第四章_图像增强_频域变换
图像增强的基本原理
图像增强的基本原理图像增强是一种用于改善图像视觉质量或提取目标特征的技术。
它通过改变图像的亮度、对比度、颜色、清晰度等属性来增强图像的可视性和可识别性。
图像增强的基本原理可以归纳为以下几点:1. 空域增强:采用空域操作,即对图像的每个像素进行操作。
常见的空域增强方法有直方图均衡化、灰度拉伸、滤波等。
直方图均衡化通过重新分布图像中像素的亮度来增加图像的对比度,灰度拉伸则通过线性转换将图像的亮度范围拉伸到整个灰度级范围内。
滤波则通过应用低通、高通、中通等滤波器来增强图像的细节和轮廓。
2. 频域增强:采用频域操作,即将图像转换到频域进行处理。
常见的频域增强方法有傅里叶变换、小波变换等。
傅里叶变换可以将图像从空域转换到频域,通过对频谱进行滤波操作来增强图像的细节和边缘。
小波变换则可以将图像分解为不同频率的子带,可以更加灵活地选择性地增强特定频率的信息。
3. 增强算法:通过应用特定的增强算法来增强图像的视觉效果。
常用的增强算法有Retinex算法、CLAHE算法等。
Retinex算法通过模拟人眼对光源的自适应调整能力来增强图像的亮度和对比度,CLAHE算法则通过分块对比度受限的直方图均衡化来增强图像的细节和纹理。
4. 机器学习方法:利用机器学习算法对图像进行增强。
通过训练模型,学习图像的特征和上下文信息,然后根据学习到的模型对图像进行增强处理。
常见的机器学习方法包括卷积神经网络、支持向量机等。
综上所述,图像增强的基本原理包括空域增强、频域增强、增强算法和机器学习方法等。
这些原理可以单独或结合使用,根据图像的特点和需求,选择合适的方法来对图像进行增强处理,以获得更好的图像视觉质量和目标特征提取效果。
第四章 图像增强和锐化
直方图均衡化
• • 当一幅图像的像素占据了所有灰度级并且呈均匀分布时,则该图像具有比较 高的对比度和多变的灰度色调。 直方图均衡化是将原图像通过某种变换,得到一幅灰度直方图为均匀分布的 新图像的方法。
直方图均衡化
• 先讨论连续变化图像的均衡化问题: • 设r和s分别表示归一化了的原图像灰度和经直方图修正后的图像灰度。 0 ≤ r,s ≤ 1 在[0,1]区间内的任一个r值,都可产生一个s值,且 s=T(r) T(r)作为变换函数,满足下列条件: 1.在0 ≤ r ≤ 1内为单调递增函数,保证灰度级从黑到白的次序不变; 2.在0 ≤r ≤1内,有0 ≤T(r) ≤1,确保映射后的像素灰度在允许的范围内。 反变换关系r=T-1(s)对s同样满足上述两个条件。
等于1.8
• 获取变换函数的其他方法 交互样点插值 用过点的三次样条插值曲线,获得变换函数
灰度直方图
• 灰度直方图基本概念(回顾) • 直方图修正法——直方图均衡化
灰度直方图基本概念
灰度直方图反映了数字图像中每一灰度级与其出现频率间的关系, 它能描述该图像的概貌。通过修改直方图的方法增强图像是一种实用 而有效的处理技术。 基本概念 图像的灰度直方图是一种表示数字图像中各级灰度值及其出现频数 关系的函数。描述图像灰度直方图的二维坐标,其横坐标表示像素的 灰度级别,纵坐标表示该灰度出现的频数(像素的个数)。 h(rk)=nk, k=0,1,2,…,L-1 rk表示第k级灰度值, h(rk)和nk表示图像中灰度值为rk的像素个数。
其中,T[ ]表示增强图像和原图像的灰度变换关系
灰度变换增强
• 灰度的线性变换:设原图像灰度值f(m,n) ∈ [a,b],线性变 换后的取值g(m,n) ∈ [c,d],则线性变换关系为
变换域图像增强PPT课件
Sinusoidal
50
Rectangle
51
二维离散傅立叶变换的若干性质 离散傅立叶变换建立了函数在空间域与频率 域之间的转换关系。在数字图像处理中,经 常要利用这种转换关系及其转换规律,下面 将介绍离散傅立叶变换的若干重要性质
52
周期性和共轭对称性
若离散的傅立叶变换和它的反变换周期为 N,则有
旋转后图像及 其傅里叶变换
60
线性叠加
k1 f(x,y) + k2 g(x,y) <==> k1 F(u,v) + k2 G(u,v)
a)Image A; b)Image B; c)0.25 * A + 0.75 * B
a)spectrum A; b)spectrum B; c)0.25 * A + 0.75 * B
35
幅度谱和相位谱
从幅度谱中我们 可以看出明亮线 反映出原始图像 的灰度级变化, 这正是图像的轮 廓边
36
幅度谱和相位谱
从幅度谱中我们 可以看出明亮线 和原始图像中对 应的轮廓线是垂 直的。如果原始 图像中有圆形区 域那么幅度谱中 也呈圆形分布
37
幅度谱和相位谱
图像中的颗粒状对 应的幅度谱呈环状, 但即使只有一颗颗 粒,其幅度谱的模 式还是这样。
38
幅度谱和相位谱
这些图像没有特定 的结构,左上角到 右下角有一条斜线, 它可能是由帽子和 头发之间的边线产 生的 两个图像都存在一 些小边界
39
离散函数的傅立叶变换 假定取间隔△x单位的抽样方法将一个连续 函数f(x)离散化为一个序列{f(x0), f(x0+△x),…,f[x0+(N-1)△x]}
P: ( x,y,z)
数字图像处理_胡学龙等_第04章_图像增强
直方图均衡化
通过对原图像进行某种变换,使得图像的直 方图变为均匀分布的直方图 。
灰度级连续的灰度图像:当变换函数是原图 像直方图累积分布函数时,能达到直方图均 衡化的目的。 对于离散的图像,用频率来代替概率 。 【例4.2】假定有一幅总像素为n=64×64的图 像,灰度级数为8,各灰度级分布列于表4.1 中。试对其进行直方图均衡化。
• 4.3.2増晰原理 • 同态増晰采用合适的滤波特性函数,可以即使图 像灰度动态范围压缩,又能让感兴趣的物体图像 灰度扩展,从而是图像清晰。 • 图像是物体对照明光的反射,自然景物图像是由 两个分量乘积组成的,即照明函数和反射函数的 乘积。 • 图像的灰度由照明分量和反射分量合成,反射分 量反映了图像的实际内容(细节,纹理,边缘 等),随图像细节不同在空间上做快速变化,其 频谱落在空间高频区域。 • 而照明分量在空间上均具有缓慢变化的性质,其 频谱落在空间低频区域。 • 因此可通过傅里叶变换将两者分开,进行同态滤 波。
a’=0,b’=255。
实现的程序:
• • • • • A=imread('pout.tif'); %读入图像 imshow(A); %显示图像 figure,imhist(A); %显示图像的直方图 J1=imadjust(A,[0.3 0.7],[]); %函数将图像在0.3*255~0.7*255灰度之间 的值通过线性变换映射到0~255之间 • figure,imshow(J1); %输出图像效果图 • figure,imhist(J1) %输出图像的直方图
• 基本思想:按照高通滤波器设计,压缩低 频分量,提升高频分量。 • 照明函数频率变化缓慢,幅度变化大,数 字化占用位数多,所以要压缩; • 反射函数频率变化快,灰度变化很小,层 次不清,细节不明,应该扩展。
第四章 遥感图像处理—数字图像增强
同一景物不同波段图像之间的运算—识别地物
图像的差值运算有利于目标与背景反差较小 的信息提取。 如在红光波段,植被和水体难以区 分,在红外波段,植被和土壤难以区分,通过相 减,可以有效的区分出三种地物
2、比值运算 两幅同样行、列数的图像,对应像元的亮度值相除 (除数不为0)就是比值运算,即:
真彩色合成 假彩色合成
彩色合成的原理图
①真彩色合成
红光波段赋成红 绿光波段赋成绿 蓝光波段赋成蓝
真彩色合成 红光波段赋成红
真彩色合成 红光波段赋成红 绿光波段赋成绿
真彩色合成 红光波段赋成红 绿光波段赋成绿 蓝光波段赋成蓝
②假彩色合成 假彩色合成 近红外波段赋成红 红光波段赋成绿 绿光波段赋成蓝
1 图像卷积运算
数字图像的局部
模板
z1 z2 z3
z4 z5 z6 z7 z8 z9
w1 w2 w3 w4 w5 w6 w7 w8 w9
1/9
1/9 1/9
1/9 1/9 1/9 1/9 1/9 1/9
Replace with R
= w1z1 + w2z2 + ….. +w9z9
模板按像元依次向右移动,而后换行,直到整幅图 像全部处理完为止
对于亮点噪音,用中值滤波好
带有椒盐噪声的ikonos图像
中值滤波后的图像
均值平滑后的图像
3
图像锐化
(1)图像锐化的目的是突出图像中景物的边缘、线状目 标或某些亮度变化率大的部分。 (2)边缘或轮廓通常位于灰度突变或不连续的地方,具
有一阶微分最大值和二阶微分为0的特点;
锐化的方法很多,在此只介绍常用的几种:
数字图像处理_第四章_频域图像增强
2
u 0.1.2. M 1 v 0.1.2. N 1 f ( x, y ) F (u , v)e j 2 (ux / M vy / N )
u 0 v 0 M 1 N 1
可以证明:
x y f ( x , y )( 1) F (u
4.2 傅立叶变换和频率域的介绍
数字图像处理
Chapter 4 Image Enhancement in the Frequency Domain
4.2.3 频率域滤波 频率域滤波基本步骤: 1、(1) x y 原图像 2、F (u, v) 3、 H (u, v) F (u, v) 4、反DEF 5、实部 x y 6、用 (1) (5) 结果。 1 被滤波图像 G(u, v)
数字图像处理
Chapter 4 Image Enhancement in the Frequency Domain
4.3 平滑的频率域滤波器
4.3.1 理想低通滤波器
c ~ e均有“振铃”特征 为什么会有“振铃”现象呢? 其根本原因是空域滤波器有负 值,具体具体解释右图(b)
右图用5个脉冲图像来说明“振 铃”的产生,可看作5个冲激, 只是简单地复制 h( x, y ) → “振铃”。
F (u ) F (u ) e j (u ) F (u ) R (u ) I (u )
2 2
1 2
(u ) arct g
2(u ) R(u )
数字图像处理
Chapter 4 Image Enhancement in the Frequency Domain
1 M x 1 v N y u
4.2 傅立叶变换和频率域的介绍
第四章 图像增强和锐化讲解
灰度变换增强
d
c
0
a
b
k>0
c d
0
a
b
k<0
• 根据[a,b],[c,d]的取值有以下几种情况
1. 扩展动态范围:若[a,b] ⊂ [c,d],即k>1,则会使图像灰度 取值的动态范围变宽,这样可以改善曝光不足的缺陷, 充分利用显示设备的动态范围。
2. 改变取值区间:过k=1,则变换后的灰度动态范围不变, 但取值区间会随a和c的大小而平移。
3. 缩小动态范围:若[c,d]⊂ [a,b] ,即0<k<1,变换后图像的 动态范围变窄。
4. 反转或取反:若k<0,对于b>a,d<c,则变换后的图像会反 转,即亮的变暗,暗的变亮。K=-1时为取反。
灰度分段线性变换
没有对数变换直接显示
a=zeros(256,256); a(128-30:128+30,128-30:128+30)=1; b=fft2(a); c=fftshift(b); c=abs(c); imshow(c,[]) figure,imshow(然后显示
2. 指数变换:
基本概念 图像的灰度直方图是一种表示数字图像中各级灰度值及其出现频数 关系的函数。描述图像灰度直方图的二维坐标,其横坐标表示像素的 灰度级别,纵坐标表示该灰度出现的频数(像素的个数)。
h(rk)=nk, k=0,1,2,…,L-1 rk表示第k级灰度值, h(rk)和nk表示图像中灰度值为rk的像素个数。
图像灰度直方图
图像及其对应的灰度直方图
由上页三个图像可以定性地看出直方图和图像清晰 度的关系:当直方图充满整个灰度空间,并呈均匀分布 时,图像最清晰。因此我们可以通过修改直方图的方法 使图像变清晰。
天津理工大学《数字图像处理》数字图像处理复习题 2
第一章引言一.填空题1. 数字图像是用一个数字阵列来表示的图像。
数字阵列中的每个数字,表示数字图像的一个最小单位,称为像素2. 数字图像处理可以理解为两个方面的操作:一是从图像到图像的处理,如图像增强等;二是从图像到非图像的一种表示,如图像测量等。
5. 数字图像处理包含很多方面的研究内容。
其中,图像重建的目的是根据二维平面图像数据构造出三维物体的图像。
二.简答题1. 数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。
①图像数字化:将一幅图像以数字的形式表示。
主要包括采样和量化两个过程。
②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。
③图像的几何变换:改变图像的大小或形状。
④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。
如傅利叶变换等。
⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
2. 什么是图像识别与理解?图像识别与理解是指通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
比如要从一幅照片上确定是否包含某个犯罪分子的人脸信息,就需要先将照片上的人脸检测出来,进而将检测出来的人脸区域进行分析,确定其是否是该犯罪分子。
5. 简述图像几何变换与图像变换的区别。
①图像的几何变换:改变图像的大小或形状。
比如图像的平移、旋转、放大、缩小等,这些方法在图像配准中使用较多。
②图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。
比如傅里叶变换、小波变换等。
第二章图像的基本概念一.填空题1. 量化可以分为均匀量化和非均匀量化两大类。
2. 采样频率是指一秒钟内的采样次数。
3. 图像因其表现方式的不同,可以分为连续图像和离散图像两大类。
3.5. 对应于不同的场景内容,一般数字图像可以分为二值图像、灰度图像和彩色图像三类。
数字图像处理之频率域图像增强
图像增强技术广泛应用于医学影 像、遥感、安全监控、机器视觉
等领域。
频率域图像增强的概念
01
频率域图像增强是指在频率域 对图像进行操作,通过改变图 像的频率成分来改善图像的质 量。
02
频率域增强方法通常涉及将图 像从空间域转换到频率域,对 频率域中的成分进行操作,然 后再将结果转换回空间域。
直方图规定化
直方图规定化是另一种频率域图像增强 方法,其基本思想是根据特定的需求或 目标,重新定义图像的灰度级分布,以
达到增强图像的目的。
与直方图均衡化不同,直方图规定化可 以根据具体的应用场景和需求,定制不 同的灰度级分布,从而更好地满足特定
的增强需求。
直方图规定化的实现通常需要先对原始 图像进行直方图统计,然后根据规定的 灰度级分布进行像素灰度值的映射和调
灵活性
频率域增强允许用户针对特定频率成 分进行调整,从而实现对图像的精细 控制。例如,可以增强高频细节或降 低噪声。
总结与展望 数字图像处理之频率域图像增强的优缺点
频谱混叠
在频率域增强过程中,如果不采取适 当的措施,可能会导致频谱混叠现象, 影响图像质量。
计算复杂度
虽然频率域增强可以利用FFT加速, 但对于某些复杂的图像处理任务,其 计算复杂度仍然较高。
傅立叶变换具有线性、平移不变性和周期性等性质,这些性质在图像增强中具有重 要应用。
傅立叶变换的性质
线性性质
傅立叶变换具有线性性质,即两 个函数的和或差经过傅立叶变换 后,等于它们各自经过傅立叶变
换后的结果的和或差。
平移不变性
傅立叶变换具有平移不变性,即 一个函数沿x轴平移a个单位后, 其傅立叶变换的结果也相应地沿
THANKS
数字图像处理第四章
(7) 计算输出图像的直方图
35
例 例:设图象有64*64=4096个象素,有8个灰 度级,灰度分布如表所示。进行直方图均衡化。
rk r0=0 r1=1/7 r2=2/7 r3=3/7 r4=4/7 r5=5/7 r6=6/7 r7=1
nk 790 1023 850 656 329 245 122 81
37
(2) 计算s k
rk r0=0 r1=1/7 r2=2/7 r3=3/7 r4=4/7 r5=5/7 r6=6/7 r7=1
nk 790 1023 850 656 329 245 122 81
P (r k ) 0.19 0.25 0.21 0.16 0.08 0.06 0.03 0.02
S k计算 0.19 0.44 0.65 0.81 0.89 0.95 0.98 1.00
图像噪声的分类
加性噪声:噪声和图像信号的强度不相关,如图像在 传输过程中引入的信道噪声,摄像机扫描噪声等。
g=f+n
乘性噪声:噪声和图像信号相关,往往随图像信号的 变化而变化,如飞点扫描图像中的噪声、电视扫描光
栅、颗粒噪声等。 g=f+ fn
量化噪声:数字图像的主要噪声源,其大小显示出数 字图像与原始图像的差异。对这类噪声减小的最好办 法是采用按灰度级概率密度函数选择量化级的最优量 化措施。 椒盐噪声:即黑图像的白点、白图像上的黑点,往往 由图像切割引起。
设备元器件及材料本身引起的噪声。如磁带、 磁盘表面缺陷所产生的噪声;
系统内部设备电路所引起的噪声,包括电源系 统引入的交流噪声,偏转系统和箝位电路引起的噪 声等;
电器部件机械运动产生的噪声。如数字化设备 的各种接头因抖动引起的电流变化所产生的噪声, 磁头、磁带抖动引起的抖动噪声等;
精品文档-数字图像处理系统导论(郭宝龙)-第4章
2 f (x, y) f (x 1, y) f (x-1, y) f (x, y 1) f (x, y-1)-4 f (x, y)
下面以一幅3×2像素的简单图片(见图4-5)为例,来说明 灰度直方图均衡化的算法。
图 4-4 直方图变化
图 4-5 原图像灰度值分布
求出每个色阶的百分比之后,再乘255,就可以求出与其 对应的灰度值来。表4-1所示为对应灰度值转换。
表4-1 对应灰度值转换
根据每个色阶的百分比的对应关系组成一个灰度映射表, 然后根据映射表来修改原来图像每个像素的灰度值。对于图45,用128替换50,用212替换100,用255替换200。这样,灰 度直方图的均衡化就完成了,如图4-6所示。
2. 图像中的均匀与不均匀反映了频率高低不同,抑制低频 (增强高频)对应于锐化滤波器,而抑制高频(增强低频)对应 于平滑滤波器。以下讨论考虑对F(u,v)的实部、虚部影响完 全相同的滤波转移函数——零相移滤波器。 1) 理想低通滤波器 理想低通滤波器的传递函数为
1 H (u, v) 0
D(u, v) D0 D(u, v) D0
图 4-10 原始图像及其傅里叶频谱图
1. 假定原图像为f(x,y),经傅里叶变换为F(u,v)。频率 域增强就是选择合适的滤波器H(u,v)对F(u,v)的频谱成分 进行处理G(u,v)=H(u,v)F(u,v),然后经逆傅里叶变换得 到增强的图像g(x,y)=F-1({G(u,v)} 假设f(x,y)和h(x,y)的大小分别为A×B和C×D。如果 直接进行傅里叶变换和乘积,会产生折叠误差(卷绕)。为解决 这一问题,需通过对f和h补零,构造两个大小均为P×Q的函 数,使其满足
第4章-图像增强(频率域)
x
f ( x )曲线图
12.81
2.468
F (u)
u
频谱图
……
F(0)
F(0)+ F(1)
F(0)+ …+ F(14) F(0)+ …+ F(15)
结论:
① 空间域函数 f (x, y)可以通过傅立叶变换,转 换成频率域函数F(u)。
x
一般地,低频成分描述曲线的大致轮廓,高
例如: 一幅 512×512 的图像,不用 FFT 计算,需要计算: 2×(512×512)2 = 137438953472 复数乘法和加法, 按0.1微秒完成一次运算,耗时约3.82小时; 采用 FFT 计算,需要计算: (512×512) log2(237) = 9699328 次复数乘法和加法, 按0.1微秒完成一次运算,耗时约0.97秒;
在频域中,图像用如下二维函数描述:
F( u , v ) , 0≤u<M, 0≤v<N
其中,u , v 分别为水平变化频率和垂直变化频率;
F ( u , v )为图像中含有( u , v ) 频率的幅度;
M、 N 分别为最高水平变化频率和最高垂直变化频率,在数
量上等于图像的宽、高。
在频率域描述图像,从数量的角度揭示了图像内容沿空间位置的变化 情况,是分析和处理图像的有力工具。
4.1 图像变换概述 4.2 傅立叶变换 4.3 小波变换简介
4.1 图像变换概述
4.1.1 基本概念 一幅静止图像,可以在空间域描述,也可以在频率域描述。
空间域描述是指:像素的值是空间坐标的函数。 在直角坐标系中,一幅图像可表示为:
f ( x , y ) , 0≤x<M, 0≤y<N
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带阻滤波器透视图
22
同态滤波
图像f(x,y),照明分量 i(x,y),反射分量r(x,y)
f ( x, y ) i ( x, y) r ( x, y )
两边取自然对数
ln f ( x, y ) ln i ( x, y ) ln r ( x, y )
傅里叶变换
F (u, v) I (u, v) R(u, v)
低通滤波
2、n阶巴特沃斯低通滤波器
1 H (u, v) 1 [ D(u, v) / D0 ]2 n
巴特沃斯低通滤波器剖面图和透视图
11
巴特沃斯低通滤波器
滤波效果
图像+盐椒噪声
截断频率20结果
12
低通滤波器
除虚假轮廓比较
量化灰度级图像
截断频率35 理想低通滤波 明显的振铃现象
截断频率35 巴特沃斯低通滤波
24
同态滤波
同态图像增强法示意图
25
同态滤波
同态滤波器的径向横断面
如果,Hl<1,Hh>1 同态滤波压缩了图像的动态范围, 增强了图像的对比度
26
同态滤波
效果
原始图像的背景等平滑区域亮度减弱 钱币边缘及线条处对比度增强
27
傅里叶频谱
截断频率:5 截断频率:15 截断频率:45 截断频率:65
8
理想低通滤波器
理想低通滤波的缺点是会产生比较严重 的模糊和振铃现象。
9
低通滤波
2、n阶巴特沃斯低通滤波器
1 H (u, v) 1 [ D(u, v) / D0 ]2 n
巴特沃斯低通滤波器剖面图和透视图
10
or
D2 (u, v) D0
D1 (u, v) [(u u0 ) 2 (v v0 ) 2 ]1/ 2
D2 (u, v) [(u u0 ) 2 (v v0 ) 2 ]1/ 2
பைடு நூலகம்
20
高通滤波
带通滤波器透视图
21
高通滤波
4、带阻滤波器
0 H (u, v) 1 D1 (u, v) D0 其它 or D2 (u, v) D0
23
同态滤波
假设用滤波器函数来处理
H (u, v) F (u, v) H (u, v) I (u, v) H (u, v) R(u, v)
反变换
h f ( x, y) hi ( x, y) hr ( x, y)
故增强后的图像由对应的照明分量与反射分量叠加而成
取指数
g ( x, y) exp | h f ( x, y) | exp | hi ( x, y) | exp | hr ( x, y) |
f ( x, y ) h( x, y ) F (u , v) * H (u , v)
3
频域图像增强
设
g ( x, y) f ( x, y) * h( x, y)
则: G(u, v) H (u, v) F (u, v)
g ( x, y) F 1[H (u, v)F (u, v)]
频率域增强主要步骤: (1)计算需要增强图的傅里叶变换; (2)将其与1个转移函数相乘; (3)再将结果傅里叶反变换以得到增强的图像。 常用的频域增强方法有:低通滤波、高通滤波、 带通和带阻滤波、同态滤波等
巴特沃斯高通滤波器剖面图和透视图
16
高频加强滤波
图像经过高通滤波器处理后,许多低频信号没了,因 此图像的平滑区基本上消失。对于这个问题可以用高频加 强滤波来弥补。所谓高频加强滤波就是在设计滤波器变换 函数时,加上一个大于0小于1的常数c:
H ' (u, v) H (u, v) c
17
高频加强滤波
第四章 图像增强
1
4.4 频域图像增强
2
频域图像增强
f(x,y)和h(x,y)卷积定义为:
1 M 1 N 1 f ( x, y) * h( x, y) f (m, n)h( x n, y n) MN m0 n0
有:
f ( x, y ) * h( x, y ) F (u , v) H (u , v)
4
低通滤波 图像中的边缘和噪声对应于傅 里叶变换中的高频部分。要想 在频 域中削弱其影响,就要设法抑制其 高频部分。
5
低通滤波
1、理想低通滤波器
1 H (u, v) 0
D(u, v) D0 D(u, v) D0
D(u, v) (u 2 v2 )1 2
理想低通滤波器剖面图和透视图
比较理想高通滤波与加强滤波
模糊图像
理想高通滤波 平滑区基本消失
理想加强滤波
18
高频加强滤波
比较巴特沃斯高通滤波与加强滤波
模糊图像
巴特沃斯高通滤波 平滑区基本消失
巴特沃斯加强滤波
试比较理想加强滤波和巴特沃斯加强滤波效果
19
高通滤波
3、带通滤波器
1 H (u, v) 0
D1 (u, v) D0 其它
6
理想低通滤波器
设
P(u, v) | F (u, v) | R (u, v) I (u, v)
2 2 2
图像能量百分比
N 1 N 1 B 100 P(u, v) / P(u, v) u 1 v 1 uR vR
7
理想低通滤波器
效果
原始图像
13
高通滤波
图像的边缘对应于高频分量,所以锐化图 像可以用高通滤波器。
14
高通滤波
1、理想高通滤波器
0 H (u , v ) 1 D (u , v) D0 D (u , v) D0
理想高通滤波器剖面图和透视图
15
高通滤波
2、n阶巴特沃斯高通滤波器
1 H (u , v) 1 [ D0 / D(u , v)] 2 n