第三章 X射线衍射强度
合集下载
3X射线衍射强度
= 3:4:8:11:12:16
……
结构因数只与原子的种类及其在单胞中的位置有关,而 不受单胞的形状和大小的影响。例如对体心点阵,不论 是立方晶系、正方晶系还是斜方晶系,其消光规律是相 同的,因此系统消光规律具有广泛的适用性。
18
三种点阵晶体衍射线的分布状况
图中m = H2 + K2 + L2,产生衍射的 干涉面指数平方和之比分别为: 简单点阵 1:2:3:4:5:6:8:9 ……
1
1
1
2
2
2
3
3
3
= 1:2:3:4:5:6:8:9
……
2. 体心点阵
体心点阵的单胞中有两种位置的原子,即坐标为 (0,0,0) 的顶角原子和坐标为(1/2, 1/2, 1/2)的体心原子,原子散
射因数均为 f。其结构因数为:
2 2
FHKL f 1 cos ( H K L)
1/(sin cos) (即1/sin2 )成正比。
衍射的积分强度
26
第三节 洛伦兹-偏振因数
3.3.1 衍射的积分强度
3.3.2 参加衍射的晶粒分数 3.3.3 单位弧长的衍射强度 3.3.4 洛伦兹-偏振因数
27
3.3.2 参加衍射的晶粒分数
多晶样品中,各晶粒的取向在空间等几率分布。各晶 粒中所有同族 (HKL)晶面的面间距相同,产生衍射的布 拉格角相等。
第三节 洛伦兹-偏振因数
3.3.1 衍射的积分强度
3.3.2 参加衍射的晶粒分数 3.3.3 单位弧长的衍射强度 3.3.4 洛伦兹-偏振因数
30
3.3.3 单位弧长的衍射强度
第3章 X射线衍射强度
由于衍射线的相互干涉,某些方向的强度将会有所加强, 某些方向的强度将会减弱甚至消失,习惯上将这种现象称 为系统消光
13
X射线衍射强度理论
包括运动学理论和动力学理论.
单位晶胞对X射线的散射与结构因素
1. 一个电子对X射线的散射
由汤姆逊公式进行描述,是汤姆逊从经典电动力学的观点分析 推出的。
re 2 1 (cos2 ) 2 Ie Io ( ) R 2
消失的反射
无
H、K全为奇数或全为 偶数 (H+K为偶数)
H+K+L为偶数 H、K、L全为奇数或 全为偶数
H、K奇偶混杂 (H+K为奇数)
H+K+L为奇数 H、K、L奇偶混杂
第二节 单位晶胞对X射线的散射与结构因数
二、几种点阵的结构因数计算
三种点阵晶体衍射线分布见图5-20 , 图中N = H2 + K2 + L2,产生衍射的干 涉面指数平方和之比分别为, 简单点阵 体心点阵 面心点阵 12345 2 4 6 8 10 3 4 8 11 12
单位晶胞对X射线的散射与结构因素
2. 一个原子对X射线的散射
Ia f Ie
2
这里引入了f――原子散射因子
单位晶胞对X射线的散射与结构因素
推导过程:
一个原子包含Z个电子,那么可看成Z个电子散射的叠加。 (1)若不存在电子电子散射位相差:
I a Z Ae Z I e
2 2
26
单位晶胞对X射线的散射与结构因素
• 4. 底心点阵 – 每个晶胞中有2个同类原子,其坐标分别为000和1/2 1/2 0,原子散射因子相同,都为fa。
3 衍射强度
• 有序化使无序固溶体因消光而失却的衍射线复出
现,这些被称为超点阵衍射线。 • 根据超点阵线条的出现及其强度可判断有序化的 出现与否并测定有序度。
§3-3 多晶体的衍射强度
• 本小节讨论最广泛应用的粉末法的衍射强度问题. • 在粉末法中影响衍射强度的因子有如下五项: • (1) 结构因子(上节已讨论)
• 本章我们将讨论X射线衍射强度
• 从一个电子、一个原子、一个晶胞、一 个晶体、粉末多晶循序渐进地介绍它们 对X射线的散射问题.
• 最后讨论粉末多晶体的衍射强度问题.
一、关于衍射强度
** 单位时间内通过与衍射方向相垂直的单位面积 上的X射线光量子数目。 **绝对强度的测量既困难又无实际意义。 **衍射强度常用同一衍射图中各衍射线强度 (积分 强度或峰高)的相对比值即相对强度表示.
度变为0)。
**对衍射强度作出系统而全面的研究 ,就要依靠结 构因子。当 X 射线照射到晶体中某个晶胞时,该晶 胞中各原子的散射波具有不同的位相和振幅,其合 成波的强度为:
2 FHKL
n n 2 = f k cos 2p ( mc H + PK K + q K L + f k sin 2p ( mk H + PK K + q k L k =1 k =1
• A(θ)-吸收因子
• r-试样直径
• 线吸收系数-μl
• 这样的吸收与θ有关。
• 平板试样的吸收因子,在入
射角与反射角相等时,吸收 与θ无关。
四、温度因子
**前面所讲的各节,均将晶体中的原子看作是 处于理想平衡位置的结点上。 **实际上,晶体中原子是处在连续不断的热振 动状态下,必然给衍射带来影响. 1.晶胞膨胀; 2.衍射线强度减小;
第三章 X射线衍射强度.
式中:Io—入射x-ray强度 m、e — 电子的质量与电荷 c— 光速 λ— 入射x-ray波长 R— 衍射仪半径 cm V— 试样被x-ray照射体积,cm3 Vo— 晶胞体积 cm3 F— 结构因子 P— 多重性因子 e-2M — 温度因子
( ) — 角因子 A(θ) — 吸收因子
同一衍射花样中,e、m、c为固定物理常数, Io、λ、R、V、Vo对同一物相的各衍射线均相 等,衍射线的相对积分强度可用 5个强度因子的乘积来表示:
而(100),(111),(210),(221)等均无散射
4. 面心晶胞:四种位置的原子坐标分别是(0 0 0)和 (½ ½ 0),( ½ 0 ½ ),(0 ½ ½)。
F fe2 i0 fe2 ih/ 2k / 2 fe fe 2 ik / 2l / 2 2 il / 2h/ 2 f 1 eihk eikl eilh
当h, k, l为全奇或全偶,(h + k),(k+l) 和
(h+l) 必为偶数,故F = 4f,F 2 = 16f 2
当h, k, l中有两个奇数或两个偶数时,则在(h+k),(k+l) 和 (h+l)中必有两项为奇数,一项为偶数,故F = 0, F2 = 0 所以(111),(200),(220),(311)有反射,而 (100),(110) ,(112),(221)等无反射。
衍射线强度的测量采用衍 射仪法,得到I~θ曲线。
每个衍射峰下面的 面积(积分面积)称 为积分强度或累积强度。
x射线衍射线束的强度
波长λ强度Io的x-ray,照射到 晶胞体积Vo的多晶试样上,被 照射晶体的体积V,与入射线 夹角为2θ方向上产生(HKL) 晶面的衍射,距试样R处记录 到的衍射线其单位长度上积分 强度为:
第3章 X射线的衍射强度
1 1 1 2 i h k l F f 1 e 4 4 4
2) 当hkl全为奇数时,Ff=Fa。h+k+l=2n+1,其中n为任 意整数,则有
1 e
i
2
h k l
1 cos
2
h k l i sin
I=A2
实际上,晶体要产生x射线衍射,x射线的波长应当 与晶体中原子间距在同一数量级。
与入射x射线平行的方向上(XX’): 相位差为0,所以Aa=ZAe 除了XX’方向:各电子的散射波之 间存在一定的相位差。 如在YY’方向上a、b两个电子产 生的散射波的波程差为CB-AD,
会产生干涉作用。 由于原子半径的尺度比x射线的波长的尺度要小,所以各电子的
四、一个晶胞对x射线的衍射
1、复杂点阵的衍射分析
简单点阵只由一种原子组成,每个晶胞只有一个原子,它 分布在晶胞的顶角上,单位晶胞的散射强度相当于一个原 子的散射强度。 复杂点阵晶胞中含有n个相同或不同种类的原子,它们除 占据单胞的顶角外,还可能出现在体心、面心或其他位置。 复杂点阵的衍射特点 (1)任何复杂点阵都是由完全相同且平行的几个简单点阵 镶嵌而成的; (2)整个复杂点阵的衍射可以看做是由各个简单点阵及基 点原子在相同方向的衍射合成结果; (3)复杂点阵的可能衍射方向不可能多余其中任何一个简 单点阵的衍射方向,只能减少或相等。
假定一个晶胞中有n个原子, 它们的坐标分别为u1v1w1、u2v2w2……unvnwn; 每个原子的原子散射因子分别为f1、f2、f3…… fn ;它们的散射波的振幅为 Aef1、Aef2、Aef3……Ae fn 各原子散射波与入射波的位相差分别为φ1、φ2、φ3、……φn。 那么,这n 个原子的散射波互相叠加合成的整个晶胞的散射波的振幅Ab为
2) 当hkl全为奇数时,Ff=Fa。h+k+l=2n+1,其中n为任 意整数,则有
1 e
i
2
h k l
1 cos
2
h k l i sin
I=A2
实际上,晶体要产生x射线衍射,x射线的波长应当 与晶体中原子间距在同一数量级。
与入射x射线平行的方向上(XX’): 相位差为0,所以Aa=ZAe 除了XX’方向:各电子的散射波之 间存在一定的相位差。 如在YY’方向上a、b两个电子产 生的散射波的波程差为CB-AD,
会产生干涉作用。 由于原子半径的尺度比x射线的波长的尺度要小,所以各电子的
四、一个晶胞对x射线的衍射
1、复杂点阵的衍射分析
简单点阵只由一种原子组成,每个晶胞只有一个原子,它 分布在晶胞的顶角上,单位晶胞的散射强度相当于一个原 子的散射强度。 复杂点阵晶胞中含有n个相同或不同种类的原子,它们除 占据单胞的顶角外,还可能出现在体心、面心或其他位置。 复杂点阵的衍射特点 (1)任何复杂点阵都是由完全相同且平行的几个简单点阵 镶嵌而成的; (2)整个复杂点阵的衍射可以看做是由各个简单点阵及基 点原子在相同方向的衍射合成结果; (3)复杂点阵的可能衍射方向不可能多余其中任何一个简 单点阵的衍射方向,只能减少或相等。
假定一个晶胞中有n个原子, 它们的坐标分别为u1v1w1、u2v2w2……unvnwn; 每个原子的原子散射因子分别为f1、f2、f3…… fn ;它们的散射波的振幅为 Aef1、Aef2、Aef3……Ae fn 各原子散射波与入射波的位相差分别为φ1、φ2、φ3、……φn。 那么,这n 个原子的散射波互相叠加合成的整个晶胞的散射波的振幅Ab为
第三章 X射线衍射强度
由此可见,图3-2(a)中的(001) 晶面会参于衍射,而(b)中(001)面却 不产生衍射,也就是说原子位置改变,衍 射强度改变。
二 . 结构因素的概念
1. 系统消光——因原子在晶体中的位置不同或 原子种类不同,衍射线相互干涉,造成在某些 方向上衍射线强度减弱甚至消失的现象称之系 统消光。
2. 结构因数——定量地表征原子排布以及原子种 类对衍射强度影响规律的参数。即晶体结构对 衍射强度影响规律的参数。
晶体的衍射强度与参加衍射晶粒数目成正比.
∵ 参加衍射的晶粒分数=(cosθΔθ)/2 ∴ 这一数目与衍射角有关,即I ∝ cosθ。
也将这一项称为第二几何因子。
⑶单位弧长的衍射强度(第三几何因子,即 衍射线位置对强度测量的影响)
意义:描述了衍射线所处位置不同对衍射强度的影 响,即2θ↓衍射线圆弧半径↓,单位弧长上的强度↑。
2.三种衍射几何对衍射强度的影响规律
⑴.晶粒大小的影响(第一几何因子)
由于实际晶体的不完整性、入射线也不可能是绝对 单色的,且不会绝对平行而是具有一定的发散角。因此, 衍射线的强度尽管在满足布拉格方程的方向上最大,但 偏离一定的布拉格角时也不会为零,故衍射曲线呈山峰 状,具有一定的宽度,而不是严格的直线。
2
当2θ=90。时
1 cos2 2
2对x射线的散射
1. 原子核对X-ray的散射
由于散射波强度与引起散射的粒子 质量成反比,原子核质量是电子质量的1840 倍,因此原子核引起的散射强度极弱,可忽 略不计。
2 . 原子中Z个电子对X-ray的散射
⑴ . 首先假设原子中的电子集于一点,即所有 电子散射波之间无位相差,则原子序数为Z的原 子对X-ray散射波振幅Aa为电子散射波振幅Ae的 Z倍,即 :
第3章X射线的强度详解
Z个电子散射的叠加。 (1)若不存在电子电子散射位相差:
其中Ae为一个电子散射 的振幅
7
(1)实际上,存在位相差,引入原子散射
因子:
即Aa=f Ae 。 其中f与有关、与λ有关。
散射强度:
(f总是小于Z)
8
原子散射因子
9
一个单胞对X射线的散射
1. 讨论对象及主要结论:
这里引入了FHKL ――结构因子
19
3.2 单胞对X射线的散射
体心点阵
FHKL2=fa2[cos2π(0)+cos2π(H/2+K/2+L/2)]2+ fa2[sin2π(0)+sin2π(H/2+K/2+L/2)]2
分析 = fa2[1+cosπ(H+K+L)]2
当H+K+L为偶数时, FHKL=2fa
当H+K+L为奇数时, FHKL=0
17
3.2 单胞对X射线的散射
底心点阵 分析:
当H+K为偶数时,即H,K全为奇数或全为 偶数: FHKL2=fa2(1+1)2=4fa2
当H+K为奇数时,即H、K中有一个奇数 和一个偶数: FHKL2=fa2(1-1)2=0
结论 在底心点阵中,FHKL不受L的影响,只有当H、 K全为奇数或全为偶数时才能产生衍射
25
四种基本点阵的消光规律
布拉菲点 阵
出现的反射
消失的反射
简单点阵
全部
无
底心点阵 体心点阵 面心点阵
H、K全为奇数或全为偶数 H+K+L为偶数
H、K、L全为奇数或全为偶数
H、K奇偶混 杂
其中Ae为一个电子散射 的振幅
7
(1)实际上,存在位相差,引入原子散射
因子:
即Aa=f Ae 。 其中f与有关、与λ有关。
散射强度:
(f总是小于Z)
8
原子散射因子
9
一个单胞对X射线的散射
1. 讨论对象及主要结论:
这里引入了FHKL ――结构因子
19
3.2 单胞对X射线的散射
体心点阵
FHKL2=fa2[cos2π(0)+cos2π(H/2+K/2+L/2)]2+ fa2[sin2π(0)+sin2π(H/2+K/2+L/2)]2
分析 = fa2[1+cosπ(H+K+L)]2
当H+K+L为偶数时, FHKL=2fa
当H+K+L为奇数时, FHKL=0
17
3.2 单胞对X射线的散射
底心点阵 分析:
当H+K为偶数时,即H,K全为奇数或全为 偶数: FHKL2=fa2(1+1)2=4fa2
当H+K为奇数时,即H、K中有一个奇数 和一个偶数: FHKL2=fa2(1-1)2=0
结论 在底心点阵中,FHKL不受L的影响,只有当H、 K全为奇数或全为偶数时才能产生衍射
25
四种基本点阵的消光规律
布拉菲点 阵
出现的反射
消失的反射
简单点阵
全部
无
底心点阵 体心点阵 面心点阵
H、K全为奇数或全为偶数 H+K+L为偶数
H、K、L全为奇数或全为偶数
H、K奇偶混 杂
X射线的衍射强度
有序固溶体分析
(1)完全无序 每个晶胞中含有四个平均原子(0.75 Cu+0.25Au)属面心立 方点阵。坐标000 1/2 1/2 0 1/2 0 1/2 0 1/2 1/2
FHKL=f平均[1+eπi(H+K)+eπi(H+L)+eπi(K+L)] 当H、K、L全为奇数或全为偶数时 FHKL=4 f平均=fAu+3fCu 当H、K、L为奇偶混杂时,FHKL=0消光
一个原子对X射线的散射
原子散射因子曲线 对于不同类型的原子,其原子散射因子 f 是可变的,它与sinθ和λ有关。随 sinθ/λ的值的增大而变小。 Sinθ=0时,f=Z. 原子序数越小,非相干散射越强。(核外电子所占比例增大)
一个晶胞对X射线的散射
预备知识: X射线的波前电场强度随时间的变化可以用周期函数表示:
实际上,原子中的电子是按照电子云状态分布在原子空 间的不同位置上,故各个电子散射波之间是存在位相差的, 这一位相差使得合成波的强度减弱。
一个原子对X射线的散射
X射线受到一个原子的散射
一个原子对X射线的散射
经过修正: 一个电子对X射线散射后空间某点强度可用Ie表示,那么一个 原子对X射线散射后该点的强度Ia:
fe 2 2 2
= f [1+ eπi(h+k+l) ]
F = 2 f (h+k+l)为偶数 F2 = 4f 2
F = 0 (h+k+l)为奇数
体心点阵中,只有当H+K + L为 偶数时才能产生衍射
体心立方
面心立方晶胞的结构因子
每个晶胞中有4个同类原子,分别位于000、1/2 1/2
第三章 X射线的强度
b、两偶一奇
2
结构消光 结构消光
F 0
2
例题4:具有底心阵胞的点阵,由同名原子组成,m=2 ;
u、v、w=(0、0、0);(1/2、1/2、0)
2 m
F
2
f
m
exp[2πi(um H v m K wm L)]
2
1 1 f1 exp[2i (0H 0K 0L)]+f 2 exp[2i ( H K 0L)] 2 2
2 f 2 1+exp(i L) exp[ i (H 2K)] 3 讨论: ① 当H+2K=3n(n为任意整数)和L为奇数时:
2
F 0
② 当H、K、L为其它组合时:
2
F 0
2
例题6:由异名原子组成晶体结构,计算NaCl 的结构因数,NaCl晶体 结构中,每个晶胞中有4个钠原子和4个氯原子,原子散射因数分别为 fNa 和 fCl : 钠原子的坐标为:
位相和振幅不同的正弦波的合成
两个波长相同而位相和 振幅不同,其波函数可用下
式表示:
E1 A1 sin( 2πν t 1 )
E2 A2 sin( 2 t 2 )
若求两个波的合成,可
用复数方法进行解析运算。
波的向量合成
波的解析表达式:
A cos Ai sin ix 又:e cos x i sin x
j 1 m i j
令:
Ab m i j F f je Ae j 1
结构因子
衍射波的位相与衍射面和原子的位置有关
2 ( Hu Kv Lw)
FHKL f j e
j 1 m 2 i ( Hu j Kv j Lw j )
2
结构消光 结构消光
F 0
2
例题4:具有底心阵胞的点阵,由同名原子组成,m=2 ;
u、v、w=(0、0、0);(1/2、1/2、0)
2 m
F
2
f
m
exp[2πi(um H v m K wm L)]
2
1 1 f1 exp[2i (0H 0K 0L)]+f 2 exp[2i ( H K 0L)] 2 2
2 f 2 1+exp(i L) exp[ i (H 2K)] 3 讨论: ① 当H+2K=3n(n为任意整数)和L为奇数时:
2
F 0
② 当H、K、L为其它组合时:
2
F 0
2
例题6:由异名原子组成晶体结构,计算NaCl 的结构因数,NaCl晶体 结构中,每个晶胞中有4个钠原子和4个氯原子,原子散射因数分别为 fNa 和 fCl : 钠原子的坐标为:
位相和振幅不同的正弦波的合成
两个波长相同而位相和 振幅不同,其波函数可用下
式表示:
E1 A1 sin( 2πν t 1 )
E2 A2 sin( 2 t 2 )
若求两个波的合成,可
用复数方法进行解析运算。
波的向量合成
波的解析表达式:
A cos Ai sin ix 又:e cos x i sin x
j 1 m i j
令:
Ab m i j F f je Ae j 1
结构因子
衍射波的位相与衍射面和原子的位置有关
2 ( Hu Kv Lw)
FHKL f j e
j 1 m 2 i ( Hu j Kv j Lw j )
第三章X射线衍射强度gqf详解
Modern Analytical Instruments and Technology for Materials 7
X射线衍射强度理论包括运动学理论和动力学理论,前者 只考虑入射X射线的一次散射,后者考虑入射X射线的多 次散射。
X射线衍射强度涉及因素较多,问题比较复杂。一般从基 元散射,即一个电子对X射线的(相干)散射强度开始, 逐步进行处理。
(原子散射因子)
晶胞内 各原子 散射波
合成
一个晶胞对X射 线的散射强度 (结构因子)
引入吸收因 子、温度因 子、多重性
因子
(粉末)多 晶体衍射
(积分)强 度
温度对强度 的影响
吸收对强度 的影响
等同晶面数 对强度的影
响
小晶体 内各晶 胞散射 波合成
单位弧长衍 射强度
参加衍射的晶 粒(小晶体)
数目
一个小晶体对X射线 的散射强度与衍射
(积分)强度 (干涉函数)
X射线衍射强度问题的处理过程
Modern Analytical Instruments and Technology for Materials 9
3.2 一个电子对X射线的散射 P15
电子在入射X射线电场矢量作用下会产生受迫振动。获得变 加速运动的电子,作为新的波源向四周辐射与入射X射线频 率相同并具有确定周相关系的电磁波。
Chapter 3
X射线衍射强度
The Diffracted Intensity of X-Ray
Modern Analytical Instruments and Technology for Materials
本章主要内容
了解影响衍射强度的各种因素,多重 因子,角因子,吸收因子,温度因子 和结构因子。
X射线衍射强度理论包括运动学理论和动力学理论,前者 只考虑入射X射线的一次散射,后者考虑入射X射线的多 次散射。
X射线衍射强度涉及因素较多,问题比较复杂。一般从基 元散射,即一个电子对X射线的(相干)散射强度开始, 逐步进行处理。
(原子散射因子)
晶胞内 各原子 散射波
合成
一个晶胞对X射 线的散射强度 (结构因子)
引入吸收因 子、温度因 子、多重性
因子
(粉末)多 晶体衍射
(积分)强 度
温度对强度 的影响
吸收对强度 的影响
等同晶面数 对强度的影
响
小晶体 内各晶 胞散射 波合成
单位弧长衍 射强度
参加衍射的晶 粒(小晶体)
数目
一个小晶体对X射线 的散射强度与衍射
(积分)强度 (干涉函数)
X射线衍射强度问题的处理过程
Modern Analytical Instruments and Technology for Materials 9
3.2 一个电子对X射线的散射 P15
电子在入射X射线电场矢量作用下会产生受迫振动。获得变 加速运动的电子,作为新的波源向四周辐射与入射X射线频 率相同并具有确定周相关系的电磁波。
Chapter 3
X射线衍射强度
The Diffracted Intensity of X-Ray
Modern Analytical Instruments and Technology for Materials
本章主要内容
了解影响衍射强度的各种因素,多重 因子,角因子,吸收因子,温度因子 和结构因子。
第三章 X射线的强度
位相差:
j
2
j
2rj
S
S0
2 (hu kv lw)
结构振幅的计算
结构振幅为:
n
FHKL
f jei j
j 1
2 (hu j kvj lwj )
其中:uj、vj、wj是j原子的阵点坐标; (hkl)是发生衍射的晶面指数
可将复数展开成三角函数形式 ei cos i sin
面心点阵
结论
在面心立方中,只有当H、K、L全为奇数或全 为偶数时才能产生衍射。如Al的衍射数据:
1)当H、K、L全为奇数或全为偶数时
2)当H、K、L为奇数混杂时(2个奇数1个偶数或2个偶 数1个奇数)
即面心立方点阵只有指数为全奇或全偶的晶面才能 产生衍射,例如(111)、(200)、(220) (311)、(222)、(400)…。能够出现的衍射线, 其指数平方和之比是:3:4:8:11;12:16…=1; 1.33:2.67:3.67:4:5.33…
(2
),3'1'
3'1'
(2
)
2hx
a
当原子B的位置系用分数座标u x 标明时,则该周相差即成为 a
3'1' 2hu
这种推理可推广到三维空间中,原子的坐标 (xyz),其分数坐标(x/a,y/b,z/c),相应等 于(uvw),对于原子B和位于原点A散射波的周相 差,对于(hkl)反射来说,其周相差为
3.4 面心点阵对X射线的散射
面心点阵每个晶胞中有4 个同类原子
000, ½ ½ 0, ½ 0 ½, 0 ½½
X射线衍射强度
各原子的散射因子:f1 、f2 、f3 ...fn (若为同种原子,各f 相等); 各原子的散射振幅:f1Ae 、f2Ae 、f3Ae ...fnAe
(Ae为原子中一个电子的相干衍射波振幅,为最小单位量);
各原子与原点O原子之间的散射波的相位差:Φ1 、Φ2 、Φ3 ... Φn ; 则:晶胞内所有原子对相干散射波的合成振幅 Ab 为:
f [1 e i ( hk ) e i ( k l ) e i ( hl ) ]
F 4f
h,k,l为同性数:
F 2 16 f 2
h,k,l为异性数:
F 0 I 0
在面心立方中,只有当h、k、l 全为奇数或全为偶数时才能产生衍射。
3种基本点阵的消光规律
点阵类型
简单立方 体心立方 面心立方
两个电子散射强度的相位差:
j
2
j
4
rj sin cos
令: K
4
sin
j=K rj cos
考虑了电子间相位差后,原子的散射振幅为:
Aa Ae [e
i1
e
i2
....e ] Ae e
i z j 1
z
i j
令:
Aa 一个原子的散射波振幅 f Ae 一个电子的散射波振幅
出现的反射
全部 H+K+L为偶数 H、K、L全为奇数或全为偶数
简单立方: (100),(110),(111),(200),(210),(211),(220) ,… h2+k2+l2 : 1, 2, 3, 4, 5, 6, 8,……
体心立方: (110),(200),(211),(220),(310),(222),… h2+k2+l2 : 2, 4, 6, 8, 10 12, …… 面心立方: (111),(200),(220),(311),(222),… h2+k2+l2 : 3, 4, 8, 11, 12, ……
第3章 X射线衍射强度
15
一、一个电子对X射线的散射
16
一、一个电子对X射线的散射
• 晶体中的电子散射包括:相干散射与非相干散射。
1. 相干散射: • 指入射光子与原子内层电子发生弹性碰撞作用,仅使运动
方向改变而无能量损失。又称弹性散射或汤姆逊散射。
2. 非相干散射: • 指入射光子与原子外层电子或晶体中自由电子发生非弹性
25
原子散射强度(2)
• 原子对X射线的散射情况: • 入射X射线分别照射到原子中任意A和B两电子。
• 1、在XX′方向散射波:
• 因2差为 0 。
• 相当于Z个电子集中于一点 的“理想”情况,则
• 原子散射强度为:
Ia= Z2 Ie
X射线受一个原子的散射
相对衍射强度:用同一衍射图各衍射线强度(积分强度 或峰高)的相对比值。
4
X射线衍射的强度
I
背景 强度 2
5
衍射强度曲线
如:钢中马氏体(200)α和残奥(200)γ的局部衍射曲线。
图3-l衍射线强度曲线
• 各衍射峰曲线所包围面积即为其积分强度,这两积分强度大 小比较,可算出残奥γ的含量。
6
本章的目的
它考虑了原子中各电子散射波的位相差后,各散射波合成 的结果。则原子散射强度表达为:
Ia Z2Ie
Ia f 2Ie
显然: f ≤ Z 。
28
原子散射因子 f (2)
• 原子散射因数 f 定义为:在相同条件下,一个原子散射波 与一个电子散射波的波振幅或强度之比。
Ia f 2Ie
f
(Ia
1
)2
Aa
Ie
34
三、一个晶胞对X射线的散射(4)
2、晶胞内各原子相干散射波合成波振幅: 单胞对X射线的散射:晶胞内各原子散射波合成的结果。
第3章X射线衍射强度
结构因子只与原子的种类和原子在晶
胞中的位置有关,而不受晶胞的形状 和大小的影响。
结构消光
衍射强度: I Fhkl
2
满足布拉格方程条件2dsinθ=λ但结 构因子F=0导致衍射线强度I为零的 现象称之为结构消光。
小结
一个电子对X-ray的散射情况 偏振因子
一个原子对X-ray的散射情况 原子散射因子f 一个单胞对X-ray的散射情况 结构因子
e e
h l 2i ( ) 2 2
e
k l 2i ( ) 2 2
]
h k l 2i ( ) 2 2 2
e
k 2i ( ) 2
e
h 2i ( ) 2
]
讨论:
(1)h、k、l全为偶数时, F=4fNa+4fCl |F|2=(4fNa+4fCl)2
(2)h、k、l全为奇数时, F=4fNa-4fCl |F|2=(4fNa-4fCl)2 (3)h、k、l奇偶混杂时 F=0 NaCl属于面心布拉菲点阵,可衍射的 指数是111、200、220· · · · · · 、
当h, k, l为全奇或全偶,(h + k), (k+l) 和 (h+l) 必为偶数,故F = 4f, F 2 = 16f 2 当h, k, l中有两个奇数或两个偶数时,则在(h+k),(k+l) 和(h+l)中必有两项为奇数,一项为偶数,故F = 0, F2 = 0
所以(111),(200),(220),(311)时F≠0,这些 晶面衍射线存在,而(100),(110) ,(112),(221) 等F=0,出现消光,衍射线不存在
3.3 结构因子
X射线衍射强度
6
衍射强度-原子种类,原子位置
电子
晶体
思路:
晶胞
原子
一个原子 核
In电子
I原子核
I原子
I晶胞
I晶体
I多晶
7
二、电子对X射线的衍射
晶体的X射线衍射作用是由电子的相干 散射引起的.
当一束X射线碰到一个电子时,该电子在X射 线电场的作用下产生强迫振动,向四周幅射振动频 率(波长)与原X射线频率相同的X射线。这就是相 干散射。电子就成为一个新的X射线源。
46
四种基本点阵的消光规律
布拉菲点 阵
出现的反射 全部
消失的反射 无
简单点阵
H、K奇偶混 底心点阵 H、K全为奇数或全为偶数 杂 H+K+L为奇 体心点阵 H+K+L为偶数 数 H、K、L奇 面心点阵 H、K、L全为奇数或全为偶数 偶混杂
47
结构消光
由两种以上等同点构成的点阵结构来说,一方面 要遵循点阵消光规律,另一方面,因为有附加原 子的存在,还有附加的消光,称为结构消光
(3)体心点阵
每个晶胞中有2个同类原子,其坐标为 000和1/2 1/2 1/2 ,其原子散射因子相同
41
– 分析
• 当H+K+L为偶数时, • 当H+K+L为奇数时,
结论: 在体心点阵中,只有当H+K+L为偶数时 才能产生衍射
42
(4)面心点阵
– 每个晶胞中有4个同类原子
43
分析
• 当H、K、L全为奇数或偶数时,则(H+K)、 (H+K)、(K+L)均为偶数,这时:
这些消光规律,存在于金刚石结构、密堆六方等 结构中
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图3-6 参加衍射的晶粒分数
2 r *sin(90 )r * cos 参加衍射的晶粒分数 2 4 (r*) 2
式中,r*为倒易球半径, r*为环带宽
14
第三节 洛伦兹因数
三、单位弧长的衍射强度 图3-7 为德拜法的衍射几何, 在衍射角为2 的衍射环上, 某点到试样的距离为R, 则 衍射环的半径为Rsin2,周 长为2Rsin2 可见单位弧长的衍射强度反 图3-7 德拜法衍射几何 比于sin2 cos 综前所述的三个衍射几何可得洛伦兹因数 2 2 sin
当H, K, L为同性数时,FHKL2 (fAu+3fCu)2
固溶体出现有序化后,使无序固溶体因消光而失去的衍射线 重新出现
12
第三节 洛伦兹因数
一、衍射的积分强度 如图3-5所示,衍射积分强度是分布曲线(衍射峰)在扣除 背底后所围成的面积,称为衍射积分强度 衍射积分强度近似等于ImB, Im为顶 峰强度,B为 Im/2处的衍射峰宽度(称 半高宽) Im和 1/sin 成比例,B和 1/cos 成比 例,故衍射积分强度与1/(sin cos) (即1/sin2 )成比例
n j 1
(3-2)
X射线的强度IHKL与结构振幅的平方FHKL2成正比,即
FHKL
2 FHKL FHKL
(3-3)
FHKL2称结构因数,用以表征单胞中原子种类、数目、位臵 对(HKL)晶面衍射强度的影响
6
第二节 单位晶胞对X射线的散射与结构因数
二、几种点阵结构因数计算 1. 简单点阵 单胞中只有1个原子,其坐标为(0,0,0),原子散射因数为 f,则有 FHKL2 = [f cos2(0)]2 + [f sin2(0)]2 = f 2
衍射方向决定了衍射线的位臵,而衍 射强度决定了衍射线的亮暗程度
图3-1 d 晶面及其 衍射线的分布
图3-2 德拜相示意图
3
第二节 单位晶胞对X射线的散射与结构因数
简单点阵只有一种原子组成,每个单胞中只有一个原子, 其位于单胞的顶角上,所以简单点阵单胞的散射强度相当 于一个原子的散射强度 复杂点阵单胞中含有n个相同或不同种类的原子,它们除占 据单胞的顶角外,还可能位于体心、面心或底心位臵,所 以复杂点阵单胞的散射波振幅为单胞中所有原子散射波的 合成振幅
18
入射线
图3-9 圆柱试样的吸收情况
第四节 影响衍射强度的其他因数
二、吸收因数
Байду номын сангаас
1. 圆柱试样
对同一试样, 越大吸收越小;在相同 方向, lr 越 大,A()就越小, A()随 和lr变化见图3-10。当衍射强度不 通常受吸收影响时,取A() = 1 2. 平板试样 X射线衍射仪采用平板试样,其吸收 因数与 近似无关,而与l 成反比, 即 A( ) = 1/2l
1 2 1 1 2 1 cos 2 洛伦兹因数 Icos P FHKL A( )e 2 M sin 2 相对 sin 2 4sin 2 cos sin 2 cos
15
第三节 洛伦兹因数
四、角因数 将洛伦兹因数与偏振因数合并,可得到一个与掠射角 有关的函数,称角因数,或洛伦兹-偏振因数 角因数随 的变化如图3-8,常用的 角因数表达式仅适用于德拜法,因 洛伦兹因数与具体的衍射几何有关
一、结构因数公式的推导 引入一个反映单胞散射能力的参数—结构振幅 FHKL,即
FHKL Ab Ae f j e
j 1 n i j
(3-1)
将复数展开成三角函数形式,
FHKL f j cos2πHx j Ky j L j i sin Hx j Ky j L j
6h2 ( x) 1 sin 2 M x 4 2 ma k
(3-4)
式中,h为普朗克常数;ma为原子量;k为波尔兹曼常数; 是以热力学温度表示的晶体特征温度平均值; x = /T,T是 试样的热力学温度;(x)是德拜函数
j = rj k rj k = rj (k k)
相应的位相差为,
j = 2(Hxj +Kyj +Lzj )
单胞中所有原子散射波振幅的合 成就是单胞的散射波振幅Ab ,
图3-3 单胞中两原子的相干散射
Ab Ae f j e
j 1
n
i j
5
第二节 单位晶胞对X射线的散射与结构因数
第二节 单位晶胞对X射线的散射与结构因数
二、几种点阵结构因数计算
3. 面心点阵
单胞中有4个原子,坐标分别为(0,0,0)、 (0,1/2,1/2)、 (1/2, 0,1/2)、 (1/2,1/2, 0),原子散射因数均为 f FHKL2 = = f 2 [1+cos(K+L)+cos(H+K)+cos(H+L)]2 1)当H,K,L为奇偶混合时,FHKL2 = 0,衍射强度为零,如 (100)、(110)、(210)、(211)、(300) 2)当H,K,L为全奇或全偶数时, FHKL2 = 16f 2, 能产生衍射, 如(111)、(200)、(220)、(311)、(222) ,这些干涉面指数 (HKL)平方和之比为, N1 : N2 : N3 : N4 : N5 3 : 4 : 8 :11:12
7
第二节 单位晶胞对X射线的散射与结构因数
二、几种点阵结构因数计算 2. 体心点阵 单胞中有2个原子,坐标分别为(0,0,0)和(1/2,1/2,1/2),原 子散射因数均为 f FHKL2 = [f cos2(0) + f cos2(H+K+L)/2 ]2 + [f sin2(0) + f sin2(H+K+L)/2 ]2 = f 2 [1+ cos(H+K+L)]2 1) 当H+K+L=奇数时, FHKL2 = 0,衍射强度为零,如(100)、 (111)、(210)、(300)、(311) 2) 当H+K+L=偶数时, FHKL2 = 4f 2,晶面能产生衍射,如 (110)、(200)、(211)、(220)、(310) ,这些干涉面指数 (HKL)平方和之比为, N1 : N2 : N3 : N4 : N5 2 : 4 : 6 : 8 :10 8
1 cos 2 2 角因数 8sin 2 cos cos sin 2 2 实际应用多仅涉及相对强度,通常 1 2 2 1 cos 2 P FHKL A( )e 2 M 称 sin2 cos 为洛伦兹因数; 4sin 2 cos
16
I 相对
1 cos 2 2 角因数 图3-8 角因数与 的关系 称 8sin 2 cos 为角因数
11
第二节 单位晶胞对X射线的散射与结构因数
二、几种点阵的结构因数计算 5. 有序固溶体 某些固溶体发生有序化转变后,不同原子将占据单胞中 特定位臵,将导致衍射线分布随之改变 如AuCu3为无序固溶体时,消光规律遵循面心点阵;而在有 序状态下,Au原子占据顶角,Cu原子占据面心,结果为
当H, K, L为异性数时,FHKL2 (fAu-fCu)2 0
第一篇 材料X射线衍射分析
第一章 X射线物理学基础
第二章 X射线衍射方向
第三章 X射线衍射强度
第四章 多晶体分析方法 第五章 物相分析及点阵参数精确测定 第六章 宏观残余应力的测定 第七章 多晶体织构的测定
1
第三章 X射线衍射强度
本章主要内容
第一节 多晶体衍射图相的形成
第二节 单位晶胞对X射线的散射与结构因数
图3-4 三种点阵 衍射线的分布
10
N
第二节 单位晶胞对X射线的散射与结构因数
二、几种点阵的结构因数计算 4. 异类原子组成的物质 由异类原子组成的物质,如化合物AB属于简单点阵,A 和B原子分别占据单胞顶角和中心,两种原子各自组成简单点 阵, 其结构因数FHKL2为 当H+K+L=奇数时,FHKL2 = (fA-fB)2 当H+K+L=偶数时,FHKL2 = (fA+fB)2 对于化合物CuBe,因Cu和Be的原子序数差别较大,衍射线 分布与简单点阵基本相同,只是某些衍射线强度较低 而与CuBe结构相同的CuZn,但因Cu和Zn的原子序数相邻, fCu和 fZn极为接近,而使其衍射线分布与体心点阵相同
图3-10 A( )与 及 l r 的关系
19
第四节 影响衍射强度的其他因数
三、温度因数 原子热振动使点阵中原子排列的周期性变差,使原来严 格满足布拉格条件的相干散射产生附加的相位差,从而使衍 射强度减弱 在衍射强度公式中引入温度因数e-2M ,是在温度T 时衍射强度 与0K 时的衍射强度之比,即 IT / I = e-2M,由固体物理可导出
由于衍射线的相互干涉,某些方向的强度将会有所加强, 某些方向的强度将会减弱甚至消失,习惯上将这种现象称 为系统消光
4
第二节 单位晶胞对X射线的散射与结构因数
一、结构因数公式的推导 如图3-3,取单胞顶点O为坐标原点,单胞中第 j 个原子A 的位臵矢量为, rj = xj a + y j b + zj c 式中,a、b、c是点阵的基本矢量; xj 、yj 、zj 为 A 原子的坐 标。A原子和O原子散射波的光程差为,
简单点阵的结构因数与HKL无关,即HKL为任意整数,均能 产生衍射,如(100)、(110)、(111)、(200)、(210)
令 Ni Hi Ki Li ,则简单点阵能够产生衍射的干涉面指 数(HKL)平方和之比为,
2 2 2
N1 : N2 : N3 : N4 : N5 1: 2 : 3 : 4 : 5
9
第二节 单位晶胞对X射线的散射与结构因数