2018年中考数学总复习专题五几何变换压轴题课件
中考数学总复习专题几何变换压轴题课件
12
济南市学考对此问题的考查:2016年学考试题第21题考查了 翻折问题,第27题考查了旋转、相似问题;2015年学考试题第15 题考查了二次函数图象平移问题,第27题考查了旋转问题;2014 年学考试题第12题考查了翻折问题,第20题考查了平移问题,第 27题考查了旋转问题;2013年学考试题第9题考查了旋转问题; 2012年学考试题第19题考查了平移问题,第26题考查了旋转、相 似问题.
几何变换压轴题多以三角形、四边形ቤተ መጻሕፍቲ ባይዱ主,结合平移、旋转 、翻折、相似等变换,而四边形的问题常要转化成三角形的问题 来解决,通过证明三角形的全等或相似得到相等的角、相等的边 或成比例的边,通过勾股定理计算边长.要熟练掌握特殊四边形的 判定定理和性质定理,灵活选择解题方法,注意区分各种四边形 之间的关系,正确认识特殊与一般的关系,注意方程思想、对称 思想以及转化思想的相互渗透.
2018年中考数学考点4《图形变化问题》课件
图形平移问题
k 【例 1】 (2016· 临沂)如图, 直线 y=-x+5 与双曲线 y= (x>0)相交于 A, x 5 B 两点,与 x 轴相交于 C 点,△BOC 的面积是2.若将直线 y=-x+5 向下平移 k 1 个单位,则所得直线与双曲线 y= (x>0)的交点有( B ) x A.0 个 B.1 个 C.2 个 D.0 个或 1 个或 2 个
图形翻折问题
【例 2】 (2017· 宁波)如图,在菱形纸片 ABCD 中,AB=2,∠A=60°, 将菱形纸片翻折,使点 A 落在 CD 的中点 E 处,折痕为 FG,点 F,G 分别在边 21 AB,AD 上,则 cos∠EFG 的值为________ . 7
【点评】
本题考查了折叠的问题,折叠是一种对称变换,它属于轴对称,折
解题中要根据特定条件背景 (角平分线,垂直平分线,等腰三角形,等边三角
形,直角三角形,特殊四边形, 特定角之间的关系等 )灵活应用, 能有效的帮
助我们解决一些复杂的问题.
1.(2017· 乌鲁木齐)如图,在矩形 ABCD 中,点 F 在 AD 上,点 E 在 BC 上,把这个矩形沿 EF 折叠后,使点 D 恰好落在 BC 边上的 G 点处,若矩形面 积为 4 3且∠AFG=60°,GE=2BG,则折痕 EF 的长为( C ) A.1 B. 3 C.2 D.2 3
4.(导学号:65244053)(2017· 烟台)如图①,将一圆形纸片向右、向上两次 对折后得到如图②所示的扇形 AOB.已知 OA=6,取 OA 的中点 C,过点 C 作 ︵ 于点 D,点 F 是AB ︵ 上一点.若将扇形 BOD 沿 OD 翻折,点 B CD⊥OA 交AB 恰好与点 F 重合,用剪刀沿着线段 BD,DF,FA 依次剪下,则剪下的纸片(形 状同阴影图形)面积之和为________________ . 36π-108
2018中考数学压轴题探究专题:图形变换综合探究专题
中考数学解法探究专题图形变换综合探究专题考题研究:本专题主要包括图形的变换和相似形.其中轴对称图形、平移、中心对称图形的识别,相似三角形性质以填空和选择题为主,主要是考查对图形的识别和性质;图形的折叠、平移、旋转与几何图形面积相关的计算问题以填空题和解答题为主,主要是考查对几何问题的综合运用能力;而相似三角形的性质及判断定的应用往往还会结合圆或者解直角三角形等问题一并考查,主要是以解答题为主。
解题攻略:图形的轴对称、平移、旋转是近年中考的新题型、热点题型,它主要考查学生的观察与实验能力,探索与实践能力,因此在解题时应注意以下方面: 1.熟练掌握图形的轴对称、图形的平移、图形的旋转的基本性质和基本方法。
2.结合具体问题大胆尝试,动手操作平移、旋转,探究发现其内在规律是解答操作题的基本方法。
3.注重图形与变换的创新题,弄清其本质,掌握其基本的解题方法,尤其是折叠与旋转等。
解题思路:1.变换中求角度注意平移性质:平移前后图形全等,对应点连线平行且相等.2.变换中求线段长时把握折叠的性质:折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上.3.变换中求坐标时注意旋转性质:对应线段、对应角的大小不变,对应线段的夹角等于旋转角.4.变换中求面积,注意前后图形的变换性质及其位置等情况。
例题解析1.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC 和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E=45°.【考点】P7:作图﹣轴对称变换;Q4:作图﹣平移变换.【分析】(1)将点A、B、C分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;(2)分别作出点D、E、F关于直线l的对称点,顺次连接即可得;为等腰直角三角形即可得.(3)连接A′F′,利用勾股定理逆定理证△A′C′F′即为所求;【解答】解:(1)△A′B′C′(2)△D′E′F′即为所求;,(3)如图,连接A′F′、△DEF≌△D′E′F′,∵△ABC≌△A′B′C′,∠A′C′F′+∠D′E′F′=∴∠C+∠E=∠A′C′B′∵A′C′==、A′F′==,C′F′==,∴A′C′2,2+A′F′2=5+5=10=C′F′为等腰直角三角形,∴△A′C′F′,∴∠C+∠E=∠A′C′F′=45°故答案为:45°.2.实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM 的数量关系,写出折叠方案,并结合方案证明你的结论.【考点】PB:翻折变换(折叠问题);LB:矩形的性质;P9:剪纸问题.【分析】(1)猜想:∠MBN=30°.只要证明△ABN是等边三角形即可;(2)结论:MN=BM.折纸方案:如图,折叠△BMN,使得点N落在BM上O 处,折痕为MP,连接OP.由折叠可知△MOP≌△MNP,只要证明△MOP≌△BOP,即可推出MO=BO=BM;【解答】解:(1)猜想:∠MBN=30°.理由:如图1中,连接AN,∵直线EF是AB的垂直平分线,∴NA=NB,由折叠可知,BN=AB,∴AB=BN=AN,∴△ABN是等边三角形,∴∠ABN=60°,∴NBM=∠ABM=∠ABN=30°.(2)结论:MN=BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.理由:由折叠可知△MOP≌△MNP,∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,∠MOP=∠MNP=90°,∴∠BOP=∠MOP=90°,∵OP=OP,∴△MOP≌△BOP,∴MO=BO=BM,∴MN=BM.3.在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣4,6),(﹣1,4).(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标.【考点】P7:作图﹣轴对称变换;KQ:勾股定理;PA:轴对称﹣最短路线问题.【分析】(1)根据A点坐标建立平面直角坐标系即可;(2)分别作出各点关于x轴的对称点,再顺次连接即可;(3)作出点B关于y轴的对称点B2,连接A、B2交y轴于点P,则P点即为所求.【解答】解:(1)如图所示;(2)如图,即为所求;(3)作点B关于y轴的对称点B2,连接A、B2交y轴于点P,则点P即为所求.设直线AB2的解析式为y=kx+b(k≠0),∵A(﹣4,6),B2(2,2),∴,解得,∴直线AB2的解析式为:y=﹣x+,∴当x=0时,y=,∴P(0,).4.阅读填空:(1)请你阅读芳芳的说理过程并填出理由:如图1,已知AB∥CD.求证:∠BAE+∠DCE=∠AEC.理由:作EF∥AB,则有EF∥CD(平行于同一条直线的两条直线平行)∴∠1=∠BAE,∠2=∠DCE(两直线平行,内错角相等)∴∠AEC=∠1+∠2=∠BAE+∠DCE(等量代换)思维拓展:(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠FAE=m°,∠ABC=n°,求∠BED的度数.(用含m、n的式子表示)(3)将图2中的线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,得到图3,直接写出∠BED的度数是180°﹣n°+m°(用含m、n的式子表示).【考点】Q2:平移的性质;JB:平行线的判定与性质.【分析】(1)根据平行线的性质即可得到结论;(2)先过点E作EH∥AB,根据平行线的性质和角平分线的定义,即可得到结论;(3)过E作EG∥AB,根据平行线的性质和角平分线的定义,即可得到结论.【解答】解:阅读填空:(1)平行于同一条直线的两条直线平行;两直线平行,内错角相等;等量代换,故答案为:平行于同一条直线的两条直线平行,两直线平行,内错角相等,等量代换;思维拓展:(2)如图2,过点E作EH∥AB,∵AB∥CD,∠FAD=m°,∴∠FAD=∠ADC=m°,∵DE平分∠ADC,∠ADC=m°,.∴∠EDC=∠ADC=m°,∵BE平分∠ABC,∠ABC=n°,∴∠ABE=∠ABC=n°,∵AB∥CD,∴AB∥CD∥EH,∴∠ABE=∠BEH=n°,∠CDE=∠DEH=m°,∴∠BED=∠BEH+∠DEH=n°+m°=(n°+m°);(3)∠BED的度数改变.过点E作EG∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=∠FAD=m°∴∠ABE=∠ABC=n°,∠CDE=∠ADC=m°∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°﹣∠ABE=180°﹣n°,∠CDE=∠DEF=m°,∴∠BED=∠BEF+∠DEF=180°﹣n°+m°.故答案为:180°﹣n°+m°.5.某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,∠C=90°,∠BAE=30°.(≈1.4,≈1.7)(1)求旋转木马E处到出口B处的距离;(2)求海洋球D处到出口B处的距离(结果保留整数).【考点】R2:旋转的性质.【分析】(1)在Rt△ABE中,利用三角函数即可直接求得BE的长;(2)在Rt△CDE中,利用三角函数求得DE的长,然后利用DB=DE+EB求解.【解答】解:(1)∵在Rt△ABE中,∠BAE=30°,∴BE=AE=×80=40(米);(2)∵在Rt△ABE中,∠BAE=30°,∴∠AEB=90°﹣30°=60°,∴∠CED=∠AEB=60°,∴在Rt△CDE中,DE=≈=40(米),则BD=DE+BE=40+40=80(米).6.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D.当与点A,C不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设△DC′E′CD=x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.【考点】R2:旋转的性质;E3:函数关系式;LD:矩形的判定与性质;T7:解直角三角形.【分析】(1)根据等角的余角相等即可证明;与AB相交于Q时,即<x≤时,过P (2)分两种情形①如图1中,当C′E′作MN∥DC′,设∠B=α.②当DC′交AB于Q时,即<x<3时,如图2中,作PM⊥AC于M,PN⊥DQ于N,则四边形PMDN是矩形,分别求解即可;【解答】(1)证明:如图1中,∵∠EDE′=∠C=90°,∴∠ADP+∠CDE=90°,∠CDE+∠DEC=90°,∴∠ADP=∠DEC.与AB相交于Q时,即<x≤时,过P作MN∥(2)解:如图1中,当C′E′DC′,设∠B=α∴MN⊥AC,四边形DC′MN是矩形,∴PM=PQ?cosα=y,PN=×(3﹣x),∴(3﹣x)+y=x,∴y=x﹣,当DC′交AB于Q时,即<x<3时,如图2中,作PM⊥AC于M,PN⊥DQ于N,则四边形PMDN是矩形,∴PN=DM,∵DM=(3﹣x),PN=PQ?sinα=y,∴(3﹣x)=y,∴y=﹣x+.综上所述,y=7.已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.(1)如图1所示,易证:OH=AD且OH⊥AD(不需证明)(2)将△COD绕点O旋转到图2,图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论.【考点】R2:旋转的性质;KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)只要证明△AOD≌△BOC,即可解决问题;(2)①如图2中,结论:OH=AD,OH⊥AD.延长OH到E,使得HE=OH,连接BE,由△BEO≌△ODA即可解决问题;②如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD 于G.由△BEO≌△ODA即可解决问题;【解答】(1)证明:如图1中,∵△OAB与△OCD为等腰直角三角形,∠AOB=∠COD=90°,∴OC=OD,OA=OB,∵在△AOD与△BOC中,,∴△AOD≌△BOC(SAS),∴∠ADO=∠BCO,∠OAD=∠OBC,∵点H为线段BC的中点,∴OH=HB,∴∠OBH=∠HOB=∠OAD,又因为∠OAD+∠ADO=90°,所以∠ADO+∠BOH=90°,所以OH⊥AD(2)解:①结论:OH=AD,OH⊥AD,如图2中,延长OH到E,使得HE=OH,连接BE,易证△BEO≌△ODA∴OE=AD∴OH=OE=AD由△BEO≌△ODA,知∠EOB=∠DAO∴∠DAO+∠AOH=∠EOB+∠AOH=90°,∴OH⊥AD.②如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD 于G.易证△BEO≌△ODA∴OE=AD∴OH=OE=AD由△BEO≌△ODA,知∠EOB=∠DAO∴∠DAO+∠AOF=∠EOB+∠AOG=90°,∴∠AGO=90°∴OH⊥AD.8.如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣1,3),B(﹣3,1),C(﹣1,1).请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出B1的坐标.(2)画出△A1B1C1绕点C1顺时针旋转90°后得到的△A2B2C1,并求出点A1走过的路径长.【考点】R8:作图﹣旋转变换;O4:轨迹;P7:作图﹣轴对称变换.【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据弧长公式列式计算即可得解.【解答】解:(1)如图,B1(3,1);(2)如图,A1走过的路径长:×2×π×2=π学科网9.在4×4的方格内选5个小正方形,让它们组成一个轴对称图形,请在图中画出你的4种方案.(每个4×4的方格内限画一种)要求:(1)5个小正方形必须相连(有公共边或公共顶点视为相连)(2)将选中的小正方行方格用黑色签字笔涂成阴影图形.(每画对一种方案得2分,若两个方案的图形经过翻折、平移、旋转后能够重合,均视为一种方案)【考点】R9:利用旋转设计图案;P8:利用轴对称设计图案;Q5:利用平移设计图案.【分析】利用轴对称图形的性质用5个小正方形组成一个轴对称图形即可.【解答】解:如图..10.综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.【考点】RB:几何变换综合题.【分析】(1)根据矩形的性质得到∠D=∠DAE=90°,由折叠的性质得得到AE=AD,∠AEF=∠D=90°,求得∠D=∠DAE=∠AEF=90°,得到四边形AEFD是矩形,由于AE=AD,于是得到结论;(2)连接HN,由折叠的性质得到∠AD′H=∠D=90°,HF=HD=HD′,根据正方形的想知道的∠HD′N=90°,根据全等三角形的性质即可得到结论;(3)根据正方形的性质得到AE=EF=AD=8cm,由折叠得,AD′=AD=8cm,设NF=xcm,则ND′=xcm,根据勾股定理列方程得到x=2,于是得到结论;(4)根据(3,4,5)型三角形的定义即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴∠D=∠DAE=90°,由折叠的性质得,AE=AD,∠AEF=∠D=90°,∴∠D=∠DAE=∠AEF=90°,∴四边形AEFD是矩形,∵AE=AD,∴矩形AEFD是正方形;(2)解:NF=ND′,理由:连接HN,由折叠得,∠AD′H=∠D=90°,HF=HD=HD′,∵四边形AEFD是正方形,∴∠EFD=90°,∵∠AD′H=90°,∴∠HD′N=90°,在Rt△HNF与Rt△HND′中,,∴Rt△HNF≌Rt△HND′,∴NF=ND′;(3)解:∵四边形AEFD是正方形,∴AE=EF=AD=8cm,由折叠得,AD′=AD=8cm,设NF=xcm,则ND′=xcm,在Rt△AEN中,∵AN2=AE2+EN2,∴(8+x)2=82+(8﹣x)2,解得:x=2,∴AN=8+x=10cm,EN=6cm,∴EN:AE:AN=3:4:5,∴△AEN是(3,4,5)型三角形;(4)解:图4中还有△MFN,△MD′H,△MDA是(3,4,5)型三角形,∵CF∥AE,∴△CFN∽△AEN,∵EN:AE:AN=3:4:5,∴FN:CF:CN=3:4:5,∴△MFN是(3,4,5)型三角形;同理,△MD′H,△MDA是(3,4,5)型三角形.11.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是PM=PN,位置关系是PM ⊥PN;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【考点】RB:几何变换综合题.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN= BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.12.如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.【考点】S8:相似三角形的判定;KD:全等三角形的判定与性质;KW:等腰直角三角形;LE:正方形的性质.【分析】①由正方形ABCD与等腰直角三角形DEF,得到两对边相等,一对直角相等,利用SAS即可得证;②由第一问的全等三角形的对应角相等,根据等量代换得到∠BAG=∠BCF,再由对顶角相等,利用两对角相等的三角形相似即可得证.【解答】证明:①∵正方形ABCD,等腰直角三角形EDF,∴∠ADC=∠EDF=90°,AD=CD,DE=DF,∴∠ADE+∠ADF=∠ADF+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF;②延长BA到M,交ED于点M,∵△ADE≌△CDF,∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF,∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF,∵∠EAM=∠BAG,∴∠BAG=∠BCF,∵∠AGB=∠CGF,∴△ABG∽△CFG.13.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【考点】S9:相似三角形的判定与性质.【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可知.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=14.如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PA?PB;(2)若PT=TB=,求图中阴影部分的面积.【考点】S9:相似三角形的判定与性质;MC:切线的性质;MO:扇形面积的计算.【分析】(1)连接OT,只要证明△PTA∽△PBT,可得=,由此即可解决问题;(2)首先证明△AOT是等边三角形,根据S阴=S扇形OAT﹣S△AOT计算即可;【解答】(1)证明:连接OT.∵PT是⊙O的切线,∴PT⊥OT,∴∠PTO=90°,∴∠PTA+∠OTA=90°,∵AB是直径,∴∠ATB=90°,∴∠TAB+∠B=90°,∵OT=OA,∴∠OAT=∠OTA,∴∠PTA=∠B,∵∠P=∠P,∴△PTA∽△PBT,∴=,∴PT2=PA?PB.(2)∵TP=TB=,∴∠P=∠B=∠PTA,∵∠TAB=∠P+∠PTA,∴∠TAB=2∠B,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,∴tanB==,∴AT=1,∵OA=OT,∠TAO=60°,∴△AOT是等边三角形,∴S阴=S扇形OAT﹣S△AOT=﹣?12=﹣.15.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB 的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【考点】S9:相似三角形的判定与性质;M2:垂径定理;MC:切线的性质;MN:弧长的计算.【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM?PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.16.如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE?CP的值.【考点】S9:相似三角形的判定与性质;M4:圆心角、弧、弦的关系;MB:直线与圆的位置关系.【分析】(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE?CP的值.【解答】解:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP?CE=CA2=(2)2=8.。
2018中考数学压轴题专题08 几何变换问题(解析版)
故三角板向左平移的距离为(3﹣
考点:平移的性质;相似三角形的性质. 【点评】本题考查平移、旋转的性质;平移的基本性质是: ①平移不改变图形的形状和大小; ②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.旋转变化前后,对应线 段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心.
故选 B. 考点:平移的性质.学!科网 【点评】本题考查了平移的知识,有一定难度,关键是利用两个全等的直角三角形可以组成一个矩形或一 个平行四边形进行解答. 变式 1.2 已知:如图△ABC 的顶点坐标分别为 A(﹣4,﹣3) ,B(0,﹣3) ,C(﹣2,1) ,如将 B 点向右平 移 2 个单位后再向上平移 4 个单位到达 B1 点,若设△ABC 的面积为 S1,△AB1C 的面积为 S2,则 S1,S2 的大 小关系为( )
1.图 形 的
轴对称
2.图 形 的
平移
3.图 形 的
旋转
角.[来源:学&科&网] (2)性质:①在图形旋转过程中, 图形上每一个点都绕旋转中心沿相同 方向转动了相同角 度;②注意每一对对应点与旋转中心的连线所成的 角度都叫旋转角,旋转角都相等;③对应点到旋转中心 的距离相 等.[来 (1)把一个图形绕着某一点旋转 180°,如果它能够与另一个图形重合, 那么这两个图形关于这个点对称或中心对称,该点叫做对称中心. (2)①关于中心对称的两个图形是全等形;②关于中心对称的两个图形, 对称点连线都经过对称中心,并且被对称中心平分;③关于中心对称的 两个图形,对应线段平行(或者在同一直线上)且相等 . (1)如果两个多边形不仅相似,而且 对应顶点的连线相交于一点,这样的
&变式训练&
2018年中考数学压轴题专题解析---几何动态探究问题—动点+动面
第1题图 (1)在整个运动过程中,当点 G在线段 AE上时,求 t 的值; (2)在整个运动过程中,是否存在点 P,使△ APQ是等腰三角形?若存在,求出 t 的值; 若不存在,说明理由; (3)在整个运动过程中,设△ GMN与△ AEF重叠部分的面积为 S.请直接写出 S 与 t 之间的 函数关系式以及自变量 t 的取值范围 ; (4) 在运动过程中,是否存在某一时刻 t , 使得 S: S△GMN=1:2? 若存在,求出 t 的值,若不存在, 请说明理由 .
2018 年中考数学压轴题专题解析 --- 几何动态探究问题—动点 +动面
1. 已知在矩形 ABCD中, E 为 BC边上一点, AE⊥DE, AB=12, BE=16, F 为线段 BE上一点, EF= 7,连接 AF.如图①,现有一张硬质纸片△ GMN,∠ NGM= 90°, NG= 6,MG= 8,斜边 MN 与边 BC在同一直线上,点 N与点 E 重合,点 G在线段 DE上.如图②,△ GMN从图①的位置 出发,以每秒 1 个单位的速度沿 EB向点 B 匀速移动,同时点 P 从 A点出发,以每秒 1 个单 位的速度沿 AD向点 D匀速移动,点 Q为直线 GN与线段 AE的交点,连接 PQ.当点 N到达终 点 B 时,△ GMN和点 P同时停止运动.设运动时间为 t 秒,解答下列问题:
AB与 QR在同一直线 l 上,开始时点 Q与点 A 重合,让△ PQR以 1cm/ s 的速度在直线 l 上运 动,同时 M点从点 Q出发以 1cm/ s 沿 QP运动,直至点 Q与点 B 重合时,都停止运动,设运
动的时间为
t ( s),四边形
PMBN的面积为
S(
2
cm
).
第 2 题图
(1)当 t =1s 时,求 S 的值;
2018年中考数学压轴题复习 多边形综合压轴题(共26张PPT)
t=15,y≈89.29;t=16,y≈91.11;
t=17,y≈93.11;t=18,y≈95.26; t=19,y≈97.56;t=20,y=100.
观察数据知:
当0≤t≤8时,y随t的增大而减小;
当9≤t≤20时,y随t的增大而增大.
故y在第8秒到第9秒之间取得最小值.
1.已知:如图,在矩形ABCD中,AB=6 cm,BC=8 cm,
对角线AC,BD交于点O,点P从点A出发,沿AD方向匀速运
动,速度为1 cm/s;同时,点Q从点D出发,沿DC方向匀速
运动,速度为1 cm/s;当一个点停止运动时,另一个点也 停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC, 交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:
∴AB∥CD,
∴∠QPA=∠QDC,∠QAP=∠QCD,
∴△APQ∽△CDQ. (2)①当DP⊥AC时,∠QCD+∠QDC=90°, ∵∠ADQ+∠QDC=90°, ∴∠DCA=∠ADP,
∵∠ADC=∠DAP=90°,
∴△ADC∽△PAD,
∴ AD DC , ∴ PA AD , 10 20 解得PA =5, PA 10 ∴t=5.
探究:
t=0,y=100;t=1,y≈95.48;t=2,y≈91.82;
t=3,y≈88.91;t=4,y≈86.67;
t=5,y=85;t=6,y≈83.85; t=7,y≈83.15;t=8,y≈82.86; t=9,y≈82.93;t=10,y≈83.33;
t=11,y≈84.03;t=12,y=85;
(1)当t为何值时,△AOP是等腰三角形?
河北省中考数学总复习 专题五 几何变换压轴题课件.pptx
62
63
64
65
5.(2017·常德)如图,在Rt△ABC中,∠BAC=90°,
D在BC上,连接AD,作BF⊥AD分别交AD于点E,交AC于点F. (1)如图1,若BD=BA,求证:△ABE≌△DBE; (2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于点M. 求证:①GM=2MC;②AG2=AF·AC.
60
(1)当t=1时,KE= ,EN= ; (2)当t为何值时,△APM的面积与△MNE的面积相等? (3)当点K到达点N时,求出t的值; (4)当t为何值时,△PKB是直角三角形?
61
【分析】 (1)利用△APM∽△ABC求出PM,然后求出ME,再 利用△APM∽△NEM,即可求出EN;(2)△APM的面积与△MNE 的面积相等,且两个三角形相似,所以只要两个三角形全 等面积就相等,表示出三角形的面积,从而求出t值;(3) 根据PE+NE=AP的值,解出t即可;(4)分两种情况,K在PE 边上任意一点时△PKB是直角三角形,在FE上的一点时也是 直角三角形,利用三角形相似求出t的值.
专题五 几何变换压轴题
1
几何变换压轴题多以四边形和圆为主,结合平移、 旋转、翻折、相似等变换.四边形的问题常常转化成三角 形的问题来解决,通过证明三角形全等或相似得到相等的 角、相等的边或成比例的边,通过勾股定理计算边长;圆 的问题主要考查切线的性质及判定、相似三角形的性质与
中考数学压轴题复习 几何变换压轴题(共64张PPT)
几何变换压轴题多以三角形、四边形为主,结合平
移、旋转、翻折、类比等变换,而四边形的问题常要转化 成三角形的问题来解决,通过证明三角形的全等或相似得 到相等的角、相等的边或成比例的边,通过勾股定理计算 边长.要熟练掌握特殊四边形的判定定理和性质定理,灵
活选择解题方法,注意区分各种四边形之间的关系,正确 认识特殊与一般的关系,注意方程思想、对称思想以及转 化思想的相互渗透.
延长DE交BC的延长线于点P,其他条件不变,判断△CEF的
形状并给出证明.
解:(1)①如图:
②AAS
(2)设AE=a,AC=b,
(3)如图,作BN∥DE,延长EF交BN于N,连接CN,
则∠DEF=∠FNB. 又∵DF=BF,∠DFE=∠BFN, ∴△DEF≌△BNF,
∴BN=DE,EF=FN.
请根据以上证明过程,解答下列两个问题:
①在图1中作出证明中所描述的辅助线;
②在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选 择). (2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的 度数,并判断△CEF的形状.
问题拓展 (3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,
2.(2017·济南)某学习小组在学习时遇到了下面的问题:
如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,∠CAB
=∠EAD=60°,点E,A,C在同一直线上,连接BD,F是BD 的中点,连接EF,CF,试判断△CEF的形状并说明理由.
问题探究 (1)小婷同学提出解题思路:先探究△CEF的两条边是否相 等,如EF=CF.以下是她的证明过程:
(1)当x为何值时,直线AD1过点C?
(2)当x为何值时,直线AD1过BC的中点E? (3)求出y与x的函数关系式.
山东东营市2018届中考数学复习-专题五-几何变换压轴题
【分析】当四边形EDD′F为菱形时,△A′DE是等腰三角 形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC= ∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′,由此即 可判断△DA′E的形状.由EF∥AB推出∠C′EF=∠EA′D, ∠EFC′=∠A′D′C′=∠A′DE,再根据A′D=DE=EF即 可证明.
专题五 几何变换压轴题
几何变换问题是近几年每年必考的压轴类试题,出现 在试卷的倒数第二题,它多以三角形、四边形为载体,结 合平移、旋转、翻折、相似等变换,集中考查学生对几何 知识的综合掌握情况.试题的设问往往是由小到大、由易 到难,在应用勾股定理、三角形全等、三角形相似、特殊 四边形的判定及性质的过程中,通过逐步探索新知的方式 解答问题.此类问题注重对探索、创新能力的考查,是近 年来中考命题的新趋势.
(1)线段OC的长为_____; (2)求证:△CBD≌△COE; (3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其 中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接 CD1,CE1,设点E1的坐标为(a,0),其中a≠2,△CD1E1的面 积为S. ①当1<a<2时,请直接写出S与a之间的函数解析式; ②在平移过程中,当S= 时,请直接写出a的值.
1 4
解:(1) 1 7 (2)∵∠AO2 B=90°,点C是AB的中点,
∴OC=BC= 1 AB,∴∠CBO=∠COB. ∵四边形OBD2 E是正方形,
∴BD=OE,∠DBO=∠EOB=90°,
∴∠CBD=∠COE.
在△CBD和△COE中, ∴△CBD≌△COE(SAS).
类型二 图形的旋转变换 几何图形的旋转变换是近年来中考中的常考点,多与
∵OE=OF,∴OE=FG. ∵CF=FG+CG,∴CF=OE+AE. 选图3的结论证明如下: 如图,延长EO交FC的延长线于点G.
12--(夏加生)2018年全国各地中考试题之几何变换专题解析版
2018年全国各地中考试题之几何变换专题1.(2018年上海市23.12分)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如果=.求证:EF=EP.【分析】(1)利用正方形的性质得AB=AD,∠BAD=90°,根据等角的余角相等得到∠1=∠3,则可判断△ABE≌△DAF,则BE=AF,然后利用等线段代换可得到结论;(2)利用=和AF=BE得到=,则可判定Rt△BEF∽Rt△DFA,所以∠4=∠3,再证明∠4=∠5,然后根据等腰三角形的性质可判断EF=EP.【解答】证明:(1)∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵BE⊥AP,DF⊥AP,∴∠BEA=∠AFD=90°,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABE和△DAF中,∴△ABE≌△DAF,∴BE=AF,∴EF=AE﹣AF=AE﹣BE;(2)如图,∵=,而AF=BE,∴=,∴=,∴Rt△BEF∽Rt△DFA,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而BE⊥EP,∴EF=EP.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.也考查了全等三角形的判定与性质和正方形的性质.2.(2018年台湾省14.3分)如图,I点为△ABC的内心,D点在BC上,且ID ⊥BC,若∠B=44°,∠C=56°,则∠AID的度数为何?()A.174 B.176 C.178 D.180【分析】连接CI,利用三角形内角和定理可求出∠BAC的度数,由I点为△ABC 的内心,可得出∠CAI、∠ACI、∠DCI的度数,利用三角形内角和定理可得出∠AIC、∠CID的度数,再由∠AID=∠AIC+∠CID即可求出∠AID的度数.【解答】解:连接CI,如图所示.在△ABC中,∠B=44°,∠ACB=56°,∴∠BAC=180°﹣∠B﹣∠ACB=80°.∵I点为△ABC的内心,∴∠CAI=∠BAC=40°,∠ACI=∠DCI=∠ACB=28°,∴∠AIC=180°﹣∠CAI﹣∠ACI=112°,又ID⊥BC,∴∠CID=90°﹣∠DCI=62°,∴∠AID=∠AIC+∠CID=112°+62°=174°.故选:A.【点评】本题考查了三角形的内心、三角形内角和定理以及角平分线的性质,根据三角形内心的性质结合三角形内角和定理求出∠AIC、∠CID的度数是解题的关键.3.(2018年台湾省20.3分)如图1的矩形ABCD中,有一点E在AD上,今以BE 为折线将A点往右折,如图2所示,再作过A点且与CD垂直的直线,交CD于F 点,如图3所示,若AB=6,BC=13,∠BEA=60°,则图3中AF的长度为何?()A.2 B.4 C.2D.4【分析】作AH⊥BC于H.则四边形AFCH是矩形,AF=CH,AH=CF=3.在Rt△ABH中,解直角三角形即可解决问题;【解答】解:作AH⊥BC于H.则四边形AFCH是矩形,AF=CH,AH=CF=3.在Rt△AHB中,∠ABH=30°,∴BH=AB•cos30°=9,∴CH=BC﹣BH=13﹣9=4,∴AF=CH=4,故选:B.【点评】本题考查翻折变换、矩形的性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.4.(2018年四川省内江市11.3分)如图,将矩形ABCD沿对角线BD折叠,点C 落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°【分析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【解答】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°﹣∠BDC=90°﹣62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选:D.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5. (2018年四川省内江市12.3分)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交y轴于点P,若△ABC与△A′B′C′关于点P成中心对称,则点A′的坐标为()A.(﹣4,﹣5)B.(﹣5,﹣4)C.(﹣3,﹣4)D.(﹣4,﹣3)【分析】先求得直线AB解析式为y=x﹣1,即可得出P(0,﹣1),再根据点A 与点A'关于点P成中心对称,利用中点公式,即可得到点A′的坐标.【解答】解:∵点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,∴△ABC是等腰直角三角形,∴A(4,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=x﹣1,令x=0,则y=﹣1,∴P(0,﹣1),又∵点A与点A'关于点P成中心对称,∴点P为AA'的中点,设A'(m,n),则=0,=﹣1,∴m=﹣4,n=﹣5,∴A'(﹣4,﹣5),故选:A.【点评】本题考查了中心对称,等腰直角三角形的运用,利用待定系数法得出直线AB的解析式是解题的关键.6.(2018年四川省南充市10.3分)如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是()A.CE=B.EF=C.cos∠CEP=D.HF2=EF•CF【分析】首先证明BH=AH,推出EG=BG,推出CE=CB,再证明△CEH≌△CBH,Rt △HFE≌Rt△HFA,利用全等三角形的性质即可一一判断.【解答】解:连接EH.∵四边形ABCD是正方形,∴CD=AB═BC=AD=2,CD∥AB,∵BE⊥AP,CH⊥BE,∴CH∥PA,∴四边形CPAH是平行四边形,∴CP=AH,∵CP=PD=1,∴AH=PC=1,∴AH=BH,在Rt△ABE中,∵AH=HB,∴EH=HB,∵HC⊥BE,∴BG=EG,∴CB=CE=2,故选项A错误,∵CH=CH,CB=CE,HB=HE,∴△ABC≌△CEH,∴∠CBH=∠CEH=90°,∵HF=HF,HE=HA,∴Rt△HFE≌Rt△HFA,∴AF=EF,设EF=AF=x,在Rt△CDF中,有22+(2﹣x)2=(2+x)2,∴x=,∴EF=,故B错误,∵PA∥CH,∴∠CEP=∠ECH=∠BCH,∴cos∠CEP=cos∠BCH==,故C错误.∵HF=,EF=,FC=∴HF2=EF•FC,故D正确,故选:D.【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.7. (2018年四川省南充市24.10分)如图,矩形ABCD中,AC=2AB,将矩形ABCD 绕点A旋转得到矩形AB′C′D′,使点B的对应点B'落在AC上,B'C'交AD于点E,在B'C′上取点F,使B'F=AB.(1)求证:AE=C′E.(2)求∠FBB'的度数.(3)已知AB=2,求BF的长.【分析】(1)在直角三角形ABC中,由AC=2AB,得到∠ACB=30°,再由折叠的性质得到一对角相等,利用等角对等边即可得证;(2)由(1)得到△ABB′为等边三角形,利用矩形的性质及等边三角形的内角为60°,即可求出所求角度数;(3)由AB=2,得到B′B=B′F=2,∠B′BF=15°,过B作BH⊥BF,在直角三角形BB′H中,利用锐角三角函数定义求出BH的长,由BF=2BH即可求出BF的长.【解答】(1)证明:∵在Rt△ABC中,AC=2AB,∴∠ACB=∠AC′B′=30°,∠BAC=60°,由旋转可得:AB′=AB,∠B′AC=∠BAC=60°,∴∠EAC′=∠AC′B′=30°,∴AE=C′E;(2)解:由(1)得到△ABB′为等边三角形,∴∠AB′B=60°,∴∠FBB′=15°;(3)解:由AB=2,得到B′B=B′F=2,∠B′BF=15°,过B作BH⊥BF,在Rt△BB′H中,cos15°=,即BH=2×=,则BF=2BH=+.【点评】此题考查了旋转的性质,矩形的性质,锐角三角函数定义,等边三角形、直角三角形的性质,熟练掌握旋转的性质是解本题的关键.8. (2018年四川省宜宾市7.3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 C.D.【分析】由S△ABC =9、S△A′EF=4且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根据△DA′E∽△DAB知()2=,据此求解可得.【解答】解:如图,∵S△ABC =9、S△A′EF=4,且AD为BC边的中线,∴S△A′DE =S△A′EF=2,S△ABD=S△ABC=,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=2或A′D=﹣(舍),故选:A.【点评】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.9.(2018年四川省宜宾市8.3分)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A.B.C.34 D.10【分析】设点M为DE的中点,点N为FG的中点,连接MN,则MN、PM的长度是定值,利用三角形的三边关系可得出NP的最小值,再利用PF2+PG2=2PN2+2FN2即可求出结论.【解答】解:设点M为DE的中点,点N为FG的中点,连接MN交半圆于点P,此时PN取最小值.∵DE=4,四边形DEFG为矩形,∴GF=DE,MN=EF,∴MP=FN=DE=2,∴NP=MN﹣MP=EF﹣MP=1,∴PF2+PG2=2PN2+2FN2=2×12+2×22=10.故选:D.【点评】本题考查了点与圆的位置关系、矩形的性质以及三角形三边关系,利用三角形三边关系找出PN的最小值是解题的关键.10. (2018年四川省宜宾市16.3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是①②③(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=;③当A、F、C三点共线时,AE=;④当A、F、C三点共线时,△CEF≌△AEF.【分析】分两种情形分别求解即可解决问题;【解答】解:如图1中,当AE=EB时,∵AE=EB=EF,∴∠EAF=∠EFA,∵∠CEF=∠CEB,∠BEF=∠EAF+∠EFA,∴∠BEC=∠EAF,∴AF∥EC,故①正确,作EM⊥AF,则AM=FM,在Rt△ECB中,EC==,∵∠AME=∠B=90°,∠EAM=∠CEB,∴△CEB∽△EAM,∴=,∴=,∴AM=,∴AF=2AM=,故②正确,如图2中,当A、F、C共线时,设AE=x.则EB=EF=3﹣x,AF=﹣2,在Rt△AEF中,∵AE2=AF2+EF2,∴x2=(﹣2)2+(3﹣x)2,∴x=,∴AE=,故③正确,如果,△CEF≌△AEF,则∠EAF=∠ECF=∠ECB=30°,显然不符合题意,故④错误,故答案为①②③.【点评】本题考查翻折变换、全等三角形的性质、勾股定理、矩形的性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.11.(2018年四川省成都市24.4分)如图,在菱形ABCD中,tanA=,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,的值为.【分析】首先延长NF与DC交于点H,进而利用翻折变换的性质得出NH⊥DC,再利用边角关系得出BN,CN的长进而得出答案.【解答】解:延长NF与DC交于点H,∵∠ADF=90°,∴∠A+∠FDH=90°,∵∠DFN+∠DFH=180°,∠A+∠B=180°,∠B=∠DFN,∴∠A=∠DFH,∴∠FDH+∠DFH=90°,∴NH⊥DC,设DM=4k,DE=3k,EM=5k,∴AD=9k=DC,DF=6k,∵tanA=tan∠DFH=,则sin∠DFH=,∴DH=DF=k,∴CH=9k﹣k=k,∵cosC=cosA==,∴CN=CH=7k,∴BN=2k,∴=.【点评】此题主要考查了翻折变换的性质以及解直角三角形,正确表示出CN的长是解题关键.12. (2018年四川省成都市27.10分)在Rt△ABC中,∠ACB=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针旋转得到△A′B′C′(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ 的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.【分析】(1)由旋转可得:AC=A'C=2,进而得到BC=,依据∠A'BC=90°,可得cos∠A'CB==,即可得到∠A'CB=30°,∠ACA'=60°;(2)根据M为A'B'的中点,即可得出∠A=∠A'CM,进而得到PB=BC=,依据tan∠Q=tan∠A=,即可得到BQ=BC×=2,进而得出PQ=PB+BQ=;(3)依据S四边形PA'B′Q =S△PCQ﹣S△A'CB'=S△PCQ﹣,即可得到S四边形PA'B′Q最小,即S△PCQ最小,而S△PCQ =PQ×BC=PQ,利用几何法或代数法即可得到S△PCQ的最小值=3,S四边形PA'B′Q=3﹣.【解答】解:(1)由旋转可得:AC=A'C=2,∵∠ACB=90°,AB=,AC=2,∴BC=,∵∠ACB=90°,m∥AC,∴∠A'BC=90°,∴cos∠A'CB==,∴∠A'CB=30°,∴∠ACA'=60°;(2)∵M为A'B'的中点,∴∠A'CM=∠MA'C,由旋转可得,∠MA'C=∠A,∴∠A=∠A'CM,∴tan∠PCB=tan∠A=,∴PB=BC=,∵tan∠Q=tan∠A=,∴BQ=BC×=2,∴PQ=PB+BQ=;(3)∵S四边形PA'B′Q =S△PCQ﹣S△A'CB'=S△PCQ﹣,∴S四边形PA'B′Q 最小,即S△PCQ最小,∴S△PCQ=PQ×BC=PQ,法一:(几何法)取PQ的中点G,则∠PCQ=90°,∴CG=PQ,即PQ=2CG,当CG最小时,PQ最小,∴CG⊥PQ,即CG与CB重合时,CG最小,∴CGmin =,PQmin=2,∴S△PCQ 的最小值=3,S四边形PA'B′Q=3﹣;法二(代数法)设PB=x,BQ=y,由射影定理得:xy=3,∴当PQ最小时,x+y最小,∴(x+y)2=x2+2xy+y2=x2+6+y2≥2xy+6=12,当x=y=时,“=”成立,∴PQ=+=2,∴S△PCQ 的最小值=3,S四边形PA'B′Q=3﹣.【点评】本题属于四边形综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.13.(2018年四川省泸州市16.3分)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为18 .【分析】如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF 的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF===13,∴DF+DC的最小值为13.∴△CDF周长的最小值为13+5=18;故答案为18.【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.14.(2018年四川省自贡市12.4分)如图,在边长为a正方形ABCD中,把边BC绕点B逆时针旋转60°,得到线段BM,连接AM并延长交CD于N,连接MC,则△MNC的面积为()A.B.C.D.【分析】作MG⊥BC于G,MH⊥CD于H,根据旋转变换的性质得到△MBC是等边三角形,根据直角三角形的性质和勾股定理分别求出MH、CH,根据三角形的面积公式计算即可.【解答】解:作MG⊥BC于G,MH⊥CD于H,则BG=GC,AB∥MG∥CD,∴AM=MN,∵MH⊥CD,∠D=90°,∴MH∥AD,∴NH=HD,由旋转变换的性质可知,△MBC是等边三角形,∴MC=BC=a,由题意得,∠MCD=30°,∴MH=MC=a,CH=a,∴DH=a﹣a,∴CN=CH﹣NH=a﹣(a﹣a)=(﹣1)a,∴△MNC的面积=××(﹣1)a=a2,故选:C.【点评】本题考查的是旋转变换的性质、正方形的性质,掌握正方形的性质、平行线的性质是解题的关键.15. (2018年四川省自贡市25.12分)如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系,并说明理由;(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD、OE与OC之间又有怎样的数量关系?请写出你的猜想,不需证明.【分析】(1)先判断出∠OCE=60°,再利用特殊角的三角函数得出OD=OC,同OE=OC,即可得出结论;(2)同(1)的方法得OF+OG=OC,再判断出△CFD≌△CGE,得出DF=EG,最后等量代换即可得出结论;(3)同(2)的方法即可得出结论.【解答】解:(1)∵OM是∠AOB的角平分线,∴∠AOC=∠BOC=∠AOB=30°,∵CD⊥OA,∴∠ODC=90°,∴∠OCE=∠DCE﹣∠OCD=60°,在Rt△OCD中,OD=OC•cos30°=OC,同理:OE=OC,∴OD+OE=OC;(2)(1)中结论仍然成立,理由:过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°,∵∠AOB=60°,∴∠FCG=120°,同(1)的方法得,OF=OC,OG=OC,∴OF+OG=OC,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=OD+DF=OD+EG,OG=OE﹣EG,∴OF+OG=OD+EG+OE﹣EG=OD+OE,∴OD+OE=OC;(3)(1)中结论不成立,结论为:OE﹣OD=OC,理由:过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°,∵∠AOB=60°,∴∠FCG=120°,同(1)的方法得,OF=OC,OG=OC,∴OF+OG=OC,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=120°,∠FCG=120°,∴△CFD≌△CGE,∴DF=EG,∴OF=DF﹣OD=EG﹣OD,OG=OE﹣EG,∴OF+OG=EG﹣OD+OE﹣EG=OE﹣OD,∴OE﹣OD=OC.【点评】此题是几何变换综合题,主要考查了角平分线的定义和定理,全等三角形的判定和性质,特殊角的三角函数直角三角形的性质,正确作出辅助线是解本题的关键.16.(2018年四川省达州市14.3分)如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为(﹣2,6).【分析】连接OB1,作B1H⊥OA于H,证明△AOB≌△HB1O,得到B1H=OA=6,OH=AB=2,得到答案.【解答】解:连接OB1,作B1H⊥OA于H,由题意得,OA=6,AB=OC﹣2,则tan∠BOA==,∴∠BOA=30°,∴∠OBA=60°,由旋转的性质可知,∠B1OB=∠BOA=30°,∴∴∠B1OH=60°,在△AOB和△HB1O,,∴△AOB≌△HB1O,∴B1H=OA=6,OH=AB=2,∴点B1的坐标为(﹣2,6),故答案为:(﹣2,6).【点评】本题考查的是矩形的性质、旋转变换的性质,掌握矩形的性质、全等三角形的判定和性质定理是解题的关键.17. (2018年四川省达州市16.3分)如图,Rt△ABC中,∠C=90°,AC=2,BC=5,点D是BC边上一点且CD=1,点P是线段DB上一动点,连接AP,以AP为斜边在AP的下方作等腰Rt△AOP.当P从点D出发运动至点B停止时,点O的运动路径长为2.【分析】过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF 为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE ≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长.【解答】解:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,∵△AOP为等腰直角三角形,∴OA=OP,∠AOP=90°,易得四边形OECF为矩形,∴∠EOF=90°,CE=CF,∴∠AOE=∠POF,∴△OAE≌△OPF,∴AE=PF,OE=OF,∴CO平分∠ACP,∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,∵AE=PF,即AC﹣CE=CF﹣CP,而CE=CF,∴CE=(AC+CP),∴OC=CE=(AC+CP),当AC=2,CP=CD=1时,OC=×(2+1)=,当AC=2,CP=CB=5时,OC=×(2+5)=,∴当P从点D出发运动至点B停止时,点O的运动路径长=﹣=2.故答案为2.【点评】本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了全等三角形的判定与性质.18.(2018年四川省遂宁市10.4分)已知如图,在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,过点B作BM∥AG,交AF于点M,则以下结=中正确的是()论:①DE+BF=EF,②BF=,③AF=,④S△MBFA.①②③B.②③④C.①③④D.①②④【分析】利用全等三角形的性质条件勾股定理求出BF的长,再利用相似三角形的性质求出△BMF的面积即可.【解答】解:∵AG=AE,∠FAE=∠FAG=45°,AF=AF,∴△AFE≌△AFG,∴EF=FG,∵DE=BG,∴EF=FG=BG+FB=DE+BF,故①正确,∵BC=CD=AD=4,EC=1,∴DE=3,设BF=x,则EF=x+3,CF=4﹣x,在Rt△ECF中,(x+3)2=(4﹣x)2+12,解得x=,∴BF=,AF==,故②正确,③错误,∵BM∥AG,∴△FBM∽△FGA,∴=()2,=,故④正确,∴S△FBM故选:D.【点评】本题考查旋转变换、正方形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.19.(2018年天津市11.3分)如图,在正方形ABCD中,E,F分别为AD,BC 的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是()A.AB B.DE C.BD D.AF【分析】连接CP,当点E,P,C在同一直线上时,AP+PE的最小值为CE长,依据△ABF≌△CDE,即可得到AP+EP最小值等于线段AF的长.【解答】解:如图,连接CP,由AD=CD,∠ADP=∠CDP=45°,DP=DP,可得△ADP≌△CDP,∴AP=CP,∴AP+PE=CP+PE,∴当点E,P,C在同一直线上时,AP+PE的最小值为CE长,此时,由AB=CD,∠ABF=∠CDE,BF=DE,可得△ABF≌△CDE,∴AF=CE,∴AP+EP最小值等于线段AF的长,故选:D.【点评】本题考查的是轴对称,最短路线问题,根据题意作出A关于BD的对称点C是解答此题的关键.20.(2018年天津市24.10分)在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(Ⅰ)如图①,当点D落在BC边上时,求点D的坐标;(Ⅱ)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(Ⅲ)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).【分析】(Ⅰ)如图①,在Rt△ACD中求出CD即可解决问题;(Ⅱ)①根据HL证明即可;②,设AH=BH=m,则HC=BC﹣BH=5﹣m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;(Ⅲ)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;【解答】解:(Ⅰ)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD==4,∴BD=BC﹣CD=1,∴D(1,3).(Ⅱ)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(Ⅰ)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC﹣BH=5﹣m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5﹣m)2,∴m=,∴BH=,∴H(,3).(Ⅲ)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=•DE•DK=×3×(5﹣)=,当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=×D′E′×KD′=×3×(5+)=.综上所述,≤S≤.【点评】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题,属于中考压轴题.21.(2018年安徽省23.14分)如图1,Rt△ABC中,∠ACB=90°,点D为边AC 上一点,DE⊥AB于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【分析】(1)利用直角三角形斜边中线的性质定理即可证明;(2)利用四边形内角和定理求出∠CME即可解决问题;(3)首先证明△ADE是等腰直角三角形,△DEM是等边三角形,设FM=a,则AE=CM=EM=a,EF=2a,推出=,=,由此即可解决问题;【解答】(1)证明:如图1中,∵DE⊥AB,∴∠DEB=∠DCB=90°,∵DM=MB,∴CM=DB,EM=DB,∴CM=EM.(2)解:∵∠AED=90°,∠A=50°,∴∠ADE=40°,∠CDE=140°,∵CM=DM=ME,∴∠NCD=∠MDC,∠MDE=∠MED,∴∠CME=360°﹣2×140°=80°,∴∠EMF=180°﹣∠CME=100°.(3)证明:如图2中,设FM=a.∵△DAE≌△CEM,CM=EM,∴AE=ED=EM=CM=DM,∠AED=∠CME=90°∴△ADE是等腰直角三角形,△DEM是等边三角形,∴∠DEM=60°,∠MEF=30°,∴AE=CM=EM=a,EF=2a,∵CN=NM,∴MN=a,∴=,=,∴=,∴EM∥AN.【点评】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、等边三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.22.(2018年山东省临沂市25.11分)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.【分析】(1)先运用SAS判定△AED≌△FDE,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【解答】解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.【点评】本题主要考查了旋转的性质,全等三角形的判定与性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.22.(2018年山东省威海市21.8分)如图,将矩形ABCD(纸片)折叠,使点B 与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.【分析】由题意知∠3=180°﹣2∠1=45°、∠4=180°﹣2∠2=30°、BE=KE、KF=FC,作KM⊥BC,设KM=x,知EM=x、MF=x,根据EF的长求得x=1,再进一步求解可得.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF=FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.23.(2018年山东省威海市24.12分)如图①,在四边形BCDE中,BC⊥CD,DE ⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE 的中点,连接MN,MF,NF.(1)如图②,当BC=4,DE=5,tan∠FMN=1时,求的值;(2)若tan∠FMN=,BC=4,则可求出图中哪些线段的长?写出解答过程;(3)连接CM,DN,CF,DF.试证明△FMC与△DNF全等;(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.【分析】(1)根据四边形ANFM是平行四边形,AB⊥AE,即可得到四边形ANFM 是矩形,再根据FN=FM,即可得出矩形ANFM是正方形,AB=AE,结合∠1=∠3,∠C=∠D=90°,即可得到△ABC≌△EAD,进而得到BC=AD,CA=DE,即可得出=;(2)依据四边形MANF为矩形,MF=AE,NF=AB,tan∠FMN=,即可得到=,依据△ABC∽△EAD,即可得到==,即可得到AD的长;(3)根据△ABC和△ADE都是直角三角形,M,N分别是AB,AE的中点,即可得到BM=CM,NA=ND,进而得出∠4=2∠1,∠5=2∠3,根据∠4=∠5,即可得到∠FMC=∠FND,再根据FM=DN,CM=NF,可得△FMC≌△DNF;(4)由BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,即可得到:△BMF≌△NFM≌△MAN≌△FNE.【解答】解:(1)∵点M,N,F分别为AB,AE,BE的中点,∴MF,NF都是△ABE的中位线,∴MF=AE=AN,NF=AB=AM,∴四边形ANFM是平行四边形,又∵AB⊥AE,∴四边形ANFM是矩形,又∵tan∠FMN=1,∴FN=FM,∴矩形ANFM是正方形,AB=AE,又∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,∵∠C=∠D=90°,∴△ABC≌△EAD(AAS),∴BC=AD=4,CA=DE=5,∴=;(2)可求线段AD的长.由(1)可得,四边形MANF为矩形,MF=AE,NF=AB,∵tan∠FMN=,即=,∴=,∵∠1=∠3,∠C=∠D=90°,∴△ABC∽△EAD,∴==,∵BC=4,∴AD=8;(3)∵BC⊥CD,DE⊥CD,∴△ABC和△ADE都是直角三角形,∵M,N分别是AB,AE的中点,∴BM=CM,NA=ND,∴∠4=2∠1,∠5=2∠3,∵∠1=∠3,∴∠4=∠5,∵∠FMC=90°+∠4,∠FND=90°+∠5,∴∠FMC=∠FND,∵FM=DN,CM=NF,∴△FMC≌△DNF(SAS);(4)在(3)的条件下,BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,∴图中有:△BMF≌△NFM≌△MAN≌△FNE.【点评】本题属于相似形综合题,主要考查了全等三角形的判定与性质,相似三角形的判定与性质,直角三角形的性质以及矩形的判定与性质的综合运用,解决问题的关键是判定全等三角形或相似三角形,利用全等三角形的对应边相等,相似三角形的对应边成比例得出有关结论.24.(218年山东省德州市12.4分)如图,等边三角形ABC的边长为4,点O 是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE =S△BDE;③四边形ODBE的面积始终等于;④△BDE周长的最小值为6.上述结论中正确的个数是()A.1 B.2 C.3 D.4【分析】连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,所以BD=CE,OD=OE,则可对①进行判断;利用S△BOD =S△COE得到四边形ODBE的面积=S△ABC=,则可对③进行判断;作OH⊥DE,如图,则DH=EH,计算出S△ODE =OE2,利用S△ODE随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断;由于△BDE的周长=BC+DE=4+DE=4+OE,根据垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.【解答】解:连接OB、OC,如图,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O是△ABC的中心,∴OB=OC,OB、OC分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=∠OCB=30°∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE,在△BOD和△COE中,∴△BOD≌△COE,∴BD=CE,OD=OE,所以①正确;∴S△BOD =S△COE,∴四边形ODBE的面积=S△OBC =S△ABC=××42=,所以③正确;作OH⊥DE,如图,则DH=EH,∵∠DOE=120°,∴∠ODE=∠OEH=30°,∴OH=OE,HE=OH=OE,∴DE=OE,∴S△ODE=•OE•OE=OE2,即S△ODE随OE的变化而变化,而四边形ODBE的面积为定值,∴S△ODE ≠S△BDE;所以②错误;∵BD=CE,∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=4+OE,当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=,∴△BDE周长的最小值=4+2=6,所以④正确.故选:C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和全等三角形的判定与性质.25.(2018年山东省德州市24.12分)再读教材:宽与长的比是(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计,下面,我们用宽为2的矩形纸片折叠黄金矩形.(提示:MN=2)第一步,在矩形纸片一端,利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②,把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线AB,并把AB折到图①中所示的AD处.第四步,展平纸片,按照所得的点D折出DE,使DE⊥ND,则图④中就会出现黄金矩形.。
广东省2018中考数学复习第一部分中考基础复习第五章图形与变换第3讲解直角三角形课件
2020/9/26
26
9.为加强防汛工作,某市对一拦水坝进行加固,如图 5-3-10, 加固前拦水坝的横断面是梯形 ABCD.已知迎水坡面 AB=12 米, 背水坡面 CD=12 3米,∠B=60°,加固后拦水坝的横断面为 梯形 ABED,tan E=133 3,则 CE 的长为________米.
在 B 处测得四楼顶点 E 的仰角为
30°,AB=14 m.求居民楼的高度.
(精确到 0.1 m,参考数据:
3 ≈9/26
20
[思路分析]设每层楼高为 x m,由 MC-CC′求出 MC′的
长,进而表示出 DC′与 EC′的长,在直角三角形 DC′A′中,
利用锐角三角函数定义表示出 C′A′,同理表示出 C′B′,
A.250 米
答案:A
2020/9/26
图 5-3-5
B.250 3米
500 C. 3
3米
D.500 3米
16
2.(2016 年湖南怀化)在 Rt△ABC 中,∠C=90°,sin A=45, AC=6 cm,则 BC 的长度为( )
A.6 cm
B.7 cm
C.8 cm
D.9 cm
答案:C
[名师点评]求解锐角三角函数通常蕴含一定的图形背景(网
(2)坡度:坡面的铅直高度和水平宽度的比叫
解直角三 角形及其
应用
做坡度(或者叫做坡比),用字母 i 表示. 仰角、俯角、
坡角:坡面与水平面的夹角叫做坡角,用α 坡度、坡角和
表示,则有 i=tan α. 方向角
(3)方向角:平面上,通过观察点Ο作一条水
平线(向右为东向)和一条铅垂线(向上为北
向),则从点 O 出发的视线与水平线或铅垂
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拓展
如图3,当线段OQ与CB边交于点M,与BA边交于点N
时,设BM=x(x>0),用含x的代数式表示BN的长,并求x 的取值范围.
探究
当半圆K与矩形ABCD的边相切时,求sin α 的值.
类型二 图形的翻折变换 翻折类问题实质即“对称”,解决这类问题时,要注 意翻折会出现等角、等长、等腰三角形、全等.在翻折类
专题五 几何变换压轴题
几何变换压轴题多以四边形和圆为主,结合平移、 旋转、翻折、相似等变换.四边形的问题常常转化成三角
形的问题来解决,通过证明三角形全等或相似得到相等的
角、相等的边或成比例的边,通过勾股定理计算边长;圆 的问题主要考查切线的性质及判定、相似三角形的性质与
判定、解直角三角形、求阴影面积等.这类问题不仅要 求学生掌握几何图形性质,还要正确认识特殊与一般的关 系,注意方程思想、对称思想以及转化思想的相互渗透.
等面积就相等,表示出三角形的面积,从而求出t值;(3)
根据PE+NE=AP的值,解出t即可;(4)分两种情况,K在PE 边上任意一点时△PKB是直角三角形,在FE上的一点时也是 直角三角形,利用三角形相似求出t的值.
5.(2017·常德)如图,在Rt△ABC中,∠BAC=90°,
D在BC上,连接AD,作BF⊥AD分别交AD于点E,交AC于点F.
(1)如图1,若BD=BA,求证:△ABE≌△DBE; (2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于点M. 求证:①GM=2MC;②AG2=AF·AC.
6.(2017·裕华区模拟)如图1,在△ABC中,AB=AC=10 cm, BD⊥AC于点D,BD=8 cm.点M从点A出发,沿AC的方向匀速运 动,同时直线PQ由点B出发,沿BA的方向匀速运动,运动过程
OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置 固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开 始旋转,设旋转角为α (0°≤α ≤60°).
发现
(1)当α =0°,即初始位置时,点P
直线AB上.
(填“在”或“不在”) 求当α 是多少时,OQ经过点B?
(2)在OQ旋转过程中,简要说明α 是多少时,点P,A间的
问题中更多的是在折叠之后形成的三角形利用勾股定理求
线段长度,或利用相似解决问题.
【分析】
(1)利用垂径定理和勾股定理即可求出点O到AB
的距离;利用锐角三角函数的定义及折叠性质即可求出 ∠ABA′;(2)过点O作OG⊥BP,垂足为G,根据切线的性质
得到∠OBA′=90°,然后求出∠OBP,进而求出OG,BG的
时间是t秒(t>0).
(1)当t=1时,KE=
,EN=
;ቤተ መጻሕፍቲ ባይዱ
(2)当t为何值时,△APM的面积与△MNE的面积相等?
(3)当点K到达点N时,求出t的值;
(4)当t为何值时,△PKB是直角三角形?
【分析】
(1)利用△APM∽△ABC求出PM,然后求出ME,再
利用△APM∽△NEM,即可求出EN;(2)△APM的面积与△MNE 的面积相等,且两个三角形相似,所以只要两个三角形全
【分析】
(1)分两种情形:①当点Q与B在PD异侧,②当
点Q与B在PD同侧时,分别求解即可;(2)连接BQ,作PH⊥AB 于H.在Rt△PQB中求出QB的值;(3)分三种情形分别求解即
可.
1.(2015·河北)平面上,矩形ABCD与直径为QP的半圆K
如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,
(2)设四边形PQCM的面积为y cm2,求y与t之间的函数解析
式;
河北近五年对此问题的考查:2017年第25题、2015年 第26题均考查了图形的旋转变换,2014年第25题考查了图 形的翻折变换.
类型一 图形的旋转变换 旋转变换是近年来中考中的常考点,多与三角形、四
边形相结合.解决旋转变换问题,首先要明确旋转中心、
旋转方向和旋转角,关键是找出旋转前后的对应点,利用 旋转前后两图形全等等性质解题.
(2017·石家庄二模)如图,在Rt△ABC中,∠ABC= 90°,AB=8,BC=6,矩形PEFG中,PE=2,PG=4.PE与 AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒 1个单位长度的速度向点B匀速运动,伴随点P的运动,矩形 PEFG在射线AB上滑动;动点K从点P出发沿折线PE—EF以每 秒1个单位长度的速度匀速运动.点P,K同时开始运动,当 点K到达点F时停止运动,点P也随之停止.设点P,K运动的
长,根据垂径定理就可求出折痕的长;(3)根据点A′的位 置不同,分情况讨论即可.
类型三 图形的相似 图形的相似常以三角形、四边形为背景,与旋转、 翻折、动点结合,考查三角形相似的性质及判定,难度较
大,是中考中常考的几何压轴题,与动点相关的相似三角
形,要根据动点的运动情况讨论相似三角形的对应边、对 应角,进而判定相似三角形,再利用相似三角形的性质解 题.
中始终保持PQ∥AC.直线PQ交AB于点P,交BC于点Q,交BD于点
F,连接PM,设运动时间为t秒(0<t≤5),线段CM的长度记作 y甲,线段BP的长度记作y乙,y甲和y乙关于时间t的函数变化情 况如图2所示.
(1)由图2可知,点M的运动速度是每秒
cm,当t为何
值时,四边形PQCM是平行四边形?在图2中反映这一情况 的点是 ;