[精品]2015-2016学年天津市河北区八年级(上)期末数学试卷与参考答案

合集下载

2015-2016人教版八年级数学第一学期期末考试试卷及答案

2015-2016人教版八年级数学第一学期期末考试试卷及答案

2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。

每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。

点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。

BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。

对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。

使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。

2015-2016年天津市南开区八年级上学期期末数学试卷和答案

2015-2016年天津市南开区八年级上学期期末数学试卷和答案

2015-2016学年天津市南开区八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下列图案中,是轴对称图形的是()A.B.C. D.2.(3分)若代数式有意义,则x的取值范围是()A.x>1 B.x≥1 C.x≥1且D.x>1且3.(3分)在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,添加下列条件中的一个,不能使△ABC≌△A′B′C′一定成立的是()A.AC=A′C′B.BC=B′C′C.∠B=∠B′D.∠C=∠C′4.(3分)下列各式中,正确的是()A. B.C.D.5.(3分)若,则A为()A.3x+1 B.3x﹣1 C.x2﹣2x﹣1 D.x2+2x﹣16.(3分)下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③B.①②④C.①③D.①②③④7.(3分)已知等腰三角形的一边长为6,一个内角为60°,则它的周长是()A.12 B.15 C.18 D.208.(3分)下列分解因式错误的是()A.x2﹣2xy+y2=(x﹣y)2B.x3﹣x2+x=x(x2﹣x)C.x2y﹣xy2=xy(x﹣y) D.x2﹣y2=(x﹣y)(x+y)9.(3分)已知实数a,b,c在数轴上的位置如图所示,则化简﹣﹣﹣的结果是()A.﹣3a B.﹣a+2b﹣2c C.2b D.a10.(3分)已知x2n=3,则(x3n)2•4(x2)2n的值是()A.12 B.C.27 D.11.(3分)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()A.转化思想B.三角形的两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的任意一个内角12.(3分)若(m﹣2016)2+(2014﹣m)2=2,则(2014﹣m)(m﹣2016)=()A.2015 B.2016 C.1 D.2二、填空题(本大题有6小题,每小题3分,共18分)13.(3分)点P(,2)关于y轴对称点的坐标为.14.(3分)PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为.15.(3分)若分式值为0,则q的值是.16.(3分)等腰三角形的两条边长分别为2和5,那么这个三角形的周长等于.17.(3分)如果ab>0,a+b<0,那么下面各式:①=,②=1,③÷=﹣b,其中正确的是(填序号)18.(3分)己知,如图,在△ABC中,∠C=90°,∠A=24°,请用直尺和圆规找到一条直线,把△ABC恰好分割成两个等腰三角形(不写作法,但需保留作图痕迹),直线即为所求.三、解答题(共46分)19.(12分)(1)计算:(﹣)2+(2+)(2﹣)(2)因式分解:9a2(x﹣y)+4b2(y﹣x)(3)先化简,再求值:÷(a﹣1﹣),其中a2﹣a﹣6=0.20.(5分)解方程:+1=21.(6分)如图,在直角坐标系中,B点的坐标为(a,b),且a,b满足b=(1)求B点的坐标;(2)点A为y轴上一动点,过B点作BC⊥AB交x轴正半轴于点C,求证:BA=BC.22.(7分)在平面直角坐标系xOy中,等腰三角形ABC的三个顶点A(0,1),点B在x轴的正半轴上,∠ABO=30°,点C在y轴上.(1)直接写出点C的坐标:;(2)点P关于直线AB的对称点P′在x轴上,AP=1,在图中标出点P的位置并说明理由.23.(8分)某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?24.(8分)在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过A作AD ⊥BP于D,交直线BC于Q.(1)如图1,当P在线段AC上时,求证:BP=AQ.(2)当P在线段AC的延长线上时,请在图2中画出图形,并求∠CPQ.(3)如图3,当P在线段AC的延长线上时,∠DBA=时,AQ=2BD.2015-2016学年天津市南开区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列图案中,是轴对称图形的是()A.B.C. D.【解答】解:A、图形不是轴对称图形,B、图形不是轴对称图形,C、图形不是轴对称图形,D、图形是轴对称图形,故选D.2.(3分)若代数式有意义,则x的取值范围是()A.x>1 B.x≥1 C.x≥1且D.x>1且【解答】解:∵代数式有意义,∴,解得x>1.故选A.3.(3分)在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,添加下列条件中的一个,不能使△ABC≌△A′B′C′一定成立的是()A.AC=A′C′B.BC=B′C′C.∠B=∠B′D.∠C=∠C′【解答】解:A、∠A=∠A′,AB=A′B′AC=A′C′,根据SAS能推出△ABC≌△A′B′C′,故A选项错误;B、具备∠A=∠A′,AB=A′B′,BC=B′C′,不能判断△ABC≌△A′B′C′,故B选项正确;C、根据ASA能推出△ABC≌△A′B′C′,故C选项错误;D、根据AAS能推出△ABC≌△A′B′C′,故D选项错误.故选:B.4.(3分)下列各式中,正确的是()A. B.C.D.【解答】解:∵=,故B选项说法正确.故选:B.5.(3分)若,则A为()A.3x+1 B.3x﹣1 C.x2﹣2x﹣1 D.x2+2x﹣1【解答】解:=x+=,得到2x2+2x+1=2x2﹣x+A,则A=3x+1.故选A.6.(3分)下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③B.①②④C.①③D.①②③④【解答】解:①两个角为60度,则第三个角也是60度,则其是等边三角形,故正确;②这是等边三角形的判定2,故正确;③三个外角相等则三个内角相等,则其是等边三角形,故正确;④根据等边三角形三线合一性质,故正确.所以都正确.故选D.7.(3分)已知等腰三角形的一边长为6,一个内角为60°,则它的周长是()A.12 B.15 C.18 D.20【解答】解:∵三角形是等腰三角形,一个内角为60°,∴三角形是等边三角形,∵一边长为6,∴它的周长是6×3=18;故选C.8.(3分)下列分解因式错误的是()A.x2﹣2xy+y2=(x﹣y)2B.x3﹣x2+x=x(x2﹣x)C.x2y﹣xy2=xy(x﹣y) D.x2﹣y2=(x﹣y)(x+y)【解答】解:A、x2﹣2xy+y2=(x﹣y)2,正确,不合题意;B、x3﹣x2+x=x(x2﹣x+1),故此选项错误,符合题意;C、x2y﹣xy2=xy(x﹣y),正确,不合题意;D、x2﹣y2=(x﹣y)(x+y),正确,不合题意.故选:B.9.(3分)已知实数a,b,c在数轴上的位置如图所示,则化简﹣﹣﹣的结果是()A.﹣3a B.﹣a+2b﹣2c C.2b D.a【解答】解:由数轴可得:b<a<0<c,∴a﹣b>0,a﹣c<0,b﹣c<0,则原式=|a|﹣|a﹣b|﹣|a﹣c|﹣|b﹣c|=﹣a﹣a+b+a﹣c+b﹣c=﹣a+2b﹣2c.故选B.10.(3分)已知x2n=3,则(x3n)2•4(x2)2n的值是()A.12 B.C.27 D.【解答】解:∵x2n=3,∴=(x2n)3•4(x2n)2=×33×4×32=12.故选:A.11.(3分)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()A.转化思想B.三角形的两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的任意一个内角【解答】解:∵点B和点B′关于直线l对称,且点C在l上,∴CB=CB′,又∵AB′交l与C,且两条直线相交只有一个交点,∴CB′+CA最短,即CA+CB的值最小,将轴对称最短路径问题利用线段的性质定理两点之间,线段最短,体现了转化思想,验证时利用三角形的两边之和大于第三边.故选D.12.(3分)若(m﹣2016)2+(2014﹣m)2=2,则(2014﹣m)(m﹣2016)=()A.2015 B.2016 C.1 D.2【解答】解:∵(m﹣2016)2+(2014﹣m)2=2,[(m﹣2016)+(2014﹣m)]2=(﹣2)2=4,∴(m﹣2016)2+2×(m﹣2016)×(2014﹣m)+(2014﹣m)2=4,∴2×(m﹣2016)×(2014﹣m)=4﹣2=2,∴(2014﹣m)(m﹣2016)=1,故选C.二、填空题(本大题有6小题,每小题3分,共18分)13.(3分)点P(,2)关于y轴对称点的坐标为(﹣,2).【解答】解:点P(,2),则点P关于y轴对称点的坐标为:(﹣,2).故答案为:(﹣,2).14.(3分)PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.15.(3分)若分式值为0,则q的值是5.【解答】解:依题意,得|q|﹣5=0,且q+5≠0,解得,q=5.故填:5.16.(3分)等腰三角形的两条边长分别为2和5,那么这个三角形的周长等于10+2.【解答】解:①若腰长为2,则有2×2<5,故此情况不合题意,舍去;②若腰长为5,则三角形的周长=2×5+2=10+2.故答案为:10+2.17.(3分)如果ab>0,a+b<0,那么下面各式:①=,②=1,③÷=﹣b,其中正确的是②③(填序号)【解答】解:∵ab>0,a+b<0,∴a<0,b<0.①根号下必须非负,错误;②==1,正确;③÷===﹣b,正确.故答案为:②③.18.(3分)己知,如图,在△ABC中,∠C=90°,∠A=24°,请用直尺和圆规找到一条直线,把△ABC恰好分割成两个等腰三角形(不写作法,但需保留作图痕迹),直线CD即为所求.【解答】解:如图所示:直线CD即为所求,故答案为:CD.三、解答题(共46分)19.(12分)(1)计算:(﹣)2+(2+)(2﹣)(2)因式分解:9a2(x﹣y)+4b2(y﹣x)(3)先化简,再求值:÷(a﹣1﹣),其中a2﹣a﹣6=0.【解答】解:(1)原式=()2﹣2××+()2+(2)2﹣()2=2﹣2+3+12﹣6=11﹣2;(2)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(3)÷(a﹣1﹣)=÷=÷=•==,∵a2﹣a﹣6=0,∴a2﹣a=6,∴原式=.20.(5分)解方程:+1=【解答】解:方程两边同乘以(x2﹣1),得x2﹣4x+x2﹣1=2x(x﹣1),2x2﹣4x﹣1=2x2﹣2x,﹣2x=1,∴x=﹣.经检验:x=﹣是原方程的解,∴原方程的解为x=﹣.21.(6分)如图,在直角坐标系中,B点的坐标为(a,b),且a,b满足b=(1)求B点的坐标;(2)点A为y轴上一动点,过B点作BC⊥AB交x轴正半轴于点C,求证:BA=BC.【解答】解:(1)∵b=,∴a2﹣4≥0,4﹣a2≥0,解得:a=±2,∵a+2≠0,∴a=2,∴b=2,∴B(2,2);(2)作BM⊥y轴于M,BN⊥x轴于N点,如图:∴∠MBN=90°.∵BC⊥AB,∴∠ABC=90°.∴∠ABM=∠CBN.∵B点坐标是(2,2),∴BM=BN,在△ABM和△CBN中,,∴△ABM≌△CBN(ASA),∴BA=BC.22.(7分)在平面直角坐标系xOy中,等腰三角形ABC的三个顶点A(0,1),点B在x轴的正半轴上,∠ABO=30°,点C在y轴上.(1)直接写出点C的坐标:(0,﹣1)或(0,3);(2)点P关于直线AB的对称点P′在x轴上,AP=1,在图中标出点P的位置并说明理由.【解答】解:(1)根据题意完善图形,如图1所示.∵∠ABO=30°,点A(0,1),∴OA=1,tan∠ABO==,AB==2,∴点B的坐标为(,0).∵点C在y轴上,∴设点C的坐标为(0,m).∵三角形ABC为等腰三角形,∴分三种情况考虑:①当AC=AB时,由两点间的距离公式可知:=2,解得:m=﹣1,或m=3,即点C的坐标为(0,﹣1)或(0,3);②当AC=BC时,由两点间的距离公式可知:=,解得:m=﹣1,即点C的坐标为(0,﹣1);③当AB=BC时,由两点间的距离公式可知:2=,解得m=﹣1或m=1(舍去),即点C的坐标为(0,﹣1).综上得:点C的坐标为:(0,﹣1)或(0,3).故答案为:(0,﹣1)或(0,3).(2)第一步:以A点为圆心,1为半径作圆,⊙A与x轴切与原点O,第二步:过点O作OP⊥AB交⊙A于点P,P点即为所求(图形如图2).∵点P与点P′关于直线AB对称,且AP=1,∴AP′=AP=1.故用上面的画法寻找点P.23.(8分)某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?【解答】解:设第一次购书的单价为x元,∵第二次每本书的批发价已比第一次提高了20%,∴第二次购书的单价为1.2x元.根据题意得:.(4分)解得:x=5.经检验,x=5是原方程的解.(6分)所以第一次购书为1200÷5=240(本).第二次购书为240+10=250(本).第一次赚钱为240×(7﹣5)=480(元).第二次赚钱为200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元).所以两次共赚钱480+40=520(元)(8分).答:该老板两次售书总体上是赚钱了,共赚了520元.(9分)24.(8分)在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过A作AD ⊥BP于D,交直线BC于Q.(1)如图1,当P在线段AC上时,求证:BP=AQ.(2)当P在线段AC的延长线上时,请在图2中画出图形,并求∠CPQ.(3)如图3,当P在线段AC的延长线上时,∠DBA=22.5°时,AQ=2BD.【解答】(1)证明:∵∠ACB=∠ADB=90°,∠APD=∠BPC,∴∠DAP=∠CBP,在△ACQ和△BCP中,∴△ACQ≌△BCP(ASA),∴BP=AQ;(2)解:如图2所示:∵∠ACQ=∠BDQ=90°,∠AQC=∠BQD,∴∠CAQ=∠DBQ,在△AQC和△BPC中,∴△AQC≌△BPC(ASA),∴QC=CP,∵∠QCD=90°,∴∠CQP=∠CPQ=45°;(3)解:当∠DBA=22.5°时,AQ=2BD;∵AC=BC,∠ACB=90°,∴∠BAC=45°,∴∠P=22.5°,∴∠DBA=∠P,∴AP=AB,∵AD⊥BP,∴AD=DP,∵∠ACQ=∠ADP=90°,∠PAD=∠QAC,∴∠P=∠Q,在△ACQ和△BCP中,∴△ACQ≌△BCP(ASA),∴BP=AQ,∴此时AQ=BP=2BD.故答案为:22.5°.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;xyB CAO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

2015--2016学年天津市五区县八年级(上)期末数学试卷

2015--2016学年天津市五区县八年级(上)期末数学试卷

2015-2016学年天津市五区县八年级(上)期末数学试卷一、选择题:本题包括12小题,每小题3分,共36分.1.(3分)(2015秋•天津期末)如果三角形的两边长分别为3cm和5cm,第三边是偶数,则此三角形的第三边长可为()A.2cm B.3cm C.4cm D.8cm2.(3分)(2015秋•天津期末)若分式有意义,则a的取值范围是()A.a=﹣5 B.a≠5 C.a=5 D.a≠﹣53.(3分)(2015秋•天津期末)在中,分式有()A.1个B.2个C.3个D.4个4.(3分)(2015秋•天津期末)在△ABC中,如果,则这个三角形一定是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形5.(3分)(2015秋•天津期末)若2x=3y,则的值是()A.﹣1 B.C.1 D.6.(3分)(2015秋•天津期末)某病毒的直径是0.000000068m,这个数据用科学计数法表示为()A.6.8×10﹣7m B.68×10﹣9m C.0.68×10﹣7m D.6.8×10﹣8m7.(3分)(2015秋•天津期末)若点P(m+5,2)与点Q(3,n﹣5)关于y轴对称,则m,n的值分别是()A.﹣8,﹣7 B.8,﹣7 C.﹣8,7 D.8,78.(3分)(2015秋•天津期末)下列计算正确的是()A.a5+a5=a10 B.3a5•2a3=6a8C.a10÷a2=a5D.(3a4)3=9a129.(3分)(2015秋•天津期末)观察如图所示图形,其中不是轴对称图形的有()A.2个B.3个C.4个D.1个10.(3分)(2015秋•天津期末)把2ab2﹣4ba+2a分解因式的结果是()A.2ab(b﹣2)+2a B.2a(b2﹣2b)C.2a(b+1)(b﹣1)D.2a(b﹣1)211.(3分)(2016春•山亭区期末)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD12.(3分)(2015秋•天津期末)若(a+b)2=12,(a﹣b)2=6,则ab的值是()A.B.C.5 D.﹣5二、填空题:本题包括6小题,每小题3分,共18分.13.(3分)(2015秋•天津期末)如图,已知△ABC≌△A1B1C1,∠A=45°,∠C1=60°,则∠B=.14.(3分)(2015秋•天津期末)若(2x﹣3y)•N=9y2﹣4x2,那么代数式N应该是.15.(3分)(2015秋•天津期末)分解因式:(x+4)(x﹣1)﹣3x=.16.(3分)(2016•梅州模拟)化简的结果是.17.(3分)(2015秋•天津期末)某多边形内角和与外角和共1080°,则这个多边形的边数是.18.(3分)(2007•赤峰)附加题:已知,则=.三、解答题:本题共46分。

河北区2014-2015学年度第一学期期末八年级质量检测

河北区2014-2015学年度第一学期期末八年级质量检测

河北区2014-2015学年度第一学期期末八年级质量检测物理第Ⅰ卷(选择题共90分)一、单项选择(本题共10小题,在每题给出的四个选项中只有一项是符合题目要求的,每小题3分,1.下列数据中最接近实际的是()A.成都三环路限速950km/hB.PM2.5是指空气中直径为2.5cm的固体颗粒C.一个鸡蛋的质量约为500gD.人体感觉适宜的温度约为23℃2.光学实验课时,小叶用激光灯对着光滑的大理石地面照射,无意中发现对面粗糙的墙壁上会出现一个明亮的光斑,而光滑地面上的光斑很暗,对此现象解释较合理的是()A.地面吸收了所有的光B.墙壁对光发生漫反射C.地面对光发生漫反射D.墙壁对光发生镜面反射3.关于温度计的使用,下列说法中正确的是()A.用酒精灯给体温计消毒B.测量液体温度时,温度计应紧贴容器的壁或底C.用寒暑表测量开水的温度D.使用体温计前,一般应先用力向下甩几下4.P Q,是同一直线上相距12米的两点,甲从P点向Q方向运动,乙从Q点同时沿直线与甲同向而行,它们运动的“s t ”图象如图所示,分析图象可知()A.甲的速度小于乙的速度B.经过3秒,甲、乙相距3米C.甲、乙相遇时离Q点6米D.甲到达Q点时,乙离P点20米5.如图所示是“探究光的反射规律”的实验装置,一面可沿ON折叠的白色硬纸板垂直放置在平面镜上,使光线AO紧贴硬纸板射向镜面O点,为了研究反射角与入射角之间关系,实验时应进行的操作是()A .绕ON 前后转动板EB .绕ON 前后转动板FC .改变光线AO 与ON 之间的夹角D .改变光线OB 与ON 之间的夹角6.下列现象发生的过程中,吸收热量的一组是( )(1)春天,冰雪融化汇成溪流 (2)夏天,从冰箱里面拿出业的饮料罐“出汗” (3)秋天,清晨的雾在太阳出来后散去 (4)冬天,室外草地上出现了霜 A .(1)(2) B .(1)(3) C .(3)(4) D .(2)(4)7.下列各组有关物理原理、现象及应用的连线中有错误的是( )8.在①小孔成像;②平面镜成像;③放大镜成像;④照相机成像;⑤幻灯机成像中( ) A .成实像的是①②③ B .成虚像的是②③④ C .属于反射成像的是② D .属于折射成像的是①③④ 9.体积为3100cm 的冰熔化成水后,下列说法正确的是(330.910kg/m ρ=⨯冰)( ) A .质量不变,水的体积为390cm B .质量变大,水的质量为100g C .质量不变,水的体积为3100cm D .质量变小,水的密度为31.0g/cm10.有密度分别为1ρ和2ρ的液体各kg m ,只用这两种液体最多可配成密度为122ρρρ+=的溶液的质量为(已知12ρρ>,且不计混合后体积变化)( ) A .12m ρρ B .21m ρρ C .121m ρρ⎛⎫+ ⎪⎝⎭D .211m ρρ⎛⎫+ ⎪⎝⎭二、多项选择题(在下列列出的四个选项中,有多个选项是正确的,全选对的得3分,选对但不全的得1分,有选错或不答的得0分,共9分,请将答案填在下面表格中)11.在下图中,能用光的折射规律来解释的现象是( )12.老师上课时经常用到投影仪,如图所示,关于投影仪的使用以下做法中合理的是( )A .投放到屏幕上的画面太靠上时,应减小平面镜与凸透镜的夹角使画面向下移动B .若使屏幕上的画面大一些,可使投影仪靠近屏幕同时将凸透镜适当向下移动C .若使屏幕上的画面大一些,可使投影仪远离屏幕同时将凸透镜适当向上移动D .若使屏幕上的画面大一些,可使投影仪远离屏幕同时将凸透镜适当向下移动 13.体积和质量都相等的铜球、铁球和铝球,已知ρρρ>>铜铝铁,则( )A .铜球若是实心的,则另外两球一定是空心的B .铁球若是实心的,则另外两球一定是空心的C .铝球若是实心的,则另外两球一定是空心的D .三个球都有可能是空心的第Ⅱ卷(非选择题 共61分)三、填空题(本题共6小题,每小题4分,共24分)14.家庭和实验室里常用的温度计是根据液体的热胀冷缩原理制成的,小明用温度计测量教室外的温度如图所示,其示数为________℃;小明想温度计的玻璃泡不装水的原因是________。

天津市五区县八级上期末数学试卷含答案解析

天津市五区县八级上期末数学试卷含答案解析

2015-2016学年天津市五区县八年级(上)期末数学试卷一、选择题:本题包括12小题,每小题3分,共36分.1.如果三角形的两边长分别为3cm和5cm,第三边是偶数,则此三角形的第三边长可为( )A.2cm B.3cm C.4cm D.8cm2.若分式有意义,则a的取值范围是( )A.a=﹣5 B.a≠5 C.a=5 D.a≠﹣53.在中,分式有( )A.1个B.2个C.3个D.4个4.在△ABC中,如果,则这个三角形一定是( )A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形5.若2x=3y,则的值是( )A.﹣1 B. C.1 D.6.某病毒的直径是0.000000068m,这个数据用科学计数法表示为( )A.6.8×10﹣7m B.68×10﹣9m C.0.68×10﹣7m D.6.8×10﹣8m7.若点P(m+5,2)与点Q(3,n﹣5)关于y轴对称,则m,n的值分别是( ) A.﹣8,﹣7 B.8,﹣7 C.﹣8,7 D.8,78.下列计算正确的是( )A.a5+a5=a10 B.3a5•2a3=6a8C.a10÷a2=a5D.(3a4)3=9a129.观察如图所示图形,其中不是轴对称图形的有( )A.2个B.3个C.4个D.1个10.把2ab2﹣4ba+2a分解因式的结果是( )A.2ab(b﹣2)+2a B.2a(b2﹣2b)C.2a(b+1)(b﹣1) D.2a(b﹣1)2 11.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是( )A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD12.若(a+b)2=12,(a﹣b)2=6,则ab的值是( )A.B. C.5 D.﹣5二、填空题:本题包括6小题,每小题3分,共18分.13.如图,已知△ABC≌△A1B1C1,∠A=45°,∠C1=60°,则∠B=__________.14.若(2x﹣3y)•N=9y2﹣4x2,那么代数式N应该是__________.15.分解因式:(x+4)(x﹣1)﹣3x=__________.16.化简的结果是__________.17.某多边形内角和与外角和共1080°,则这个多边形的边数是__________.18.附加题:已知,则=__________.三、解答题:本题共46分。

河北区2015-2016上学期8年级期中数学答案

河北区2015-2016上学期8年级期中数学答案

22. (本小题满分 12 分) 2 解: (1)∵(a+2) +|b-4|=0, ∴a+2=0,b-4=0, 解得:a=-2,b=4; 故答案为:-2,4;………2 分 (2)如图 1,过点 C 作 CE⊥y 轴于点 E,………3 分 ∵∠ABC=90°, ∴∠CBE+∠ABO=90°, ∵∠ECB+∠CBE=90°, ∴∠ECB=∠ABO,………4 分 在△CBE 和△BAO 中,
河北区 2015-2016 学年度第一学期期中八年级质量检测
数学答案
一、选择题: (每题 3 分,共 24 分) 1.C ; 2.A; 3.B; 4.D; 5.C; 6.B; 7.A; 8.B.
二、填空题: (每题 3 分,共 24 分) 9.10:51; 10.15; 11.115° ; 12.AC =AD 或∠C=∠D 或∠ABC=∠ABD 或∠CBE=∠DBE 13.13; 14.100° ; 15.1; 16. (1,4) , ( ,5) , (0,10) .
八年级数学答案第 3 页(共 4 页)
ECB ABO BEC AOB , BC AB
∴△CBE≌△BAO(AAS) ,………7 分 ∴AO=BE,BO=EC, ∵a=-2,b=4, ∴BO=CE=4,AO=BE=2, ∴C(﹣4,6) ;………9 分 (3)如图 2, P1(﹣6,2) ,………10 分 P2(4,2) ,………11 分 P3(2,﹣2) .………12 分
DB DC , DE DF
Rt△DBE≌Rt△DCF(HL) , ∴BE=CF.……DF 中
AD AD DE DF
∴Rt△ADE≌Rt△ADF(HL) .………7 分 ∴AE=AF.………8 分 ∵AC+CF=AF, ∴AE=AC+CF. ∵AE=AB-BE, ∴AC+CF=AB-BE,………9 分 ∵AB=6,AC=4, ∴4+BE=6-BE, ∴BE=1.………10 分

2015-2016学年度上学期期末考试八年级数学试卷(含答案)

2015-2016学年度上学期期末考试八年级数学试卷(含答案)

2015—2016学年度上学期期末考试八年级数学试题注意事项:1.本卷满分120分,考试时间120分钟。

2.本卷是试题卷,不能答题。

答题必须写在答题卡上。

解题中的辅助线和需标注的角、字母、符号等务必添在答题卡的图形上。

3.在答题卡上答题,选择题必须用2B铅笔填涂,非选择题必须用0.5毫米黑色签字笔或黑色墨水钢笔作答。

★祝考试顺利★一、选择题(每小题3分,共30分)1.下列图形中轴对称图形是()ABCD2,.已知三角形的三边长分别是3,8,x,若x的值为偶数,则x的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和10cm,则此三角形的周长是()A.15cmB. 20cmC. 25cmD.20cm或25cm6.如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD的是( )A.AC=ADB.BC=BDC.∠C=∠DD.∠ABC=∠ABD7.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE =2,则△BCE的面积等于( )A.10B.7C.5D.4第9题图 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠第10题 10.如上图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N 分别在OA 、OB 上,则△PMN 周长的最小值为__________2第18题图18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。

2018-2019学年天津市河北区八年级上册期末数学测试卷(含答案解析)

2018-2019学年天津市河北区八年级上册期末数学测试卷(含答案解析)

在△AED 与△DFB 中,

∴△AED≌△DFB(SAS),
∴∠ADE=∠DBF,
∵∠CDG=∠ADC﹣∠ADE=120°﹣∠ADE,∠CBM=120°﹣∠DBF,
∴∠CBM=∠CDG, ∵△DBC 是等边三角形, ∴CD=CB,
.
.
在△CDG 和△CBM 中, ∴△CDG≌△CBM, ∴∠DCG=∠BCM,CG=CM, ∴∠GCM=∠DCB=60°, ∴△CGM 是等边三角形, ∴CG=GM=BG+BM=BG+DG, ∵(a+b)2=a2+b2+2ab=9, ∴a+b=3, ∴CG=3, ∴GH= CG= . 故答案为: .
【解答】解:(A)x2+2x﹣1≠(x﹣1)2,故 A 不是因式分解,
(B)a2﹣b2=(a+b)(a﹣b),故 B 不是因式分解,
(D)a x2﹣a=a(x2﹣1)=a(x+1)(x﹣1),故 D 分解不完全,
故选:C.
3.(3 分)要使分式 有意义,x 应满足的条件是( ) A.x>3 B.x=3 C.x<3D.x≠3
【解答】解:如图,DF=DF′=DE; ∵BD 平分∠ABC,由图形的对称性可知: △BDE≌△BDF, ∴∠DFB=∠DEB; ∵DE∥AB,∠ABC=50°,
.
.
∴∠DEB=180°﹣50°=130°; ∴∠DFB=130°; 当点 F 位于点 F′处时, ∵DF=DF′, ∴∠DF′B=∠DFF′=50°, 故答案是:50°或 130°.
三、解答题(17、18、19、20 题各 8 分,21、22 题 10 分,共 52 分,解答应写出文字说明、 证明过程或演算步骤) 17.(8 分)(1)(﹣2a)3﹣(﹣a)•(3a)2 (2)(2a﹣3b)2﹣4a(a﹣2b) 【解答】解:(1 )(﹣2a)3﹣(﹣a)•(3a)2 =﹣8a3﹣(﹣a)•9a2 =﹣8a3+9a3 =a3;

2015-2016年天津市河北区八年级(上)期末数学试卷含参考答案

2015-2016年天津市河北区八年级(上)期末数学试卷含参考答案

2015-2016学年天津市河北区八年级(上)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项符合题目的要求的.)1.(3分)下列各式从左到右的变形中,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9 B.m(m﹣1)=m2﹣mC.a2﹣4a﹣5=a(a﹣4)﹣5 D.a2﹣4a+4=(a﹣2)22.(3分)下列能用完全平方公式因式分解的是()A.x2+2xy﹣y2B.﹣xy+y2C.x2﹣2xy+y2D.x2﹣4xy+2y23.(3分)若多项式乘法(x+2y)(2x﹣ky﹣1)的结果中不含xy项,则k的值为()A.4 B.﹣4 C.2 D.﹣24.(3分)下列各式正确的是()A. B. C. D.5.(3分)下列从左到右的变形:①=;②=;③=;④=.其中,正确的是()A.①②B.②④C.③④D.①②③④6.(3分)如果分式的值为零,那么x等于()A.1 B.﹣1 C.0 D.±17.(3分)若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠18.(3分)如图,点P是△ABC外的一点,PD⊥AB于点D,PE⊥AC于点E,PF ⊥BC于点F,连接PB,PC.若PD=PE=PF,∠BAC=70°,则∠BPC的度数为()A.25°B.30°C.35°D.40°二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在题中横线上)9.(3分)若分式有意义,则x的取值范围是.10.(3分)PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为.11.(3分)若a+3b﹣2=0,则3a•27b=.12.(3分)因式分解:x3﹣xy2=.13.(3分)计算(π﹣3.14)0+()﹣2=.14.(3分)计算:(﹣3)2013•(﹣)2011=.15.(3分)如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE=.16.(3分)如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE 是等腰三角形,那么∠OEC的度数为.三、解答题(7题6分,18题10分,19、20题各8分,21、22题各10分,共52分,解答写出文字说明,演算步骤或推理过程)17.(6分)解方程:.18.(10分)(1)若a+b=5,ab=3,求+的值;(2)化简:÷(m+n﹣)19.(8分)如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.20.(8分)如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD 于点Q,PQ=3,PE=1.(1)求证:AD=BE;(2)求AD的长.21.(10分)李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.(1)求李老师步行的平均速度;(2)请你判断李老师能否按时上班,并说明理由.22.(10分)如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(0,m)、B(n,0),且|m﹣n﹣3|+=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA、OB的长;(2)连接PB,设△POB的面积为S,用t的式子表示S;(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.2015-2016学年天津市河北区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项符合题目的要求的.)1.(3分)下列各式从左到右的变形中,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9 B.m(m﹣1)=m2﹣mC.a2﹣4a﹣5=a(a﹣4)﹣5 D.a2﹣4a+4=(a﹣2)2【解答】解:A、右边不是等式积的形式,不是因式分解,故本选项错误;B、右边不是等式积的形式,不是因式分解,故本选项错误;C、右边不是等式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选:D.2.(3分)下列能用完全平方公式因式分解的是()A.x2+2xy﹣y2B.﹣xy+y2C.x2﹣2xy+y2D.x2﹣4xy+2y2【解答】解:A、不是两数的平方和加这两个数乘积的二倍,故A错误;B、不是两数的平方和减这两个数乘积的二倍,故B错误;C、两数的平方和减这两个数乘积的二倍,故C正确;D、不是两数的平方和减这两个数乘积的二倍,故D错误;故选:C.3.(3分)若多项式乘法(x+2y)(2x﹣ky﹣1)的结果中不含xy项,则k的值为()A.4 B.﹣4 C.2 D.﹣2【解答】解:(x+2y)(2x﹣ky﹣1)=2x2﹣kxy﹣x+4xy﹣2ky2﹣2y=2x2+(4﹣k)xy﹣x﹣2ky2﹣2y,∵结果中不含xy项,∴4﹣k=0,解得,k=4,故选:A.4.(3分)下列各式正确的是()A. B. C. D.【解答】解:A、=,故A正确;B、=,故B错误;C、=,故C错误;D、=﹣,故D错误.故选:A.5.(3分)下列从左到右的变形:①=;②=;③=;④=.其中,正确的是()A.①②B.②④C.③④D.①②③④【解答】解:①=,当a=0时,该等式不成立,故①错误;②=,分式的分子、分母同时乘以b,等式仍成立,即=,故②正确;③=,当c=0时,该等式不成立,故③错误;④=,因为x2+1≠0,即分式的分子、分母同时乘以(x2+1),等式仍成立,即=成立,故④正确;综上所述,正确的②④.故选:B.6.(3分)如果分式的值为零,那么x等于()A.1 B.﹣1 C.0 D.±1【解答】解:∵分式的值为零,∴,解得x=﹣1.故选:B.7.(3分)若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1【解答】解:去分母得:m﹣1=2x﹣2,解得:x=,由题意得:≥0且≠1,解得:m≥﹣1且m≠1,故选:D.8.(3分)如图,点P是△ABC外的一点,PD⊥AB于点D,PE⊥AC于点E,PF ⊥BC于点F,连接PB,PC.若PD=PE=PF,∠BAC=70°,则∠BPC的度数为()A.25°B.30°C.35°D.40°【解答】解:在Rt△BDP和Rt△BFP中,,∴Rt△BDP≌Rt△BFP(HL),∴∠ABP=∠CBP,在Rt△CEP和Rt△CFP中,,Rt△CEP≌Rt△CFP(HL),∴∠ACP=∠FCP,∵∠ACF是△ABC的外角,∴∠ABC+∠BAC=∠ACF,两边都除以2,得:∠ABC+∠BAC=∠ACF,即∠PBC+∠BAC=∠FCP,∵∠PCF是△BCP的外角,∴∠PBC+∠BPC=∠FCP,∴∠BPC=∠BAC=×70°=35°,故选:C.二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在题中横线上)9.(3分)若分式有意义,则x的取值范围是x≠3的全体实数.【解答】解:∵3﹣x≠0,∴x≠3.10.(3分)PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.11.(3分)若a+3b﹣2=0,则3a•27b=9.【解答】解:∵a+3b﹣2=0,∴a+3b=2,则3a•27b=3a×33b=3a+3b=32=9.故答案为:9.12.(3分)因式分解:x3﹣xy2=x(x﹣y)(x+y).【解答】解:x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y).故答案为:x(x﹣y)(x+y).13.(3分)计算(π﹣3.14)0+()﹣2=10.【解答】解:原式=1+9=10,故答案为10.14.(3分)计算:(﹣3)2013•(﹣)2011=9.【解答】解:(﹣3)2013•(﹣)2011=(﹣3)2•(﹣3)2011•(﹣)2011=(﹣3)2•[﹣3×(﹣)]2011=(﹣3)2=9,故答案为:9.15.(3分)如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE=8.【解答】解:由题意可得出:PQ是AB的垂直平分线,∴AE=BE,∵在△ABC中,∠C=90°,∠CAB=60°,∴∠CBA=30°,∴∠EAB=∠CAE=30°,∴CE=AE=4,∴AE=8.故答案为:8.16.(3分)如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE 是等腰三角形,那么∠OEC的度数为120°或75°或30°.【解答】解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=30°,∴∠OEC=180°﹣30°﹣30°=120°;②当E在E2点时,OC=OE,则∠OCE=∠OEC=(180°﹣30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°;故答案为:120°或75°或30°.三、解答题(7题6分,18题10分,19、20题各8分,21、22题各10分,共52分,解答写出文字说明,演算步骤或推理过程)17.(6分)解方程:.【解答】解:方程两边同乘以(x﹣2),得:x﹣3+(x﹣2)=﹣3,解得x=1,检验:x=1时,x﹣2≠0,∴x=1是原分式方程的解.18.(10分)(1)若a+b=5,ab=3,求+的值;(2)化简:÷(m+n﹣)【解答】解:(1)原式==,当a+b=5,ab=3时,原式===;(2)原式=÷=÷=•=.19.(8分)如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.【解答】解:∵△ABC中BD、CD平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠6,∵EF∥BC,∴∠2=∠3,∠4=∠6,∴∠1=∠3,∠4=∠5,根据在同一三角形中等角对等边的原则可知,BE=ED,DF=FC,故EF=ED+DF=BE+CF.20.(8分)如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD 于点Q,PQ=3,PE=1.(1)求证:AD=BE;(2)求AD的长.【解答】(1)证明:∵△ABC为等边三角形,∴AB=CA=BC,∠BAE=∠ACD=60°;在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴AD=BE;(2)解:∵△ABE≌△CAD,∴∠CAD=∠ABE,∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=90°,∴∠PBQ=90°﹣60°=30°,∵PQ=3,∴在Rt△BPQ中,BP=2PQ=6,又∵PE=1,∴AD=BE=BP+PE=6+1=7.21.(10分)李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.(1)求李老师步行的平均速度;(2)请你判断李老师能否按时上班,并说明理由.【解答】解:(1)设李老师步行的平均速度为xm/分钟,骑电瓶车的平均速度为5xm/分钟,由题意得,﹣=20,解得:x=76,经检验,x=76是原分式方程的解,且符合题意,则5x=76×5=380,答:李老师步行的平均速度为76m/分钟,骑电瓶车的平均速度为380m/分;(2)由(1)得,李老师走回家需要的时间为:=12.5(分钟),骑车走到学校的时间为:=5,则李老师走到学校所用的时间为:12.5+5+4=21.5<23,答:李老师能按时上班.22.(10分)如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(0,m)、B(n,0),且|m﹣n﹣3|+=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA、OB的长;(2)连接PB,设△POB的面积为S,用t的式子表示S;(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.【解答】解:(1)∵|m﹣n﹣3|+=0,且|m﹣n﹣3|≥0,≥0∴|m﹣n﹣3|==0,∴n=3,m=6,∴点A(0,6),点B(3,0);(2)连接PB,t秒后,AP=t,OP=|6﹣t|,∴S=OP•OB=|6﹣t|;(t≥0)(3)作出图形,∵∠OAB+∠OBA=90°,∠OAB+∠APD=90°,∠OPE=∠APD,∴∠OBA=∠OPE,∴只要OP=OB,即可求证△EOP≌△AOB,∴AP=AO﹣OP=3,或AP′=OA+OP′=9∴t=3或9.。

8年级上期末数学试卷

8年级上期末数学试卷

河北区2014-2015学年度第一学期期末八年级质量检测数学本试卷满分100分,另附加题20分,考试时间70分钟一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列式子,从左到右的变形中是因式分解的是(A)aaaa2)2(2-=-(B)4)4(442+-=+-aaaa(C)2(1)(1)1a a a+-=-(D))3)(3(92-+=-aaa2.下列图形中,不是轴对称图形的是(A) (B) (C) (D)3. 下列变形正确的是(A)326x xx =(B)n n x x ππ=++ (C)y x yx y x +=++22(D)1-=-+-y x y x4. 下列运算正确的是(A) 623a a a =⋅(B) 632)(a a -=- (C) 33)(ab ab =(D)428a a a =÷5. 下列代数式中能用平方差公式分解因式的是(A) 22b a +(B) 22b a --(C) ac c a 222--(D)224b a +-6. 如图,小明将一张三角形纸片(△ABC ),沿着DE 折叠(点D 、E 分别在边AB 、AC 上),并使点A 与点A ′重合, 若∠A =70°,则∠1+∠2的度数为(A) 140° (B) 130° (C) 110°(D) 70°7. 如图,点P 是∠AOB 外的一点,点M ,N 分别是∠AOB 两边 上的点,点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上.若PM =2.5cm , PN =3cm ,MN =4cm ,则线段QR 的长为(A) 4.5 cm (B) 5.5 cm (C) 6.5 cm(D) 7 cm8. 如图,已知六边形ABCDEF 的每个内角都是120°,且AB =1,BC =CD =7,DE =3,则这个六边形周长为(A) 31 (B) 36 (C) 32 (D) 29二、填空题:本大题共8个小题,每小题3分,共24分.将答案填在题中横线上.9. 若分式5-x 有意义,则实数x 的取值范围是 . 10.若实数m ,n 满足|m ﹣2|+(n ﹣2014)2=0,则=+-01n m .12.已知6=+y x ,4=xy ,则22xy y x +的值为 .13.如图,在△ABC 中,AB =AC ,∠A =30°,以B 为 圆心,BC 的长为半径画弧,交AC 于点D , 连接BD ,则∠ABD = .14.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .15.一个大正方形和四个全等的小正方形按 图①、②两种方式摆放,则图②的大正 方形中未被小正方形覆盖部分的面积 是 (用a 、b 的代数式表示). 16.姐妹两人在50米的跑道上进行短跑比赛,两人从出发点同时起跑,姐姐到达终点时, 妹妹离终点还差3米,已知姐妹两人的平均速度分别为a 米/秒、b 米/秒.如果两人 想同时到达终点,起跑时姐姐需后退 米.三、解答题: 17、18、19、20题各8分,21、 22题各10分,共52分.解答应写出文字说明、证明过程或演算步骤.(2)先化简,再求值:2[(2)(2)(2)]4a b a b a b b --+-÷,其中2=a ,1-=b .(1)解方程:1221+=+-x x ;(2) 化简:)21()(2222abb a ab a b b ab a ++÷---.19.(本小题满分8分)如图,在△ABC中,AB=AC,点F在AC上,在BA的延长线上截取AE=AF,EF的延长线交BC于D点,求证:EF⊥BC.20.(本小题满分8分)AOB的顶点O在直线l上,且AO=AB.(1)画出△AOB关于直线l成轴对称的图形△COD,且使点A的对称点为点C;(2)在(1)的条件下,AC与BD的位置关系是;(3)在(1)、(2)的条件下,连接AD,如果∠ABD=2∠ADB,求∠AOC的度数.21.(本小题满分10分)队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程甲队计划用若干天完成,若在甲队独立工作6天后,乙队加入此项工作,结果比甲队计划时间提前8天完成任务.(1)求甲队计划完成这项工程需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.22.(本小题满分10分),AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s 的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.附加题20分:(市重点学校:外大附校、二中、十四中、五十七中、扶抡中学、红光中学必答,其它学校选答)一、填空题:(本大题共4个小题,每小题3分,共12分.将答案填在题中横线上) 1. 若x =20072007200720112007200820072010⨯-⨯,y =20072008200720122007200920072011⨯-⨯,x 、y 2. 如果a 、b 是整数,且12-+x x 是13++bx ax 的因式,则b 的值为 .3. 已知x 为整数,且 222218339x x x x ++++-- 为整数,则所有符合条件的x 值的和(不与点A 、点D 重合)将正方形纸片折叠,使点B 落在P 处,点C 落在G 处, PG 交DC 于H ,折痕为EF ,连接BP 、BH . (1)求证:∠APB =∠BPH ;(2)当点P 在边AD 上移动时,△PDH 的周长是否发生变化?并证明你的结论.。

河北区2015-2016 上学期8年级期中数学试卷

河北区2015-2016 上学期8年级期中数学试卷

河北区2015-2016学年度第一学期期中八年级质量检测数 学本试卷满分100分,考试时间70分钟一、选择题:(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形是轴对称图形的是A .B .C .D .2.以下列各组数为长度的三条线段能组成三角形的是A .5,5,8B .4,5,9C .3,5,8D .4,4,93.点M (3,﹣4)关于y 轴的对称点的坐标是 A .(3,4)B .(﹣3,﹣4)C .(﹣3,4)D .(﹣4,3)4.已知一个多边形的内角和等于它的外角和的3倍,那么它的边数是 A .5 B .6 C .7 D .85.用同一种正多边形地砖不能镶嵌成平整的地面的是 A .正三角形地砖 B .正方形地砖 C .正五边形地砖 D .正六边形地砖 AC C .6D .57.长为l 的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x 的取值范围为 A .61≤x <41 B .81≤x <41C .61<x <41D .81<x <418.如图,△ABC 中,∠ABC 、∠EAC 的角平分线BP 、AP 交于点P ,下列结论: ① CP 平分∠ACF ; ②∠AB C +∠APC =180°;③若PM ⊥BE 于M ,PN ⊥BF 于N ,则A M +CN =AC ; ④∠BAC =2∠BPC . 其中正确的是 A .①②③ B .①③④ C .②③④ D .①③9.小明从镜子中看到对面电子钟如图所示,这时的时刻应是 .10.等腰三角形两边长分别是3和6,则该三角形的周长为 .11.如图,△ABC 中,BO ,CO 分别是∠ABC ,∠ACB 的平分线,∠A =50°,则∠BOC 等于________________.12.如图,点B在线段AE上,∠1=∠2,如果添加一个条件,即可得到△ABC ≌△ABD,那么这个条件可以是.(要求:不在图中添加其他辅助线,写出一个条件即可)13.如图,AB=AC,AB的垂直平分线MN交AC于点D,AB=8cm,BC=5cm,则△DBC的周长是cm.14.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是.15.如图所示,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且△ABC的面积是4cm2,则阴影部分面积等于cm2.16.如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=10cm,OC=6cm.F是线段OA上的动点,从点O出发,以1cm/s的速度沿OA方向作匀速运动,点Q在线段AB上.已知A、Q两点间的距离是O、F两点间距离的a倍.若用(a,t)表示经过时间t(s)时,△OCF、△F AQ、△CBQ中有两个三角形全等.请写出(a,t)的所有可能情况.(备用图)三、解答题:(17题6分,18、19、20题各8分,21题10分,22题12分,共52分)17.(本小题满分6分)在边长为1的小正方形组成的正方形网格中建立如图片所示的平面直角坐标系,已知格点三角形ABC (三角形的三个顶点都在小正方形上)(1)画出△ABC 关于直线l :x =﹣1的对称三角形△A 1B 1C 1;(2)写出A 1、B 1、C 1的坐标.18.(本小题满分8分)如图,已知在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的角平分线,若∠B =40°,∠C =62°.求∠DAE 的度数.lO 1 2 3 4-119.(本小题满分8分)如图,E,F在BC上,BE=CF,AB=CD,AB∥CD.求证:(1)△ABF ≌△DCE.(2)AF∥DE.21.(本小题满分10分)如图,在△ABC中,AD为∠BAC的平分线,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC交AC的延长线于F.(1)求证:BE=CF;(2)如果AB=6,AC=4,求BE的长.22.(本小题满分12分)如图,已知点A(a,0),B(0,b),且(a+2)2+|b-4|=0,以B点为直角顶点在第二象限作等腰直角△ABC.(1)填空:a=,b=;(2)求C点的坐标;(需要过程)(3)在坐标平面内是否存在点P(不与点C重合),使△P AB与△ABC全等?若存在,请直接写出满足条件的所有P点的坐标(不需要过程);若不存在,请说明理由.。

2015-2016年天津市河西区八年级(上)期末数学试卷和参考答案

2015-2016年天津市河西区八年级(上)期末数学试卷和参考答案

10. (3 分)如图,先将正方形纸片对折,折痕为 MN,再把 B 点折叠在折痕 MN 上,折痕为 AE,点 B 在 MN 上的对应点为 H,沿 AH 和 DH 剪下得到△ADH,则 下列选项正确的个数为( )
①AE 垂直平分 HB;②∠HBN=15°;③DH=DC;④△ADH 是一个等边三角形.
A.1 个 B.2 个 C.3 个 D.4 个
C. (5,﹣1) D. (1,﹣5) )
2. (3 分)下列图形中,可以看做是轴对称图形的是(
A.1 个 B.2 个 C.3 个 D.4 个 3. (3 分)下列等式不成立的是( A. (ab)2=a2b2 B.a5÷a2=a3 4. (3 分)化简( A. B. C. )
C. (a﹣b)2=(b﹣a)2 D. (a+b)2=(﹣a+b)2 )÷ D. 的结果为( )
5. (3 分)如图,地面上有三个洞口 A、B、C,老鼠可以从任意一个洞口跑出, 猫为能同时最省力地顾及到三个洞口(到 A、B、C 三个点的距离相等) ,尽快抓 到老鼠,应该蹲守在( )
A.△ABC 三边垂直平分线的交点 C.△ABC 三条高所在直线的交点
B.△ABC 三条角平分线的交点 D.△ABC 三条中线的交点 )根木条.
6. (3 分)要使六边形木架不变形,至少要再钉上( A.2 B.3 C.4 D.5
7. (3 分)纳米是非常小的长度单位,1nm=10﹣9m,那么,1mm3 的空间可以放 多少个 1nm3 的物体(不计物体之间的间隙) (
第 1 页(共 17 页)

A.1018 B.10﹣9 C.10﹣18
D.109
22. (8 分)甲乙两人做某种机器零件,已知甲每小时比乙多做 6 个,甲做 90 个 所用的时间与乙做 60 个所用的时间相等,求甲乙每小时各做多少个零件? 23. (8 分)如图 1,直线 AB 交 x 轴于点 A(4,0) ,交 y 轴于点 B(0,﹣4) , (1)如图,若 C 的坐标为(﹣1,0) ,且 AH⊥BC 于点 H,AH 交 OB 于点 P,试 求点 P 的坐标; (2)在(1)的条件下,如图 2,连接 OH,求证:∠OHP=45°; (3)如图 3,若点 D 为 AB 的中点,点 M 为 y 轴正半轴上一动点,连结 MD,过 点 D 作 DN⊥DM 交 x 轴于 N 点,当 M 点在 y 轴正半轴上运动的过程中,式子 S

[精品]2016-2017学年天津市部分区八年级(上)期末数学试卷与参考答案

[精品]2016-2017学年天津市部分区八年级(上)期末数学试卷与参考答案

2016-2017学年天津市部分区八年级(上)期末数学试卷一、选择题(本题包括12小题,每小题3分,共36分)1.(3分)下列式子是分式的是()A.B. C.+y D.2.(3分)计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a63.(3分)如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A.2 B.3 C.6 D.74.(3分)下列平面图形中,不是轴对称图形的是()A.B.C. D.5.(3分)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2D.3a2•2a3=6a5 6.(3分)下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 D.a2﹣1=a(a﹣)7.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等8.(3分)下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+19.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形10.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个11.(3分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=12.(3分)已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)若分式有意义,则x的取值范围是.14.(3分)若a2+ab+b2+M=(a﹣b)2,那么M=.15.(3分)在实数范围内分解因式:x2y﹣4y=.16.(3分)如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是.17.(3分)若关于x的方程无解,则m的值是.18.(3分)如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,第n个等腰三角形的底角的度数是度.三、解答题(本题共46分)19.(6分)(1)计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).20.(4分)解方程:﹣=21.(6分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.22.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.23.(8分)(1)计算:+(2)先化简,再求值:()÷,其中x=3.24.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?25.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.2016-2017学年天津市部分区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题包括12小题,每小题3分,共36分)1.(3分)下列式子是分式的是()A.B. C.+y D.【解答】解:A、分母中不含有字母的式子是整式,故A错误;B、分母中含有字母的式子是分式,故B正确;C、分母中不含有字母的式子是整式,故C错误;D、分母中不含有字母的式子是整式,故D错误;故选:B.2.(3分)计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a6【解答】解:(﹣3a3)2=9a6.故选C.3.(3分)如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A.2 B.3 C.6 D.7【解答】解:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7.故选:C.4.(3分)下列平面图形中,不是轴对称图形的是()A.B.C. D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.5.(3分)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2D.3a2•2a3=6a5【解答】解:A、﹣2(a+b)=﹣2a﹣2b,故此选项错误;B、x5+x5=2x5,故此选项错误;C、a6﹣a4,无法计算,故此选项错误;D、3a2•2a3=6a5,正确.故选:D.6.(3分)下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 D.a2﹣1=a(a﹣)【解答】解:把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,称为多项式的因式分解故选(B)7.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.8.(3分)下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+1【解答】解:A、y2﹣2xy﹣3x2=(y﹣3x)(y+x),故不含因式(y+1).B、(y+1)2﹣(y﹣1)2=[(y+1)﹣(y﹣1)][(y+1)+(y﹣1)]=4y,故不含因式(y+1).C、(y+1)2﹣(y2﹣1)=(y+1)2﹣(y+1)(y﹣1)=2(y+1),故含因式(y+1).D、(y+1)2+2(y+1)+1=(y+2)2,故不含因式(y+1).故选C.9.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选B.10.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积==AC•BD,故③正确;故选D.11.(3分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【解答】解:由题意可得,﹣=,故选C.12.(3分)已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是()A.4个 B.3个 C.2个 D.1个【解答】解:∵a2+b2+c2=ab+bc+ca,∴2a2+2b2+2c2=2ab+2bc+2ca,即(a﹣b)2+(b﹣c)2+(a﹣c)2=0,∴a=b=c,∴此三角形为等边三角形,同时也是锐角三角形.故选C.二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)若分式有意义,则x的取值范围是x≠1.【解答】解:由题意得:x﹣1≠0,解得:x≠1,故答案为:x≠1.14.(3分)若a2+ab+b2+M=(a﹣b)2,那么M=﹣3ab.【解答】解:∵a2+ab+b2+M=(a﹣b)2=a2﹣2ab+b2,∴M=﹣3ab.故答案为:﹣3ab.15.(3分)在实数范围内分解因式:x2y﹣4y=y(x+2)(x﹣2).【解答】解:原式=y(x2﹣4)=y(x+2)(x﹣2),故答案为:y(x+2)(x﹣2)16.(3分)如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是3.【解答】解:∵△ABC关于直线AD对称,∴B、C关于直线AD对称,∴△CEF和△BEF关于直线AD对称,∴S=S△CEF,△BEF∵△ABC的面积是:×BC×AD=×3×4=6,∴图中阴影部分的面积是S=3.△ABC故答案为:3.17.(3分)若关于x的方程无解,则m的值是2.【解答】解:关于x的分式方程无解即是x=1,将方程可转化为m﹣1﹣x=0,当x=1时,m=2.故答案为2.18.(3分)如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,第n个等腰三角形的底角的度数是度.【解答】解:∵在△ABA1中,∠B=30°,AB=A1B,∴∠BA1A==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°=37.5°;同理可得,∠EA3A2=,∠FA4A3=,∴第n个等腰三角形的底角的度数=.故答案为.三、解答题(本题共46分)19.(6分)(1)计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).【解答】解:(1)(12a3﹣6a2+3a)÷3a=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1(2)(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.20.(4分)解方程:﹣=【解答】解:方程两边同乘以(x+1)(x﹣1),得2(x﹣1)﹣3(x+1)=6,∴2x﹣2﹣3x﹣3=6,∴x=﹣11.经检验:x=﹣11是原方程的根.21.(6分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.【解答】证明:∵∠C=90°,∴DC⊥AC.∵AD是∠BAC的平分线,DE⊥AB,∴DC=DE.在Rt△DCF和Rt△DEB中,,∴Rt△DCF≌Rt△DEB(HL),∴CF=EB.22.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.【解答】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=18.故代数式a3b+2a2b2+ab3的值是18.23.(8分)(1)计算:+(2)先化简,再求值:()÷,其中x=3.【解答】解:(1)原式=+=+=;(2)原式=[﹣]•=•=,当x=3时,原式=.24.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?【解答】解:(1)设乙公司单独完成此项工程需x天,则甲公司单独完成需要1.5x天.由题意,得=.解得:x=30经检验x=30是原方程的解.则1.5x=45.答:甲公司单独完成需要45天,乙公司单独完成需要30天.(2)设甲公司每天的施工费用为y元,则乙公司每天的施工费用为(y+2000)元.由题意,得18(y+y+2000)=144000.解得y=3000.则y+2000=5000.甲公司施工费为:3000×45=135000乙公司施工费为:5000×30=150000答:甲公司施工费用较少.25.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是50度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.【解答】解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14﹣8=6;②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PB=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14.。

2015-2016学年度第一学期八年级数学上册期末考试试卷

2015-2016学年度第一学期八年级数学上册期末考试试卷

八年级数学 第1页,共3页密学校 班级姓名 学号密 封 线 内 不 得 答 题2015-2016学年第一学期期末考试 座次号:八年级数学试卷一.选择题(每题3分,共30分)1. 下列各式中,正确的是( )A .()222-=- B .()932=- C .39±= D .39±=±2.在坐标平面内,有一点P (a ,b ),若ab=0,那么点P 的位置在…( ) A. 原点 B. 坐标轴上 C. y 轴 D. x 轴上3.一次函数y=-2x-3的图像不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 4.到三角形三个顶点的距离相等的点是三角形( )的交点.A. 三个内角平分线B. 三边垂直平分线C. 三条中线D. 三条高线 5.如图,函数y 1=ax +b 与y 2=bx+a 正确的图象为( )1 6. 方程组{4x 3y=k 2x+3y=5-的解x 与y 的值相等,则k =( )A. 1或-1B. -5C.5D. 1 则这12名队员年龄的众数、中位数分别是( ) A. 20,19 B. 19,19 C. 19,20.5 D. 19,208. 如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交 AC 于点D ,则△BDC 的周长是( )A .8B .9C .10D .11 9.如图,下列判断正确的是( )A .若∠1=∠2,则AD∥BCB .若∠1=∠2,则AB∥CDC .若∠A=∠3,则AD∥BCD .若∠A+∠ADC=180°, 则AD∥BC10. 如图,在△ABC 中,点D ,E 分别在边AC ,AB 上,BD 与CE 交于点O ,给出下列四个条件:①∠EBO=∠DCO ;②BE=CD ;③OB=OC ;④OE=OD .从上述四个条件中,选取两个条件,不能判定△ABC 是等腰三角形的是( ) A .①② B .①③ C .③④ D .②③二、填空题(每题4分,共40分)11.的平方根是 .12.把命题“对顶角相等”写成“如果…那么…”的形式 为: . 13. 已知x 、y 是实数,且,则(x ﹣y )2016= .14.已知等腰三角形的两边长分别为5㎝、3㎝,则该等腰三角形的 周长是15.已知直线y=(2m+1)x + m -3与直线 y=3x +3平行,则m= 16.已知数据1,2,3,4,5的方差为2,则11,12,13,14,15的方差为 标准差为17.小明参加了某电视台招聘记者的三项素质测试,成绩如下:采访写作70分,计算机操作60分,创意设计88分,如果采访写作、计算机操作和创意设计的成绩按4:1:3计算,则他的素质测试平均成绩为 分. 18.如右图,已知函数y ax b =+和y kx =的图象交于点P ,则根据图象可得,关于y ax by kx =+⎧⎨=⎩的二元一次方程组的解是 .19.如图,在△ABC 中,∠A=50°, ∠ABC、∠ACB 的角平分线相交于点P , 则∠BPC 的度数为 .20.==第2页,共3 页的规律用含自然数n(n≥1)的等式表示出来___________________。

2015-2016学年度第一学期期末八年级数学试题(含答案)

2015-2016学年度第一学期期末八年级数学试题(含答案)

2015—2016学年度第一学期期末考试八 年 级 数 学 试 卷试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分,考试时间100分钟。

答题前,学生务必将自己的姓名和学校、班级、学号等填写在答题卷上;答案必须写在答题卷各题目指定区域内的相应位置上;考试结束后,只需将答题卷交回。

第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确) 1、9的平方根是( ).A .3B .-3C .±3D .±32、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .1、2、3B . 2、3、4C . 3、4、5D .4、5、63、下列说法:①实数与数轴上的点一一对应;②2a 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A B C D5、若一个多边形的内角和等于720°,则这个多边形的边数是( ). A .5 B .6 C .7 D .86、为筹备本班元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A .中位数 B .平均数 C .加权平均数 D .众数7、如图,已知棋子“车”的坐标为(-2,3),棋子“马” 的坐标为 (1,3),则棋子“炮”的坐标为( ).A .(3,1)B .(2,2)C .(3,2)D .(-2,2)8.下列一次函数中,y 的值随着x 值的增大而减小的是( ). A .y =x B .y =-x C .y =x +1 D .y = x -19、如图所示,两张等宽的纸条交叉重叠在一起,则重叠部分ABCD 一定是( ). A .菱形 B .矩形 C .正方形 D .梯形10、一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )A B C D(第9题图)(第7题图)第Ⅱ卷(非选择题)二、填空题(本大题共5小题,每小题3分,共15分,将答案填写在题中横线上) 11、比较大小:32(填“>”、“<”、或“=”).12、写出一个你所学过的既是轴对称又是中心对称图形的四边形: .13、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.14、 如图,若直线l 1:32-=x y 与l 2:3+-=x y 相交于点P ,则根据图象可得,二元一次方程组⎩⎨⎧=+=-332y x y x 的解是 . 15、 如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),要使以A 、B 、 C 、D 为顶点的四边形是平行四边形,且点D 坐标在第一象限,那么点D 的坐标是 .三、解答题(本大题共10小题,共75分。

天津市河北区八年级上期末数学试卷(有答案)-精选

天津市河北区八年级上期末数学试卷(有答案)-精选

天津市河北区八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.2.(3分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2D.ax2﹣a=a(x2﹣1)3.(3分)要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠34.(3分)计算x3•x2的结果是()A.x6B.x5C.x2D.x5.(3分)已知点P(a,3)、Q(﹣2,b)关于y轴对称,则=()A.﹣5 B.5 C.﹣ D.6.(3分)下列各式:①,②,③,④,其中是分式的有()A.①②③④B.①④C.①②④D.②④7.(3分)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.B.C.D.8.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6 B.8 C.10 D.12二、填空题(本大题共8个小题,每小题3分,共24分,将答案填在题中横线上)9.(3分)当x=时,分式的值为零.10.(3分)一种病毒的直径为0.000023m,这个数用科学记数法表示为.11.(3分)已知x m=6,x n=3,则x2m﹣n的值为.12.(3分)分解因式:27x2+18x+3=.13.(3分)若关于x的分式方程无解,则m的值是.14.(3分)如图,在等腰△ABC的两腰AB、BC上分别取点D和E,使DB=DE,此时恰有∠ADE=∠ACB,则∠B的度数是.15.(3分)如图,∠ABC=50°,BD平分∠ABC,过D作DE∥AB交BC于点E,若点F在AB上,且满足DF=DE,则∠DFB的度数为.16.(3分)如图,△ADB、△BCD都是等边三角形,点E,F分别是AB,AD上两个动点,满足AE=DF.连接BF与DE相交于点G,CH⊥BF,垂足为H,连接CG.若DG=a,BG=b,且a、b满足下列关系:a2+b2=5,ab=2,则GH=.三、解答题(17、18、19、20题各8分,21、22题10分,共52分,解答应写出文字说明、证明过程或演算步骤)17.(8分)(1)(﹣2a)3﹣(﹣a)•(3a)2(2)(2a﹣3b)2﹣4a(a﹣2b)18.(8分)先化简再求值:(1﹣)÷,其中x=()﹣1+3019.(8分)解分式方程: +=1.20.(8分)已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,求证:PQ=BP.21.(10分)某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,两批文具的售价为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板第一次购进的文具有30元的损耗,第二次购进的文具有125元的损耗,问文具店老板在这两笔生意中是盈利还是亏本?请说明理由.22.(10分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,连接DA并延长,交y轴于点E.①△OBC与△ABD全等吗?判断并证明你的结论;②当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?2017-2018学年天津市河北区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C. D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.2.(3分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2D.ax2﹣a=a(x2﹣1)【解答】解:(A)x2+2x﹣1≠(x﹣1)2,故A不是因式分解,(B)a2﹣b2=(a+b)(a﹣b),故B不是因式分解,(D)a x2﹣a=a(x2﹣1)=a(x+1)(x﹣1),故D分解不完全,故选:C.3.(3分)要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠3【解答】解:当x﹣3≠0时,分式有意义,即当x≠3时,分式有意义,故选:D.4.(3分)计算x3•x2的结果是()A.x6B.x5C.x2D.x【解答】解:x3•x2=x3+2=x5.故选:B.5.(3分)已知点P(a,3)、Q(﹣2,b)关于y轴对称,则=()A.﹣5 B.5 C.﹣ D.【解答】解:∵点P(a,3)、Q(﹣2,b)关于y轴对称,∴a=2,b=3,则==﹣.故选:C.6.(3分)下列各式:①,②,③,④,其中是分式的有()A.①②③④B.①④C.①②④D.②④【解答】解:式子:①,②,③,④,其中是分式的有:①,④.故选:B.7.(3分)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.B.C.D.【解答】解:设小朱速度是x米/分,则爸爸的速度是(x+100)米/分,由题意得:=+10,即:=+10,故选:B.8.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6 B.8 C.10 D.12【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=16,解得AD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故选:C.二、填空题(本大题共8个小题,每小题3分,共24分,将答案填在题中横线上)9.(3分)当x=﹣3时,分式的值为零.【解答】解:要使分式由分子x2﹣9=0解得:x=±3.而x=﹣3时,分母x﹣3=﹣6≠0.x=3时分母x﹣3=0,分式没有意义.所以x的值为﹣3.故答案为:﹣3.10.(3分)一种病毒的直径为0.000023m,这个数用科学记数法表示为 2.3×10﹣5..【解答】解:0.000023=2.3×10﹣5,故答案为:2.3×10﹣5.11.(3分)已知x m=6,x n=3,则x2m﹣n的值为12.【解答】解:x2m﹣n=(x m)2÷x n=36÷3=12.故答案为:12.12.(3分)分解因式:27x2+18x+3=3(3x+1)2.【解答】解:27x2+18x+3,=3(9x2+6x+1),=3(3x+1)2.13.(3分)若关于x的分式方程无解,则m的值是3.【解答】解:去分母,得m﹣3=x﹣1,x=m﹣2.∵关于x的分式方程无解,∴最简公分母x﹣1=0,∴x=1,当x=1时,得m=3,即m的值为3.故答案为3.14.(3分)如图,在等腰△ABC的两腰AB、BC上分别取点D和E,使DB=DE,此时恰有∠ADE=∠ACB,则∠B的度数是20°.【解答】解:设∠B=x.∵DB=DE,∴∠DEB=∠B=x,∴∠ADE=∠DEB+∠B=2x,∴∠ACB=2∠ADE=4x.∵AB=BC,∴∠ACB=∠A=4x.在△ABC中,∵∠A+∠B+∠C=180°,∴4x+x+4x=180°,∴x=20°.即∠B的度数是20°.故答案为20°.15.(3分)如图,∠ABC=50°,BD平分∠ABC,过D作DE∥AB交BC于点E,若点F在AB上,且满足DF=DE,则∠DFB的度数为50°或130°.【解答】解:如图,DF=DF′=DE;∵BD平分∠ABC,由图形的对称性可知:△BDE≌△BDF,∴∠DFB=∠DEB;∵DE∥AB,∠ABC=50°,∴∠DEB=180°﹣50°=130°;∴∠DFB=130°;当点F位于点F′处时,∵DF=DF′,∴∠DF′B=∠DFF′=50°,故答案是:50°或130°.16.(3分)如图,△ADB、△BCD都是等边三角形,点E,F分别是AB,AD上两个动点,满足AE=DF.连接BF与DE相交于点G,CH⊥BF,垂足为H,连接CG.若DG=a,BG=b,且a、b满足下列关系:a2+b2=5,ab=2,则GH=.【解答】证明:延长FB到点M,使BM=DG,连接CM∵△ABD是等边三角形,∴AD=BD,∠A=∠ABD=60°,在△AED与△DFB中,,∴△AED≌△DFB(SAS),∴∠ADE=∠DBF,∵∠CDG=∠ADC﹣∠ADE=120°﹣∠ADE,∠CBM=120°﹣∠DBF,∴∠CBM=∠CDG,∵△DBC是等边三角形,∴CD=CB,在△CDG和△CBM中,∴△CDG≌△CBM,∴∠DCG=∠BCM,CG=CM,∴∠GCM=∠DCB=60°,∴△CGM是等边三角形,∴CG=GM=BG+BM=BG+DG,∵(a+b)2=a2+b2+2ab=9,∴a+b=3,∴CG=3,∴GH=CG=.故答案为:.三、解答题(17、18、19、20题各8分,21、22题10分,共52分,解答应写出文字说明、证明过程或演算步骤)17.(8分)(1)(﹣2a)3﹣(﹣a)•(3a)2(2)(2a﹣3b)2﹣4a(a﹣2b)【解答】解:(1)(﹣2a)3﹣(﹣a)•(3a)2=﹣8a3﹣(﹣a)•9a2=﹣8a3+9a3=a3;(2)(2a﹣3b)2﹣4a(a﹣2b)=4a2﹣12ab+9b2﹣4a2+8ab=﹣4ab+9b2.18.(8分)先化简再求值:(1﹣)÷,其中x=()﹣1+30【解答】解:原式=•=,当x=()﹣1+30=3+1=4时,原式==2.19.(8分)解分式方程: +=1.【解答】解:去分母得:x2﹣x﹣2=x2﹣3x,解得:x=1,经检验x=1是分式方程的解.20.(8分)已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,求证:PQ=BP.【解答】解:AE=CD,AC=BC,∴EC=BD;∵△ABC为等边三角形,∴∠C=∠ABC=60°,AB=BC,在△BEC与△ADB中,,∴△BEC≌△ADB(SAS),∴∠EBC=∠BAD;∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∵∠BPQ是△ABP外角,∴∠ABP+∠BAP=60°=∠BPQ,又∵BQ⊥AD,∴∠PBQ=30°,∴PQ=BP.21.(10分)某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,两批文具的售价为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板第一次购进的文具有30元的损耗,第二次购进的文具有125元的损耗,问文具店老板在这两笔生意中是盈利还是亏本?请说明理由.【解答】解:(1)设第一次购进x件文具,第二次就购进2x件文具,由题意得,=﹣2.5,解得:x=100,经检验,x=100是原方程的解,且符合题意,则2x=2×100=200.答:第二次购进200件文具;(2)第一次购进100件文具,利润为:(15﹣10)×100﹣30=470(元);第二次购进200件文具,利润为:(15﹣12.5)×200﹣125=375(元),两笔生意是盈利:利润为470+375=845元.22.(10分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,连接DA并延长,交y轴于点E.①△OBC与△ABD全等吗?判断并证明你的结论;②当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?【解答】解:(1)△OBC≌△ABD.证明:∵△AOB,△CBD都是等边三角形,∴OB=AB,CB=DB,∠ABO=∠DBC,∴∠OBC=∠ABC,在△OBC和△ABD中,,∴△OBC≌△ABD(SAS);(2)∵△OBC≌△ABD,∴∠BOC=∠BAD=60°,又∵∠OAB=60°,∴∠OAE=180°﹣60°﹣60°=60°,∴∠EAC=120°,∠OEA=30°,∴以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,∵在Rt△AOE中,OA=1,∠OEA=30°,∴AE=2,∴AC=AE=2,∴OC=1+2=3,∴当点C的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.。

最新天津市河北区八年级上期末数学试卷(有答案)

最新天津市河北区八年级上期末数学试卷(有答案)

天津市河北区八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.2.(3分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2D.ax2﹣a=a(x2﹣1)3.(3分)要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠34.(3分)计算x3•x2的结果是()A.x6B.x5C.x2D.x5.(3分)已知点P(a,3)、Q(﹣2,b)关于y轴对称,则=()A.﹣5 B.5 C.﹣ D.6.(3分)下列各式:①,②,③,④,其中是分式的有()A.①②③④B.①④C.①②④D.②④7.(3分)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.B.C.D.8.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6 B.8 C.10 D.12二、填空题(本大题共8个小题,每小题3分,共24分,将答案填在题中横线上)9.(3分)当x=时,分式的值为零.10.(3分)一种病毒的直径为0.000023m,这个数用科学记数法表示为.11.(3分)已知x m=6,x n=3,则x2m﹣n的值为.12.(3分)分解因式:27x2+18x+3=.13.(3分)若关于x的分式方程无解,则m的值是.14.(3分)如图,在等腰△ABC的两腰AB、BC上分别取点D和E,使DB=DE,此时恰有∠ADE=∠ACB,则∠B的度数是.15.(3分)如图,∠ABC=50°,BD平分∠ABC,过D作DE∥AB交BC于点E,若点F在AB上,且满足DF=DE,则∠DFB的度数为.16.(3分)如图,△ADB、△BCD都是等边三角形,点E,F分别是AB,AD上两个动点,满足AE=DF.连接BF与DE相交于点G,CH⊥BF,垂足为H,连接CG.若DG=a,BG=b,且a、b满足下列关系:a2+b2=5,ab=2,则GH=.三、解答题(17、18、19、20题各8分,21、22题10分,共52分,解答应写出文字说明、证明过程或演算步骤)17.(8分)(1)(﹣2a)3﹣(﹣a)•(3a)2(2)(2a﹣3b)2﹣4a(a﹣2b)18.(8分)先化简再求值:(1﹣)÷,其中x=()﹣1+3019.(8分)解分式方程: +=1.20.(8分)已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,求证:PQ=BP.21.(10分)某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,两批文具的售价为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板第一次购进的文具有30元的损耗,第二次购进的文具有125元的损耗,问文具店老板在这两笔生意中是盈利还是亏本?请说明理由.22.(10分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,连接DA并延长,交y轴于点E.①△OBC与△ABD全等吗?判断并证明你的结论;②当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?2017-2018学年天津市河北区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C. D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.2.(3分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2D.ax2﹣a=a(x2﹣1)【解答】解:(A)x2+2x﹣1≠(x﹣1)2,故A不是因式分解,(B)a2﹣b2=(a+b)(a﹣b),故B不是因式分解,(D)a x2﹣a=a(x2﹣1)=a(x+1)(x﹣1),故D分解不完全,故选:C.3.(3分)要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠3【解答】解:当x﹣3≠0时,分式有意义,即当x≠3时,分式有意义,故选:D.4.(3分)计算x3•x2的结果是()A.x6B.x5C.x2D.x【解答】解:x3•x2=x3+2=x5.故选:B.5.(3分)已知点P(a,3)、Q(﹣2,b)关于y轴对称,则=()A.﹣5 B.5 C.﹣ D.【解答】解:∵点P(a,3)、Q(﹣2,b)关于y轴对称,∴a=2,b=3,则==﹣.故选:C.6.(3分)下列各式:①,②,③,④,其中是分式的有()A.①②③④B.①④C.①②④D.②④【解答】解:式子:①,②,③,④,其中是分式的有:①,④.故选:B.7.(3分)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.B.C.D.【解答】解:设小朱速度是x米/分,则爸爸的速度是(x+100)米/分,由题意得:=+10,即:=+10,故选:B.8.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6 B.8 C.10 D.12【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=16,解得AD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故选:C.二、填空题(本大题共8个小题,每小题3分,共24分,将答案填在题中横线上)9.(3分)当x=﹣3时,分式的值为零.【解答】解:要使分式由分子x2﹣9=0解得:x=±3.而x=﹣3时,分母x﹣3=﹣6≠0.x=3时分母x﹣3=0,分式没有意义.所以x的值为﹣3.故答案为:﹣3.10.(3分)一种病毒的直径为0.000023m,这个数用科学记数法表示为 2.3×10﹣5..【解答】解:0.000023=2.3×10﹣5,故答案为:2.3×10﹣5.11.(3分)已知x m=6,x n=3,则x2m﹣n的值为12.【解答】解:x2m﹣n=(x m)2÷x n=36÷3=12.故答案为:12.12.(3分)分解因式:27x2+18x+3=3(3x+1)2.【解答】解:27x2+18x+3,=3(9x2+6x+1),=3(3x+1)2.13.(3分)若关于x的分式方程无解,则m的值是3.【解答】解:去分母,得m﹣3=x﹣1,x=m﹣2.∵关于x的分式方程无解,∴最简公分母x﹣1=0,∴x=1,当x=1时,得m=3,即m的值为3.故答案为3.14.(3分)如图,在等腰△ABC的两腰AB、BC上分别取点D和E,使DB=DE,此时恰有∠ADE=∠ACB,则∠B的度数是20°.【解答】解:设∠B=x.∵DB=DE,∴∠DEB=∠B=x,∴∠ADE=∠DEB+∠B=2x,∴∠ACB=2∠ADE=4x.∵AB=BC,∴∠ACB=∠A=4x.在△ABC中,∵∠A+∠B+∠C=180°,∴4x+x+4x=180°,∴x=20°.即∠B的度数是20°.故答案为20°.15.(3分)如图,∠ABC=50°,BD平分∠ABC,过D作DE∥AB交BC于点E,若点F在AB上,且满足DF=DE,则∠DFB的度数为50°或130°.【解答】解:如图,DF=DF′=DE;∵BD平分∠ABC,由图形的对称性可知:△BDE≌△BDF,∴∠DFB=∠DEB;∵DE∥AB,∠ABC=50°,∴∠DEB=180°﹣50°=130°;∴∠DFB=130°;当点F位于点F′处时,∵DF=DF′,∴∠DF′B=∠DFF′=50°,故答案是:50°或130°.16.(3分)如图,△ADB、△BCD都是等边三角形,点E,F分别是AB,AD上两个动点,满足AE=DF.连接BF与DE相交于点G,CH⊥BF,垂足为H,连接CG.若DG=a,BG=b,且a、b满足下列关系:a2+b2=5,ab=2,则GH=.【解答】证明:延长FB到点M,使BM=DG,连接CM∵△ABD是等边三角形,∴AD=BD,∠A=∠ABD=60°,在△AED与△DFB中,,∴△AED≌△DFB(SAS),∴∠ADE=∠DBF,∵∠CDG=∠ADC﹣∠ADE=120°﹣∠ADE,∠CBM=120°﹣∠DBF,∴∠CBM=∠CDG,∵△DBC是等边三角形,∴CD=CB,在△CDG和△CBM中,∴△CDG≌△CBM,∴∠DCG=∠BCM,CG=CM,∴∠GCM=∠DCB=60°,∴△CGM是等边三角形,∴CG=GM=BG+BM=BG+DG,∵(a+b)2=a2+b2+2ab=9,∴a+b=3,∴CG=3,∴GH=CG=.故答案为:.三、解答题(17、18、19、20题各8分,21、22题10分,共52分,解答应写出文字说明、证明过程或演算步骤)17.(8分)(1)(﹣2a)3﹣(﹣a)•(3a)2(2)(2a﹣3b)2﹣4a(a﹣2b)【解答】解:(1)(﹣2a)3﹣(﹣a)•(3a)2=﹣8a3﹣(﹣a)•9a2=﹣8a3+9a3=a3;(2)(2a﹣3b)2﹣4a(a﹣2b)=4a2﹣12ab+9b2﹣4a2+8ab=﹣4ab+9b2.18.(8分)先化简再求值:(1﹣)÷,其中x=()﹣1+30【解答】解:原式=•=,当x=()﹣1+30=3+1=4时,原式==2.19.(8分)解分式方程: +=1.【解答】解:去分母得:x2﹣x﹣2=x2﹣3x,解得:x=1,经检验x=1是分式方程的解.20.(8分)已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,求证:PQ=BP.【解答】解:AE=CD,AC=BC,∴EC=BD;∵△ABC为等边三角形,∴∠C=∠ABC=60°,AB=BC,在△BEC与△ADB中,,∴△BEC≌△ADB(SAS),∴∠EBC=∠BAD;∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∵∠BPQ是△ABP外角,∴∠ABP+∠BAP=60°=∠BPQ,又∵BQ⊥AD,∴∠PBQ=30°,∴PQ=BP.21.(10分)某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,两批文具的售价为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板第一次购进的文具有30元的损耗,第二次购进的文具有125元的损耗,问文具店老板在这两笔生意中是盈利还是亏本?请说明理由.【解答】解:(1)设第一次购进x件文具,第二次就购进2x件文具,由题意得,=﹣2.5,解得:x=100,经检验,x=100是原方程的解,且符合题意,则2x=2×100=200.答:第二次购进200件文具;(2)第一次购进100件文具,利润为:(15﹣10)×100﹣30=470(元);第二次购进200件文具,利润为:(15﹣12.5)×200﹣125=375(元),两笔生意是盈利:利润为470+375=845元.22.(10分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,连接DA并延长,交y轴于点E.①△OBC与△ABD全等吗?判断并证明你的结论;②当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?【解答】解:(1)△OBC≌△ABD.证明:∵△AOB,△CBD都是等边三角形,∴OB=AB,CB=DB,∠ABO=∠DBC,∴∠OBC=∠ABC,在△OBC和△ABD中,,∴△OBC≌△ABD(SAS);(2)∵△OBC≌△ABD,∴∠BOC=∠BAD=60°,又∵∠OAB=60°,∴∠OAE=180°﹣60°﹣60°=60°,∴∠EAC=120°,∠OEA=30°,∴以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,∵在Rt△AOE中,OA=1,∠OEA=30°,∴AE=2,∴AC=AE=2,∴OC=1+2=3,∴当点C的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年天津市河北区八年级(上)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项符合题目的要求的.)1.(3分)下列各式从左到右的变形中,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9 B.m(m﹣1)=m2﹣mC.a2﹣4a﹣5=a(a﹣4)﹣5 D.a2﹣4a+4=(a﹣2)22.(3分)下列能用完全平方公式因式分解的是()A.x2+2xy﹣y2B.﹣xy+y2C.x2﹣2xy+y2D.x2﹣4xy+2y23.(3分)若多项式乘法(x+2y)(2x﹣ky﹣1)的结果中不含xy项,则k的值为()A.4 B.﹣4 C.2 D.﹣24.(3分)下列各式正确的是()A. B. C. D.5.(3分)下列从左到右的变形:①=;②=;③=;④=.其中,正确的是()A.①②B.②④C.③④D.①②③④6.(3分)如果分式的值为零,那么x等于()A.1 B.﹣1 C.0 D.±17.(3分)若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠18.(3分)如图,点P是△ABC外的一点,PD⊥AB于点D,PE⊥AC于点E,PF ⊥BC于点F,连接PB,PC.若PD=PE=PF,∠BAC=70°,则∠BPC的度数为()A.25°B.30°C.35°D.40°二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在题中横线上)9.(3分)若分式有意义,则x的取值范围是.10.(3分)PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为.11.(3分)若a+3b﹣2=0,则3a•27b=.12.(3分)因式分解:x3﹣xy2=.13.(3分)计算(π﹣3.14)0+()﹣2=.14.(3分)计算:(﹣3)2013•(﹣)2011=.15.(3分)如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE=.16.(3分)如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE 是等腰三角形,那么∠OEC的度数为.三、解答题(7题6分,18题10分,19、20题各8分,21、22题各10分,共52分,解答写出文字说明,演算步骤或推理过程)17.(6分)解方程:.18.(10分)(1)若a+b=5,ab=3,求+的值;(2)化简:÷(m+n﹣)19.(8分)如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.20.(8分)如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD 于点Q,PQ=3,PE=1.(1)求证:AD=BE;(2)求AD的长.21.(10分)李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.(1)求李老师步行的平均速度;(2)请你判断李老师能否按时上班,并说明理由.22.(10分)如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(0,m)、B(n,0),且|m﹣n﹣3|+=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA、OB的长;(2)连接PB,设△POB的面积为S,用t的式子表示S;(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.2015-2016学年天津市河北区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项符合题目的要求的.)1.(3分)下列各式从左到右的变形中,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9 B.m(m﹣1)=m2﹣mC.a2﹣4a﹣5=a(a﹣4)﹣5 D.a2﹣4a+4=(a﹣2)2【解答】解:A、右边不是等式积的形式,不是因式分解,故本选项错误;B、右边不是等式积的形式,不是因式分解,故本选项错误;C、右边不是等式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选D.2.(3分)下列能用完全平方公式因式分解的是()A.x2+2xy﹣y2B.﹣xy+y2C.x2﹣2xy+y2D.x2﹣4xy+2y2【解答】解:A、不是两数的平方和加这两个数乘积的二倍,故A错误;B、不是两数的平方和减这两个数乘积的二倍,故B错误;C、两数的平方和减这两个数乘积的二倍,故C正确;D、不是两数的平方和减这两个数乘积的二倍,故D错误;故选:C.3.(3分)若多项式乘法(x+2y)(2x﹣ky﹣1)的结果中不含xy项,则k的值为()A.4 B.﹣4 C.2 D.﹣2【解答】解:(x+2y)(2x﹣ky﹣1)=2x2﹣kxy﹣x+4xy﹣2ky2﹣2y=2x2+(4﹣k)xy﹣x﹣2ky2﹣2y,∵结果中不含xy项,∴4﹣k=0,解得,k=4,故选:A.4.(3分)下列各式正确的是()A. B. C. D.【解答】解:A、=,故A正确;B、=,故B错误;C、=,故C错误;D、=﹣,故D错误.故选A.5.(3分)下列从左到右的变形:①=;②=;③=;④=.其中,正确的是()A.①②B.②④C.③④D.①②③④【解答】解:①=,当a=0时,该等式不成立,故①错误;②=,分式的分子、分母同时乘以b,等式仍成立,即=,故②正确;③=,当c=0时,该等式不成立,故③错误;④=,因为x2+1≠0,即分式的分子、分母同时乘以(x2+1),等式仍成立,即=成立,故④正确;综上所述,正确的②④.故选:B.6.(3分)如果分式的值为零,那么x等于()A.1 B.﹣1 C.0 D.±1【解答】解:∵分式的值为零,∴,解得x=﹣1.故选B.7.(3分)若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1【解答】解:去分母得:m﹣1=2x﹣2,解得:x=,由题意得:≥0且≠1,解得:m≥﹣1且m≠1,故选D8.(3分)如图,点P是△ABC外的一点,PD⊥AB于点D,PE⊥AC于点E,PF ⊥BC于点F,连接PB,PC.若PD=PE=PF,∠BAC=70°,则∠BPC的度数为()A.25°B.30°C.35°D.40°【解答】解:在Rt△BDP和Rt△BFP中,,∴Rt△BDP≌Rt△BFP(HL),∴∠ABP=∠CBP,在Rt△CEP和Rt△CFP中,,Rt△CEP≌Rt△CFP(HL),∴∠ACP=∠FCP,∵∠ACF是△ABC的外角,∴∠ABC+∠BAC=∠ACF,两边都除以2,得:∠ABC+∠BAC=∠ACF,即∠PBC+∠BAC=∠FCP,∵∠PCF是△BCP的外角,∴∠PBC+∠BPC=∠FCP,∴∠BPC=∠BAC=×70°=35°,故答案为:35°.二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在题中横线上)9.(3分)若分式有意义,则x的取值范围是x≠3的全体实数.【解答】解:∵3﹣x≠0,∴x≠3.10.(3分)PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.11.(3分)若a+3b﹣2=0,则3a•27b=9.【解答】解:∵a+3b﹣2=0,∴a+3b=2,则3a•27b=3a×33b=3a+3b=32=9.故答案为:9.12.(3分)因式分解:x3﹣xy2=x(x﹣y)(x+y).【解答】解:x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y).故答案为:x(x﹣y)(x+y).13.(3分)计算(π﹣3.14)0+()﹣2=10.【解答】解:原式=1+9=10,故答案为10.14.(3分)计算:(﹣3)2013•(﹣)2011=9.【解答】解:(﹣3)2013•(﹣)2011=(﹣3)2•(﹣3)2011•(﹣)2011=(﹣3)2•[﹣3×(﹣)]2011=(﹣3)2=9,故答案为:9.15.(3分)如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE=8.【解答】解:由题意可得出:PQ是AB的垂直平分线,∴AE=BE,∵在△ABC中,∠C=90°,∠CAB=60°,∴∠CBA=30°,∴∠EAB=∠CAE=30°,∴CE=AE=4,∴AE=8.故答案为:8.16.(3分)如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE 是等腰三角形,那么∠OEC的度数为120°或75°或30°.【解答】解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=30°,∴∠OEC=180°﹣30°﹣30°=120°;②当E在E2点时,OC=OE,则∠OCE=∠OEC=(180°﹣30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°;故答案为:120°或75°或30°.三、解答题(7题6分,18题10分,19、20题各8分,21、22题各10分,共52分,解答写出文字说明,演算步骤或推理过程)17.(6分)解方程:.【解答】解:方程两边同乘以(x﹣2),得:x﹣3+(x﹣2)=﹣3,解得x=1,检验:x=1时,x﹣2≠0,∴x=1是原分式方程的解.18.(10分)(1)若a+b=5,ab=3,求+的值;(2)化简:÷(m+n﹣)【解答】解:(1)原式==,当a+b=5,ab=3时,原式===;(2)原式=÷=÷=•=.19.(8分)如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.【解答】解:∵△ABC中BD、CD平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠6,∵EF∥BC,∴∠2=∠3,∠4=∠6,∴∠1=∠3,∠4=∠5,根据在同一三角形中等角对等边的原则可知,BE=ED,DF=FC,故EF=ED+DF=BE+CF.20.(8分)如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD 于点Q,PQ=3,PE=1.(1)求证:AD=BE;(2)求AD的长.【解答】(1)证明:∵△ABC为等边三角形,∴AB=CA=BC,∠BAE=∠ACD=60°;在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴AD=BE;(2)解:∵△ABE≌△CAD,∴∠CAD=∠ABE,∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=90°,∴∠PBQ=90°﹣60°=30°,∵PQ=3,∴在Rt△BPQ中,BP=2PQ=6,又∵PE=1,∴AD=BE=BP+PE=6+1=7.21.(10分)李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.(1)求李老师步行的平均速度;(2)请你判断李老师能否按时上班,并说明理由.【解答】解:(1)设李老师步行的平均速度为xm/分钟,骑电瓶车的平均速度为5xm/分钟,由题意得,﹣=20,解得:x=76,经检验,x=76是原分式方程的解,且符合题意,则5x=76×5=380,答:李老师步行的平均速度为76m/分钟,骑电瓶车的平均速度为380m/分;(2)由(1)得,李老师走回家需要的时间为:=12.5(分钟),骑车走到学校的时间为:=5,则李老师走到学校所用的时间为:12.5+5+4=21.5<23,答:李老师能按时上班.22.(10分)如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(0,m)、B(n,0),且|m﹣n﹣3|+=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA、OB的长;(2)连接PB,设△POB的面积为S,用t的式子表示S;(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.【解答】解:(1)∵|m﹣n﹣3|+=0,且|m﹣n﹣3|≥0,≥0∴|m﹣n﹣3|==0,∴n=3,m=6,∴点A(0,6),点B(3,0);(2)连接PB,t秒后,AP=t,OP=|6﹣t|,∴S=OP•OB=|6﹣t|;(t≥0)(3)作出图形,∵∠OAB+∠OBA=90°,∠OAB+∠APD=90°,∠OPE=∠APD,∴∠OBA=∠OPE,∴只要OP=OB,即可求证△EOP≌△AOB,∴AP=AO﹣OP=3,或AP′=OA+OP′=9∴t=3或9.。

相关文档
最新文档