2018年秋季新版新人教版七年级数学上学期1.2.1、有理数学案2
人教版初中数学七年级上册1.2.1有理数(教案)
3.培养学生合作交流、共同探讨的学习习惯,增强数学交流与反思的能力;
4.激发学生运用数轴等工具进行直观想象,培养几何直观和空间观念;
5.引导学生通过解决实际问题,体会数学与生活的紧密联系,提高数学应用意识。
核心素养目标主要包括:
最后,我认识到教学过程中要时刻关注同学们的学习反馈,及时调整教学方法。在今后的教学中,我会更加注重个体差异,针对性地进行辅导,帮助每一位同学克服学习难点,真正掌握有理数的知识。
举例:理解+3和-3互为相反数,3和-3的绝对值都是3;掌握加减法的运算法则,如同号相加、异号相加等。
(3)有理数在数轴上的表示:掌握数轴上的点与有理数的对应关系。
举例:数轴上,点A表示的数是-2,点B表示的数是3,那么点A和点B之间的距离是5。
(4)有理数的大小比较:掌握有理数的大小比较法则,并能应用于实际问题。
难点解析:学生可能难以理解负分数在数轴上的位置,例如,如何表示-1/2。
(3)有理数的大小比较:在涉及负数和分数的大小比较时,学生可能会混淆。
难点解析:比较两个分数大小时,学生可能不清楚如何处理分子和分母的符号及大小关系。
(4)实际问题的应用:将有理数应用于解决实际问题时,学生可能难以找到问题中的数量关系。
数轴的教学也是一个挑战。虽然通过实验操作和多媒体演示,大多数同学能够理解数轴上的点与有理数的对应关系,但仍有一些同学对负分数在数轴上的位置感到困惑。我想,在接下来的课程中,可以设计一些更具针对性的练习题,让学生在解题过程中更好地把握数轴的应用。
此外,小组讨论环节让我看到了同学们的积极性和创造力。他们能够将所学的有理数知识应用到实际问题中,并提出自己的见解。但在引导讨论时,我也发现部分同学在提出问题和解决问题的过程中,逻辑思维还不够严密。为了提高同学们的思维能力,我计划在后续的教学中,多设计一些开放性问题,鼓励同学们多角度、多维度地思考问题。
人教版七年级数学上教案:1.2.1有理数
1.理论介绍:首先,我们要了解有理数的基本概念。有理数是指可以表示为两个整数之比的数,包括整数和分数。它是数学中的基础概念,对于理解数的性质和运算至关重要。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了有理数在实际中的应用,以及它如何帮助我们解决问题,如购物找零、计算温度变化等。
另外,在学生小组讨论环节,我发现有些学生参与度不高,可能是因为他们对讨论主题不感兴趣,或者不知道如何表达自己的观点。针对这个问题,我计划在以后的课堂中,尝试引入更多有趣的讨论主题,激发学生的兴趣,同时加强引导,让学生学会如何表达自己,提高他们的参与度。
在实践活动方面,虽然学生们在分组讨论和实验操作中表现出了一定的积极性,但在成果展示环节,我发现有些小组的表达能力还有待提高。为了改善这个状况,我打算在接下来的教学中,多给学生提供一些展示自己的机会,培养他们的表达能力和自信心。
3.培养学生逻辑推理能力,通过有理数的运算方法,让学生掌握逻辑推理方法,能进行有理数的混合运算;
4.培养学生问题解决能力,让学生在实际问题中运用有理数知识,学会分析问题、解决问题,增强数学应用意识;
5.培养学生合作交流能力,通过小组讨论、交流,让学生学会倾听、表达和协作,提高团队协作能力。
三、教学难点与重点
5.有理数的乘除法运算:同号得正,异号得负,零乘以任何数得零;
6.有理数的乘方:正整数幂,负整数幂,零的幂。
二、核心素养目标
1.培养学生运用数学语言表达现实问题的能力,通过有理数的概念理解,使学生能够正确运用数学语言描述生活中的有理数现象;
2.提升学生数学抽象思维能力,通过有理数的分类和性质的学习,使学生能够抽象出数学规律,形成数学认知结构;
2.教学难点
人教版数学七年级上册1.2.1《有理数》教学设计
人教版数学七年级上册1.2.1《有理数》教学设计一. 教材分析人教版数学七年级上册1.2.1《有理数》是学生在小学阶段学习数的概念的基础上,进一步深入研究数的一种分类。
本节内容主要包括有理数的定义、分类及运算规则。
通过本节内容的学习,使学生了解有理数的概念,掌握有理数的分类,会进行有理数的运算。
二. 学情分析七年级的学生已经具备了初步的数学逻辑思维能力,对数的概念有一定的了解。
但学生在学习有理数时,容易与小学阶段的数的概念混淆,对有理数的分类和运算规则的理解和运用有一定的困难。
因此,在教学过程中,需要引导学生从实际问题出发,理解和掌握有理数的概念和运算规则。
三. 教学目标1.理解有理数的定义,掌握有理数的分类。
2.掌握有理数的运算规则,能够进行简单的有理数运算。
3.培养学生的数学逻辑思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的运算规则。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中理解和掌握有理数的概念和运算规则。
2.运用案例分析法,通过具体案例使学生理解和掌握有理数的分类和运算规则。
3.采用小组合作学习法,培养学生的团队合作意识和沟通能力。
六. 教学准备1.准备相关的教学案例和问题,用于引导学生学习和思考。
2.准备教学PPT,用于辅助教学。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入有理数的概念,如:“小明有3个苹果,小华有2个苹果,小明比小华多几个苹果?”引导学生思考和讨论,引出有理数的概念。
2.呈现(10分钟)呈现有理数的定义和分类,通过PPT展示有理数的图像和特点,让学生直观地理解和掌握有理数的分类。
3.操练(10分钟)让学生进行有理数的运算练习,如加、减、乘、除等,引导学生理解和掌握有理数的运算规则。
4.巩固(10分钟)通过一些实际问题,让学生运用所学的有理数知识和运算规则进行解答,巩固所学知识。
人教版七年级数学上册1.2.1《有理数》教学设计
人教版七年级数学上册1.2.1《有理数》教学设计一. 教材分析《有理数》是人教版七年级数学上册第一章第二节的第一课时,主要介绍了有理数的定义、分类和运算法则。
本节课的内容是学生学习数学的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。
教材通过生动的实例和丰富的练习,帮助学生理解和掌握有理数的概念和运算法则,为后续的学习打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于实数的概念有一定的了解。
但是,对于有理数的定义和分类,以及有理数的运算法则,可能还存在一定的困惑。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出有理数的概念,并通过大量的练习,让学生熟练掌握有理数的运算法则。
三. 教学目标1.了解有理数的定义、分类和运算法则。
2.能够运用有理数的运算法则进行简单的计算。
3.培养学生的逻辑思维和抽象思维能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的运算法则。
五. 教学方法1.情境教学法:通过实际问题引入有理数的概念,让学生从实际问题中抽象出有理数的概念。
2.讲解法:对于有理数的定义、分类和运算法则,采用讲解法进行详细讲解。
3.练习法:通过大量的练习,让学生熟练掌握有理数的运算法则。
六. 教学准备1.PPT课件:制作与本节课内容相关的PPT课件,用于辅助教学。
2.练习题:准备与本节课内容相关的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,如温度、海拔等,引导学生从实际问题中抽象出有理数的概念。
2.呈现(10分钟)通过PPT课件,详细讲解有理数的定义、分类和运算法则。
讲解过程中,注意结合实例进行说明,让学生更好地理解和掌握。
3.操练(10分钟)让学生进行一些有关有理数的运算练习,巩固所学知识。
教师可适时给予提示和指导,确保学生能够熟练掌握有理数的运算法则。
4.巩固(5分钟)通过PPT课件,总结本节课所学的主要内容和知识点,帮助学生巩固记忆。
秋七年级数学上册 1.2.1 有理数学案(新版)新人教版【教案】
有理数【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点】:正确理解有理数的概念【学习难点】:正确理解分类的标准和按照一定标准分类 【导学指导】一、自主预习:1、通过两节课的学习,,那么你能写出3个不同类的数吗?.(4名学生板书) __________________________________________二、自主探究问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类;该分为几类,又该怎样分呢?先分组讨论交流,再写出来分为 类,分别是: 引导归纳:统称为整数; 统称为分数。
统称为有理数。
问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类? 师生共同交流、归纳 2、正数集合与负数集合所有的正数组成 集合,所有的负数组成 集合 三、当堂评价:1.把下列各数填入它所属于的集合的圈内:15, -91, -5, 152, 813, 0.1, -5.32, -80, 123, 2.333;正整数集合 负整数集合正分数集合 负分数集合 2.指出下列各数中的正数、负数、整数、分数。
-15, +6, -2, -0.9, 1,,413,0,530.63, -4.95.四、拓展提升1、下列说法中不正确的是…………………………………………( ) A .-3.14既是负数,分数,也是有理数 B .0既不是正数,也不是负数,但是整数C .-2000既是负数,也是整数,但不是有理数D .O 是正数和负数的分界2、在下表适当的空格里画上“√”号【要点归纳】:有理数分类:按不同标准可分为 五、课后检测:1.把下列给数填在相应的大括号里:-4, 0.001, 0, -1.7, 15, 23+. 正数集合{ …},负数集合{ …}, 正整数集合{ …},分数集合{ …}2.下列各数,哪些是整数?哪些是分数?哪些是正数?哪些是负数?+7, -5, 217,61-, 79, 0, 0.67, 321-, +5.1 3.0是整数吗?自然数一定是整数吗?0一定是正整数吗?整数一定是自然数吗?4.图中两个圆圈分别表示正数集合和整数集合,请写并填入两个圆圈的重叠部分.你能说出这个重叠部分表示什么数的集合吗?正数 ( ) 整数有理数整数 分数 正整数 负分数 自然数 -8 -2.2553 0。
七年级数学上册《1.2.1 有理数》教案 (新版)新人教版 (2)
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
让学生在总结出5类数基础上,进行概括,尝试进行分类,通过交流和讨论,再加上老师适当的指导,逐步得出下面的两种分类方式。
(1)按定义分类: (2)按性质分类:
[活动3]
练习
1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
教学过程设计
教学过程
备 注
[活动1]
[活动2]
讲授新课
1、有理数的定义
引导学生对前面的数进行概括,得出:正整数、零、负整数统称为整数;正分数和负分数统称分数。整数可以看作分母为1的分数,正整数、零、负整数、正分数和负分数都可以写成分数的形式,这样的数称为有理数,即整数和分数统称有理数。
2、有理数的分类
《1.2.1 有理数》教案
教学任识与技能
掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力
过程与方法
了解分类的标准与分类结果的相关性,初步了解“集合”的含义
情感态度与
价值观
体验分类是数学上的常用处理问题的方法
教学重点
正确理解有理数的概念
教学难点
从直观认识到理性认识,从而建立有理数概念
[活动4]
小结:
到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
七年级数学上册 1.2.1 有理数教案 (新版)新人教版 (2)
1.2.1 有理数教学目标知识与技能:1.进一步加深对负数的认识2.能正确地将有理数进行分类.过程与方法:对有理数按照一定的标准进行分类,培养分类能力情感态度价值观:通过师生合作,使整数、分数在引入负数后能够达到完善,从而体验获得成功的快乐教学重点有理数的分类教学难点有理数的分类及其分类标准教学过程(师生活动)设计理念创设情境,引入新课通过前面的学习,我们已经知道很多不同类型的数,现在请同学们在草稿纸上任意写出你认为是不同类型的5个数.你所知道的数可以分成哪些种类?说一说你是按照什么划分的?观察黑板上的15个数,并给它们进行分类.学生思考讨论和交流分类的情况.学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
明确概念探究分类问题1:整数包括什么数?回答:正整数、0、负整数问题2:负数包括什么数?回答:正分数和负分数.有理数的概念:整数和分数统称有理数统称”是指“合起来总的名称”的意思.试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)有理数的分类1、按定义分类2、按性质符号分类思考:有理数可分为正数和负数两大类,对吗?为什么?在多媒体上展示有理数的分类表,分类的标准要引导学生去体会使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类应用练习熟1.任意写出三个数,标出每个数的所属类型,同桌互相验证.2.把下列各数填入它所属于的集合的圈内:正整数集合负整数集合进一步理解有理数的分类能生巧正分数集合负分数集合3.0是整数吗?自然数一定是整数吗?0一定是正整数吗?整数一定是自然数吗?小结与作业课堂小结有理数可以按不同的标准进行分类,标准不同,分类的结果也不同本节课你还有哪些疑问?本课作业中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
人教版七年级数学上册:1.2.1《有理数》教学设计2
人教版七年级数学上册:1.2.1《有理数》教学设计2一. 教材分析《有理数》是人教版七年级数学上册第一章第二节的一部分,主要介绍了有理数的概念、分类和运算。
本节课的内容是学生学习数学的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,但是对于有理数的概念和运算可能还比较陌生。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出有理数的概念,并通过具体的例题和练习来让学生理解和掌握有理数的运算方法。
三. 教学目标1.了解有理数的概念和分类。
2.掌握有理数的加、减、乘、除运算方法。
3.能够运用有理数解决实际问题。
四. 教学重难点1.有理数的概念和分类。
2.有理数的运算方法。
五. 教学方法1.情境教学法:通过实际问题引导学生抽象出有理数的概念。
2.例题教学法:通过具体的例题讲解和练习让学生掌握有理数的运算方法。
3.小组合作学习:学生分组讨论和解决问题,培养学生的合作意识和团队精神。
六. 教学准备1.教学PPT:制作详细的PPT,内容包括有理数的概念、分类和运算方法。
2.例题和练习题:准备一些有代表性的例题和练习题,用于讲解和巩固知识点。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题引入有理数的概念,例如:“小明的零花钱有3元,小红给了小明2元,请问小明现在有多少元?”引导学生思考和讨论,从而引出有理数的概念。
2.呈现(15分钟)通过PPT展示有理数的定义、分类和运算方法。
用简洁明了的语言解释有理数的概念,并用图示和实例展示有理数的分类。
接着讲解有理数的加、减、乘、除运算方法,并通过具体的例题进行演示。
3.操练(10分钟)让学生分组进行练习,每组选择一道例题进行讲解和讨论。
学生在讲解过程中,教师进行指导和点评。
然后,让学生独立完成一些练习题,教师巡回辅导。
4.巩固(5分钟)选取一些典型的练习题,让学生上台板书并进行讲解。
新人教版七年级上册数学第一章有理数全章教案2
第一章有理数第一课时1.1 正数和负数教学目标1.知识与技能①通过生活实例,了解正数与负数是实际生活的需要.②会判断一个数是正数还是负数.③会用正负数表示互为相反意义的量.2.过程与方法通过正负数的学习,培养学生应用数学知识的意识、训练学生运用新知识解决实际问题的能力.3.情感、态度与价值观①通过教师、学生双边的教学活动,激发学生学习的兴趣,让学生体验到数学知识来源于生活并为生活服务.②通过正负数的学习,渗透对立、统一的辩证思想.教学重点难点重点:会判断正数、负数,运用正负数表示相反意义的量,理解0•表示量的意义.难点:负数的引入.教与学互动设计(一)创设情境,导入新课珠穆朗玛峰和吐鲁番盆地,由同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究1.举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东50米和向西120米,等.2.为了用数表示具有相反意义的量,我们把其中一种意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负号来表示(零除外).活动每组同学之间相互合作交流,一同学任说有关相反的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?•自己列举正数、负数.总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界.(三)应用迁移,巩固提高例1举出几对具有相反意义的量,并分别用正、负数表示.提示相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.点评这是一道开放性试题,旨在考查用正负数与相反意义量的表示能力.例2在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+0.02克,•那么-0.03克表示什么?答案表示比标准质量低0.03克.例3 2001年美国的商品进出口总额比上年减少6.4%可记为-6.4% ,中国增长7.5%可记为+7.5% .(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数也不是负数.1.填空-1,2,-3,4,-5, 6 , -7 , -8 …第81个数是–81 ,第2005个数是–2005 .提示通过观察可见,数字的排列是按正常的大小顺序,符号是负正相间,第奇数个为负,第偶数个为正.点评本节是对探究问题的训练.2.表1-1-1是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):表1-1-1星期日一二三四五六(元)+16+5.-1.2-2.1-0.9+1-2.6(1)本周小张一共用掉了多少钱?存进了多少钱?答案 6.8元,31元.(2)储蓄罐中的钱与原来多了还是少了?答案多了.(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.答案用文字说明,但前者更简洁.(五)课堂跟踪反馈教材第4页1、2、3、4题第5页 1、2、3题(六)作业教材第5页 4、5题第二课时1.2.1 有理数教学目标1.知识与技能①理解有理数的意义.②能把给出的有理数按要求分类.③了解0在有理数分类的作用.2.过程与方法经历本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力.3.情感、态度与价值观通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.教学重点难点重点:会把所给的各数填入它所在的数集的图里.难点:掌握有理数的两种分类.教与学互动设计(一)创设情境,导入新课讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究学生列举:3,5.7,-7,-9,-10,0,13,25,-356, -7.4,5.2…议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.说明:我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?有理数⎧⎧⎪⎨⎩⎪⎨⎧⎪⎨⎪⎩⎩正整数整数零正分数分数负分数说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含那些数?分数呢?做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数零负整数负有理数负分数(3)数的集合把所有正数组成的集合,叫做正数集合.试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合. (三)应用迁移,巩固提高例1 把下列各数填入相应的集合内:127,-3.1416,0,2004,-85,-0.23456,10%,10.l ,0.67,-89正数集合 负数集合整数集合 分数集合答案正数集合227,2004,10%,10.1,0.67,...负数集合-3.1416,-85,-0.23456,-89,...整数集合0,2004,-89,...分数集合127,-3.1416,-85,-0.23456,10%,10.1,0.67,...例2 以下是两位同学的分类方法,你认为他们的分类的结果正确吗 为什么?有理数⎧⎧⎪⎨⎪⎩⎨⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负分数有理数⎧⎪⎪⎪⎨⎪⎪⎪⎩正数整数分数负数零答案两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈.例3下列关于零的说法,正确的有()①0是最小的正整数②0是最小的有理数③0不是负数④0既是非正数,也是非负数A.1个B.2个C.3个D.4个例4如果用字母表示一个数,那a可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法.答案不一定,a可能是正数,可能是负数,也可能是0.(四)总结反思,拓展升华今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.1.请你在图1-2-1的圈中填上适合的数,使得圈内的数依次为整数集、•有理数集、正数集、分数集、负数集.图1-2-1答案答案不唯一,如图1-2-2所示.-1250.4813图1-2-22.有理数按正、负可分为⎧⎪⎨⎪⎩正有理数零负有理数按整数分,可分为⎧⎨⎩整数分数(1)你能自己再制定一个标准,对有理数进行另一种分类吗?(2)生活中,我们也常常对事物进行分类,请你举例说明.答案(1)如将有理数分成大于1的数,小于1的数,等于1的数.(2)例如对人按年龄可分为:婴儿、幼儿、儿童、少年、青年、中年、老年.3.下面两个圈分别表示负数集和分数集,你能说出两个图的重叠部分表示什么数的集合呢?分数集合负数集合答案负分数(五)课堂跟踪反馈教材第6页1、2题(六)作业《同步练习》相应内容第三课时1.2.2 数轴教学目标1.知识与技能①掌握数轴三要素,能正确画出数轴.②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.2.过程与方法①使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.②结合本节内容,对学生渗透数形结合的重要思想方法.3.情感、态度与价值观使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.教学重点难点重点:数轴的概念.难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计(一)创设情境,导入新课在一条东西方向的马路上,有一个学校,学校东50m和西150m•处分别有一个书店和一个超市,学校西100m和160m处分别有一个邮局和医院,分别用A、B、C、D表示书店、超市、邮局、医院,你会画图表示这一情境吗?(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0•左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.•也就是本节内容──数轴.点拨(1)引导学生学会画数轴.第一步:画直线定原点第二步:规定从原点向右的方向为正(左边为负方向)第三步:选择适当的长度为单位长度(据情况而定)第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴:规定了原点、正方向和单位长度的直线叫数轴.做一做学生自己练习画出数轴.试一试:你能利用你自己画的数轴上的点来表示数4,1.5,-3,-72,0吗?讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度;表示-a的点在原点的什么位置上?•与原点又相距了多少个长度单位?小结整数能在数轴上都找到点吗?分数呢?可见,所有的__________都可以用数轴上的点表示___________•都在原点的左边,______________都在原点的右边.(三)应用迁移,巩固提高例1 下列所画数轴对不对?如果不对,指出错在哪里.①4②-1021③④0⑤⑥0-3⑦-1-2021答案 ①错.没有原点 ②错.没有正方向 ③正确 ④错.没有单位长度 ⑤错.单位长度不统一 ⑥正确 ⑦错.正方向标错例2 试一试:用你画的数轴上的点表示4,1.5,-3,-73,0 答案-1-45EDC BA图中A点表示4,B点表示1.5,C点表示-3,D点表示-73,E点表示0. 例3 如果a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?•表示-a 的点在原点的什么位置上呢?提示 由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边.答案 所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数..例4 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B)A.1个B.2个C.3个D.4个提示 题中,结合数轴上的点与有理数的特点,可见①中错误的;②、③是正确的;④中可以含有0,•⑤中应该是所有的有理数都可以在数轴上找出对应的点,但并不是数轴上的点都表示有理数.例5 (1)与原点的距离为2.5个单位的点有 两 个,它们分别表示有理数 2.5 •和 -2.5 . (2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7•个单位到达终点,那么终点表示的数是 +3 .例6 在数轴上表示-212和123,并根据数轴指出所有大于-212而小于123的整数. 答案 -2,-1,0,1例7 数轴上表示整数的点称为整点,某数轴的单位长度是1cm ,若这个数轴上随意画出一条长2000cm 的线段AB ,则线段AB 盖住的整点是(C )A .1998或1999B .1999或2000C .2000或2001D .2001或2002提示分两种情况分析:(1)当线段AB 的起点是整点时,•终点也落在整点上,那就盖住2001个整点;(2)是当线段AB 的起点不是整点时,•终点也不落在整点上,那么线段AB 盖住了2000个整点.(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了对立关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.一条直线的流水线上,依次有5个卡通人,•它们站立的位置在数轴上依次用点M 1、M 2、M 3、M 4、M 5表示,如图:5M 4M 3M 2M 1-1-45(1)点M 4和M 2所表示的有理数是什么? (2)点M 3和M 5两点间的距离为多少?(3)怎样将点M 3移动,使它先达到M 2,再达到M 5,请用文字说明; (4)若原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少?答案 (1)M 4表示2,M 2表示3;(2)相距7个单位长度;(3)先向左移动1个单位,再向右移动8个单位长度;(4)17个单位长度.(五)课堂跟踪反馈教材第9页1、2、3题 (六)作业《同步练习》相应内容第四课时 1.2.3 相反数教学目标1.知识与技能①借助数轴了解相反数的概念,知道互为相反数的位置关系. ②给一个数,能求出它的相反数. 2.过程与方法①训练学生利用数轴应用数形结合的方法解决问题.②培养学生自己归纳总结规律的能力.3.情感、态度与价值观①通过相反数的学习,渗透数形结合的思想.②感受事物之间对立、统一联系的辩证思想.教学重点难点重点:理解相反数的意义.难点:理解和掌握双重符号简化的规律.教与学互动设计(一)创设情境,导入新课活动请一个学生到讲台前面对大家,向前走5步,向后走5步.交流如果向前走为正,那向前走5步与向后走5步分别记作什么?(二)合作交流,解读探究1.观察下列数:6和-6,223和-223,7和-7,57和-57,并把它们在数轴上标出.想一想(1)上述各对数之间有什么特点?(2)表示这两对数的点在数轴上有什么特点?(3)你能够写出具有上述特点的数吗?观察像这样只有符号不同的两个数叫相反数.两个互为相反数的数,在数轴上的对应点(0除外),是在原点两旁,•并且距离原点相等的两个点.即:互为相反数的两个数在数轴上的对应点关于原点对称.我们把a的相反数记为-a,并且规定0的相反数就是零.总结在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=•-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0•的相反数是0.(三)应用迁移,巩固提高例1填空(1)-5.8是 5.8 的相反数, 3 的相反数是-(+3),a的相反数是–a ,a-b的相反数是-(a-b),0的相反数是0 .(2)正数的相反数是负数,负数的相反数是正数,0 的相反数是它本身.例2下列判断不正确的有(C)①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个例3化简下列各符号:(1)-[-(-2)] (2)+{-[-(+5)]}(3)-{-{-…-(-6)}…}(共n个负号)答案(1)-2 (2)5 (3)当n为偶数时,为6;当n为奇数时,为-6.例4数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A•的距离为2,点B和点C 各对应什么数?答案 C点表示2或6,则相应的B点应表示-2或-6.(四)总结反思,拓展升华归纳①相反数的概念及表示方法.②相反数的代数意义和几何意义.③符号的化简.1.(1)王亮说:“一个数总比它的相反数大”.你认为正确吗?为什么?(2)若数轴上表示一对相反数的两点之间的距离为26.8,求这两个数.答案(1)不正确,如0的相反数还是0,负数的相反数是正数.(2)其中的一个数到原点的距离为13.4,所以这两个数是+13.4和-13.4.2.你若a是不小于-1又不大于3的数,那么a的相反数是什么样的数呢?提示结合数轴进行观察比较.解:由题意知-1≤a≤,而-1,a,3的相反数分别是1,-a,-3.∴-a在1和-3之间∴-3≤a≤1∴a的相反数是不小于-3又不大于1的数.点评在解决问题中,能进行简单的、有条理的思考.(五)课堂跟踪反馈教材第10页1、2、3、4题(六)作业教材第14页第4题第五课时1.2.4 绝对值(一)教学目标1.知识与技能①能根据一个数的绝对值表示“距离”,初步理解绝对值的概念,能求一个数的绝对值.②通过应用绝对值解决实际问题,体会绝对值的意义和作用.2.过程与方法经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.3.情感、态度与价值观①通过解释绝对值的几何意义,渗透数形结合的思想.②体验运用直观知识解决数学问题的成功.教学重点难点重点:给出一个数,会求它的绝对值.难点:绝对值的几何意义、代数定义的导出.教与学互动设计(一)创设情境,导入新课活动请两同学到讲台前,分别向左、向右行3米.交流①他们所走的路线相同吗?②若向右为正,分别可怎样表示他们的位置?③他们所走的路程的远近是多少?(二)合作交流,解读探究观察出示一组数6与-6,3.5与-3.5,1和-1,它们是一对互为________,•它们的__________不同,__________相同.总结例如6和-6两个数在数轴上的两点虽然分布在原点的两边,•但它们到原点的距离相等,如果我们不考虑两点在原点的哪一边,只考虑它们离开原点的距离,这个距离都是6,我们就把这个距离叫做6和-6的绝对值.绝对值:在数轴上表示数a的点与原点的距离叫做a的绝对值,记作│a│.想一想(1)-3的绝对值是什么?(2)+237的绝对值是多少?(3)-12的绝对值呢?(4)a的绝对值呢?答案略.交流同桌间合作交流,每位同学任说五个数,由同桌指出它们的绝对值.思考例1 求8,-8,3,-3,14,-14的绝对值.(出示胶片)由此,你想到什么规律?总结互为相反数的两个数的绝对值相同.求+2.3,-1.6,9,0,-7,+3的绝对值.(出示胶片)由此,你想到什么规律?讨论交流正数的绝对值是它本身,负数的绝对值是它的相反数,0•的绝对值是零.总结正数的绝对值是它本身.负数的绝对值是它的相反数.零的绝对值是零.讨论字母a可以代表任意的数,那么表示什么数?这时a的绝对值分别是多少?学生活动:分组讨论,教师加入讨论,学生相反补充回答.归纳若a>0,则│a│=a若a<0,则│a│=-a若a=0,则│a│=0(三)应用迁移,巩固提高例题填空:(1)绝对值等于4的数有 2 个,它们是±4 .(2)绝对值等于-3的数有0 个.(3)绝对值等于本身的数有无数个,它们是0和正数(非负数).(4)①若│a│=2,则a= ±2 .②若│-a│=3,则a= ±3 .(5)绝对值不大于2的整数是0,±1,±2 .(6)根据绝对值的意义,思考:①如果=1,那么a > 0;②如果=-1,那么a < 0;③如果a<0,那么-│a│= a .(四)总结反思,拓展升华本节课,我们学习认识了绝对值,要注意掌握以下两点:①一个数的绝对值是在数轴上表示这个数的点到原点的距离;②求一个数的绝对值必须先判断是正数还是负数.(五)课堂跟踪反馈教材第11页1、2、3题(六)作业《同步练习》相应内容第六课时1.2.4 绝对值(二)教学目标1.知识与技能会利用绝对值比较两个负数的大小.2.过程与方法利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力.3.情感、态度与价值观敢于面对数学活动中的困难,有学好数学的自信心.教学重点难点重点:利用绝对值比较两个负数的大小.难点:利用绝对值比较两个异分母负分数的大小.教与学互动设计(一)创设情境,导入新课投影你能比较下列各组数的大小吗?(1)│-3│与│-8│(2)4与-5 (3)0与3(4)-7和0 (5)0.9和1.2(二)合作交流,解读探究讨论交流由以上各组数的大小比较可见:正数都大于0,0都大于负数,正数都大于负数.思考若任取两个负数,该如何比较它的大小呢?点拨若-7表示-7℃,-1表示-1℃,则两个温度谁高谁低?总结两个负数,绝对值大的反而小,或说,两个负数绝对值小的反而大.注意①比较两个负数的大小又多了一种方法,即:两个负数,绝对值大的反而小.②异号的两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑先比较它们的绝对值.③在数轴上表示有理数,它们从左到右的顺序也就是从小到大的顺序,即:左边的数总比右边的数要小.即:利用数轴来比较有理数的大小.(三)应用迁移,巩固提高例1比较下列各组数的大小(1)-56和-2.7(2)-57和-34解:(1)∵|-56|=56│-2.7│=2.7,而56<2.7∴-56>-2.7(2)∵|-57|=57=2028,|-34|=34=2128,而2028<2128∴-57>-34例2按从大到小的顺序,用“〈”号把下列数连接起来.-412,-(-23),│-0.6│,-0.6,-│4.2│解:∵-(-23)=23,│-0.6│=0.6,-│4.2│=-4.2而|-412|=412,│-0.6│=0.6,│-4.2│=4.2且412>4.2>0.6,0.6<23∴ -412<-│4.2│<-0.6<│-0.6│<-(-23)例3自己任写三个数,使它大于-57而小于-18.点评此题是一个开放型问题,培养学生发散性思维.例4已知│a│=4,│b│=3,且a>b,求a、b的值.答案 a=4,b=±3(四)总结反思,拓展升华1.本节课所学的有理数的大小比较你能掌握两种方法吗?(1)利用数轴,在数轴上把这些数表示出来,•然后根据“数轴上左边的数总比右边的数大”来比较;(2)利用比较法则:“正数大于零,负数小于零,两个负数,•绝对值大的反而小”来进行.(五)课堂跟踪反馈教材第13页练习(六)作业教材第14页第5、6题第七课时1.3.1 有理数的加法(一)教学目标1.知识与技能经历探索有理数的加法法则,理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.2.过程与方法①有理数加法法则的导出及运用过程中,训练学生独立分析问题的能力及口头表达能力.②渗透数形结合的思想,培养学生运用数形结合的方法解决问题的能力.3.情感、态度与价值观①通过观察、归纳、推断得到数学猜想,体验数学充满探索性和创造性.②运用知识解决问题的成功体验.教学重点难点重点:有理数的加法法则的理解和运用.难点:异号两数相加.教与学互动设计(一)创设情境,导入新课下午放学时,小新的车子坏了,他去修车,不能按时回家,怕妈妈担心,打电话告诉妈妈,可妈妈坚持要去接他,问他在什么地方修车,他说在我们学校门前的东西方向的路上,你先走20米,再走30米,就能看到我了.于是妈妈来到校园门口.(二)合作交流,解读探究讨论妈妈能找到他吗?讨论交流若规定向东为正,向西为负.(1)若两次都向东,很显然,一共向东走了50米.算式是:20+30=50即这位同学位于学校门口东方50米.这一运算可用数轴表示为-100(2)若两次都向西,则他现在位于原来位置的西50米处.算式是:(-20)+(-30)=-50这一算式在数轴上可表示成:-20(3)若第一次向东20米,第二次向西走30米.•则利用数轴可以看到这位同学位于原位置的西方10米处.算式是:+20+(-30)=-10(学生试画数轴以下同)(4)若第一次向西走20米,第二次向东走30米.•利用数轴可以看到这位同学位于原位置的什么地方?如何用算式表示?算式是:(-20)+(+30)=+10对以下两种情形,你能表示吗?(5)第一次向西走了20米,第二次向东走了20米,•那这位同学位于原位置的什么地方?这位同学回到了原位置.即:-(20)+(+20)=0.(6)如果第一次向西走了20米,第二次没有走,那如何呢?-20+0=-20思考:根据以上6个算式,你能总结出有理数相加的符号如何确定?•和的绝对值如何确定?互为相反数相加,一个有理数和0相加,和分别为多少?学生活动小组讨论、试看分类、归纳观察(1)式,两个加数都为正,和的符号也是正,•和的绝对值正好是两个加数绝对值的和.观察(2)式,两个加数都为负,和的符号也是负,•和的绝对值是两个加数绝对值的和.由(1)(2)归纳:同号两数相加,取相同的符号,并把绝对值相加.如:(-7)+(-8)=-15,16+17=+33,(-4)+(-9)=-13观察(3)式、(4)式可见:两个加数的符号不同,和的符号有的是“+”号,有的是“-”号,为了更清楚总结规律.可引导学生再举几个类似的例子,从而可总结得到:绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.观察(5)可知:互为相反的两个数和为0.观察(6)可知:一个数和零相加,仍然得这个数.总结有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,•并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.(三)应用迁移,巩固提高例1计算(1)(-4)+(-6)= -10(2)(+15)+(-17)= -2(3)(-39)+(-21)= -60(4)(-6)+│-10│+(-4)= 0(5)(-37)+22= -15(6)-3+(3)= 0例2某足球队在一场比赛中上半场负5球,下半场胜4球,•那么全场比赛该队净胜-1 球.例3绝对值小于2005的所有整数和为0 .例4一个数是11,另一个数比11的相反数大2,那么这两个数的和为(C)A.24 B.-24 C.2 D.-2例5下面结论正确的有(B)①两个有理数相加,和一定大于每一个加数.。
2018秋季学期最新部编人教版初中数学七年级上册学案:1.2.1 有理数-可打印
第一章 有理数1.2 有理数 1.2.1 有理数[教学目标]1. 正我有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2. 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3. 体验分类是数学上的常用的处理问题的方法. [教学重点与难点]重点:正确理解有理数的概念.难点:正确理解分类的标准和按照定的标准进行分类.一.知识回顾和理解通过两节课的学习,我们已经将数的范围扩大了,那么你能写出3个不同类的数吗?.(3名学生板书)[问题1]:我们将这三为同学所写的数做一下分类.(如果不全,可以补充).[问题2]:我们是否可以把上述数分为两类?如果可以,应分为哪两类?二.明确概念 探究分类正整数、0、负整数统称整数,正分数和负分数统称分数.整数和分数统称有理数[问题3]:上面的分类标准是什么?我们还可以按其它标准分类吗?⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数三.练一练 熟能生巧1.任意写出三个数,标出每个数的所属类型,同桌互相验证.2.把下列各数填入它所属于的集合的圈内:15,-1,-5,2,13-,0.1,-5.32,-80,123,2.333. 正整数集合 负整数集合 负分数集合[小结]到现在为止我们学过的数是有理数(圆周率π除),有理数可以按不同的标准进行分类,标准不同时,分类的结果也不同.[作业]必做题:教科书第8页练习.P14 T1、2 作业2.把下列给数填在相应的大括号里: -4,0.001,0,-1.7,15,23+. 正数集合{ …},负数集合{ …}, 正整数集合{ …},分数集合{ …} [备选题]1.下列各数,哪些是整数?哪些是分数?哪些是正数?哪些是负数?+7,-5,217,61-,79,0,0.67,321-,+5.12.0是整数吗?自然数一定是整数吗?0一定是正整数吗?整数一定是自然数吗?3.图中两个圆圈分别表示正整数集合和整数集合,请写并填入两个圆圈的重叠部分.你能说出这个重叠部分表示什么数的集合吗?正数集合 整数集合。
七年级数学上册(人教版)配套教学教案1.2.1有理数
全新修订版教学设计
(教案)
七年级数学上册
老师的必备资料
家长的帮教助手
学生的课堂再现
人教版(RJ)
1.2.1有理数
一、教学目标
(一)知识与技能:
1.能说出有理数的意义。
2.能把给出的有理数按要求分类,知道数0在有理数分类中的作用。
(二)过程与方法:
经历按照不同标准对有理数分类的过程,培养归纳概括的数学思想方法。
(三)情感态度价值观:
通过有理数的分类,得到对称美的享受。
二、学法引导
1.教学方法:启发引导,充分体现学生为主体,注重学生参与意识。
2.学生学法:识记→练习巩固。
三、重点、难点、疑点及解决办法
1.重点:有理数包括哪些数。
2.难点:有理数的分类。
3.疑点:明确有理数分类标准。
四、教具学具准备
投影仪、自制胶片。
五、教学设计思路
教师用投影出示练习题,学生讨论解决,教师引导学生对有理数进行分类,学生以多种形式完成训练题。
六、教学过程设计
(一)复习导入
(出示投影1)
1.把下列各数填入相应的大括号内:
+6,211,3.8,0,-4,-6.2,722,-3.8,3
2
正数集合。
七年级数学上册1.2.1有理数导学案新版新人教版2
1.2.1 有理数学习目标:1.我能记住有理数等概念,会对有理数按一定标准进行分类;2.我能积极讨论,参与群学,敢于展示,用于质疑、补充。
学习重点:有理数的概念及其分类学习难点:正确理解分类的标准和按照一定标准分类 一、自主学习 知识点一 相关概念(1)正整数和0统称 。
(2) 正整数、0、负整数统称 ,正分数和负分数统称 。
(3)整数和分数统称 。
(4)正数集合与负数集合所有的正数组成 集合,所有的负数组成 集合. 知识点二(1)小数中的有限小数和无限循环小数都可以转化为分数,故有限小数和无限循环小数也包含在 内;(2) 是一个无限不循环小数,它不能转化为分数,故它不属于 。
知识点三 有理数的分类1.按定义分2.按性质分二、合作探究合作探究一 在下表适当的空格里画上“√”号有理数整数分数正整数负分数自然数-9有理数有理数合作探究二 把下列各数分别填在相应集合中: 1,-0.20,513,325,-789,0,-23.13,0.618,π,-2004. 整数集合:{…};分数集合:{…}; 非正数集合:{…};非负数集合:{…};有理数集合:{…}.合作探究三 下列说法正确的是( ).A. 整数就是正整数和负整数B. 负整数的相反数就是非负整数C.有理数中不是负数就是正数D. 零是自然数,但不是正整数 三、当堂检测(1、2、3题是必做题,4、5题是选做题) 1.下列说法中不正确的是( )A .-3.14既是负数,分数,也是有理数B .0既不是正数,也不是负数,但是整数C .-2000既是负数,也是整数,但不是有理数D .O 是正数和负数的分界数 2.在数 -5,227-,-0.1010010001…,0,0.3,1.414,π中,有理数的个数是( ) A.2个 B .3个 C .4个 D .5个3.(1)把下列各数填入应的圈内:2,5,0,﹣1.5,π,﹣3,0.3;-2.35 O +5(2)说出这两个圈的重叠部分表示什么数?4.写出5个数(不能重复),同时满足下列三个条件;①其中三个数是非正数;②其中三个数是非负数;③五个数都是有理数. 这五个数是 .(只写出一组即可)5.观察下列各组数,请找出它们的规律,并在横线上填上相应的数字; _____;_____,,4,2,0,2)1(-_____;_____,54,43,32,21,1)2(--2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.如果方程3x y -=与下列方程中的某个方程组成的方程组的解是4,1.x y =⎧⎨=⎩那么这个方程可以是( ) A .3416x y -=B .()26x y y -=C .1254x y += D .1382x y += 2.如图,从边长为+a b 的正方形纸片中剪去一个边长为-a b 的正方形(a b >),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则该长方形的面积是( )A .4abB .2abC .2bD .2a3.点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4cm ,PB =5cm ,PC =2cm ,则点P 到直线m 的距离为( ) A .4cmB .2cm ;C .小于2cmD .不大于2cm4.给出下列各数:13,0,0.21,3.14,π,0.142 87,1π,其中是无理数的有( )A .1个B .2个C .3个D .4个5.初夏,把一个温度计放在一杯冰水中,后拿出放在室温中,下列可以近似表示所述过程中温度计的读数与时间的关系的图象是( )A .B .C.D.6.在平面直角坐标系中,若点P(a,b)在第四象限,则点Q(1+a,1﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限7.下列标志中,可以看作是轴对称图形的是()A.B.C.D.8.若m﹣x=2,n+y=3,则(m+n)﹣(x﹣y)=()A.﹣1 B.1 C.5 D.﹣59.如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.330°B.315°C.310°D.320°10.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°二、填空题题11.关于x的不等式111x<-的非负整数解为________.12.随机投掷一枚质地均匀的股子,朝上的点是3的概率是_____.13.如图,在宽为11m,长为31m的矩形地面上修建两条同样宽为1m的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为____________m 1.14.把长和宽分别为a 和b 的四个相同的小长方形拼成如图的图形,若图中每个小长方形的面积均为3,大正方形的面积为20,则()2a b -的值为_____.15.如图,在ABC △中,B =63,C ∠=51,AD 是BC 边上的高,AE 是BAC ∠的平分线,则DAE ∠的度数_____°.16.一个袋子里有6个黑球,x 个白球,它们除颜色外形状大小完全相同.随机从袋子中摸一个球是黑球的概率为13,则x =_____. 17.已知关于x 的不等式3x - m+1>0的最小整数解为2,则实数m 的取值范围是___________. 三、解答题18.在一个不透明的口袋中装有9个黄球,13个黑球,11个红球,它们除颜色外其余都相同. (1)求从袋中摸出一个球是红球的概率;(2)现从袋中取出若干个黄球,井放入相同数量的黑球,若要使搅拌均与后从袋中摸出一个球是黑球的概率不小于47,问至少要取出多少个黄球? 19.(6分)因式分解 (1)2a 2﹣8(2)x 2(x ﹣2)+4(2﹣x)20.(6分)某商场计划购进A 、B 两种商品,若购进A 种商品2件和B 种商品1件需45元;若购进A 种商品3件和B 种商品2件需70元.(1)A、B两种商品每件的进价分别是多少元?(2)若购进A、B两种商品共100件,总费用不超过1000元,最多能购进A种商品多少件?21.(6分)一个房间里有4条腿的椅子和3条腿的凳子共16个,如果椅子腿数和凳子腿数加起来共60条,那么有多少椅子和凳子?22.(8分)如图,已知DE∥BC,CD是∠ACB的平分线,∠ADE=70°,∠ACB=40°,求∠EDC和∠BDC 的度数.23.(8分)探索题:(x-1)((x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x+1)=x4-1,(x-1)(x4+x3+x2+x+1)=x5-1.(1)观察以上各式并猜想:①(x-1)(x6+x5+x4+x3+x2+x+1)=________________________;②(x-1)(x n+x n-1+x n-2+…+x3+x2+x+1)=________________________;(2)请利用上面的结论计算:①(-2)50+(-2)49+(-2)48+…+(-2)+1②若x1007+x1006+…+x3+x2+x+1=0,求x2016的值.24.(10分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,O、M也在格点上.(1)画出△ABC关于直线OM对称的△A1B1C1;(2)画出△ABC绕点O按顺时针方向旋转90°后所得的△A2B2C2;(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形吗?如果是轴对称图形,请画出对称轴.25.(10分)为鼓励创业,某市政府制定了小型企业的优惠政策,许多小型企业应运而生,某社区统计了该社区今年1~6月份新注册小型企业的数量,并将结果绘制成如下的条形统计图和扇形统计图:根据以上信息解答下列问题:(1)该社区1~6月新注册小型企业一共有__________家;(2)补全条形统计图。
人教版七年级数学上册 第一章:有理数_1.2.1:有理数 学案设计(含答案)
初中七年级数学上册第一章:有理数——1.2.1:有理数一:知识点讲解知识点一:有理数的概念有理数:整数和分数统称为有理数。
✧ 整数:正整数、0、负整数统称为整数。
例如:2、3、0、﹣5、﹣7;✧ 分数:正分数、负分数统称为分数。
例如:32、0.1、﹣0.5、25-、﹣150.25; 0和正整数都是自然数。
任何一个有理数都可以写成m n 的形式,而且只有当m 、n 同时满足: ✧ m 、n 是互质的整数;✧ 0≠m 、1≠m 时,mn 才表示一个分数。
分数都能化为小数,但小数不都能化为分数。
只有有限小数和无限循环小数才能化为分数,因此分数包括有限小数和无限循环小数,当不包括无限不循环小数。
例如:π、3.212 212 221…(每两个1之间2的个数逐次增加)不能化为分数。
例1:下列说法正确的是( D )A. 正有理数和负有理数统称为有理数B. 非负整数就是指0、正整数和所有分数C. 正整数和负整数统称为整数D. 整数和分数统称为有理数知识点二:有理数的分类按有理数的定义:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0按有理数的性质符号:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0例2:把下列各数分别填入相应的大括号里:﹣2.5、3.14、﹣2、﹢72、6.0 -、0.618、722、0、﹣0.101、π1) 正数集合: 3.14,﹢72,0.618,722,π ;2) 非负整数集合: ﹢72,0 ;3) 整数集合: ﹣2,﹢72,0 ;4) 负分数集合: ﹣2.5,6.0-,﹣0.101 。
二:知识点复习知识点一:有理数的概念 1. 在下列各数:65-、﹢1、6.7、﹣14、0、227、﹣5、25%中,属于整数的有( C) A. 2个 B. 3个 C. 4个 D. 5个2. 已知下列各数:﹣2、﹢3.5、0、32-、﹣0.7、11,其中负分数有( B )A. 1个B. 2个C. 3个D. 4个3. 在﹣1、32、0.618、0、﹣5%、2017、0.5中,整数有 3 个,分数有 4 个。
七年级数学上册 第1章 有理数 1.2 有理数 1.2.1 有理数教案 (新版)新人教版-(新版)新
第一章有理数1.2 有理数1.2.1 有理数【知识与技能】(1)掌握有理数的概念,会对有理数按一定的标准进行分类,培养分类能力;(2)了解分类的标准与集合的含义;(3)体会分类是数学上常用的处理问题的方法.【过程与方法】采用探究、归纳与练习相结合的形式引导学生联系实际,认识有理数.【情感态度与价值观】通过按不同的标准对有理数进行分类,学会从不同的侧面看待同一种事物,从多个角度分析问题.正确理解有理数的概念.正确理解有理数的分类标准,学会按照一定标准对有理数进行分类.多媒体课件在前面的学段,我们已经学习了很多不同类型的数,通过上节课的学习,又知道了数还包括负数,现在请同学们在草稿纸上任意写出3个数(同时请3位同学上台在黑板上写出).教师提问:观察黑板上的9个数,你能将它们分类吗?学生思考讨论分类的情况.学生可能只给出了很粗略的分类,如只分为“正数”“负数”和“0”三类,此时,教师应给予引导和鼓励.划分数的类型要从文字所表示的意义上去引导,这样易于学生理解.例如,对于数5,可这样问:5和5.1是相同的类型吗?5可以表示5个人,5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数”.通过教师的引导、鼓励和不断完善以及学生的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,0,负整数,正分数和负分数”一、思考探究,获取新知在学生讨论的基础上,引导学生自己进行有理数的分类举例.我们学过的数有:正整数,如1,2,3,…;0;负整数,如-1,-2,-3,…;正分数,如13,227,4.5即412,…;负分数,如-12,-227,-0.3即-310,-35,….教师给出整数、分数和有理数的概念:正整数、0和负整数统称为整数;正分数、负分数统称为分数.整数和分数统称为有理数.教师:“统称”是指合起来总的名称.教师提问:你能对以上各种数做出一X分类表吗(要求不重复不遗漏)?让学生根据自己做出的分类表将数进行分类,可以根据不同的需要,采用不同的分类标准.提示:根据有理数的概念划分:根据有理数的性质划分:通过分类让学生感受分类的方法和原则:统一标准,不重不漏.说明:把一些数放在一起,就组成了一类数的集合,简称数集.所有的有理数组成的数集叫作有理数集.类似地,所有的整数组成的数集叫作整数集,所有的正数组成的数集叫作正数集,所有的负数组成的数集叫作负数集,等等.教师出示投影,提出问题,师生共同解答.回答下列问题:(1)0是不是整数?0是不是有理数?(2)-5是不是整数?-5是不是有理数?(3)-0.3是不是负分数?-0.3是不是有理数?【解】(1)0是整数,也是有理数.(2)-5是整数,也是有理数.(3)-0.3是负分数,也是有理数.二、典例精析,掌握新知例把下列各数填入相应的数集(分正数、负数、整数、分数、有理数)内:-18,227,3.141 6,0,2 016,-35,-0.142 857,95%.【解】正数:{227,3.141 6,2 016,95%,…}.负数:{-18,-35,-0.142 857,…}.整数:{-18,0,2 016,…}.分数:{227,3.141 6,-35,-0.142 857,95%,…}.有理数:{-18,227,3.141 6,0,2 016,-35,-0.142 857,95%,…}.到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同.教材P6练习第1,2题。
人教版七年级数学上册1.2.1《有理数》教学设计
人教版义务教育课程教科书七年级上册1.2.1有理数一、教材分析1、地位作用:本课教材所处位置,是小学所学算术范围的第一次扩充,是算术到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。
2、教学目标及目标分析:【教学目标】:理解有理数的意义、把给出的有理数按要求分类,说出数0在有理数分类中的作用。
【目标分析】:通过有理数的分类,树立对数分类讨论的观点并发展正确地进行分类的能力。
3、教学重、难点教学重点:正确理解有理数的概念.。
教学难点:正确理解分类的标准和按照定的标准进行分类。
突破难点的方法:以设置问题、创设情境为主线,通过师生互相交流和协商的方式展开教学,而在拓展延伸部分以学生的主动探究为主。
二、教学准备:多媒体课件三、教学过程问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?引出课题。
思考,回答并在草稿纸上写出整数和分数来分,或按正数和负数来分,可以先不去纠正遗漏0的问题,在后面分类是在解决.二、自主探究合作交流建构新知活动1:1.在以上各数中,哪些是在小学里学过的数?它们可以分为哪几类?2.在小学里学过的数中,有没有哪类数在上面没有出现?请举例说明.3.用计算器计算下列各分数的值,说明所有分数都可以化作什么数?4.由前面的结论,小学里学的数可以分为哪几类?5.引入负数后,整数除了小学学的整数外,还包含其它的整数吗?6.分数除了小学学的分数外,还包含其它的分数吗?正整数:+10,18,29,+75,110,305,1,2,3,…零: 0负整数:-52,-67, -1,-2,…正分数:1.1,12.91,12.96,182.5,负分数:-7.5,活动2:探究有理数的分类(一)由刚才的演示可知:1.有理数可分为哪两类数?2.整数可分为哪几类?3.分数可分为哪几类?观察思考讨论学生思考后表述自己的见解。
通过举例,得出有理数,。
2018年秋七年级数学上册第一章有理数1.2有理数1.2.2数轴学案无答案新版新人教版2018072
第一章有理数1.2 有理数1.2.2 数轴[教学目标]1. 掌握数轴的概念,理解数轴上的点和有理数的对应关系;2. 会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;3. 感受在特定的条件下数与形是可以互相转化的,体验生活中的数学.[教学重点与难点]重点:数轴的概念和用数轴上的点表示有理数.难点:同上.一.创设情境引入新知观察屏幕上的温度计,读出温度..(3个温度分别是零上,零,零下)[问题1]:在一条东西向的马路上,有一个汽车站,汽车站东3m和7. 问题1先给出情境,学生5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(分组讨论,交流合作,动手操作)二.合作交流探究新知观察,思考,研究,表示.增通过刚才的操作,我们总结一下,用一条直线表示有理数,这条直线强学生的合作意识.必须满足什么条件?(原点,单位长度,正方向,说出含义就可以)[小游戏]:在一条直线上的同学站起来,我们规定原点,正方向,单位长度,按老师发的数字口令回答“到”游戏前可先不加任何条件,游戏中发现问题,进行弥补. 游戏的目的是使学生明白总结游戏,明确用直线表示有理数的要求, 提出数轴的概念和要求(教科书第11页). 数与点的对应关系,并知道三.动手动脑学用新知1.你能举出生活中用直线表示数的实际例子吗?(温度计,测量尺,电视音量,量杯容量标志,血压计等).2.画一个数轴,观察原点左侧是什么数,原点右侧是什么数?每个数到原点的距离是多少?四.反复演练掌握新知教科书12练习.画出数轴并表示下列有理数:921.5,-2.2,-2.5,2,,0.32.写出数轴上点A,B,C,D,E所表示的数:明确数轴的正确画法和要求.练习中注意纠正学生数轴画法[小结]1. 数轴需要满足什么样的条件;2. 数轴的作用是什么?总结可以由教师提出问题,学[作业]必做题:教科书第15页习题5、6、71[备选题]1.在数轴上,表示数-3,2.6, 点中,在原点左边的点有个. 3,0,514 ,322 ,-1的3 2题也可以启发学生反过来想,即点2.在数轴上点A表示-4,如果把原点O向负方向移动1.5 A向正方向移动1.5个单位.个单位,那么在新数轴上点A表示的数是( )1 1A.5 B.-4 C. 2D.2 2 2123题有一定的难度,两次变动可转化3.(1)(请先在头脑中想象点的移动,尝试解决下面问题,然后再画图解答)一个点在数轴上表示的数是-5,这个点先向左边移动3个单位,然后再向右边移动6个单位,这时它表示的数是多少呢?如果按上面的移动规律,最后得到的点是2,则开始时它表示什么数?(2)你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?2。
七年级数学上册(人教版)学案:1.2.1 有理数 (课时2)
课题: §1.2.1 有理数(课时2)学习目标:1.了解有理数的意义;2.能把有理数按要求分类;3.体会数的分类、归纳思想方法.学习重点:有理数的概念及其分类.学习难点:从直观认识到理性认识,从而建立有理数概念.【学前准备】认真阅读课本P651.引入一组数:110,12.9,0,-52,1.1,-122.5,+75,18,-7.5,6问:(1)上述所有的数中,那些在小学里学过?这些数可以分成哪两类?(2)引入负数后,整数除了小学学的整数外,还包含其它的整数吗?分数除了小学学的分数外,还包含其它的分数吗?你能否从整数、分数、符号、特征分析的方法对上述数进行分类.正整数:…;零:0 ;负整数:…;正分数:…;负分数:…;2.通过预习,我们知道:整数包括(,0,),0和又称为自然数.分数包括(,)和统称为有理数.有理数的两种分类方法:有理数或有理数03.思考:(1)上述两种分类各有什么特点?任何一种分类都包含哪五类数?(2)有理数的分类应做到不重复且不遗漏.【课堂探究】例 把下列各数填在相应的大括号内:-2.5,31,-18,52-,-2,0,+0.07,439,39, 整数集合:{ … }; 分数集合:{ … } 负整数集合:{ … }; 正分数集合:{ … } 负有理数集合:{ … }有理数集合:{ … } 非负数集合:{ … }【随堂练习】1. 把下列各数填在相应的大括号内:1,-0.10,85,-789,325,0,-20,10.10,1000.1 整数集:{ …};分数集:{ …}负数集:{ …}有理数集:{ …}2.下列说法中正确的是( )A .整数包括正整数、负整数B .0是整数,也是自然数C .分数包括正分数、负分数和0D .有理数中,不是负数就是正数【随堂检测】1.2 是( )A .正有理数B .负分数C . 正整数D .负整数2.请写出:三个正整数 ;三个负分数 ; 既不是正数,也不是负数的数是 .3.在0,1,-2,-3.5这四个数中,是负整数的是( )A . 0B . 1C .-2D .-3.54.既是分数又是正数的是( )A .+2B .-314 C. 0 D .2.35.把下列各数分别填入相应的大括号内:-7,3.5,-3.14,0,1713, 213-,5,-2,10 自然数集合{ …};整数集合{ …}; 正分数集合{ …};非正数集合{ …}; 有理数集合{ …};【归纳总结】1. 和 统称为有理数.2.用两种方法把有理数分类.【课后作业】1. 和 统称为有理数;和 统称为非负数; 和 统称为非正数.2. 把下列各数分别填入如图所示的集合的圈内:-1, 8, -0.03, 137, 0, -47, 9%, -611, 102, 自然数集合: ,非正数集合: ,整数集合: ,正数集合:3.把下列各数分别填入相应的大括号内:-7.8, 31-, 0, 3.75, 3.14, -0.03, 2, -4, 53 有理数集: 整数集: 分数集: 正整数集: 负分数集: 非负数集: 自然数集:4.21世纪第一年一些国家的服务出口额比上年的增长率如下: 美国德国 英国 中国 日本 意大利 -3.4% -0.9% -5.3% 2.8% -3.4% 7.0%这一年这六国中哪些国家的服务出口额增长了,哪些国家的服务出口额减少了,哪国增长率最高?哪国增长率最低?※5.智力擂台:1011001431321211⨯++⨯+⨯+⨯ 提示:21211=-613121=-……【教学反思】。
秋七年级数学上册 1.2.1 有理数导学案 (新版)新人教版-(新版)新人教版初中七年级上册数学学案
1 /2 1.2 有理数 有理数 1.理解有理数的概念. 2.会判断一个数是整数还是分数,是正数还是负数.3.懂得有理数的两种分类方法.自学指导看书学习第7页后,请你认真思考,你认为整数包括哪些?分数包括哪些?有理数按数的形式可以怎样来分类?你认为正有理数包括哪些?负有理数包括哪些?有理数按性质(符号)可以怎样来分类?知识探究1.正整数、0和负整数统称为整数.正分数和负分数统称为分数.2.整数和分数统称为有理数.自学反馈1.把下列各数写在相应的集合里.-5,10,-4.5,0,+532,-2.15,0.01,+66,-53,15%,722,2009,-16 正整数集合:{10,+66,2009,…}负整数集合:{-5,-16,…}负分数集合:{-4.5,-2.15,-53,…} 正分数集合:{+532,0.01,15%,722,…} 整数集合:{-5,10,0,+66,2009,-16,…}负数集合:{-5,-4.5,-2.15,-53,-16,…} 正数集合:{10,+532,0.01,+66,15%,722,2009,…} 有理数集合:{-5,10,-4.5,0,+532,-2.15,0.01,+66,-53,15%,722,2009,-16,…} 2.有理数的分类(分两类).有理数的分类标准要统一.活动1:小组讨论1.在数-5,32,0,-0.24,7,4076,-95,-2中,正数有32,7,4076,负数有-5,-0.24,-95,-2,整数有-5,0,7,4076,-2,分数有32,-0.24,-95,有理数有-5,32,0,-0.24,7,4076,-95,-2. 2.下列说法不正确的是(A )3.有理数:-7,3.5,-21,211,0,π,1713中正分数有(C )2 / 2 活动2:活学活用 1.下列各数:-8,-311,2.03,0.5,76,-44,-0.99,其中整数是-8,-44,负分数有-311. 2.下列说法正确的是(D )C.有理数是指整数、分数、正有理数、负有理数和零这五类数3.有理数中,是整数而不是负数的是非负整数,是负有理数而不是分数的是负整数.通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是正整数、零、负整数、正分数、负分数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重点难点:正确理解有理数的概念和分类.
一、情境导入
你能写出3个不同类的数吗? ____________________.
二、自主学习
1.观察黑板上的数,我们将所写的数做一下分类;
该分为几类,又该怎样分呢?
分为类,分别是:
2.阅读教材6页,认识数的分类:
统称为整数;
0一定是正整数吗?;整数一定是自然数吗?.
五、当堂检测
1.有理数中,最小的正整数是,最大的负整数是 .
2.下列说法错误的是()
A、有理数是指整数、分数、正有理数、零、负有理数这五类数
B、一个有理不是整数就是分数C、正有理数分为正整数和正分数
D、负整数、负分数统称为负有理数
3.把下列各数填到相应的 大括号内:
统称为分数; 统称为理数.
三、合作探究
1.下列各数,哪些是整数?哪些是分数?哪些是正数?哪些是负数?
+7, -5, , , 79 , 0, 0.67, , +5.1
2.你能把有理数分成几类?(温馨提示:可按定义分;还可按正负分)
备注(教师个性备课;学生方法总结,易混点、易错点整理)
课后反思:
自主学、合作学、展示学、点拨学、反馈(检测)学 自主学、合作学、展示学、点拨学、反馈(检测)学
1.2.1有理数
主备人
辅备人
授课人
使用时间
四、展示交流
1.所有的正数组成正数集合,所有的负数组成负数集合.把下列各数填入它所属于的集合的圈内:
15,- ,-5, , ,0.1,-5.32, -80, 123, 2.333.
正整数集合负 整数集合
正分数集合 负分数集合
2. 0是整数吗?;自然数一定是整数吗?;
-4,+ 5,-2.6, ,0,2.8, , , ,2005 .
有理数集合{ …}
整数集合{…}
分数集合{…}
非负整数集合{ …}
负有理数集合{…}
非负有理数集合{ …}
负分数集合{ …
分课时
总课时
姓名
小组组号
课题:1.2.1有理数课型:新授课
学习目标:
1.掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;