第三章X射线衍射强度.

合集下载

3X射线衍射强度

3X射线衍射强度




= 3:4:8:11:12:16
……
结构因数只与原子的种类及其在单胞中的位置有关,而 不受单胞的形状和大小的影响。例如对体心点阵,不论 是立方晶系、正方晶系还是斜方晶系,其消光规律是相 同的,因此系统消光规律具有广泛的适用性。
18
三种点阵晶体衍射线的分布状况
图中m = H2 + K2 + L2,产生衍射的 干涉面指数平方和之比分别为: 简单点阵 1:2:3:4:5:6:8:9 ……

1
1
1

2
2
2

3
3
3

= 1:2:3:4:5:6:8:9
……
2. 体心点阵
体心点阵的单胞中有两种位置的原子,即坐标为 (0,0,0) 的顶角原子和坐标为(1/2, 1/2, 1/2)的体心原子,原子散
射因数均为 f。其结构因数为:
2 2
FHKL f 1 cos ( H K L)
1/(sin cos) (即1/sin2 )成正比。
衍射的积分强度
26
第三节 洛伦兹-偏振因数
3.3.1 衍射的积分强度
3.3.2 参加衍射的晶粒分数 3.3.3 单位弧长的衍射强度 3.3.4 洛伦兹-偏振因数
27
3.3.2 参加衍射的晶粒分数
多晶样品中,各晶粒的取向在空间等几率分布。各晶 粒中所有同族 (HKL)晶面的面间距相同,产生衍射的布 拉格角相等。
第三节 洛伦兹-偏振因数
3.3.1 衍射的积分强度
3.3.2 参加衍射的晶粒分数 3.3.3 单位弧长的衍射强度 3.3.4 洛伦兹-偏振因数
30
3.3.3 单位弧长的衍射强度

第3章 X射线衍射强度

第3章 X射线衍射强度

由于衍射线的相互干涉,某些方向的强度将会有所加强, 某些方向的强度将会减弱甚至消失,习惯上将这种现象称 为系统消光
13
X射线衍射强度理论
包括运动学理论和动力学理论.
单位晶胞对X射线的散射与结构因素
1. 一个电子对X射线的散射
由汤姆逊公式进行描述,是汤姆逊从经典电动力学的观点分析 推出的。
re 2 1 (cos2 ) 2 Ie Io ( ) R 2
消失的反射

H、K全为奇数或全为 偶数 (H+K为偶数)
H+K+L为偶数 H、K、L全为奇数或 全为偶数
H、K奇偶混杂 (H+K为奇数)
H+K+L为奇数 H、K、L奇偶混杂
第二节 单位晶胞对X射线的散射与结构因数
二、几种点阵的结构因数计算
三种点阵晶体衍射线分布见图5-20 , 图中N = H2 + K2 + L2,产生衍射的干 涉面指数平方和之比分别为, 简单点阵 体心点阵 面心点阵 12345 2 4 6 8 10 3 4 8 11 12
单位晶胞对X射线的散射与结构因素
2. 一个原子对X射线的散射
Ia f Ie
2
这里引入了f――原子散射因子
单位晶胞对X射线的散射与结构因素
推导过程:
一个原子包含Z个电子,那么可看成Z个电子散射的叠加。 (1)若不存在电子电子散射位相差:
I a Z Ae Z I e
2 2
26
单位晶胞对X射线的散射与结构因素
• 4. 底心点阵 – 每个晶胞中有2个同类原子,其坐标分别为000和1/2 1/2 0,原子散射因子相同,都为fa。

3 衍射强度

3 衍射强度

• 有序化使无序固溶体因消光而失却的衍射线复出
现,这些被称为超点阵衍射线。 • 根据超点阵线条的出现及其强度可判断有序化的 出现与否并测定有序度。
§3-3 多晶体的衍射强度
• 本小节讨论最广泛应用的粉末法的衍射强度问题. • 在粉末法中影响衍射强度的因子有如下五项: • (1) 结构因子(上节已讨论)
• 本章我们将讨论X射线衍射强度
• 从一个电子、一个原子、一个晶胞、一 个晶体、粉末多晶循序渐进地介绍它们 对X射线的散射问题.
• 最后讨论粉末多晶体的衍射强度问题.
一、关于衍射强度
** 单位时间内通过与衍射方向相垂直的单位面积 上的X射线光量子数目。 **绝对强度的测量既困难又无实际意义。 **衍射强度常用同一衍射图中各衍射线强度 (积分 强度或峰高)的相对比值即相对强度表示.
度变为0)。
**对衍射强度作出系统而全面的研究 ,就要依靠结 构因子。当 X 射线照射到晶体中某个晶胞时,该晶 胞中各原子的散射波具有不同的位相和振幅,其合 成波的强度为:
2 FHKL
n n 2 = f k cos 2p ( mc H + PK K + q K L + f k sin 2p ( mk H + PK K + q k L k =1 k =1
• A(θ)-吸收因子
• r-试样直径
• 线吸收系数-μl
• 这样的吸收与θ有关。
• 平板试样的吸收因子,在入
射角与反射角相等时,吸收 与θ无关。
四、温度因子
**前面所讲的各节,均将晶体中的原子看作是 处于理想平衡位置的结点上。 **实际上,晶体中原子是处在连续不断的热振 动状态下,必然给衍射带来影响. 1.晶胞膨胀; 2.衍射线强度减小;

第三章 X射线衍射强度

第三章 X射线衍射强度

温度因子
e
2 M
IT I
式中:IT — 原子热振动影响时的强度 I — 理相状态的强度 热振动的方向无规则性,使得非衍射方 向散射强度↑,增加衍射花样背底。
5 吸收因子 A(θ )
试样对x-ray的吸收造成衍射强度的衰减。
无吸收A(θ
)=1,吸收越多,其值越小。 圆柱状试样的A(θ )是试样 l 和半径r的 函数,可通过查表求得。 1 板状试样的A(θ )与θ 无关, A( ) 2
角顶 Cs (0,0,0) FHKL = f Cs + f Cl e H + k + L = 偶数 F = f Cs+ f Cl 强度高 (110)(200)(211)… H + k + L= 奇数 F = f Cs – f Cl 强度低 (100)(111)(210)…
1 1 1 体心 Cl( 2 , 2 , 2 ) iπ(H+K+L)
2 多重性因子 P
表示多晶体中同族晶面{HKL}的等同晶面
数。
P值越大,晶面获得衍射的几率越大,对应
的衍射线越强。
d同
θ同 衍射线重叠在同一衍射线环上。
P数值随晶系及晶面指数而变化。
例:
立方晶系(a
= b = c α=β=γ=90°)
P100= 6 四方晶系(a = b≠c α=β=γ=90°) P100= 4 P001= 2
系统消光
衍射线I=0,衍射线消失,称为系统消光。
(原子在晶胞中的位置不同引起某些方向 衍射线的消失--点阵消光)。
尽管满足衍射条件,因F
= 0使衍射线消失
的现象。
对于体心点阵,可以产生衍射的晶面为

第3章 X射线的衍射强度

第3章 X射线的衍射强度
1 1 1 2 i h k l F f 1 e 4 4 4
2) 当hkl全为奇数时,Ff=Fa。h+k+l=2n+1,其中n为任 意整数,则有
1 e
i
2
h k l
1 cos

2
h k l i sin
I=A2
实际上,晶体要产生x射线衍射,x射线的波长应当 与晶体中原子间距在同一数量级。
与入射x射线平行的方向上(XX’): 相位差为0,所以Aa=ZAe 除了XX’方向:各电子的散射波之 间存在一定的相位差。 如在YY’方向上a、b两个电子产 生的散射波的波程差为CB-AD,
会产生干涉作用。 由于原子半径的尺度比x射线的波长的尺度要小,所以各电子的
四、一个晶胞对x射线的衍射
1、复杂点阵的衍射分析
简单点阵只由一种原子组成,每个晶胞只有一个原子,它 分布在晶胞的顶角上,单位晶胞的散射强度相当于一个原 子的散射强度。 复杂点阵晶胞中含有n个相同或不同种类的原子,它们除 占据单胞的顶角外,还可能出现在体心、面心或其他位置。 复杂点阵的衍射特点 (1)任何复杂点阵都是由完全相同且平行的几个简单点阵 镶嵌而成的; (2)整个复杂点阵的衍射可以看做是由各个简单点阵及基 点原子在相同方向的衍射合成结果; (3)复杂点阵的可能衍射方向不可能多余其中任何一个简 单点阵的衍射方向,只能减少或相等。
假定一个晶胞中有n个原子, 它们的坐标分别为u1v1w1、u2v2w2……unvnwn; 每个原子的原子散射因子分别为f1、f2、f3…… fn ;它们的散射波的振幅为 Aef1、Aef2、Aef3……Ae fn 各原子散射波与入射波的位相差分别为φ1、φ2、φ3、……φn。 那么,这n 个原子的散射波互相叠加合成的整个晶胞的散射波的振幅Ab为

第三章 X射线衍射强度

第三章 X射线衍射强度

由此可见,图3-2(a)中的(001) 晶面会参于衍射,而(b)中(001)面却 不产生衍射,也就是说原子位置改变,衍 射强度改变。
二 . 结构因素的概念
1. 系统消光——因原子在晶体中的位置不同或 原子种类不同,衍射线相互干涉,造成在某些 方向上衍射线强度减弱甚至消失的现象称之系 统消光。
2. 结构因数——定量地表征原子排布以及原子种 类对衍射强度影响规律的参数。即晶体结构对 衍射强度影响规律的参数。
晶体的衍射强度与参加衍射晶粒数目成正比.
∵ 参加衍射的晶粒分数=(cosθΔθ)/2 ∴ 这一数目与衍射角有关,即I ∝ cosθ。
也将这一项称为第二几何因子。
⑶单位弧长的衍射强度(第三几何因子,即 衍射线位置对强度测量的影响)
意义:描述了衍射线所处位置不同对衍射强度的影 响,即2θ↓衍射线圆弧半径↓,单位弧长上的强度↑。
2.三种衍射几何对衍射强度的影响规律
⑴.晶粒大小的影响(第一几何因子)
由于实际晶体的不完整性、入射线也不可能是绝对 单色的,且不会绝对平行而是具有一定的发散角。因此, 衍射线的强度尽管在满足布拉格方程的方向上最大,但 偏离一定的布拉格角时也不会为零,故衍射曲线呈山峰 状,具有一定的宽度,而不是严格的直线。
2
当2θ=90。时
1 cos2 2
2对x射线的散射
1. 原子核对X-ray的散射
由于散射波强度与引起散射的粒子 质量成反比,原子核质量是电子质量的1840 倍,因此原子核引起的散射强度极弱,可忽 略不计。
2 . 原子中Z个电子对X-ray的散射
⑴ . 首先假设原子中的电子集于一点,即所有 电子散射波之间无位相差,则原子序数为Z的原 子对X-ray散射波振幅Aa为电子散射波振幅Ae的 Z倍,即 :

X射线的衍射强度

X射线的衍射强度

有序固溶体分析
(1)完全无序 每个晶胞中含有四个平均原子(0.75 Cu+0.25Au)属面心立 方点阵。坐标000 1/2 1/2 0 1/2 0 1/2 0 1/2 1/2
FHKL=f平均[1+eπi(H+K)+eπi(H+L)+eπi(K+L)] 当H、K、L全为奇数或全为偶数时 FHKL=4 f平均=fAu+3fCu 当H、K、L为奇偶混杂时,FHKL=0消光
一个原子对X射线的散射
原子散射因子曲线 对于不同类型的原子,其原子散射因子 f 是可变的,它与sinθ和λ有关。随 sinθ/λ的值的增大而变小。 Sinθ=0时,f=Z. 原子序数越小,非相干散射越强。(核外电子所占比例增大)
一个晶胞对X射线的散射
预备知识: X射线的波前电场强度随时间的变化可以用周期函数表示:
实际上,原子中的电子是按照电子云状态分布在原子空 间的不同位置上,故各个电子散射波之间是存在位相差的, 这一位相差使得合成波的强度减弱。
一个原子对X射线的散射
X射线受到一个原子的散射
一个原子对X射线的散射
经过修正: 一个电子对X射线散射后空间某点强度可用Ie表示,那么一个 原子对X射线散射后该点的强度Ia:
fe 2 2 2
= f [1+ eπi(h+k+l) ]
F = 2 f (h+k+l)为偶数 F2 = 4f 2
F = 0 (h+k+l)为奇数
体心点阵中,只有当H+K + L为 偶数时才能产生衍射
体心立方
面心立方晶胞的结构因子
每个晶胞中有4个同类原子,分别位于000、1/2 1/2

3. X射线衍射强度

3. X射线衍射强度
exp[2i(hxj kyj lz j )] =cos2 (hxj kyj lzj) i sin 2 (hxj kyj lzj)
注意:
计算结构因数时要把晶胞中的所 有原子考虑在内。
结构因数表征了晶胞内原子的种 类,原子的个数,原子的位置对衍射 强度的影响。
结构因数的计算例
2
f {1 exp[i(h k)]}
当 h+k = 偶数时(h, k为全奇.全偶),F = 2f, I 4 f 2
当 h+k = 奇数时(h, k为奇.偶混合),F = 0,I = 0
底心晶胞h, k为全偶.全奇时衍射强度不为零。 h, k为奇偶混合时消光。
(3) 体心晶胞(体心立方, 体心正方, 体心四方)
I相对

P
F
2

1 cos2 2 sin2 cos

A( )e2M
P : 多重性因子; F:晶胞结构因数; A(θ): 吸收因子; e -2M : 温度因子 ;
角因子:1 cos2 2 sin2 cos
德拜-谢乐法的衍射线相对强度
I相对

P
F
2

1 cos2 2 sin2 cos
式中
I0: 入射X射线强度; λ : 入射X射线波长;
R : 与试样的观测距离;e:电荷的电量;m:电荷的质量
V : 晶体被照射的体积; Vc : 单位晶胞体积;
P : 多重性因子;
|F|2 晶胞结构因数;
A(θ): 吸收因子; e -2M : 温度因子 ;



1 cos2 2 sin2 cos
与1′的波程差(DE+EF)为λ/2,故θ方向上产生相消干涉。

第三章 X射线的强度

第三章 X射线的强度
b、两偶一奇
2
结构消光 结构消光
F 0
2
例题4:具有底心阵胞的点阵,由同名原子组成,m=2 ;
u、v、w=(0、0、0);(1/2、1/2、0)
2 m
F
2
f
m
exp[2πi(um H v m K wm L)]
2
1 1 f1 exp[2i (0H 0K 0L)]+f 2 exp[2i ( H K 0L)] 2 2
2 f 2 1+exp(i L) exp[ i (H 2K)] 3 讨论: ① 当H+2K=3n(n为任意整数)和L为奇数时:
2
F 0
② 当H、K、L为其它组合时:
2
F 0
2
例题6:由异名原子组成晶体结构,计算NaCl 的结构因数,NaCl晶体 结构中,每个晶胞中有4个钠原子和4个氯原子,原子散射因数分别为 fNa 和 fCl : 钠原子的坐标为:
位相和振幅不同的正弦波的合成
两个波长相同而位相和 振幅不同,其波函数可用下
式表示:
E1 A1 sin( 2πν t 1 )
E2 A2 sin( 2 t 2 )
若求两个波的合成,可
用复数方法进行解析运算。
波的向量合成
波的解析表达式:
A cos Ai sin ix 又:e cos x i sin x
j 1 m i j
令:
Ab m i j F f je Ae j 1
结构因子

衍射波的位相与衍射面和原子的位置有关
2 ( Hu Kv Lw)
FHKL f j e
j 1 m 2 i ( Hu j Kv j Lw j )

第三章X射线衍射强度gqf详解

第三章X射线衍射强度gqf详解
Modern Analytical Instruments and Technology for Materials 7
X射线衍射强度理论包括运动学理论和动力学理论,前者 只考虑入射X射线的一次散射,后者考虑入射X射线的多 次散射。
X射线衍射强度涉及因素较多,问题比较复杂。一般从基 元散射,即一个电子对X射线的(相干)散射强度开始, 逐步进行处理。
(原子散射因子)
晶胞内 各原子 散射波
合成
一个晶胞对X射 线的散射强度 (结构因子)
引入吸收因 子、温度因 子、多重性
因子
(粉末)多 晶体衍射
(积分)强 度
温度对强度 的影响
吸收对强度 的影响
等同晶面数 对强度的影

小晶体 内各晶 胞散射 波合成
单位弧长衍 射强度
参加衍射的晶 粒(小晶体)
数目
一个小晶体对X射线 的散射强度与衍射
(积分)强度 (干涉函数)
X射线衍射强度问题的处理过程
Modern Analytical Instruments and Technology for Materials 9
3.2 一个电子对X射线的散射 P15
电子在入射X射线电场矢量作用下会产生受迫振动。获得变 加速运动的电子,作为新的波源向四周辐射与入射X射线频 率相同并具有确定周相关系的电磁波。
Chapter 3
X射线衍射强度
The Diffracted Intensity of X-Ray
Modern Analytical Instruments and Technology for Materials
本章主要内容
了解影响衍射强度的各种因素,多重 因子,角因子,吸收因子,温度因子 和结构因子。

X射线衍射强度

X射线衍射强度

各原子的散射因子:f1 、f2 、f3 ...fn (若为同种原子,各f 相等); 各原子的散射振幅:f1Ae 、f2Ae 、f3Ae ...fnAe
(Ae为原子中一个电子的相干衍射波振幅,为最小单位量);
各原子与原点O原子之间的散射波的相位差:Φ1 、Φ2 、Φ3 ... Φn ; 则:晶胞内所有原子对相干散射波的合成振幅 Ab 为:
f [1 e i ( hk ) e i ( k l ) e i ( hl ) ]
F 4f
h,k,l为同性数:
F 2 16 f 2
h,k,l为异性数:
F 0 I 0
在面心立方中,只有当h、k、l 全为奇数或全为偶数时才能产生衍射。
3种基本点阵的消光规律
点阵类型
简单立方 体心立方 面心立方
两个电子散射强度的相位差:
j
2

j
4

rj sin cos
令: K
4

sin
j=K rj cos
考虑了电子间相位差后,原子的散射振幅为:
Aa Ae [e
i1
e
i2
....e ] Ae e
i z j 1
z
i j
令:
Aa 一个原子的散射波振幅 f Ae 一个电子的散射波振幅
出现的反射
全部 H+K+L为偶数 H、K、L全为奇数或全为偶数
简单立方: (100),(110),(111),(200),(210),(211),(220) ,… h2+k2+l2 : 1, 2, 3, 4, 5, 6, 8,……
体心立方: (110),(200),(211),(220),(310),(222),… h2+k2+l2 : 2, 4, 6, 8, 10 12, …… 面心立方: (111),(200),(220),(311),(222),… h2+k2+l2 : 3, 4, 8, 11, 12, ……

第3章 X射线衍射强度

第3章 X射线衍射强度

15
一、一个电子对X射线的散射
16
一、一个电子对X射线的散射
• 晶体中的电子散射包括:相干散射与非相干散射。
1. 相干散射: • 指入射光子与原子内层电子发生弹性碰撞作用,仅使运动
方向改变而无能量损失。又称弹性散射或汤姆逊散射。
2. 非相干散射: • 指入射光子与原子外层电子或晶体中自由电子发生非弹性
25
原子散射强度(2)
• 原子对X射线的散射情况: • 入射X射线分别照射到原子中任意A和B两电子。
• 1、在XX′方向散射波:
• 因2差为 0 。
• 相当于Z个电子集中于一点 的“理想”情况,则
• 原子散射强度为:
Ia= Z2 Ie
X射线受一个原子的散射
相对衍射强度:用同一衍射图各衍射线强度(积分强度 或峰高)的相对比值。
4
X射线衍射的强度
I
背景 强度 2
5
衍射强度曲线
如:钢中马氏体(200)α和残奥(200)γ的局部衍射曲线。
图3-l衍射线强度曲线
• 各衍射峰曲线所包围面积即为其积分强度,这两积分强度大 小比较,可算出残奥γ的含量。
6
本章的目的
它考虑了原子中各电子散射波的位相差后,各散射波合成 的结果。则原子散射强度表达为:
Ia Z2Ie
Ia f 2Ie
显然: f ≤ Z 。
28
原子散射因子 f (2)
• 原子散射因数 f 定义为:在相同条件下,一个原子散射波 与一个电子散射波的波振幅或强度之比。
Ia f 2Ie
f
(Ia
1
)2
Aa
Ie
34
三、一个晶胞对X射线的散射(4)
2、晶胞内各原子相干散射波合成波振幅: 单胞对X射线的散射:晶胞内各原子散射波合成的结果。

第3章X射线衍射强度

第3章X射线衍射强度

结构因子只与原子的种类和原子在晶
胞中的位置有关,而不受晶胞的形状 和大小的影响。
结构消光
衍射强度: I Fhkl
2
满足布拉格方程条件2dsinθ=λ但结 构因子F=0导致衍射线强度I为零的 现象称之为结构消光。
小结
一个电子对X-ray的散射情况 偏振因子
一个原子对X-ray的散射情况 原子散射因子f 一个单胞对X-ray的散射情况 结构因子
e e
h l 2i ( ) 2 2
e
k l 2i ( ) 2 2
]
h k l 2i ( ) 2 2 2
e
k 2i ( ) 2
e
h 2i ( ) 2
]
讨论:
(1)h、k、l全为偶数时, F=4fNa+4fCl |F|2=(4fNa+4fCl)2

(2)h、k、l全为奇数时, F=4fNa-4fCl |F|2=(4fNa-4fCl)2 (3)h、k、l奇偶混杂时 F=0 NaCl属于面心布拉菲点阵,可衍射的 指数是111、200、220· · · · · · 、


当h, k, l为全奇或全偶,(h + k), (k+l) 和 (h+l) 必为偶数,故F = 4f, F 2 = 16f 2 当h, k, l中有两个奇数或两个偶数时,则在(h+k),(k+l) 和(h+l)中必有两项为奇数,一项为偶数,故F = 0, F2 = 0
所以(111),(200),(220),(311)时F≠0,这些 晶面衍射线存在,而(100),(110) ,(112),(221) 等F=0,出现消光,衍射线不存在
3.3 结构因子

【材料课件】03X射线衍射强度

【材料课件】03X射线衍射强度

其中:Xj、Yj、Zj是j原子的阵点坐标; H K L是发生衍射的晶面。
所以有:
2
2
n

FHKL f j cos2 HX j KYj LZ j
j1

2
n

f j sin 2 HX j KYj LX j
6/1/2019
j1
各晶面族的多重因子列表.
6/1/2019
HNU-ZLP
32
各晶面族的多重因子列表
指数
晶系
H00 0K0 00L HHH HH0 HK0 0KL H0L HHL HKL
立方
菱方、六方
正方 斜方 单斜 三斜
6/1/2019
P
6
8 12
24
24 48
62
6
12
24
42
48
8
16
2
4
8
2
42
4
2
2
2
HNU-ZLP
它分为:点阵消光 结构消光。
四种基本点阵的消光规律 (图表)
6/1/2019
HNU-ZLP
22
四种基本点阵的消光规律
布拉菲点 阵
出现的反射
消失的反射
简单点阵
全部

底心点阵 体心点阵
H、K全为奇数或全为偶数 H+K+L为偶数
H、K奇偶混 杂
H+K+L为奇 数
面心点阵 H、K、L全为奇数或全为偶数
H、K、L奇 偶混杂
因原子在晶体中位置不同或原子种类不同 而引起的某些方向上衍射线消失的现象, 称为系统消光。
根据系统消光结果以及通过测定X射线强 度的变化可以推断出原子在晶体中的位置。

X射线衍射强度

X射线衍射强度

6
衍射强度-原子种类,原子位置
电子
晶体
思路:
晶胞
原子
一个原子 核
In电子
I原子核
I原子
I晶胞
I晶体
I多晶
7
二、电子对X射线的衍射
晶体的X射线衍射作用是由电子的相干 散射引起的.
当一束X射线碰到一个电子时,该电子在X射 线电场的作用下产生强迫振动,向四周幅射振动频 率(波长)与原X射线频率相同的X射线。这就是相 干散射。电子就成为一个新的X射线源。
46
四种基本点阵的消光规律
布拉菲点 阵
出现的反射 全部
消失的反射 无
简单点阵
H、K奇偶混 底心点阵 H、K全为奇数或全为偶数 杂 H+K+L为奇 体心点阵 H+K+L为偶数 数 H、K、L奇 面心点阵 H、K、L全为奇数或全为偶数 偶混杂
47
结构消光
由两种以上等同点构成的点阵结构来说,一方面 要遵循点阵消光规律,另一方面,因为有附加原 子的存在,还有附加的消光,称为结构消光
(3)体心点阵
每个晶胞中有2个同类原子,其坐标为 000和1/2 1/2 1/2 ,其原子散射因子相同
41
– 分析
• 当H+K+L为偶数时, • 当H+K+L为奇数时,
结论: 在体心点阵中,只有当H+K+L为偶数时 才能产生衍射
42
(4)面心点阵
– 每个晶胞中有4个同类原子
43
分析
• 当H、K、L全为奇数或偶数时,则(H+K)、 (H+K)、(K+L)均为偶数,这时:
这些消光规律,存在于金刚石结构、密堆六方等 结构中

X射线衍射强度

X射线衍射强度

bcc的(001)面
单胞对X射线的散射
单胞内原子的散射分析
假定O为晶胞的一个顶点,同时取其为坐标原点, A为晶胞中任意一个原子j,它的坐标矢量为
式中,a,b,c为基本 平移矢量
单胞对X射线的散射
波长差与相位差
A原子的散射波与坐标原点O处原子散射波之间 的光程差为:
相位差为:
(4-17)
单胞对X射线的散射
第二节 单胞对X射线的散射
结构因子的推导
一般情况下,可以把晶体看成是单位晶胞在空间 的一种重复。所以在讨论原子位置与衍射线强度 的关系时,只需考虑一个单胞内原子排列是以何 种方式影响衍射线强度 在简单晶胞中,每个晶胞只由一个原子组成,这 时单胞的散射强度与一个原子的散射强度相同。 而在复杂晶胞中,原子的位置影响衍射强度
单胞对X射线的散射
结构消光
由两种以上等同点构成的点阵结构来说,一方
面要遵循点阵消光规律,另一方面,因为有附 加原子的存在,还有附加的消光,称为结构消 光 这些消光规律,存在于金刚石结构、密堆六方等 结构中
单胞对X射线的散射
结构消光
金刚石结构
每个晶胞中有8个同类原子, 坐标为000、1/2 1/2 0,1/2 0 1/2,0 1/2 1/2, 1/4 1/4 1/4,3/4 3/4 ¼,3/4 ¼ 3/4 ,1/4 3/4 3/4
1. 右图为简单点阵
假如一束单色X射线以θ 角投射到简单晶胞的 (001)晶面上产生衍 射时,反射线1’和2’之 间的光程差ABC为一个 波长,所以两反射线同 相位,于是在的所示方 向上产生衍射线
(001)晶面的衍射
单胞对X射线的散射
结构消光的实例 2. 体心立方的两个(001) 面之间还有一个原子 面,它的反射线与 1‘的光程差恰好是波 长的一半,因此,1’ 和3’的相位相反,互 相抵消。同理,3’和2’ 也是这样。 所以, 在体心点阵点不会出 现(001)面的衍射线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 i ( h / 2 k / 2)
f [1 e
i ( hk )
]
(h+k)一定是整数,分两种情况:
(1)如果h和k均为偶数或均为奇数,则和为偶数
F = 2f F2 = 4f2 (2)如果h和k一奇一偶,则和为奇数, F = 0 F2 = 0 不论哪种情况,l值对F均无影响。111,112,113或021,022,023的F 值均为2f。011,012,013或101,102,103的F值均为0。
HKL— 晶面指数
xj yj zj— 原子坐标
1. 最简单情况,简单晶胞,仅在坐标原点
(0,0,0)处含有一个原子的晶胞
F fe
2
2 i与hkl无关,所有晶面均有反射。
2. 底心晶胞:两种位置原子,(0,0,0)(½,½,0)
F fe
2 i (0)
fe
FHKL表征单胞的相干散射与单电子散射之间的对应关 系。
数学表达式(计算公式)
FHKL f j e
j 1
n
i 2 ( Hx j Ky j Lz j )
式中:FHKL— (HKL) 晶面的结构因子。 表示沿(HKL)晶面族反射方向的散射能力。
n— 晶胞中的原子数
fj— 原子的散射因子(直接查表,附录C)
当(h+k+l)为奇数,F = 0,F 2 = 0
即对体心晶胞,(h+k+l)等于奇数时的衍射强度为0。 例如(110),(200),(211),(310)等均有散射; 而(100),(111),(210),(221)等均无散射
4. 面心晶胞:四种位置的原子坐标分别是(0 0 0)和 (½ ½ 0),( ½ 0 ½ ),(0 ½ ½)。
F fe
2 i 0
fe
2 i h / 2 k / 2
fe
2 i k / 2 l / 2
fe
2 i l / 2 h / 2
i h k i k l i l h f 1 e e e
第三章 X射线衍射强度
X射线衍射线束的方向(第二章)
布拉格公式
2d sin k
k 1,2,3,4
应用:
布拉格方程反映了晶体结构中晶胞大小及形状的变
化。从而可以测定试样的晶体类型和晶格常数。 X射线衍射线束的强度(本章) 应用:
物相定量分析、内应力及织构测定、
固溶体有序度测定
x射线衍射线束的强度测量
衍射线强度的测量采用衍 射仪法,得到I~θ曲线。 每个衍射峰下面的
面积(积分面积)称
为积分强度或累积强度。
x射线衍射线束的强度
波长λ强度Io的x-ray,照射到 晶胞体积Vo的多晶试样上,被 照射晶体的体积V,与入射线 夹角为2θ方向上产生(HKL) 晶面的衍射,距试样R处记录 到的衍射线其单位长度上积分 强度为:
系统消光

衍射线I=0,衍射线消失,称为系统消光。 (原子在晶胞中的位置不同而引起的某些 方向衍射线的消失,又称为点阵消光)。

尽管满足衍射条件,因F = 0使衍射线消 失的现象。
例如:对于体心点阵,可以产生衍射的晶面 为110、200、211、220、221、310 …

衍射产生的充分必要条件是: ①满足布拉格方程 ②结构因子不为0
当h, k, l为全奇或全偶,(h + k),(k+l) 和 (h+l) 必为偶数,故F = 4f,F 2 = 16f 2 当h, k, l中有两个奇数或两个偶数时,则在(h+k),(k+l) 和 (h+l)中必有两项为奇数,一项为偶数,故F = 0, F2 = 0 所以(111),(200),(220),(311)有反射,而 (100),(110) ,(112),(221)等无反射。
式中:Io—入射x-ray强度 m、e — 电子的质量与电荷 c— 光速 λ— 入射x-ray波长 R— 衍射仪半径 cm V— 试样被x-ray照射体积,cm3 Vo— 晶胞体积 cm3 F— 结构因子 P— 多重性因子 e-2M — 温度因子 ( ) — 角因子 A(θ) — 吸收因子
同一衍射花样中,e、m、c为固定物理常数, Io、λ、R、V、Vo对同一物相的各衍射线均相 等,衍射线的相对积分强度可用
2d sin
FHKL
2
0
三种 点阵 衍射
线的
分布
说明:

点阵常数没有参与结构因子的计算。FHKL 只与原子种类和原子在晶胞中的位置有关, 不受晶胞形状和大小影响。 点阵类型确定,任何晶系其晶胞的系统消 光规律都是相同的。 结构中的原子为不同种类,则原子散射因 子分别代入。


结构消光

系统消光规则主要与晶体的对称性有关,根 据测得的系统消光条件,可决定晶体的空间 点阵及各对称要素。

两类以上等同点构成的复杂晶体结构,除遵 循所属的点阵消光外,还有附加的消光条件, 称为结构消光。(结构基元内原子位置不同 而进一步产生的附加消光)
例:氯化铯晶体的消光规律
CsCl属立方晶系,简单立方点阵。 角顶 Cs (0,0,0) 体心 Cl( 1 , 1 , 1 ) 2 2 2 FHKL = f Cs + f Cl e iπ(H+K+L) H + k + L = 偶数 F = f Cs+ f Cl 强度高 (110)(200)(211)… H + k + L= 奇数 F = f Cs – f Cl 强度低 (100)(111)(210)…
3. 体心晶胞,两种位置原子坐标分别是(0,0,0)和 (1/2,1/2,1/2)
i h k l F fe2 i 0 fe2 i h / 2 k / 2l / 2 f 1 e
e
n i
1
n
∴当(h+k+l)为偶数,F = 2f ,F2 = 4f 2
5个强度因子的乘积来表示:
I相 F P ( ) e
2
2 M
A( )
影响衍射强度的因素很多,讨论这一问题必须一 步步进行:
一个电子对x-ray的散射强度 原子内各电子散射波合成 晶胞内各原子叠加
多晶体积分强度
二、结构因子 FHKL
FHKL 一个晶胞的相干散射(原子全部)振幅 Ab 一个电子的相干散射振幅 Ae
相关文档
最新文档