小学数奥竞赛模拟试卷31
小学奥数竞赛试卷(含答案)
小学奥数竞赛试卷一、填空题。
1.(3分)果园收购一批苹果,按质量分为三等,最好的苹果为一等,每千克售价元;其次是二等苹果.每千克售价元;最次的是三等苹果每千克售价元.这三种苹果的数量之比为2:3:1.若将这三种苹果混在一起出售,每千克定价元比较适宜.2.(3分)某班学生不超过60,在一次数学测验中,分数不低于90分的人数占,得80﹣﹣﹣﹣89分的人数占,得70﹣﹣﹣﹣﹣79分的人数占,那么得70分以下的有人.3.(3分)有一列数,按照下列规律排列:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,…这列数的第200个数是.@4.(3分)某个五位数加上20万并且3倍以后,其结果正好与该五位数的右端增加一个数字2的得数相等,这个五位数是.5.(3分)从3、13、17、29、31这五个自然数中,每次取两个数分别作一个分数的分子和分母,一共可组成个最简分数.6.(3分)北京一零一中学由于近年生源质量不断提高,特别是师生们的共同努力,使得高考成绩逐年上升.在2001年高考中有59%的考生考上重点大学;2002年高考中有68%的考生考上重点大学;2003年预计将有74%的考生考上重点大学,这三年一零一中学考上重点大学的年平均增长率是.二、解答题。
-7.如图,过平行四边形ABCD内一点P画一条直线,将平行四边形分成面积相等的两部分(画图并说明方法).8.某学校134名学生到公园租船,租一条大船需60元可乘坐6人;租一条小船需45元可积坐4人,请设计一种租船方案,使租金最省.{9.一列火车驶过长900米的铁路桥,从车头上桥到车尾离桥共用1分25秒钟,紧接着列车又穿过一条长1800米的隧道,从车头进隧道到车尾离开隧道用了2分40秒钟,求火车的速度及车身的长度.10.有一个六位数,它的二倍、三倍、四倍、五倍、六倍还是六位数,并且它们的数字和原来的六位数的数字完全相同只是排列的顺序不一样,求这个六位数.~11.50枚棋子围成圆圈,编上号码1、2、3、4、…50,每隔一枚棋子取出一枚,要求最后留下的枚棋子的号码是42号,那么该从几号棋子开始取呢12.计算(﹣+8)÷37+×!13.1999年2月份,我国城乡居民储蓄存款月末余额是56767亿元,比月初余额增长18%,那么我国城乡居民储蓄存款2月份初余额是亿元(精确到亿元).三、填空题。
小学二年级数学奥林匹克竞赛题(附答案)(14页)
小学二年级数学奥林匹克竞赛题(附答案)1、用0、1、2、3能组成多少个不同的三位数?18个2、小华参加数学竞赛,共有10道赛题。
规定答对一题给十分,答错一题扣五分。
小华十题全部答完,得了85分。
小华答对了几题?(10×10-85)÷(10+5)=1题10-1=9题3、2,3,5,8,12,( 20 ),( 32 )4、1,3,7,15,(31 ),63,( 127 )5、1,5,2,10,3,15,4,( 20 ),( 5)6、○、△、☆分别代表什么数?(1)、○+○+○=18(2)、△+○=14(3)、☆+☆+☆+☆=20○=( 6) △=(8 ) ☆=( 5 )7、△+○=9 △+△+○+○+○=25△=( 2) ○=(7 )8、有35颗糖,按淘气-笑笑-丁丁-冬冬的顺序,每人每次发一颗,想一想,谁分到最后一颗?35÷4=8……3 丁丁9、淘气有300元钱,买书用去56元,买文具用去128元,淘气剩下的钱比原来少多少元?56+128=184(元)10、5只猫吃5只老鼠用5分钟,20只猫吃20只老鼠用多少分钟?5分钟11.修花坛要用94块砖,•第一次搬来36块,第二次搬来38,还要搬多少块?(用两种方法计算)94-(36+38)=20(块)94-36-38=20(块)12.王老师买来一条绳子,长20米剪下5米修理球网,剩下多少米?20-5=15(米)13.食堂买来60棵白菜,吃了56棵,又买来30棵,现在人多少棵?60-56+30=34(棵)14、小红有41元钱,在文具店买了3支钢笔,每支6元钱,还剩多少元?41-3×6=23(元)15、二(1)班从书店买来了89本书,第一组同学借了25本,第二组同学借了38本,还剩多少本?89-25-38=27(本)16、果园里有桃树126颗,是梨树棵数的3倍,果园里桃树和梨树一共多少棵?126+126÷3=16817、1+2+3+4+5+6+7+8+9+10=( 55 )18、11+12+13+14+15+16+17+18+19=( 145 )19、按规律填数。
北京市北京第一实验小学三年级奥数竞赛数学竞赛试卷及答案
一、拓展提优试题1.把一根15米长的钢管锯成5段,每锯一次用6分钟,一共要用分钟.2.期末考试到了,小蕾的前两门语文和数学的平均分是90分,如果他希望自己的语文、数学、英语三门平均分能够不低于92分,那么他的英语至少要考到分.3.奶奶折一个纸鹤用3分钟,每折好一个需要休息1分钟,奶奶从2时30分开始折,她折好第5个纸鹤时已经到了()A.2时45分B.2时49分C.2时50分D.2时53分4.这个图形最少是由()个正方体整齐堆放而成的.A.12B.13C.14D.155.如图的两个竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么所代表的四位数是()A.5240B.3624C.7362D.75646.如图,每条边都相等,每个角都是直角,则根据信息,求下图的面积为()平方厘米.A.16B.20C.24D.327.亮亮早上8:00从甲地出发去乙地,速度是每小时8千米.他在中间休息了1小时,结果中午12:00到达乙地.那么,甲、乙两地之间的距离是()千米.A.16B.24C.32D.408.大、中、小三个正方形,边长都是整数厘米,小正方形的周长比中正方形的边长小,把这两个正方形放在大正方形上(如图),大正方形露出的部分的面积是10平方厘米(图中阴影部分).那么,大正方形的面积是()平方厘米.A.25B.36C.49D.649.甲乙两数的差是144,甲数比乙数的3倍少14,那么甲数是.10.用同样长的小棒按如下方式摆三角形.那么,摆12个三角形要根小棒.11.定义运算:a⊙b=(a×2+b)÷2.那么(4⊙6)⊙8=11.12.喜羊羊和懒羊羊共有邮票70张,喜羊羊的邮票张数比懒羊羊的4倍还多5张.喜羊羊有张,懒羊羊有张.13.湖边种着一排柳树,每两棵数之间相距6米.小明从第一棵树跑到第200棵,一共跑了()米.A.1200米B.1206米C.1194米14.长方形的周长是48厘米,已知长是宽的2倍,长方形的长是()A.8厘米B.16厘米C.24厘米15.四个海盗杰克、吉米、汤姆和桑吉共分280个金币.杰克说:“我分到的金币比吉米少11个,比汤姆多15个,比桑吉少20个.”那么,桑吉分到了个金币.16.1千克大豆可以制成3千克豆腐,制成1千克豆油则需要6千克大豆,豆腐3元1千克,豆油15元1千克,一批大豆共460千克,制成豆腐或豆油销售后得到1800元,这批大豆中有千克被制成了豆油.17.一群鸭子对一群狗说:“我们比你们多2只.”狗对鸭子说:“我们比你们多10条腿.”那么鸭子和狗共只.18.有一种特殊的计算器,当输入一个数后.计算器会把这个数乘以2,然后将其结果的数字顺序颠倒,接着再加2后显示最后的结果.如果输入一个两位数,最后显示的结果是45,那么,最开始输入的是.19.小圆有一筐桃子,第一次他吃掉了全部桃子的一半多1个,第二次他又吃掉了剩余桃子的一半少1个,此时筐里还剩下4个桃子,那么这个筐里原有桃子个.20.○○÷□=14…2,□内共有种填法.21.60名探险队员过一条河,河上只有一条可乘坐6人的橡皮艇(来回算两次),过一次河需要3分钟,全体队员渡到河对岸一共需要分钟.22.找规律填数:1、4、3、8、5、12、7、.23.99999×77778+33333×66666=.24.如图,式中不同的字母表示不同的数字,那么ABC表示的三位数是.25.有9颗钢珠,其中8颗一样重,另有一颗比这8颗略轻,用一架天平最少称几次,可以找到那颗较轻的钢珠?26.有甲乙两桶酒,如果甲桶倒入8千克酒,两桶酒就一样重,如果从甲桶取出3千克酒倒入乙桶,乙桶的酒就是甲桶的3倍,甲原来有酒千克,乙千克.27.54﹣□÷6×3=36,□代表的数是.28.五个连续的自然数的和是2010,其中最大的一个是.29.观察下列四图,求出x的值.x=.30.某个码头有一艘渡船.有一天,这艘船从南岸出发驶向北岸,来回送游客,一共202次(来回算做两次),此时,渡船停靠在岸.31.小巧往一个长方形盒子里放玻璃球,她往盒子里放的玻璃球个数每分钟增加1倍,这样下去10分钟正好放满,那么分钟时,恰好放满半个盒子.32.(8分)甲、乙、丙三人锯同样粗细的木棍,分别领取8米,10米,6米长的木棍,要求都按2米的规格锯开,劳动结束后,甲、乙、丙分别锯了24、25、27段,那么锯木棍速度最快的比速度最慢的多锯次.33.甲、乙、丙、丁4个小朋友进行象棋比赛,没两个都比赛一场,规定胜者得3分,平局得1分,输者得0分.结果丁得6分,乙得4分,丙得2分,那么甲得分.34.下面有20个点,每相邻的两个点之间距离都相等,将四个点用直线连接起来可以得到一个正方形.用这样的方法,你可以得到个正方形.35.有10个铅笔盒,其中5个装有铅笔,4个装有钢笔,2个既装有铅笔又有钢笔,空笔盒有个.36.5个只由数字8组成的自然数之和为1000,其中最大的数与第二大的数之差是.37.四月份共有30天,如果其中有5个星期六和星期日,那么4月1日是星期.38.在中,不同的字母代表不同的数字,则A+B+C+D+E+F+G =.39.将下图中的圆圈染色,要求有连线的两个相邻的圆圈染不同的颜色,则至少需要_______种颜色.40.11×11=121,111×111=12321,1111×1111=1234321,1111111×1111111=.【参考答案】一、拓展提优试题1.解:(5﹣1)×6=4×6=24(分钟)答:一共需要24分钟.故答案为:24.2.解:92×3﹣90×2=276﹣180=96(分)答:他的英语至少要考到 96分.故答案为:96.3.解:1×(5﹣1)=4(分钟)3×5=15(分钟)2时30分+4分钟+15分钟=2时49分答:她折好第5个纸鹤时已经到了2时49分;故选:B.4.解:观察如果俯视图是下面图形时(小正方形上的数字是上面立方体的个数),所放的立方体最少.所以所放的最少的立方体的个数为1+2+2+4+1+2+1=13个,故选:B.5.解:根据左边的数字谜中,可分析出A、C是相邻的,B、D是差2 的.右边的数字谜中,显然=19,若个位没有向十位进位,则F、J分别是0、4,E、I是 8、3 或 6、5,但无论是哪组解都不能满足左边数字谜“A、C相邻,B、D差2”的要求.故知右边个位向十位进位了,F+J=14,F、J只能分别是8、6,E+I=10,E、I 只能分别是3、7,此时得到=5240.故选:A.6.解:如右图进行分割,把图形分成了8个边长是2厘米的小正方形2×2×8=32(平方厘米)答:这个图形的面积是32平方厘米.故选:D.7.解:12时﹣8时=4小时8×(4﹣1)=8×3=24(千米)答:甲、乙两地之间的距离是24千米.8.解:根据分析,一条阴影部分的面积为10÷2=5平方厘米.因为都是整数,所以只能为1×5.故,大正方形面积=(1+5)×(1+5)=6×6=36平方厘米.故选:B.9.解:(144+14)÷(3﹣1)+144,=158÷2+144,=79+144,=223,答:甲数是223.故应填:223.10.解:一个三角形需要3根小棒,2个三角形需要3+2=5根小棒,3个三角形需要3+2×2=7根小棒,…12个三角形需要3+2×(12﹣1)=25根小棒.答:摆12个三角形要 25根小棒.故答案为:25.11.解:(4⊙6)⊙8,=[(4×2+6)÷2]⊙8,=7⊙8,=(7×2+8)÷2,=22÷2,=11,故答案为:11.12.解:设懒羊羊有x张票,那么喜羊羊则有(4x+5)张邮票,x+(4x+5)=705x+5=705x=65x=1313×4+5=57(张)答:喜羊羊有 57张,懒羊羊有 13张.故答案为:57;13.13.解:(200﹣1)×6=1194(米)答:小明一共跑了1194米.故选:C.14.解:48÷2÷(1+2)×2=24÷3×2=16(厘米)答:长方形的长是16厘米.故选:B.15.解:设杰克得金币x个,所以x+(x+11)+(x﹣15)+(x+20)=280,解得x=66,所以桑吉分到了66+20=86个金币,另解:此题考查的是和差问题,通过与杰克的关系进行转化得知:杰克的金币数为:(280﹣11+15﹣20)÷4=66(个)桑吉的金币数为:66+20=86(个)故答案为86.16.解:3×3=9(元)15÷6=2.5(元)(9×460﹣1800)÷(9﹣2.5)=2340÷6.5=360(千克)答:这批大豆中有 360千克被制成了豆油.故答案为:360.17.解:根据分析,再加两只狗,狗与鸭子数量相同,狗的腿数比鸭子多:10+4×2=18(条)鸭子有:18÷(4﹣2)=9(只);狗有:9﹣2=7(只);狗和鸭子共有:9+7=16(只).故答案是:16.18.解:逆运算,乘积的数字顺序颠倒后为:45﹣2=43,则,颠倒前为34,输入的两位数为:34÷2=17;答:最开始输入的是17.故答案为:17.19.解:[(4﹣1)×2+1]×2=7×2=14(个)答:这个筐里原有桃子 14个.故答案为:14.20.解:因为余数<除数,所以□>2,因为14×6+2=86,14×7+2=100,被除数是两位数,所以□内最大填6,所以□内共有4种填法:3、4、5、6.故答案为:4.21.解:(60﹣6)÷5,=54÷5,≈11次,3×(11×2+1),=3×23,=69(分钟),答:全体队员渡到河对岸一共需要69分钟.故答案为:69.22.解:根据分析可得,12+4=16,故答案为:16.23.解:99999×77778+33333×66666,=99999×77778+33333×(3×22222),=99999×77778+(33333×3)×22222,=99999×77778+99999×22222,=99999×(77778+22222),=99999×100000,=9999900000;故答案为:9999900000.24.解:根据题意,由竖式可得:个位上:C+C+C=3C的末尾是8,由3×6=18,可得,C=6,向十位进1;十位上:B+B+B+1=3B+1的末尾是8,也就是3B的末尾是8﹣1=7,由3×9=27,可得,B=9,向百位进2;百位上:A+A+A+2=8,3A=6,A=2;由以上可得竖式是:;所以,ABC表示的三位数是276.故答案为:296.25.解:(1)把9个钢珠平均分成3组,把其中两组放在天平上称量,若重量一样,则较轻的在第三组;若重量不一样,则较轻的在天平上升的一组;(2)再把有较轻的钢珠的一组,拿出两个分别放在天平的左右两边,若天平平衡,则剩下的一个就是较轻的,若天平不平衡,则上升一方就是较轻的;这样用2次就一定能找出那个较轻的钢珠.答:用一架天平最少称2次,可以找到那颗较轻的钢珠.26.解:根据题意可得:如果从甲桶取出3千克酒倒入乙桶,两桶的差是:8+3+3=14(千克);这时甲桶有:14÷(3﹣1)=7(千克);乙桶有:7×3=21(千克);乙桶原来有:21﹣3=18(千克);甲桶原来有:18﹣8=10(千克).答:甲原来有酒10千克,乙18千克.故答案为:10,18.27.解:54﹣□÷6×3=36,□÷6×3=54﹣36,□÷6×3=18,□=18×6÷3,□=36.故答案为:36.28.解:2010÷5=402,最大的数是402+1+1=404;故答案为:404.29.解:根据分析知本题的规律是:三角形是上面的数是下面左面的数扩大10倍与下面右面数的和.45×10+15=465.故答案为:465.30.解:在摆渡奇数次后,船在北岸,摆渡遇数次后,船在南岸.202为奇数,则摆渡202次后,小船在南岸.故答案为:南.31.解:根据分析可得,1÷2=(盒),即10﹣1=9(分钟);答:那么9分钟时,恰好放满半个盒子.故答案为:9.32.解:甲:8÷2=4(段)4﹣1=3(次)3×(24÷4)=3×6=18(次)乙:10÷2=5(段)5﹣1=4(次)4×(25÷5)=4×5=20(次)丙:6÷2=3(段)3﹣1=2(次)2×(27÷3)=2×9=18(次)18=18<2020﹣18=2(次)答:锯木棍速度最快的比速度最慢的多锯 2次.故答案为:2.33.解:每两个人赛一局,说明一共赛6局,每人都赛三局;丁得六分说明:赢两局输一局(3+3+0=6);乙得四分说明:赢一局平一局输一局(3+1+0=4);丙得两分说明:平两局输一局(1+1+0=2);胜负平分别三局说明:六场比赛总得分应该是(3+0)+(3+0)+(3+0)+(1+1)+(1+1)+(1+1)=12分;甲得分:12﹣6﹣4﹣2=0(分);答:那么甲得0分;故答案为:0.34.解:边长是1个单位长度的正方形个数是12;边长是2个单位长度的正方形个数是6;边长是3个单位长度的正方形个数是2;边长最大是3个单位长度,正方形的边长再大就构不成正方形了;一共有正方形:12+6+2=20(个).答:可以得到20个正方形.故答案为:20.35.解:10﹣(5+4﹣2),=10﹣7,=3(个);答:空笔盒有3个;故答案为:3.36.解:1000=888+88+8+8+8888﹣88=800故填80037.解:4月份有30天;30÷7=4(周)…2(天);余下的2天是星期六和星期日;所以4月1日是星期六.故答案为:六.38.解:因为A、B、C、D、E、F、G是不同的数字,由题意可得:D+G=10,C+F=10,B+E=9,A=1,所以:A+B+C+D+E+F+G=A+(B+E)+(C+F)+(D+G)=1+9+10+10=30故答案为:30.39.找规律【难度】☆☆☆【答案】3找一个圈,按顺序染色.BACBA40.解:根据分析可得:1111111×1111111=1234567654321,故答案为:1234567654321.。
小学奥数竞赛模拟试卷
小学奥数竞赛模拟试卷(15套)(总32页)-本页仅作为预览文档封面,使用时请删除本页-模拟试卷.1 姓名得分一、填空题:3.一个两位数,其十位与个位上的数字交换以后,所得的两位数比原来小27,则满足条件的两位数共有______个.5.图中空白部分占正方形面积的______分之______.6.甲、乙两条船,在同一条河上相距210千米.若两船相向而行,则2小时相遇;若同向而行,则14小时甲赶上乙,则甲船的速度为______.7.将11至17这七个数字,填入图中的○内,使每条线上的三个数的和相等.8.甲、乙、丙三人,平均体重60千克,甲与乙的平均体重比丙的体重多3千克,甲比丙重3千克,则乙的体重为______千克.9.有一个数,除以3的余数是2,除以4的余数是1,则这个数除以12的余数是______.10.现有七枚硬币均正面(有面值的面)朝上排成一列,若每次翻动其中的六枚,能否经过若干次的翻动,使七枚硬币的反面朝上______(填能或不能).二、解答题:1.浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克,混合后所得到的酒精溶液的浓度是多少?2.数一数图中共有三角形多少个?3.一个四位数,它的第一个数字等于这个数中数字0的个数,第二个数字表示这个数中数字1的个数,第三个数字表示这个数中数字2的个数,第四个数字等于这个数中数字3的个数,求出这个四位数.模拟试卷.2 姓名得分一、填空题:1.用简便方法计算:2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.3.算式:(121+122+…+170)-(41+42+…+98)的结果是______(填奇数或偶数).4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.9.在下面16个6之间添上+、-、×、÷、(),使下面的算式成立:6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 = 1997二、解答题:1.如图中,三角形的个数有多少?2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间代表共有几人3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?4.某轮船公司较长时间以来,每天中午有一只轮船从哈佛开往纽约,并且在每天的同一时间也有一只轮船从纽约开往哈佛,轮船在途中所花的时间,来去都是七昼夜,问今天中午从哈佛开出的轮船,在整个航运途中,将会遇到几只同一公司的轮船从对面开来?模拟试卷.3 姓名得分一、填空题:1.×+11×+537×=______.2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.甲容器中有纯酒精11升,乙容器中有水15升,第一次将甲容器中的一部分纯酒精倒入乙容器,使酒精与水混合;第二次将乙容器中的一部分混合液倒入甲容器,这样,甲容器中的纯酒精含量为%,乙容器中纯酒精含量为25%,那么,第二次从乙容器倒入甲容器的混合液是多少升?2.1993年,一个老人说:“今年我的生日已过,40多年前的今天,我还是20多岁的青年,那时我的年龄刚好等于那年年份的四个数字之和.”老人到1997年是多大年纪?3.甲、乙两车同时从A、B两地出发相向而行,在距B地54千米处相遇,他们各自到达对方车的出发地后立即返回原地,途中又在距A地42千米处相遇.求两次相遇地点的距离.4.下午当钟表的时针和分针重合,秒针指在49秒附近时,钟表表示的时间是多少(精确到秒)模拟试卷.4 姓名得分一、填空题:1.如果A=11111102222221,B=33333326666665,那么A与B中较大的数是。
2023年小学数学奥林匹克竞赛模拟题及解答第一部分一节
小学数学奥林匹克竞赛模拟题及解答第一部分一节第一部分有趣的数列很少接触数学竞赛题的学生或家长,总觉得竞赛题很怪,不好捉摸,因而经常望而生畏。
其实,竞赛题的“怪”只是表面现象,它不仅很有规律,解题的思想经常非常简朴,并且用的知识基本上是书本上教过的。
例如这一部分的三节,讲的都是与数列有关的问题,用的知识但是就是乘法对加(减)法的分派律、如何用字母表达数等,所以一点也不可怕。
当然,要不久发现竞赛题中隐含的规律,并纯熟运用学过的知识去解决问题,确非易事。
但是请你记住:任何复杂的问题都是由简朴的东西变化而来的。
如何从简朴的知识去解决复杂的问题,这就是这一部分要介绍的重要思想。
这就好比编织毛衣,虽然基本的针法极其简朴,但是心灵手巧的妈妈们却可以织出千变万化、绚丽多彩的新装!愿你也学会用简朴的知识织出美丽动人的图案!一从三角形谈起长方形(涉及正方形)、平形四边形、三角形及梯形是几个基本的几何图形,从面积公式来看,长方形这种图形最为重要,我们认为它最重要,一是由于长方形的面积公式最简朴,二是由于从长方形面积公式很容易导出平行四边形乃至三角形及梯形的面积公式。
先让我们回忆一下推导给定△ABC面积公式的过程。
一方面画一个与△ABC完全同样的△A1B1C1,如图1.1中的(1)所示,再把△A1B1C1如图1.1(2)那样上下颠倒放置,最后移动△A1B1C1使C1点与A点重合,A1点与C点重合,这样就得到一个平行四边形ABCB1,由平行四边形面积等于底BC之长乘以高AD(见图1.1(3)),再被2除,即得△ABC的面积公式。
(1)作一个与ABC完全同样的三角形A1B1C1(2)把三角形A1B1C1如图这样颠倒过来(3)将两个三角形连结成一个平行四边形图 1.1现在来把上面这个问题,作一点形式上的改变,仍取△ABC,把它的每一边平均提成9等分,按照1.2图把这些分点连结起来,这样就把它提成了若干个形状完全相同的小三角形。
小学数奥竞赛模拟试卷(60套)-20
模拟试卷.20姓名得分一、填空题:1.13×99+135×999+1357×9999=______.2.一个两位数除以13,商是A,余数是B,A+B的最大值是_______.3.XX654321除本身之外的最大约数是______.4.有甲、乙两桶油,甲桶油比乙桶油多174千克,如果从两桶中各取5.图中有两个正方形,这两个正方形的面积值恰好由2、3、4、5、6、7这六个数字组成,那么小正方形的面积是______,大正方形的面积是______.6.如图,E、F分别是平行四边形ABCD两边上的中点,三角形DEF的面积是7.2平方厘米,平行四边形ABCD的面积是_______平方厘米.7.一辆公共汽车由起点到终点站共有10个车站,已知前8个车站共上车93人,除终点外前面各站共计下车76人.从前8个车站上车且在终点站下车的共有______人.9.某人以分期付款的方式买一台电视机,买时第一个月付款750元,以后每月付150元;或者前一半时间每月付300元,后一半时间每月付100元.两种付款方式的付款总数及时间都相同,这台电视机的价格是______元.10.一辆长12米的汽车以每小时36千米的速度由甲站开往乙站,上午9点40分,在距乙站2000米处遇到一行人,1秒后汽车经过这个行人,汽车到达乙站休息10分后返回甲站,汽车追上那位行人的时间是______.二、解答题:1.计算:1997÷199719971998+1÷19992.小明拿一些钱到商店买练习本,如果买大练习本可以买8本而无剩余;如果买小练习本可以买12本而无剩余,已知每个大练习本比小练习本贵0.32元,小明有多少元钱?3.某工厂的一只走时不够准确的计时钟需要69分(标准时间)时针与分钟才能重合一次,工人每天的正常工作时间是8小时,在此期间内,每工作1小时付给工资4元,而若超出规定时间加班,则每小时付给工资6元,如果一个工人照此钟工作8小时,那么他实际上应得到工资多少元?4.某次比赛中,试题共六题,均为是非题.正确的画“+ ”,错误的画“-”,记分方法是:每题答对的得2分,不答的得1分,答错的得0分,已知赵、钱、孙、李、周、吴、郑七人的答案及前六个人的得分记录如下表所示,请计算姓郑的得分.。
小学数学mo奥林匹克竞赛试题
小学数学mo奥林匹克竞赛试题小学数学奥林匹克竞赛是一项旨在激发学生数学兴趣、培养数学思维能力的竞赛活动。
以下是一些适合小学数学奥林匹克竞赛的试题:一、基础题1. 计算下列各题的结果:- (1) \( 1234 + 5678 \)- (2) \( 9876 - 4321 \)- (3) \( 2345 × 3 \)- (4) \( 6789 ÷ 3 \)2. 判断下列各题的对错,并给出正确答案:- (1) 如果 \( a = 5 \),那么 \( 3a + 2 = 17 \) 是否正确? - (2) 如果 \( b = 3 \),那么 \( 4b - 1 = 11 \) 是否正确?3. 找出下列数列的规律,并填写下一个数:- (1) 2, 4, 8, 16, ____- (2) 3, 6, 11, 18, ____二、应用题1. 一个班级有 45 名学生,如果每 5 名学生组成一个小组,那么可以组成多少个小组?2. 一个长方形的长是 15 米,宽是 10 米。
如果绕着这个长方形的外围跑一圈,需要跑多少米?3. 一个水果店有 120 个苹果,如果每箱装 20 个苹果,那么需要多少个箱子?三、逻辑推理题1. 一个数字,如果把它乘以 3 再加上 10,结果等于 59。
这个数字是多少?2. 一个数字,如果把它加上 100 后,再除以 5,结果等于 30。
这个数字是多少?3. 一个数字,如果把它除以 4,再加上 8,结果等于 20。
这个数字是多少?四、图形题1. 一个正方形的边长是 8 厘米,求这个正方形的周长和面积。
2. 一个等边三角形的边长是 5 厘米,求这个三角形的周长和面积。
3. 一个圆形的半径是 3 厘米,求这个圆的周长和面积。
五、综合题1. 一个班级有 50 名学生,其中 2/5 是男生,剩下的是女生。
如果每 4 名学生组成一个小组,那么可以组成多少个小组?2. 一个数字,如果把它加上 5,再乘以 2,最后减去 3,结果等于31。
小学奥数竞赛赛前训练题31--42
1. 有一些画片,小明取了其中的13 还多3张,小强取了剩下的13,再加33张,他们两人取的画片一样多。
这些画片有 张。
2. 在算式“我们爱数学×我们爱数学=口数口数口我们爱数学”中相同的汉字代表相同的数字,不同的汉字代表不同的数字,求“我们爱数学”代表的五位数是 。
3. 用1、2、3、4、5、6、7、8、9、0这10个不同的数字分别填入下面的分数,使得等式成立。
□□□□ =□□□□ =124. 有一个四位数,它的各位上的数字相加的和能被17整除,这个四位数加上l 的和能被17整除。
这个最小的四位数是 。
5. 用“3、3、8、8”这四个数添上运算符号,或括号(可以打乱次序,但每个数字只用一次),使得数等于24,请把算式写在横线上6. 在1~72的这72个数中,与72互质的数共有 个。
7. 甲走的路程比乙多13 ,乙用的时间却比甲多14,甲、乙的速度比是 。
8. 果农把收获的一堆苹果打算装箱运输,每箱的千克数相同,第一车装运10箱,第二车装了6箱又20千克正好装完,第二车苹果的千克数正好占这堆苹果的25,这堆苹果共有 千克。
9. 甲、乙、丙三人先后爬塔,甲每分钟走5级,乙每分钟走6级,丙每分钟走7级,走到10时整都停下来看,离塔顶还有多少,甲还有8级,乙还有12级,丙还有30级,问:这个塔至少有 级。
10. 小翔家有一个闹钟,每小时比标准时间慢2分钟,有一天晚上9点整时,小翔对准了闹钟,他想第二天早晨6:40起床,于是他就将闹钟的铃拨在了6:40,那么,这个闹钟响铃的时间是标准时间 点分。
11. 如右图,设正方形的面积为l ,E 、F 分别为AB 、AD 的中点,CG=13 FC ,则阴影部分的面积是 。
12. 某车间要求5个小组的工人共加工260个零件,每个男工加工的零件数比每个女工多50%,每个女工加工的零件数同样多。
这5个小组工人的人数分别是2人、3人、5人、6人和7人,问:女工有 人。
小学奥数31个题型
1工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率 9/80×5=45/80表示5小时后进水量 1-45/80=35/80表示还要的进水量 35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意知,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天 1/20*(16-x)+7/100*x=1 x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
小学奥数全国推荐三年级奥数通用学案附带练习题解析答案31应用题基础(一)
年级三年级学科奥数版本通用版课程标题应用题基础(一)本讲主要学习应用题。
我们要尝试弄清题目中的已知数量,找到问题与这些已知量之间的关系,并根据题目的特点寻找解答方法。
做应用题,可以培养我们灵活地运用学过的数学知识去解决实际问题的能力。
而且,应用题还有许多趣味内容,可以提高我们学习数学的兴趣,今天这节课我们就一起来学习解简单应用题的方法。
现在,让我们出发吧!一、解答应用题,一般有四个步骤:(1)弄清题意,并找出已知条件和所求问题;(2)分析题里数量间的关系,确定先算什么,再算什么……,最后算什么;(3)确定每一步该怎么算,列出算式,算出得数;(4)进行检验,写出答案。
二、解应用题的关键:找到题眼,就是分析解题的关键处或突破口。
例1动物园进行家庭知识竞赛,经过一轮一轮的淘汰后,最后进入决赛的是小猴家和小鹿家。
比赛规则如下:两家桌前有一样多的香蕉,谁输一次就给对方 1 根香蕉。
竞赛结束后,小猴家从小鹿家赢走了 3 根香蕉,但是比赛前小猴因为不知道规则,吃了 2 根香蕉,那么现在哪队的香蕉比较多,多几根?分析与解:因为小猴吃了 2 根香蕉,所以比赛之前小猴家比小鹿家少 2 根香蕉,但是小猴家从小鹿家那里赢走了 3 根香蕉,所以最后小猴家比小鹿家多3×2-2=4(根)香蕉。
例2师傅、徒弟两人合作生产零件,2 小时共生产零件110 个,如果分别工作 5 小时后,师傅比徒弟多生产25 个。
求师傅、徒弟每小时各做零件多少个?分析与解:通过读题我们知道,题中没有直接告诉我们每小时师傅、徒弟两人所生产零件的个数和,但是我们可以求出来,即:110÷2=55(个),又已知 5 小时师傅比徒弟多生产 25 个,可以求出师、徒二人每小时生产零件个数的差:25÷5=5(个)。
师傅每小时做零件(55+5)÷2=30(个),徒弟每小时做零件30-5=25(个)。
例3学校买来一些足球和篮球。
新人教版小学一年级数学奥林匹克竞赛题(102题)
新人教版小学一年级数学奥林匹克竞赛题(102题)小学一年级数学奥林匹克竞赛题(102题)1.哥哥4个苹果,姐姐有3个苹果,弟弟有8个苹果,哥哥给弟弟1个后,弟弟吃了3个,这时谁的苹果多?2.小明今年6岁,小强今年4岁,2年后,小明比小强大几岁?3.同学们排队做操,小明前面有4个人,后面有4个人,这一队一共有多少人?4.有一本书,小华第一天看了2页,以后每一天都比前一天多看2页,第4天看了多少页?5.同学们排队做操,从前面数,小明排第4,从后面数,小明排第5,这一队一共有多少人?6.有8个皮球,如果男生每人发一个,就多2个,如果女生每人发一个,就少2个,男生有多少人,女生有多少人?7.老师给9个三好生每人发一朵花,还多出1朵红花,老师共有多少朵红花?8.有5个同学投沙包,老师如果发给每人2个沙包就差1个,老师共有多少个沙包?9.刚刚有9本书,爸爸又给他买了5本,小明借去2本,刚刚还有几本书?10.一队小学生,平前面有8个学生比他高竺嬗?个学生比他矮,这队小学生共有多少人?11.小林吃了8块饼干后,小林现在有4块饼干,小林原来有多少块饼干?12.哥哥送给弟弟5支铅笔后,还剩6支,哥哥原来有几支铅笔?13.第二中队有8名男同学,女同学的人数跟男同学同样多,第二中队共有多少名同学?14.大华和小刚每人有10画片,大华给小刚2后,小刚比大华多几?15.猫妈妈给小白5条鱼,给小花4条鱼,小白和小花共吃了6条,它们还有几条?16.同学们到体育馆借球,一班借了9只,二班借了6只。
体育馆的球共减少了几只?17.明明从布袋里拿出5个白皮球和5个花皮球后,白皮球剩下10个,花皮球剩下5个。
布袋里原来有多少个白皮球,多少个花皮球?18.芳芳做了14朵花,晶晶做了8朵花,芳芳给晶晶几朵花,两人的花就一样多?19.妈妈买回一些鸭蛋和12个鸡蛋,吃了8个鸡蛋后,剩下的鸡蛋和鸭蛋同样多,问妈妈一共买回几个蛋?20.草地上有10只羊,跑走了3只白山羊,又来了7只黑山羊,现在共有几只羊?21.冬冬有5支铅笔,南南有9支铅笔,冬冬再买几支就和南南的一样多?22.小平家距学校2千米,一次他上学走了1千米,想起忘带铅笔盒,又回家去取。
最新整理小学数学奥林匹克竞赛试题(共六套)
小学数学奥林匹克竞赛试题(一)一、填空题1.三个连续偶数,中间这个数是m,则相邻两个数分别是___m-2____和___m+2_ __。
2.有一种三位数,它能同时被2、3、7整除,这样的三位数中,最大的一个是____966___,最小的一个是____126____。
解题过程:2×3×7=42;求三位数中42的倍数126、168、 (966)3.小丽发现:小表妹和读初三哥哥的岁数是互质数,积是144,小表妹和读初三哥哥的岁数分别是_____9____岁和____16____岁。
解题过程:144=2×2×2×2×3×3;(9、16)=14.一个四位数,它的第一个数字等于这个数中数字0的个数,第二个数字表示这个数中数字1的个数,第三个数字表示这个数中数字2的个数,第四个数字等于这个数中数字3的个数,那么这个四位数是____1210___。
5.2310的所有约数的和是__6912____。
解题过程:2310=2×3×5×7×11;约数和=(1+2)×(1+3)×(1+5)×(1+7)×(1+11)6.已知2008被一些自然数去除,得到的余数都是10,这些自然数共有____11____个。
解题过程:2008-10=1998;1998=2×33×37;约数个数=(1+1)×(1+3)×(1+1)=16(个)其中小于10的约数共有1,2,3,6,9;16-5=11(个)7.从1、2、3、…、1998、1999这些自然数中,最多可以取多少个数,才能使其中每两个数的差不等于4?__ 1000 __。
解题过程:1,5,9,13,……1997(500个)隔1个取1个,共取250个2,6,10,14,……1998(500个)隔1个取1个,共取250个3,7,11,15,……1999(500个)隔1个取1个,共取250个4,8,12,16,……1996(499个)隔1个取1个,共取250个8.黑板上写有从1开始的若干个连续的奇数:1,3,5,7,9,11,13…擦去其中的一个奇数以后,剩下的所有奇数之和为1998,那么擦去的奇数是____27____。
小学数学奥林匹克试题及答案
小学数学奥林匹克试题及答案小学数学奥林匹克试题及答案数学奥林匹克是针对小学阶段学生的数学竞赛,旨在培养孩子的数学思维和解决问题的能力。
以下是一份小学数学奥林匹克试题及答案,供家长和老师们参考。
1、有一个正方形的池塘,池塘的边长为5米。
请问池塘的周长和面积分别是多少?解:池塘的周长是20米,面积是25平方米。
2、一只青蛙一次可以跳上1级台阶,也可以跳上2级。
请问这只青蛙跳n级台阶最少要跳几次?解:当n为偶数时,青蛙需要跳n/2次;当n为奇数时,青蛙需要跳(n+1)/2次。
3、小明有4个苹果,小红有3个苹果,他们把这些苹果放在一起,请问他们一共有多少个苹果?解:一共有7个苹果。
4、一个数的平方减去这个数的本身等于14,请问这个数是多少?解:这个数是7或-7。
5、小明从家到学校有5个红绿灯,每个红绿灯有3种状态:红灯、黄灯和绿灯。
请问小明从家到学校一共有多少种不同的红绿灯组合?解:小明从家到学校一共有3^5=243种不同的红绿灯组合。
希望以上试题和答案能够为家长和老师们提供一些帮助。
也建议家长们在平时的生活中多引导孩子发现生活中的数学问题,培养孩子的数学思维和解决问题的能力。
小学数学奥林匹克竞赛试题及答案小学数学奥林匹克竞赛试题及答案一、选择题1、以下哪个数是质数? A. 10 B. 17 C. 23 D. 25 答案:B2、下列哪个图形是正方形? A. ① B. ② C. ③ D. ④答案:C3、下列哪个算式的结果为偶数? A. 2 + 4 + 6 + ... + 100 B. 3 + 6 + 9 + ... + 99 C. 1 + 3 + 5 + ... + 99 D. 1 + 4 + 7 + ... + 100 答案:A二、填空题4、一个长方形的长比宽多2,若长和宽均为整数,则这个长方形的面积最小为______。
答案:641、若将1至200的整数均匀写在一张纸上,则纸上所有数字的总和为______。
小学数学奥林匹克竞赛试题及答案
小学数学奥林匹克网上竞赛试题及答案(四年级)1、下面的△,○,□各代表一个数,在括号里填出得数:△+△+△=36 □×△=240○÷□=6 ○=( )A 120B 100C 130D 1242、如果一个整数,与1,2,3这三个数,通过加减乘除运算(可以添加括号)组成算式,结果等于24,那么这个整数就称为可用的,那么,在4,5,6,7,8,9,10这七个数中,可用的数有()个.A 5B 6C 7D 43、有100个足球队,两两进行淘汰赛,最后产生一个冠军,共要赛()场.A 97 B98 C 99 D 504、七个小队共种树100棵,各小队种的棵数都不同,其中种树最多的小队种了18棵,种树最少的小队至少种了()棵.A 10B 8C 9D 75、将一盒饼干平均分给三个小朋友,每人吃了八块后,这时三个小朋友共剩的饼干数正好和开始1个人分到的同样多,问每个小朋友分到()块。
A 24B 20C 12D 166、每次考试满分是100分,小明4次考试的平均成绩是89分,为了使用权平均成绩尽快达到94分(或更多),他至少再要考( )次.A 5B 6C 3D 47、甲乙丙丁四个人比赛乒乓球,每两人都要赛一场,结果甲胜丁,并且甲乙丙胜的场数相同,那么丁胜的场数是()场。
A 0B 1C 2D 38、有一位探险家,用6天时间徒步横穿沙漠。
如果一个搬运工人只能运一个人四天的食物和水,那么这个探险家至少要雇用()名工人。
A 2B 3C 4D 59、在右图的中间圆圈内填一个数,计算每一线段两数之差(大减小),然后算出这三个数之和,那么这个13差数之和的最小值是( ).A 28B 30C 31D 29324110、四年级学生180个人排成四路纵队(即每排4个人),每相邻两排间相隔1米,那么这纵队队伍共长()米。
A 44B 45C 42D 4611、十只母鸡10天生蛋10个,以同样的生蛋能力,另外的30只母鸡30天生蛋()个。
精选---小学四年级数学奥林匹克竞赛试题及答案
小学四年级数学奥林匹克竞赛试题及答案(每题8分,总共120分)一、选择。
(将正确的答案填在相应的括号内)1.找规律填数:(在横线上写出你发现的规律)21 26 19 24 ( ) ( ) 15 20 .(1)15,34 (2)17,18 (3)17,22 (4)23,252.甲乙两个数的和是218,如果再加上丙数,这时三个数的平均数比甲乙两数的平均数多5,丙数是( ).(1)124 (2) 122 (3)140 (4)1273.设X和Y是选自前500个自然数中的两个不同的数,那么(X+Y)÷(X-Y)的最大值是( ).(1)1000 (2) 990 (3)999 (4)9984.选择: 8746×7576 的积的末四位数字是 ( ).(1) 6797 (2) 9696 (3) 7669 (4) 67695.现有1分,2分和5分的硬币各四枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?(1)4 (2) 5 (3)10 (4)86.右图中,所有正方形的个数是( )个.(1)10 (2)8 (3)11 (4)97.用0--4五个数字组成的最大的五位数与最小的五位数相差( ). (1)30870 (2)32900 (3)32976 (4)100008.用0、5、8、7这四个数字,可以组成()个不同的四位数?(1)10 (2)18 (3)11 (4)99.学校进行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行了21场比赛,有多少人参加了选拔赛?(1)7 (2)8 (3)11 (4)910 一个长方形的纸对折成三等份后变成了一个正方形,正方形的周长是40厘米,那么原来长方形的周长是多少?(1)70 (2)80 (3)100 (4)9611.小明每分钟走50米,小红每分钟走60 米,两人从相距660米的两村同时沿一条公路相对出发,8分钟后两人相距( )米.(1)75 (2)200 (3)220 (4)9012甲、乙、丙、丁四位同学的运动衫上印有不同的号码。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟试卷.31 姓名得分
一、填空题:
2.有20个约数的最小自然数是______.
3.如图,AB=6厘米,BC=2厘米,ABCD是长方形,则阴影部分的面积是______平方厘米.
4.把1,2,7,8,9,10,12,13,14,15填入图中的小圆内,使每个大圆圈上的六个数的和是60.
6.体操选手的选拔赛上,每名裁判员给选手的最高分不超过10分.某位选手的得分情况如下:全体裁判员给的分数的平均分是9.72分,如果去掉一个最低分,则其余裁判员给的分数的平均数是9.76分,如果去掉一个最高分,则其余裁判给的分数的平均数是9.68分.那么所有裁判员给的分数中最低分至少是______分,共有______名裁判员.
7.一个自然数,各个数位上的数字之和是1997,则这个自然数最小是______.
8.甲、乙、丙、丁四个学生共有80张卡片,甲给乙10张,乙给丙12张,丙给丁7张,丁给甲4张,这时四人手里的卡片数相等,则甲、乙、丙、丁原有卡片分别是______张.
个可约分数,□内的数最大是______.
10.在8张小圆纸片上面分别写上2,5,8,11,14,17,20,23这8个数,把其中的四张分别放在一个大正方形的四个角上,再把余下的四张分别放在该正方形的四条边上,使得正方形每条边上的三个小圆纸片的数字之和都相等,那么这四个角上的四个数和最大是______.
二、解答题:
1.一艘轮船第一次顺流航行36千米,逆流航行12千米,共用12小时;第二次用同样的时间,顺流航行了12千米,逆流航行了20千米.求这艘轮船的静水速度及水流速度.
2.有甲、乙、丙三个人同时同向从同地出发,沿着周长为900米的环行跑道跑步,甲每分钟360米,乙每分钟300米,丙每分钟210米,问他们至少各绕了多少圈后才能再次相遇?
3.分母为1992的所有最简分数之和是多少?
4.如图,一块半径为1厘米的圆板,从平面1的位置沿AB、BC、CD滚动到位置2.如果AB=BC=CD=10厘米,那么圆板滚过的面积是多少平方厘米?(π取3,保留小数点后面2位数字)。