发,在前5年中,当x =25时, 每年最大利润是21(2530)109.550P =--+=(万元), 则前5年的最大利润为M 2=9.5×5=47.5(万元).设后5年中x 万元是用于本地销售的投资.则由249194(50)(50)308505Q x x =--+-+知, 将余下的(50-x)万元全部用于外地销售的投资,才有可能获得最大利润.则后5年的利润 是2223149194(30)10530855(20)350050505M x x x x ⎡⎤⎛⎫=--+⨯+-++⨯=-⨯-+ ⎪⎢⎥⎣⎦⎝⎭.故当x =20时,M 3取得最大值为3500万元.所以,10年的最大利润为M =M 2+M 3=3500+47.5=3547.5(万元).(3)因为3547.5>100,故该项目有极大的开发价值.17. 解:(1)根据题意,得S =x (24﹣3x ),即所求的函数解析式为:S =﹣3x 2+24x ,又∵0<24﹣3x≤10,∴定义域为{x|≤x<8};(2)根据题意,设AB长为x,则BC长为24﹣3x∴﹣3x2+24x=45.整理,得x2﹣8x+15=0,解得x=3或5,当x=3时,BC=24﹣9=15>10不成立,当x=5时,BC=24﹣15=9<10成立,∴AB长为5m.18.解:(1)根据题意知,y==﹣x+;(2)根据题意,得:(﹣x+)x=384,解得:x=18或x=32,∵墙的长度为24m,∴x=18;(3)设菜园的面积是S,则S=(﹣x+)x=﹣x2+x=﹣(x﹣25)2+∵﹣<0,∴当x<25时,S随x的增大而增大,∵x≤24,∴当x=24时,S取得最大值,最大值为416,答:菜园的最大面积为416m2.。
2022年人教版数学九年级上册第二十二章《二次函数》同步练习(附答案)5(22.3)
第二十二章二次函数周周测5实际问题与二次函数一、选择题〔共4小题〕1.〔如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,那么该纸盒侧面积的最大值是〔〕A.cm2B.cm2C.cm2D.cm22.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=﹣〔x﹣80〕2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,假设OA=10米,那么桥面离水面的高度AC为〔〕A.16米B.米C.16米D.米3.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如下图的平面直角坐标系,其函数的关系式为y=﹣x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为〔〕A.﹣20m B.10m C.20m D.﹣10m4.如图,假设篱笆〔虚线局部〕的长度16m,那么所围成矩形ABCD的最大面积是〔〕A.60m2B.63m2 C.64m2 D.66m2二、填空题〔共3小题〕5.某农场拟建两间矩形饲养室,一面靠现有墙〔墙足够长〕,中间用一道墙隔开,并在如下图的三处各留1m宽的门.方案中的材料可建墙体〔不包括门〕总长为27m,那么能建成的饲养室面积最大为m2.6.某服装店购进单价为15元童装假设干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.7.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,那么该厂今年三月份新产品的研发资金y〔元〕关于x的函数关系式为y=.三、解答题〔共23小题〕8.为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款本钱为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y〔件〕与销售单价x〔元〕满足一次函数关系:y=﹣10x+1200.〔1〕求出利润S〔元〕与销售单价x〔元〕之间的关系式〔利润=销售额﹣本钱〕;〔2〕当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?9.某商场有A,B两种商品,假设买2件A商品和1件B商品,共需80元;假设买3件A商品和2件B商品,共需135元.〔1〕设A,B两种商品每件售价分别为a元、b元,求a、b的值;〔2〕B商品每件的本钱是20元,根据市场调查:假设按〔1〕中求出的单价销售,该商场每天销售B商品100件;假设销售单价每上涨1元,B商品每天的销售量就减少5件.①求每天B商品的销售利润y〔元〕与销售单价〔x〕元之间的函数关系?②求销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?10.图1中的摩天轮可抽象成一个圆,圆上一点离地面的高度y〔m〕与旋转时间x〔min〕之间的关系如图2所示.〔1〕根据图2填表:x〔min〕0 3 6 8 12 …y〔m〕…〔2〕变量y是x的函数吗?为什么?〔3〕根据图中的信息,请写出摩天轮的直径.11.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD 分别表示该产品每千克生产本钱y1〔单位:元〕、销售价y2〔单位:元〕与产量x〔单位:kg〕之间的函数关系.〔1〕请解释图中点D的横坐标、纵坐标的实际意义;〔2〕求线段AB所表示的y1与x之间的函数表达式;〔3〕当该产品产量为多少时,获得的利润最大?最大利润是多少?12.〔2021•天水〕天水“伏羲文化节〞商品交易会上,某商人将每件进价为8元的纪念品,按每件9元出售,每天可售出20件.他想采用提高售价的方法来增加利润,经实验,发现这种纪念品每件提价1元,每天的销售量会减少4件.〔1〕写出每天所得的利润y〔元〕与售价x〔元/件〕之间的函数关系式.〔2〕每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?13.为了节省材料,某水产养殖户利用水库的岸堤〔岸堤足够长〕为一边,用总长为80m 的围网在水库中围成了如下图的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.〔1〕求y与x之间的函数关系式,并注明自变量x的取值范围;〔2〕x为何值时,y有最大值?最大值是多少?14.某种商品的进价为40元/件,以获利不低于25%的价格销售时,商品的销售单价y〔元/件〕与销售数量x〔件〕〔x是正整数〕之间的关系如下表:x〔件〕… 5 10 15 20 …y〔元/件〕…75 70 65 60 …〔1〕由题意知商品的最低销售单价是元,当销售单价不低于最低销售单价时,y是x的一次函数.求出y与x的函数关系式及x的取值范围;〔2〕在〔1〕的条件下,当销售单价为多少元时,所获销售利润最大,最大利润是多少元?15.某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y〔件〕与每件销售价x〔元〕的关系数据如下:x 30 32 34 36y 40 36 32 28〔1〕y与x满足一次函数关系,根据上表,求出y与x之间的关系式〔不写出自变量x的取值范围〕;〔2〕如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?〔3〕设该商店每天销售这种商品所获利润为w〔元〕,求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?16.某网店打出促销广告:最潮新款服装30件,每件售价300元.假设一次性购置不超过10件时,售价不变;假设一次性购置超过10件时,每多买1件,所买的每件服装的售价均降低3元.该服装本钱是每件200元,设顾客一次性购置服装x件时,该网店从中获利y 元.〔1〕求y与x的函数关系式,并写出自变量x的取值范围;〔2〕顾客一次性购置多少件时,该网店从中获利最多?17.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.〔1〕求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;〔2〕一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否平安通过?〔3〕在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?18.某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上.在乒乓球运行时,设乒乓球与端点A 的水平距离为x〔米〕,与桌面的高度为y〔米〕,运行时间为t〔秒〕,经屡次测试后,得到如下局部数据:t〔秒〕0 6X〔米〕0 1 2 …y〔米〕…〔1〕当t为何值时,乒乓球到达最大高度?〔2〕乒乓球落在桌面时,与端点A的水平距离是多少?〔3〕乒乓球落在桌面上弹起后,y与x满足y=a〔x﹣3〕2+k.①用含a的代数式表示k;②球网高度为×2〕米.假设球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求a的值.19.如图,某足球运发动站在点O处练习射门,将足球从离地面的A处正对球门踢出〔点A在y轴上〕,足球的飞行高度y〔单位:m〕与飞行时间t〔单位:s〕之间满足函数关系y=at2+5t+c,足球飞行0.8s时,离地面的高度为.〔1〕足球飞行的时间是多少时,足球离地面最高?最大高度是多少?〔2〕假设足球飞行的水平距离x〔单位:m〕与飞行时间t〔单位:s〕之间具有函数关系x=10t,球门的高度为,如果该运发动正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?20.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足以下关系式:y=.〔1〕李明第几天生产的粽子数量为420只?〔2〕如图,设第x天每只粽子的本钱是p元,p与x之间的关系可用图中的函数图象来刻画.假设李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?〔利润=出厂价﹣本钱〕〔3〕设〔2〕小题中第m天利润到达最大值,假设要使第〔m+1〕天的利润比第m天的利润至少多48元,那么第〔m+1〕天每只粽子至少应提价几元?21.某公司生产的某种产品每件本钱为40元,经市场调查整理出如下信息:①该产品90天内日销售量〔m件〕与时间〔第x天〕满足一次函数关系,局部数据如下表:时间〔第x天〕 1 3 6 10 …日销售量〔m件〕198 194 188 180 …②该产品90天内每天的销售价格与时间〔第x天〕的关系如下表:时间〔第x天〕1≤x<50 50≤x≤90销售价格〔元/件〕x+60 100〔1〕求m关于x的一次函数表达式;〔2〕设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×〔每件销售价格﹣每件本钱〕】〔3〕在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.22.某动车站在原有的普通售票窗口外新增了无人售票窗口,普通售票窗口从上午8点开放,而无人售票窗口从上午7点开放,某日从上午7点到10点,每个普通售票窗口售出的车票数y1〔张〕与售票时间x〔小时〕的变化趋势如图1,每个无人售票窗口售出的车票数y2〔张〕与售票时间x〔小时〕的变化趋势是以原点为顶点的抛物线的一局部,如图2,假设该日截至上午9点,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同.〔1〕求图2中所确定抛物线的解析式;〔2〕假设该日共开放5个无人售票窗口,截至上午10点,两种窗口共售出的车票数不少于900张,那么至少需要开放多少个普通售票窗口?23.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人.设新工人李明第X天生产的粽子数量为y 只,y与x满足如下关系:y=〔1〕李明第几天生产的粽子数量为420只?〔2〕如图,设第x天每只粽子的本钱是p元,p与x之间的关系可用图中的函数图形来刻画.假设李明第x天创造的利润为w元,求w关于x的函数表达式,并求出第几天的利润最大,最大利润时多少元?〔利润=出厂价﹣本钱〕24.大学毕业生小王响应国家“自主创业〞的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x〔元/件〕〔x>0即售价上涨,x<0即售价下降〕,每月饰品销量为y〔件〕,月利润为w〔元〕.〔1〕直接写出y与x之间的函数关系式;〔2〕如何确定销售价格才能使月利润最大?求最大月利润;〔3〕为了使每月利润不少于6000元应如何控制销售价格?25.一种进价为每件40元的T恤,假设销售单价为60元,那么每周可卖出300件,为提高利益,就对该T恤进行涨价销售,经过调查发现,每涨价1元,每周要少卖出10件,请确定该T恤涨价后每周销售利润y〔元〕与销售单价x〔元〕之间的函数关系式,并求出销售单价定为多少元时,每周的销售利润最大?26.某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y〔千克〕与销售价x〔元/千克〕存在一次函数关系,如下图.〔1〕求y关于x的函数关系式〔不要求写出x的取值范围〕;〔2〕应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?27.为满足市场需求,某超市在五月初五“端午节〞来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.〔1〕试求出每天的销售量y〔盒〕与每盒售价x〔元〕之间的函数关系式;〔2〕当每盒售价定为多少元时,每天销售的利润P〔元〕最大?最大利润是多少?〔3〕为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?28为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v〔千米/小时〕是车流密度x〔辆/千米〕的函数,当桥上的车流密度到达220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米时,车流速度为80千米/小时.研究说明:当20≤x≤220时,车流速度v是车流密度x的一次函数.〔1〕求彩虹桥上车流密度为100辆/千米时的车流速度;〔2〕在交通顶峰时段,为使彩虹桥上车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?〔3〕当车流量〔辆/小时〕是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.29.某校在基地参加社会实践话动中,带队老师考问学生:基地方案新建一个矩形的生物园地,一边靠旧墙〔墙足够长〕,另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如下图,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:〔1〕设AB=x米〔x>0〕,试用含x的代数式表示BC的长;〔2〕请你判断谁的说法正确,为什么?30.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价〔元/件〕100 110 120 130 …月销量〔件〕200 180 160 140 …该运动服的进价为每件60元,设售价为x元.〔1〕请用含x的式子表示:①销售该运动服每件的利润是〔〕元;②月销量是〔〕件;〔直接写出结果〕〔2〕设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?第二十四章二次函数周周测1一、选择题〔共16小题〕1.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB 的值为〔〕A.3 B.2C.3D.22.如图,OA是⊙O的半径,弦BC⊥OA,D是⊙O上一点,假设∠ADB=28°,那么∠AOC 的度数为〔〕A.14°B.28°C.56°D.84°3.如图,⊙O的直径CD过弦EF的中点G,∠DCF=20°,那么∠EOD等于〔〕A.10°B.20°C.40°D.80°4.如图,点C,D是半圆上的三等分点,连接AC,BC,CD,OD,BC和OD相交于点E.那么以下结论:①∠CBA=30°,②OD⊥BC,③OE=AC,④四边形AODC是菱形.正确的个数是〔〕A.1 B.2 C.3 D.45.如图,圆心角∠BOC=78°,那么圆周角∠BAC的度数是〔〕A.156°B.78°C.39°D.12°6.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,那么∠BOC等于〔〕A.60°B.70°C.120°D.140°7.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,那么∠AEB的度数为〔〕A.36°B.46°C.27°D.63°8.如图,A、B、C是⊙O上的三点,且∠ABC=70°,那么∠AOC的度数是〔〕A.35°B.140°C.70°D.70°或140°9.以下四个图中,∠x是圆周角的是〔〕A.B.C.D.10.〔2021•龙岩〕如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,那么弦AB 的长为〔〕A.B.2 C.2D.411.如图,在⊙O中,∠OAB=22.5°,那么∠C的度数为〔〕A.135°B.122.5°C.115.5°D.112.5°12.如图,⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,那么∠BCD等于〔〕A.116°B.32°C.58°D.64°13.如图,在⊙O中,直径CD⊥弦AB,那么以下结论中正确的选项是〔〕A.AD=AB B.∠BOC=2∠D C.∠D+∠BOC=90°D.∠D=∠B14.如图,在⊙O中,∠CBO=45°,∠CAO=15°,那么∠AOB的度数是〔〕A.75°B.60°C.45°D.30°15.如图,⊙O是△ABC的外接圆,∠OCB=40°,那么∠A的度数是〔〕A.40°B.50°C.60°D.100°16.如图,AB是⊙O的直径,AB垂直于弦CD,∠BOC=70°,那么∠ABD=〔〕A.20°B.46°C.55°D.70°二、填空题〔共13小题〕17.如图,点A、B、C、D在⊙O上,OB⊥AC,假设∠BOC=56°,那么∠ADB=______度.18.如图,点A、B、C在⊙O上,假设∠C=30°,那么∠AOB的度数为______°.19.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,那么∠BOD=______.20.〔2021•盘锦〕如图,⊙O直径AB=8,∠CBD=30°,那么CD=______.21.在圆中,30°的圆周角所对的弦的长度为2,那么这个圆的半径是______.22.如图,⊙O是△ABC的外接圆,假设∠BOC=100°,那么∠BAC=______.23.如图,AB是⊙O的直径,点C在⊙O上,点P在线段OA上运动.设∠BCP=α,那么α的最大值是______.24.如图,P是⊙O外一点,A、B、C是⊙O上的三点,∠AOB=60°,PA、PB分别交于M、N两点,那么∠APB的范围是______.25.如下图⊙O中,∠BAC=∠CDA=20°,那么∠ABO的度数为______.26.点O是△ABC外接圆的圆心,假设∠BOC=110°,那么∠A的度数是______.27.如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=3,CD=2,那么⊙O的直径的长是______.28.如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,那么∠BOC=______度.29.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,那么∠AED的余弦值是______.三、解答题〔共1小题〕30.〔1〕甲市共有三个郊县,各郊县的人数及人均耕地面积如表所示:人均耕地面积/公郊县人数/万顷A 20B 5C 10求甲市郊县所有人口的人均耕地面积〔精确到0.01公顷〕;〔2〕先化简下式,再求值:,其中,;〔3〕如图,A,B,C,D是⊙O上的四点,延长DC,AB相交于点E,假设BC=BE.求证:△ADE是等腰三角形.答案一、选择题〔共16小题〕1.A;2.C;3.C;4.D;5.C;6.D;7.A;8.B;9.C;10.C;11.D;12.B;13.B;14.B;15.B;16.C;二、填空题〔共13小题〕17.28;18.60;19.80°;20.4;21.2;22.50°;23.90°;24.0°<∠APB<30°;25.50°;26.55°或125°;27.;28.52;29.;三、解答题〔共1小题〕30.。
人教版九年级数学上册第22章二次函数基础练习(5套)
础知识反馈卡·22.1.1时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.若y =mx 2+nx -p (其中m ,n ,p 是常数)为二次函数,则( ) A .m ,n ,p 均不为0 B .m ≠0,且n ≠0 C .m ≠0 D .m ≠0,或p ≠02.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )二、填空题(每小题4分,共8分)3.若y =x m -1+2x 是二次函数,则m =________. 4.二次函数y =(k +1)x 2的图象如图J22-1-1,则k 的取值范围为________.图J22-1-1三、解答题(共11分) 5.在如图J22-1-2所示网格内建立恰当直角坐标系后,画出函数y=2x 2和y =-12x 2的图象,并根据图象回答下列问题(设小方格的边长为1):图J22-1-2(1)说出这两个函数图象的开口方向,对称轴和顶点坐标;(2)抛物线y =2x 2,当x ______时,抛物线上的点都在x 轴的上方,它的顶点是图象的最______点;(3)函数y =-12x 2,对于一切x 的值,总有函数y ______0;当x ______时,y 有最______值是______.基础知识反馈卡·22.1.2时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.下列抛物线的顶点坐标为(0,1)的是( ) A .y =x 2+1 B .y =x 2-1 C .y =(x +1)2 D .y =(x -1)22.二次函数y =-x 2+2x 的图象可能是( )二、填空题(每小题4分,共8分)3.抛物线y =x 2+14的开口向________,对称轴是________.4.将二次函数y =2x 2+6x +3化为y =a (x -h )2+k 的形式是________.三、解答题(共11分)5.已知二次函数y =-12x 2+x +4.(1)确定抛物线的开口方向、顶点坐标和对称轴;(2)当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 随x 的增大而减小?基础知识反馈卡·*22.1.3时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.已知二次函数的图象过(1,0),(2,0)和(0,2)三点,则该函数的解析式是( )A .y =2x 2+x +2B .y =x 2+3x +2C .y =x 2-2x +3D .y =x 2-3x +22.若二次函数的图象的顶点坐标为(2,-1),且抛物线过(0,3),则二次函数的解析式是( )A .y =-(x -2)2-1 B .y =-12(x -2)2-1C .y =(x -2)2-1 D .y =12(x -2)2-1二、填空题(每小题4分,共8分) 3.如图J22-1-3,函数y =-(x -h )2+k 的图象,则其解析式为____________.图J22-1-3 4.已知抛物线y =x 2+(m -1)x -14的顶点的横坐标是2,则m 的值是________.三、解答题(共11分)5.已知当x =1时,二次函数有最大值5,且图象过点(0,-3),求此函数关系式.基础知识反馈卡·22.2时间:10分钟 满分:25分一、选择题(每小题3分,共6分) 1.下表是二次函数y =ax 2+bx +c 的自变量x 的值与函数y 的对应值,判断方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的一个解的范围是( )x 6.17 6.18 6.19 6.20y =ax 2+bx +c-0.03-0.010.020.04C .6.18<x <6.19D .6.19<x <6.202.二次函数y =2x 2+3x -9的图象与x 轴交点的横坐标是( ) A.32和3 B.32和-3 C .-32和2 D .-32和-2二、填空题(每小题4分,共8分) 3.已知抛物线y =x 2-x -1与x 轴的交点为(m,0),则代数式m 2-m +2 011的值为__________.4.如图J22-2-1是抛物线y =ax 2+bx +c 的图象,则由图象可知,不等式ax 2+bx +c <0的解集是________.图J22-2-1三、解答题(共11分)5.如图J22-2-2,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m的值和抛物线的关系式;(2)求不等式x2+bx+c>x+m的解集(直接写出答案).图J22-2-2基础知识反馈卡·22.3时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.在半径为4 cm 的圆中,挖去一个半径为x cm 的圆,剩下一个圆环的面积为y cm 2,则y 与x 的函数关系为( )A .y =πx 2-4B .y =π(2-x )2C .y =-(x 2+4)D .y =-πx 2+16π 2.已知某种礼炮的升空高度h (m)与飞行时间t (s)的关系式是h =-52t 2+20t +1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为( )A .3 sB .4 sC .5 sD .6 s 二、填空题(每小题4分,共8分)3.出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x =________元,一天出售该种手工艺品的总利润y 最大.4.如图J22-3-1,某省大学的校门是一抛物线形水泥建筑物,大门的地面宽度为8 m ,两侧距地面4 m 的高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6 m ,则校门的高度为(精确到0.1 m ,水泥建筑物厚度忽略不计)________.图J22-3-1三、解答题(共11分)5.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一个点)的路线是抛物线y =-35x 2+3x +1的一部分,如图J22-3-2.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?说明理由.图J22-3-2高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )A .8个B .6个C .4个D .12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..第1 题图 第2题图 第3题图 2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个5.(2016·宁波中考)如图所示的几何体的主视图为( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )◆类型二 简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..这个几何体的主视图和俯视图分别为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
23.如图,在平面直角坐标系 xOy 中,A、B 为 x 轴上点,C、D 为抛物线 y=﹣x2+2x+3 上
两点,且四边形 ABCD 是正方形,则正方形 ABCD 的面积是
.
24.将抛物线 y=2x2 的图象向上平移 1 个单位长度后,所得抛物线的解析式为
.
5 / 44
25.将二次函数 y=x2﹣2x+m 的图象向下平移 4 个单位后,它的顶点恰好落在 x 轴上,则 m
即 a=﹣ ,代入得 9(﹣ )+3b+c<0,得 2c<3b,故此选项正确;
⑤当 x=1 时,y 的值最大.此时,y=a+b+c,
而当 x=m 时,y=am2+bm+c,
所以 a+b+c>am2+bm+c,
10 / 44
故 a+b>am2+bm,即 a+b>m(am+b),故此选项正确. 故②④⑤正确. 故选:B. 8.解:①函数的对称轴在 y 轴右侧,则 ab<0,而 c<0,则 abc>0,故①错误; ②函数的对称轴为 x=1,函数和 x 轴的一个交点是(3,0),则另外一个交点为(﹣1, 0), 当 x=﹣1 时,y=a﹣b+c=0,故②错误; ③函数的对称轴为 x=﹣ =1,即 a=﹣ b,故③错误;
A.2 个
B.3 个
C.4 个
D.5 个
8.已知某二次函数 y=ax2+bx+c(a≠0)的部分图象如图所示,下列结论中正确的有( )
①abc<0;②a﹣b+c<0; ③a=﹣ ;④8a+c>0.
A.1 个
B.2 个
C.3 个
D.4 个
9.已知抛物线 y=ax2﹣2ax+b(a>0)的图象上三个点的坐标分别为 A(﹣1,y1),B(2, y2),C(4,y3),则 y1,y2,y3 的大小关系为( )
∴x<5 时,y 随 x 的增大而增大,x>5 时,y 随 x 的增大而减小,
∵当 3<m<4 时,总有 n>1,当 7<m<8 时,总有 n<1,且 x=3 与 x=7 对称,
∴m=3 时,n≤1,m=7 时,n≥1,
∴
,
∴4a+9=1, ∴a=﹣2, 故选:D. 7.解:①由图象可知:a<0,c>0, ∵﹣ >0,
28.已知抛物线 y=a(x﹣3)2+2 经过点(1,﹣2),若点 A(m,s),B(n,t)(m<n<3) 都在该抛物线上,试比较 s 与 t 的大小.
29.如图,在平面直角坐标系中,O 为坐标原点,抛物线 y=﹣2x2+bx﹣1 的对称轴是 x=1. (1)求这条抛物线对应的函数解析式和顶点坐标; (2)求该抛物线绕着点 O 旋转 180°后得到的抛物线对应的函数解析式.
6 / 44
7 / 44
参考答案
一.选择题 1.解:A、y= x 是正比例函数,故本选项不符合题意;
B、y=2x2﹣1 是二次函数,故本选项符合题意;
C、y=
不是二次函数,故本选项不符合题意;
D、y=x2+ +1 不是二次函数,故本选项不符合题意.
故选:B. 2.解:A、是一次函数,故 A 错误;
解得:a=﹣2,
即 y=﹣2(x﹣2)2+3.
故选:B.
二.填空题
13 / 44
16.解:由题意得:|a|=2,且 a+2≠0, 解得:a=2, 故答案为:2.
17.解:由题意得:|m|=2,且 m+2≠0, 解得:m=2, 故答案为:2.
18.解:∵y=2(x﹣3)(x﹣1)=2(x2﹣4x+3)=2(x﹣2)2﹣2, ∴抛物线 y=2(x﹣3)(x﹣1)的顶点坐标是(2,﹣2); 故答案为:(2,﹣2).
A.y=4(x﹣2)2﹣3
B.y=﹣2(x﹣2)2+3
C.y=﹣2(x﹣2)2﹣3
D.y=﹣ (x﹣2)2+3
二.填空题
16.若 y=(a+2)x|a|+1 是以 x 为自变量的二次函数,则)x|m|+1 是关于 x 的二次函数,则 m=
.
18.抛物线 y=2(x﹣3)(x﹣1)的顶点坐标是
B、二次函数都是整式,故 B 错误; C、是二次函数,故 C 正确; D、是一次函数,故 D 错误; 故选:C. 3.解:①当 a>0 时,二次函数 y=ax2﹣a 的图象开口向上、对称轴为 y 轴、顶点在 y 轴负 半轴,一次函数 y=ax﹣a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交 于 y 轴同一点; ②当 a<0 时,二次函数 y=ax2﹣a 的图象开口向下、对称轴为 y 轴、顶点在 y 轴正半轴, 一次函数 y=ax﹣a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于 y 轴 同一点.
对照四个选项可知 D 正确. 故选:D.
8 / 44
4.解:∵y=mx2+nx+m2﹣m﹣6, ∴x=﹣ , 因为 n<0,所以对称轴不可能是 x=0,所以第一个图,第二个图不正确. 三,四两个图都过原点, ∴m2﹣m﹣6=0,即 (m﹣3)(m+2)=0, ∴m=3 或﹣2. 第三个图中 m<0,开口才能向下. 对称轴为:x=﹣ <0, 所以 m 可以为﹣2. 第四个图,m>0,开口才能向下, x=﹣ >0,而从图上可看出对称轴小于 0,从而 m=3 不符合题意. 故选:D.
22.1 二次函数的图象和性质
一.选择题
1.下列函数中属于二次函数的是( )
A.y= x
B.y=2x2﹣1
C.y=
D.y=x2+ +1
2.下列各式中,y 是关于 x 的二次函数的是( )
A.y=2x+3
B.
C.y=3x2﹣1
D.y=(x﹣1)2﹣x2
3.函数 y=ax2﹣a 与 y=ax﹣a(a≠0)在同一坐标系中的图象可能是( )
A.
B.
C.
D.
4.设 m、n 是常数,且 n<0,抛物线 y=mx2+nx+m2﹣m﹣6 为下图中四个图象之一,则 m 的值为( )
A.6 或﹣1
B.3 或﹣2
C.3
1 / 44
D.﹣2
5.二次函数 y=x2+2x﹣4 的顶点坐标为( )
A.(1,5)
B.(﹣1,5)
C.(﹣1,﹣5) D.(1,﹣5)
6.已知点 P(m,n)在抛物线 y=a(x﹣5)2+9(a≠0)上,当 3<m<4 时,总有 n>1, 当 7<m<8 时,总有 n<1,则 a 的值为( )
A.1
B.﹣1
C.2
D.﹣2
7.已知二次函数 y=ax2+bx+c(a≠0)的图象如图所示,有下列 5 个结论:①abc>0; ②4a+2b+c>0;③(a+c)2>b2;④2c<3b;⑤a+b>m(am+b)(m≠1 的实数).其中 正确的结论有( )
A.y3>y1>y2
B.y3>y2>y1
C.y2>y1>y3
D.y2>y3>y1
2 / 44
10.已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线上 y=﹣5x2 的点,则( )
A.y1<y2<y3
B.y3<y1<y2
C.y3<y2<y1
D.y1<y3<y2
11.抛物线
向左平移 1 个单位,再向下平移 1 个单位后的抛物线解析式是( )
.
19.二次函数 y=x2+2x﹣4 的图象的对称轴是
,顶点坐标是
.
20.二次函数 y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2>4ac,②abc<0,
③2a+b﹣c>0,④a+b+c<0.其中正确的是
.
21.如图为二次函数 y=ax2+bx+c 图象,直线 y=t(t>0)与抛物线交于 A,B 两点,A,B 4 / 44
5.解:∵y=x2+2x﹣4=(x+1)2﹣5, ∴二次函数 y=x2+2x﹣4 的图象的顶点坐标是(﹣1,﹣5). 故选:C.
6.解:∵抛物线 y=a(x﹣5)2+9(a≠0), ∴抛物线的顶点为(5,9), ∵当 7<m<8 时,总有 n<1, ∴a 不可能大于 0, 则 a<0, 9 / 44
=
.
三.解答题
26.已知:如图所示的两条抛物线的表达式分别是 y1=﹣mx2﹣mx+2,y2=mx2﹣mx﹣2(其 中 m 为常数,且 m>0).请写出三条与上述抛物线有关的不同类型的正确结论.
27.在平面直角坐标系 xOy 中,抛物线 F:y=(a+1)x2﹣3ax+2a﹣3(a≠﹣1). (1)当 a=﹣2 时,求抛物线 y=(a+1)x2﹣3ax+2a﹣3 的顶点坐标; (2)已知点 A(0,2),抛物线 F 与 y 轴交于点 C(不与 A 重合),将点 C 绕点 A 逆时针 旋转 90°至点 B. ①直接写出点 B 的坐标(用含 a 的代数式表示); ②若抛物线 F 与线段 AB 有且仅有一个公共点,求 a 的取值范围.
A.
B.
C.
D.
12.将抛物线( )先向下平移 1 个单位长度,再向左平移 2 个单位长度后所得到的抛物 线为 y=﹣2(x﹣3)2+1.
A.y=﹣2(x﹣5)2+2
B.y=﹣2(x﹣1)2
C.y=﹣2(x﹣2)2﹣1
D.y=﹣2(x﹣4)2+3
13.一副三角板(△ABC 与△DEF)如图放置,点 D 在 AB 边上滑动,DE 交 AC 于点 G, DF 交 BC 于点 H,且在滑动过程中始终保持 DG=DH,若 AC=2,则△BDH 面积的最 大值是( )