【数学】2015-2016年天津市武清区七年级上学期数学期中试卷和解析答案PDF
2016学年天津市武清区七年级(上)数学期中试卷带参考答案
2015-2016学年天津市武清区七年级(上)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合要求的)1.(3分)计算﹣(﹣5)的结果是()A.5 B.﹣5 C.D.﹣2.(3分)已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.﹣2xy2B.3x2C.2xy3 D.2x33.(3分)比较的大小,结果正确的是()A.B.C.D.4.(3分)如果由四舍五入得到的近似数是35,那么在下列各数中不可能是真值的数是()A.34.49 B.34.51 C.34.99 D.35.015.(3分)如图,在数轴上点A表示的数可能是()A.1.5 B.﹣1.5 C.﹣2.4 D.2.46.(3分)在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×1097.(3分)一个数的倒数是它本身,则这个数是()A.1 B.﹣1 C.0 D.±18.(3分)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2 B.3 C.4 D.59.(3分)已知下列方程:(1)2x+3=;(2)7x=9;(3)4x﹣2=3x+1;(4)x2+6x+9=0;(5)x=3;(6)x+y=8.其中是一元一次方程的个数是()A.2 B.3 C.4 D.510.(3分)下列各组中,不是同类项的是()A.52与25B.﹣ab与baC.0.2a2b与﹣a2b D.a2b3与﹣a3b211.(3分)下列变形是属于移项的是()A.由2x=2,得x=1 B.由=﹣1,得x=﹣2C.由3x﹣=0,得3x=D.由﹣2x﹣2=0,得x=﹣112.(3分)计算(﹣2)2015+3×(﹣2)2014的结果是()A.﹣22014B.22014C.1 D.﹣22015二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)单项式﹣5x2y的系数是.14.(3分)在数轴上到原点距离是2.5个单位长度的点表示的数为.15.(3分)加上﹣2x2﹣3xy的结果得6x2﹣2xy+1的多项式是.16.(3分)在等式3×□﹣2×□=15的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立.则第一个方格内的数是.17.(3分)已知|x|=4,|y|=,且xy<0,则的值等于.18.(3分)按如下规律摆放三角形:则第(4)堆三角形的个数为;第(n)堆三角形的个数为.三、解答题(本大题共5小题,其中19-20题每题8分,其余每题10分)19.(8分)比较下列各组数的大小:(1)﹣100与1(2)﹣(﹣)与﹣|+2|(3)﹣与﹣(4)|﹣|与|﹣|20.(8分)解方程:(1)3x=2x+8(2)2+x=2x+1.21.(10分)已知:3x2﹣2x+b与x2+bx﹣1的和不含关于x的一次项.(1)求b的值,并写出它们的和;(2)请你说明不论x取什么值,这两个多项式的和总是正数的理由.22.(10分)计算:(1)84﹣[×(﹣3)﹣+7]÷(2)﹣22×|﹣3|+(﹣6)2×(﹣)﹣|+|÷(﹣)3.23.(10分)已知a,b,c为有理数,且它们在数轴上的位置如图所示.(1)试判断a,b,c的正负性;(2)在数轴上标出a,b,c相反数的位置;(3)若|a|=5,|b|=2.5,|c|=7.5,求a+b﹣c的值.2015-2016学年天津市武清区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合要求的)1.(3分)计算﹣(﹣5)的结果是()A.5 B.﹣5 C.D.﹣【解答】解:﹣(﹣5)=5.故选:A.2.(3分)已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.﹣2xy2B.3x2C.2xy3 D.2x3【解答】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A、﹣2xy2系数是﹣2,错误;B、3x2系数是3,错误;C、2xy3次数是4,错误;D、2x3符合系数是2,次数是3,正确;故选:D.3.(3分)比较的大小,结果正确的是()A.B.C.D.【解答】解:∵﹣<0,﹣<0,>0,∴最大;又∵>,∴﹣<﹣;∴.故选:A.4.(3分)如果由四舍五入得到的近似数是35,那么在下列各数中不可能是真值的数是()A.34.49 B.34.51 C.34.99 D.35.01【解答】解:由于B、34.51,C、34.99,D、35.01四舍五入的近似值都可能是35,而只有A、34.49不可能是真值.故选:A.5.(3分)如图,在数轴上点A表示的数可能是()A.1.5 B.﹣1.5 C.﹣2.4 D.2.4【解答】解:∵点A表示的数大于﹣3且小于﹣2,∴A、B、D三选项错误,C选项正确.故选:C.6.(3分)在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.7.(3分)一个数的倒数是它本身,则这个数是()A.1 B.﹣1 C.0 D.±1【解答】解:一个数的倒数是它本身,则这个数是±1;故选:D.8.(3分)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2 B.3 C.4 D.5【解答】解;∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选:D.9.(3分)已知下列方程:(1)2x+3=;(2)7x=9;(3)4x﹣2=3x+1;(4)x2+6x+9=0;(5)x=3;(6)x+y=8.其中是一元一次方程的个数是()A.2 B.3 C.4 D.5【解答】解:(1)错误,2x+3=,分母中含有未知数,是分式方程;(2)正确,7x=9,符合一元一次方程的定义;(3)正确,4x﹣2=3x+1,符合一元一次方程的定义;(4)错误,x2+6x+9=0,未知数的次数为2,是一元二次方程;(5)正确,x=3,符合一元一次方程的定义;(6)错误,x+y=8,含有两个未知数,是二元一次方程.故选:B.10.(3分)下列各组中,不是同类项的是()A.52与25B.﹣ab与baC.0.2a2b与﹣a2b D.a2b3与﹣a3b2【解答】解:不是同类项的是a2b3与﹣a3b2.故选:D.11.(3分)下列变形是属于移项的是()A.由2x=2,得x=1 B.由=﹣1,得x=﹣2C.由3x﹣=0,得3x=D.由﹣2x﹣2=0,得x=﹣1【解答】解:下列变形是属于移项的是由3x﹣=0,得3x=,故选:C.12.(3分)计算(﹣2)2015+3×(﹣2)2014的结果是()A.﹣22014B.22014C.1 D.﹣22015【解答】解:原式=(﹣2)2014×(﹣2+3)=22014.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)单项式﹣5x2y的系数是﹣5.【解答】解:﹣5x2y=﹣5•x2y,所以该单项式的系数是﹣5.故答案是:﹣5.14.(3分)在数轴上到原点距离是2.5个单位长度的点表示的数为±2.5.【解答】解:设在数轴上到原点距离是2.5个单位长度的点表示的数为x,则|x|=2.5,解得x=±2.5.故答案为:±2.5.15.(3分)加上﹣2x2﹣3xy的结果得6x2﹣2xy+1的多项式是8x2+xy+1.【解答】解:(6x2﹣2xy+1)﹣(﹣2x2﹣3xy)=6x2﹣2xy+1+2x2+3xy=8x2+xy+1.故答案为:8x2+xy+1.16.(3分)在等式3×□﹣2×□=15的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立.则第一个方格内的数是3.【解答】解:设第一个□为x,则第二个□为﹣x.依题意得3x﹣2×(﹣x)=15,解得x=3.故第一个方格内的数是3.故答案为:3.17.(3分)已知|x|=4,|y|=,且xy<0,则的值等于﹣8.【解答】解:∵|x|=4,|y|=,∴x=±4,y=±;又∵xy<0,∴x=4,y=﹣或x=﹣4,y=,则=﹣8.故答案为:﹣8.18.(3分)按如下规律摆放三角形:则第(4)堆三角形的个数为14;第(n)堆三角形的个数为3n+2.【解答】解:∵n=1时,有5个,即(3×1+2)个;n=2时,有8个,即(3×2+2)个;n=3时,有11个,即(3×3+2)个;n=4时,有12+2=14个;…;∴n=n时,有(3n+2)个.三、解答题(本大题共5小题,其中19-20题每题8分,其余每题10分)19.(8分)比较下列各组数的大小:(1)﹣100与1(2)﹣(﹣)与﹣|+2|(3)﹣与﹣(4)|﹣|与|﹣|【解答】解:(1)∵﹣100<0,1>0,∴﹣100<1;(2)∵﹣(﹣)=>0,﹣|+2|=﹣2<0,∴﹣(﹣)>﹣|+2|;(3)∵|﹣|==,|﹣|==,>,∴﹣<﹣;(4)∵|﹣|==,|﹣|==,<,∴|﹣|<|﹣|.20.(8分)解方程:(1)3x=2x+8(2)2+x=2x+1.【解答】解:(1)方程移项合并得:x=8;(2)方程去分母得:4+x=4x+2,移项合并得:3x=2,解得:x=.21.(10分)已知:3x2﹣2x+b与x2+bx﹣1的和不含关于x的一次项.(1)求b的值,并写出它们的和;(2)请你说明不论x取什么值,这两个多项式的和总是正数的理由.【解答】解:(1)根据题意得:(3x2﹣2x+b)+(x2+bx﹣1)=3x2﹣2x+b+x2+bx﹣1=4x2+(b﹣2)x+b﹣1,由结果不含x的一次项,得到b﹣2=0,解得:b=2,则它们的和为4x2+1;(2)∵x2≥0,即4x2≥0,∴4x2+1≥1>0,则这两个多项式的和总是正数.22.(10分)计算:(1)84﹣[×(﹣3)﹣+7]÷(2)﹣22×|﹣3|+(﹣6)2×(﹣)﹣|+|÷(﹣)3.【解答】解:(1)原式=84﹣(﹣﹣+7)×12=84+9+10﹣84=19;(2)原式=﹣12﹣15+1=﹣27+1=﹣26.23.(10分)已知a,b,c为有理数,且它们在数轴上的位置如图所示.(1)试判断a,b,c的正负性;(2)在数轴上标出a,b,c相反数的位置;(3)若|a|=5,|b|=2.5,|c|=7.5,求a+b﹣c的值.【解答】解:(1)如图所示:a<0,b>0,c>0;(2)如图所示:;(3)∵|a|=5,|b|=2.5,|c|=7.5,∴a=﹣5,b=2.5,c=7.5,∴a+b﹣c=﹣5+2.5﹣7.5=﹣10.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
人教版七年级上册试卷2015-2016期中测试答案
北京市第五十六中学2015-2016学年度第一学期期中考试初一年级数学参考答案及评分标准一.精心选一选:(本题共20分,每小题2分)题号 1 2 3 4 5 6 7 8 9 10 答案ABDDBCDDCC二.细心填一填:(本题共28分,每小题2分) 11. 水位下降5m 12.13 ,-3 13. 3-2,3 14.m=1,n=1 15. 10m+n 16. 2 17. 0 18. 619. 17-,18,1(1)-n n三.用心算一算:(本题共24分,每小题4分)20. 原式=12+18-7-15 ------------------------2分 =30-22=8 ------------------------4分21. 原式=721272-⨯⨯ ------------------------2分=12- ------------------------4分22. 原式=-4-4-8-8 ------------------------2分 =-24 ------------------------4分23. 原式=12-52--1 ------------------------2分 =-4 ------------------------4分四. 化简:(本题共8分,每小题4分)24. 原式=26x - ------------------------4分25. 原式=222243+-+-x x x x -----------------------2分=229-+x ------------------------4分五.先化简,再求值:(本题共5分) 26. 原式=224a 2a 64a 4a 10---++ ----------2分= 2a+4 ----------------------------------------4分当 a=-1 时,原式= 2 ----------------------------5分 六.(本题共23分)27. (1)总收入130万元,总支出35万元?-----------------2分(2)总收入+130万元,总支出-35万元 ---------------4分(3)95万元---------------5分28. 215(2) 2.50352-<--<-<<-<----------------2分画图----------------3分29(1)剩余部分的面积24-x ab ,二次二项式,二次项系数的和是-3.----------------2分(2)22-x ab ----------------2分 (3)22-x r π ----------------3分30(1)5 ----------------2分(2)x=-1 ----------------2分(3)x=2,x=-5----------------3分初中数学试卷金戈铁骑制作。
数学-2015上-七年级-期中考试-答案-联考
2015学年第一学期七年级期中考试数学试卷答案一、填空题(每小题2分,共30分)1、 +11a b ; 2、14 ; 3、 -6a ; 4、-2.4×610 ;5、54-a; 6、194 ; 7、 +--+-2232415732z x x y x y x y ;8、12 ; 9、-+2269x xy y ; 10、-22259y x ;11、5813+m n;12、19=-k ; 13、1352 ; 14、20 ; 15、222+m n二、选择题(每小题2分,共8分)16、B 17、A 18、A 19、 D三、简答题(每小题5分,共35分)20、当23a =-时原式= 221323⎛⎫-+ ⎪⎝⎭- ( 1分) =41923+- (1分) == 13923-(1分)= 136-(2分)21、原式=22(35)b c a -- 2分=222(93025)b bc c a -+- 2分= 22293025b bc c a -+- 1分22、原式= )32(2c b a -+= 222494612a b c ab ac bc +++-- 5分(其他计算方法酌情给分)23、原式=2222112()36643xy y x x y -+-⋅ 2分=22222222112363636643xy x y y x y x x y -+-⋅ 1分=3324426924x y x y x y -+- 2分24、原式=()()222x a a x -+⎡⎤⎣⎦ 1分= ()2224x a - 2分 = 4224168x a x a -+ 2分25、原式=333244184227a b a b a a b ⋅-⋅ 2分 = 64644427a b a b - 2分 = 6410427a b - 1分 26、2222(4263)33x x x x x x x +----+>- 1分 2222426333x x x x x x x +--++->- 1分 2236433x x x x -+>- 1分34x ->- 1分43x < 1分四.解答题(本题共4题, 27、28题每题6分,29题7分,30题8分,共27分))27、 ∵ A -2B =13-x∴ 2B=A-(3x-1) 1分22231x x x =-+-+ 1分=2243x x -+ 1分∴B= 2322x x -+ 1分 ∴B+A= 2322x x -++222+-x x 1分 = 27332x x -+ 1分 28、()4222222m n -=⨯,()323333nm +=⨯ 1分 422222m n +-=,32333n m ++= 2分 4222m n =,3533n m += 1分4m=2n, 3n=m+5 1分解得m=1,n=2 1分29、(1)444a b a b += 1分()()2222a b = 2分22m n = 1分(2)623a a a = 2分mp = 1分30、( 1 ) S=()()34b t a a t b --- 1分 =334bt ab at ab --+ 1分 =()3b a t ab -+(结果写成3bt at ab -+也可以) 1分(2) 30b a -= 1分3a b = 1分(3)227xa yb ab ++=222921xb yb b ++=()2921x y b ++ 1分 〖 ()921x y ++应该是完全平方数,x 、y 是正整数。
2015-2016学年新人教版七年级上期中数学试卷3套(含答案)
2015-2016学年七年级(上)期中数学试卷一一、选择题(本大题共6小题,每小题3分,共18分)1.若一个数的相反数是3,则这个数是()A.﹣B.C.﹣3 D.32.计算(﹣1)2+(﹣1)3=()A.﹣2 B.﹣1 C.0 D. 23.某地一天早晨的气温是﹣7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是()A.5℃ B.﹣5℃ C.﹣3℃ D.﹣9℃4.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣35.比较的大小,结果正确的是()A.B.C.D.6.观察下列图形:它们是按一定规律排列的,依照此规律,第20个图形共有★个()A.63 B.57 C.68 D.60二、填空题(本大题共8小题,每小题3分,共24分)7.计算﹣2x2+3x2的结果为.8.数轴上两点A、B分别表示数﹣2和3,则A、B两点间的距离是.9.我国“钓鱼岛”周围海域面积约170000km2,该数用科学记数法可表示为.10.定义一种新运算:a⊗b=b2﹣ab,如:1⊗2=22﹣1×2=2,则(﹣1⊗2)⊗3=.11.已知2a﹣b=﹣1,则4a﹣2b+1的值为.12.已知﹣25a2m b与7b3﹣n a4的和是单项式,则m+n的值是.13.对单项式“5x”,我们可以这样解释:香蕉每千克5元,某人买了x千克,共付款5x元.请你对“5x”再给出另一个实际生活方面的合理解释:.(答案不唯一).14.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券.小明只购买了单价分别为60元、80元和120元的书包、T恤、运动鞋,在使用购物券参与购买的情况下,他的实际花费为元.三、(本大题共3小题,第15、16小题各5分,第17小题6分,共16分)15.计算:﹣22÷(﹣1)3×(﹣5)16..17.下列代数式中:3+a;;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.单项式:多项式:整式:.四、(本大题共2小题,每小题7分,共14分)18.求代数式2x3﹣5x2+x3+9x2﹣3x3﹣2的值,其中x=.19.已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)①若A与B的和中不含x2项,则a=;②在①的基础上化简:B﹣2A.五、(本大题共2个小题,每小题9分,共18分)20.10月25日,省运会在赣州隆重开幕,社会各界主动献出自己的力量,支持省运会.某一出租车这天上午以体育场为出发点在东西方向免费接送运动员,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、﹣5、+4、﹣8、+6、﹣3、﹣6、﹣4、+12.(1)将最后一名运动员送到目的地,出租车离体育场出发点多远?在体育场的什么方向?(2)若每千米耗油a升,那么这一天共耗油多少升?21.公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高,如果用a表示脚印长度,b表示身高.关系类似满足于:b=7a﹣3.07.(1)某人脚印长度为24.5cm,则他的身高约为多少?(精确到1cm)(2)在某次案件中,抓获了两可疑人员,一个身高为1.87m,另一个身高1.82m,现场测量的脚印长度为26.3cm,请你帮助侦察一下,哪个可疑人员的可能性更大?六、(本大题共10分)22.(10分)(2014秋•赣县校级期中)小红爸爸上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)星期一二三四五六每股涨跌+4 +4.5 ﹣1 ﹣2.5 ﹣6 +2(1)通过上表你认为星期三收盘时,每股是多少?(2)本周内每股最高是多少?最低是多少元?(3)已知小红爸爸买进股票时付了1.5‰的手续费,卖出时还需付成交额,1.5‰的手续费和1‰的交易税,如果小红爸爸在星期六收盘时将全部股票卖出,你对他的收益情况怎样评价?2015-2016学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.若一个数的相反数是3,则这个数是()A.﹣B.C.﹣3 D.3考点:相反数.分析:两数互为相反数,它们的和为0.解答:解:设3的相反数为x.则x+3=0,x=﹣3.故选:C.点评:本题考查的是相反数的概念,两数互为相反数,它们的和为0.2.计算(﹣1)2+(﹣1)3=()A.﹣2 B.﹣1 C.0 D. 2考点:有理数的混合运算;有理数的乘方.分析:此题比较简单.先算乘方,再算加法.解答:解:(﹣1)2+(﹣1)3=1﹣1=0.故选C.点评:此题主要考查了乘方运算,乘方的意义就是求几个相同因数积的运算.注意负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.3.某地一天早晨的气温是﹣7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是()A.5℃ B.﹣5℃ C.﹣3℃ D.﹣9℃考点:有理数的加减混合运算.专题:应用题.分析:在列式时要注意上升是加法,下降是减法.解答:解:根据题意可列式﹣7+11﹣9=﹣5,所以温度是﹣5℃.故选B.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.4.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣3考点:代数式求值;绝对值.专题:计算题.分析:根据a的取值范围,先去绝对值符号,再计算求值.解答:解:当1<a<2时,|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.故选:B.点评:此题考查的知识点是代数式求值及绝对值,关键是根据a的取值,先去绝对值符号.5.比较的大小,结果正确的是()A.B.C.D.考点:有理数大小比较.分析:根据有理数大小比较的方法即可求解.解答:解:∵﹣<0,﹣<0,>0,∴最大;又∵>,∴﹣<﹣;∴.故选A.点评:本题考查有理数比较大小的方法:①正数都大于0,负数都小于0,正数大于一切负数;②两个负数,绝对值大的反而小.6.观察下列图形:它们是按一定规律排列的,依照此规律,第20个图形共有★个()A.63 B.57 C.68 D.60考点:规律型:图形的变化类.专题:规律型.分析:本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.解答:解:根据题意得,第1个图中,五角星有3个(3×1);第2个图中,有五角星6个(3×2);第3个图中,有五角星9个(3×3);第4个图中,有五角星12个(3×4);∴第n个图中有五角星3n个.∴第20个图中五角星有3×20=60个.故选:D.点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题(本大题共8小题,每小题3分,共24分)7.计算﹣2x2+3x2的结果为x2.考点:合并同类项.分析:根据合并同类项,系数相加字母和字母的指数不变,可得答案.解答:解:原式=(﹣2+3)x2=x2,故答案为:x2.点评:本题考查了合并同类项,合并同类项,系数相加字母和字母的指数不变.8.数轴上两点A、B分别表示数﹣2和3,则A、B两点间的距离是5.考点:数轴.分析:数轴上两点间的距离:数轴上两点对应的数的差的绝对值.解答:解:根据数轴上两点对应的数是﹣2,3,则两点间的距离是3﹣(﹣2)=5.点评:本题考查数轴上两点间距离的求法:右边点的坐标减去左边点的坐标;或两点坐标差的绝对值.9.我国“钓鱼岛”周围海域面积约170000km2,该数用科学记数法可表示为 1.7×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将170000用科学记数法表示为:1.7×105.故答案为:1.7×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.定义一种新运算:a⊗b=b2﹣ab,如:1⊗2=22﹣1×2=2,则(﹣1⊗2)⊗3=﹣9.考点:有理数的混合运算.专题:新定义.分析:先根据新定义计算出﹣1⊗2=6,然后再根据新定义计算6⊗3即可.解答:解:﹣1⊗2=22﹣(﹣1)×2=6,6⊗3=32﹣6×3=﹣9.所以(﹣1⊗2)⊗3=﹣9.故答案为:﹣9.点评:本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.11.已知2a﹣b=﹣1,则4a﹣2b+1的值为﹣1.考点:代数式求值.专题:计算题.分析:原式变形后,将已知等式代入计算即可求出值.解答:解:∵2a﹣b=﹣1,∴原式=2(2a﹣b)+1=﹣2+1=﹣1,故答案为:﹣1点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.已知﹣25a2m b与7b3﹣n a4的和是单项式,则m+n的值是4.考点:合并同类项.分析:有题意可知,这两个式子是同类项,再根据同类项的定义可得:2m=4,3﹣n=1.解答:解:由题意可得,2m=4,3﹣n=1.解得,m=2,n=2,∴m+n=4.故答案为:4.点评:此题主要考查同类项的概念,所含字母相同,并且相同字母的指数也相同的项是同类项.13.对单项式“5x”,我们可以这样解释:香蕉每千克5元,某人买了x千克,共付款5x元.请你对“5x”再给出另一个实际生活方面的合理解释:某人以5千米/时的速度走了x小时,他走的路程是5x千米.(答案不唯一).考点:单项式.专题:开放型.分析:对单项式“5x”,是5与x的积,表示生活中的相乘计算.比如:某人以5千米/时的速度走了x小时,他走的路程是5x千米解答:解:某人以5千米/时的速度走了x小时,他走的路程是5x千米,答案不唯一.点评:本题考查了单项式在生活中的实际意义,只要计算结果为5x的都符合要求.14.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券.小明只购买了单价分别为60元、80元和120元的书包、T恤、运动鞋,在使用购物券参与购买的情况下,他的实际花费为210或200元.考点:有理数的混合运算.专题:应用题;压轴题;分类讨论.分析:分四种情况讨论:①先付60元,80元,得到50元优惠券,再去买120元的运动鞋;②先付60元,120元,得到50元的优惠券,再去买80元的T恤;③先付120元,得到50元的优惠券,再去付60元,80元的书包和T恤;④先付120元,80元,得到100元的优惠券,再去付60元的书包;分别计算出实际花费即可.解答:解:①先付60元,80元,得到50元优惠券,再去买120元的运动鞋;实际花费为:60+80﹣50+120=210元;②先付60元,120元,得到50元的优惠券,再去买80元的T恤;实际花费为:60+120﹣50+80=210元;③先付120元,得到50元的优惠券,再去付60元,80元的书包和T恤;实际花费为:120﹣50+60+80=210元;④先付120元,80元,得到100元的优惠券,再去付60元的书包;实际花费为:120+80=200元;综上可得:他的实际花费为210元或200元.点评:本题旨在学生养成仔细读题的习惯.三、(本大题共3小题,第15、16小题各5分,第17小题6分,共16分)15.计算:﹣22÷(﹣1)3×(﹣5)考点:有理数的混合运算.分析:先算乘方,再从左到右依次计算除法、乘法.解答:解:原式=﹣4÷(﹣1)×(﹣5)=4×(﹣5)=﹣20.点评:有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.本题要特别注意运算顺序以及符号的处理,如﹣22=﹣4,而(﹣2)2=4.16..考点:有理数的混合运算.专题:常规题型.分析:按照有理数混合运算的顺序,先乘除后加减,有括号的先算括号里面的,并且在计算过程中注意正负符号的变化.解答:解:原式===0答:此题答案为0.点评:有理数的运算能力是很重要的一部分,要熟练掌握.17.下列代数式中:3+a;;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.单项式:0;﹣a;;a2b2多项式:3+a;;3x2﹣2x+1;a2﹣b2整式:3+a;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.考点:整式;单项式;多项式.分析:根据单项式、整式以及多项式进行填空.解答:解:单项式:0;﹣a;;a2b2;多项式:3+a;;3x2﹣2x+1;a2﹣b2;整式:3+a;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.故答案是:0;﹣a;;a2b2;3+a;;3x2﹣2x+1;a2﹣b2;3+a;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.点评:要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.四、(本大题共2小题,每小题7分,共14分)18.求代数式2x3﹣5x2+x3+9x2﹣3x3﹣2的值,其中x=.考点:整式的加减—化简求值.分析:本题应先将原式合并同类项,再将x的值代入,即可解出本题.解答:解:原式=2x3+x3﹣3x3+9x2﹣5x2﹣2=4x2﹣2,当x=时,原式=1﹣2=﹣1.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.19.已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)①若A与B的和中不含x2项,则a=﹣3;②在①的基础上化简:B﹣2A.考点:多项式.分析:①不含x2项,即x2项的系数为0,依此求得a的值;②先将表示A与B的式子代入B﹣2A,再去括号合并同类项.解答:解:①A+B=ax2+x﹣1+3x2﹣2x+1=(a+3)x2﹣x∵A与B的和中不含x2项,∴a+3=0,解得a=﹣3.②B﹣2A=3x2﹣2x+1﹣2×(﹣3x2+x﹣1)=3x2﹣2x+1+6x2﹣2x+2=9x2﹣4x+3.点评:多项式的加减实际上就是去括号和合并同类项.多项式加减的运算法则:一般地,几个多项式相加减,如果有括号就先去括号,然后再合并同类项.合并同类项的法则:把系数相加减,字母及字母的指数不变.本题注意不含x2项,即x2项的系数为0.五、(本大题共2个小题,每小题9分,共18分)20.10月25日,省运会在赣州隆重开幕,社会各界主动献出自己的力量,支持省运会.某一出租车这天上午以体育场为出发点在东西方向免费接送运动员,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、﹣5、+4、﹣8、+6、﹣3、﹣6、﹣4、+12.(1)将最后一名运动员送到目的地,出租车离体育场出发点多远?在体育场的什么方向?(2)若每千米耗油a升,那么这一天共耗油多少升?考点:正数和负数.分析:(1)根据有理数的加法,可得正负数,根据正数在东,负数在西,可得答案;(2)根据单位耗油量乘以行车距离,可得答案.解答:解:(1)+9﹣3﹣5+4﹣8+6﹣3﹣6﹣4+12=2km故出租车在体育场东边2 km处;(2)﹙|+9|+|﹣3|+|﹣5|+|+4|+|﹣8|+|+6|+|﹣3|+|﹣6|+|﹣4|+|+12|﹚•a=60a 升.答:这一天共耗油60a升点评:本题考查了正数和负数,利用有理数的加法运算是解题关键,注意求耗油量时要算每次行驶的绝对值.21.公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高,如果用a表示脚印长度,b表示身高.关系类似满足于:b=7a﹣3.07.(1)某人脚印长度为24.5cm,则他的身高约为多少?(精确到1cm)(2)在某次案件中,抓获了两可疑人员,一个身高为1.87m,另一个身高1.82m,现场测量的脚印长度为26.3cm,请你帮助侦察一下,哪个可疑人员的可能性更大?考点:代数式求值.专题:应用题.分析:(1)将脚印长度为24.5cm代入关系式即可得;(2)借助关系式b=7a﹣3.07,求出身高,再根据概率知识推测谁的可能性大.解答:解:(1)已知如果用a表示脚印长度,b表示身高.关系类似满足于:b=7a﹣3.07.若某人脚印长度为24.5cm,即a=24.5,将其代入关系式可得,身高约为7×24.5﹣3.07=168.43≈168cm,即他的身高约为168cm;(2)根据现场测量的脚印长度为26.3cm,将这个数值代入b=7a﹣3.07中可得:罪犯身高为181.03cm≈1.81cm,比较可知:身高1.82m的可疑人员的可能性更大.点评:立意新颖,把数学知识融汇到案件侦破中,既考知识,又增加了学习的乐趣.六、(本大题共10分)22.(10分)(2014秋•赣县校级期中)小红爸爸上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)星期一二三四五六每股涨跌+4 +4.5 ﹣1 ﹣2.5 ﹣6 +2(1)通过上表你认为星期三收盘时,每股是多少?(2)本周内每股最高是多少?最低是多少元?(3)已知小红爸爸买进股票时付了1.5‰的手续费,卖出时还需付成交额,1.5‰的手续费和1‰的交易税,如果小红爸爸在星期六收盘时将全部股票卖出,你对他的收益情况怎样评价?考点:有理数的混合运算;正数和负数.专题:应用题.分析:(1)先根据表格中找出星期一,星期二及星期三所对应的涨跌情况,把这三个数字相加得到这三天的涨跌情况,与买进时每股的单价相加即可求出星期三收盘时每股的价钱;(2)根据表格中记录的正负数情况得到星期二涨幅最大,星期五跌幅最大,求出星期一与星期二两天的涨幅情况,与买进时每股的价钱相加即可得到每股的最高价;用星期一到星期五五天的涨跌情况,与买进时每股的价格相加即可求出每股的最低价;(3)根据买进时每股的单价与股数相乘,减去手续费即可得到买进时所花费的钱数,然后求出一星期七天的涨跌情况,与买进时每股的价钱相加即可求出卖出时每股的价钱,然后乘以股数,再减去手续费和交易费即可求出卖出时获得的总钱数,用获得的总钱数减去买入时花费的钱数,根据其差得正负情况即可计算出他得收益情况.解答:解:(1)(+4)+(+4.5)+(﹣1)=7.5,则星期三收盘时,每股是27+7.5=34.5元;(2)本周内最高价是27+4+4.5=35.5元;最低价是27+4+4.5﹣1﹣2.5﹣6=26元;(3)买入时,27×1000×(1+1.5‰)=27040.5元,卖出时每股:27+4+4.5﹣1﹣2.5﹣6+2=28元,所以卖出时的总钱数为28×1000×(1﹣1.5‰﹣1‰)=27930元,所以小红爸爸的收益为27930﹣27040.5=889.5元,故赚了889.5元.点评:此题考查了有理数的混合运算,以及正负数的意义.原题提供的是实际生活中常见的一个表格,它提供了多种信息,但关键是从中找出解题所需的有效信息,构造相应的数学模型,来解决问题.数学服务于生活,数学来源于生活.2015-2016学年七年级(上)期中数学试卷二一、选择题:本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的编号用铅笔涂在答题卡上.1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.如图所示的图形绕虚线旋转一周,所形成的几何体是()A.B.C.D.3.代数式a2b和﹣3a2b y是同类项时,y的值为()A.0 B. 1 C. 2 D. 34.下面几何体中,截面图形不可能是圆()A.圆柱B.圆锥C.球D.正方体5.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长达30 000 000个核苷酸,30 000 000用科学记数法表示为()个.A.3×108 B.3×107 C.3×106 D.0.3×1086.若|a|=2,则a=()A.2 B.﹣2C. 2 或﹣2 D.以上答案都不对7.数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能8.一个有理数的倒数是它本身,这个数是()A.0 B. 1 C.﹣1 D.1或﹣19.下列图形中,哪一个是正方体的展开图()A.B.C.D.10.下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的数C.一个有理数不是整数就是分数D.0的绝对值是011.比较﹣2,0,﹣(﹣2),﹣3的大小,下列正确的()A.0>﹣3>﹣(﹣2)>﹣2 B.﹣(﹣2)>﹣3>﹣2>0 C.﹣(﹣2)>0>﹣2>﹣3 D.﹣3>﹣(﹣2)>﹣2>012.一根绳子弯曲成如图1所示的形状.当用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+5二、填空题:本题有4小题,每小题3分,共12分.把答案填在答题卡上.13.﹣a2b的系数是.14.如果水库的水位高于标准水位3米时,记作+3米,那么低于标准水位2米时,应记米.15.菜场上西红柿每千克a元,白菜每千克b元,学校食堂买30kg西红柿,50kg白菜共需元.16.“*”是规定的一种运算法则:a*b=a2﹣b,则5*(﹣1)的值是.三、解答题:本题有6小题,共52分,解答应写出文字说明或演算步骤.17.(16分)(2014秋•深圳校级期中)计算:(1)8﹣6+(﹣9)(2)﹣24×(﹣+)(3)(﹣0.1)÷×(﹣10)(4)16÷(﹣2)3﹣(﹣)×(﹣4)18.(10分)(2014秋•深圳校级期中)先化简,再求值(1)6a+2a2﹣3a+a2+1的值,其中a=﹣1.(2)x﹣2(x+2y)+3(y﹣2x),其中x=﹣2,y=1.19.画出如图几何体的三视图.20.某一矿井的示意图如图所示:以地面为准,A点的高度是+4米,B、C两点的高度分别是﹣15米与﹣30米.A点比B点高多少?比C点呢?21.学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x的代数式表示)(2)学校要印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.22.已知a,b互为相反数,m,n互为倒数,x的绝对值等于3.①由题目可得,a+b=;mn=;x=.②求代数式x2﹣(a+b+mn)x+(a+b)2008+(﹣mn)2008的值.2015-2016学年七年级(上)期中数学试卷参考答案与试题解析一、选择题:本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的编号用铅笔涂在答题卡上.1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣考点:相反数.专题:常规题型.分析:根据相反数的概念解答即可.解答:解:﹣3的相反数是3,故选:A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.如图所示的图形绕虚线旋转一周,所形成的几何体是()A.B.C.D.考点:点、线、面、体.分析:上面的直角三角形旋转一周后是一个圆锥,下面的长方形旋转一周后是一个圆柱.所以应是圆锥和圆柱的组合体.解答:解:根据以上分析应是圆锥和圆柱的组合体.故选:B.点评:本题考查的是点、线、面、体知识点,可把较复杂的图象进行分解旋转,然后再组合.3.代数式a2b和﹣3a2b y是同类项时,y的值为()A.0 B.1 C. 2 D. 3考点:同类项.专题:计算题.分析:根据同类项的定义计算即可:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.解答:解:∵代数式a2b和﹣3a2b y是同类项,∴y=1,故选B.点评:本题考查了同类项的定义,解题时牢记定义是关键,此题比较简单,易于掌握.4.下面几何体中,截面图形不可能是圆()A.圆柱B.圆锥C.球D.正方体考点:截一个几何体.分析:根据圆柱、圆锥、球、正方体的形状特点判断即可.解答:解:本题中,用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,无论如何,截面也不会有弧度不可能是圆,故选D.点评:本题考查几何体的截面,关键要理解面与面相交得到线.5.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长达30 000 000个核苷酸,30 000 000用科学记数法表示为()个.A.3×108 B.3×107 C.3×106 D.0.3×108考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.解答:解:30 000 000=3×107.故选B.点评:把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.6.若|a|=2,则a=()A.2 B.﹣2C. 2 或﹣2 D.以上答案都不对考点:绝对值.分析:直接利用“绝对值等于一个正数的数有两个,它们互为相反数”写出答案即可.解答:解:∵|a|=2,∴a=±2,故选C.点评:本题考查了绝对值的求法,属于基础题,比较简单.7.数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能考点:数轴;有理数的加法.专题:数形结合.分析:首先根据数轴发现a,b异号,再进一步比较其绝对值的大小,然后根据有理数的加法运算法则确定结果的符号.异号两数相加,取绝对值较大的加数的符号.解答:解:由图,可知:a<0,b>0,|a|>|b|.则a+b<0.故选:C.点评:本题结合数轴,主要考查了有理数的加法法则,体现了数形结合的思想.8.一个有理数的倒数是它本身,这个数是()A.0 B. 1 C.﹣1 D.1或﹣1考点:倒数.专题:常规题型.分析:根据倒数的定义可知如果一个数的倒数等于它本身,则这个数是±1.解答:解:如果一个数的倒数等于它本身,则这个数是±1,故选:D.点评:此题考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.尤其是±1这两个特殊的数字.9.下列图形中,哪一个是正方体的展开图()A.B.C.D.考点:几何体的展开图.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:折叠后,没有上下底面,故不能折成正方体;B、C折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体;故只有D是正方体的展开图.故选D.点评:只要有“田”字格的展开图都不是正方体的表面展开图.10.下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的数C.一个有理数不是整数就是分数D.0的绝对值是0考点:绝对值;有理数.专题:常规题型.分析:先根据:0既不是正数,也不是负数;整数和分数统称为有理数;0的绝对值是0;判断出A、C、D正确;再根据绝对值最小的数是0,得出B错误.解答:解:0既不是正数,也不是负数,A正确;绝对值最小的数是0,B错误;整数和分数统称为有理数,C正确;0的绝对值是0,D正确.故选:B.点评:本题主要考查正数的绝对值是正数,负数的绝对值是正数,0的绝对值是0,熟练掌握绝对值的性质是解题的关键.11.比较﹣2,0,﹣(﹣2),﹣3的大小,下列正确的()A.0>﹣3>﹣(﹣2)>﹣2 B.﹣(﹣2)>﹣3>﹣2>0 C.﹣(﹣2)>0>﹣2>﹣3 D.﹣3>﹣(﹣2)>﹣2>0考点:有理数大小比较.分析:先化简﹣(﹣2)=2,再根据正数都大于0;负数都小于0;两个负数,绝对值大的反而小求解.解答:解:化简﹣(﹣2)=2,所以﹣(﹣2)>0>﹣2>﹣3.故选C.点评:本题考查了有理数比较大小的方法:(1)正数都大于0;(2)负数都小于0;(3)正数大于一切负数;(4)两个负数,绝对值大的其值反而小.12.一根绳子弯曲成如图1所示的形状.当用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+5考点:规律型:图形的变化类.专题:压轴题;规律型.分析:本题做为一道选择题,学生可把n=1,x=5;n=2,x=9代入选项中即可得出答案.而若作为常规题,学生则需要一一列出n=1,2,3…的能,再对x的取值进行归纳.解答:解:设段数为x则依题意得:n=0时,x=1,。
【6套打包】天津市七年级上册数学期中考试测试卷(含答案解析)
七年级(上)数学期中考试试题【答案】一、选择题(每小题4分,共48分)1.﹣的相反数是()A.﹣B.C.﹣2D.22.(﹣)×(﹣)×(﹣)×(﹣)可以表示为()A.(﹣)×4B.﹣C.﹣()4D.(﹣)43.绝对值大于1且小于5的所有的整数的和是()A.9B.﹣9C.6D.04.一个数的相反数比它的本身大,则这个数是()A.正数B.负数C.0D.负数和05.计算(﹣2)2﹣(﹣2)3的结果是()A.﹣4B.2C.4D.126.有理数a、b在数轴上的位置如图,则a+b的值为()A.大于0B.小于0C.等于0D.无法确定7.有一种记分方法:以90分为基准,95分记为+5分,某同学得87分,则应记为()A.+3分B.﹣3分C.+7分D.﹣7分8.如果|a+2|与(b﹣1)2互为相反数,那么代数式(a+b)2011的值是()A.1B.﹣1C.±1D.20089.地球上陆地的面积约为148 000 000平方千米,用科学记数法表示为()A.148×106平方千米B.14.8×107平方千米C.1.48×108平方千米D.1.48×109平方千米10.如果规定符号“⊗”的意义为a⊗b=,则2⊗(﹣3)的值是()A.6B.﹣6C.D.11.已知|x|=3,|y|=2,且xy>0,则x﹣y的值等于()A.5或﹣5B.1或﹣1C.5或1D.﹣5或﹣1 12.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm二、填空题(每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.若向东走5米记作+5米,则向西走5米应记作米.14.比较大小:﹣π﹣3.14(选填“>”、“=”、“<”).15.用四舍五入法把0.07902精确到万分位为.16.数轴上到原点的距离是3的点表示的数是.17.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则:+3cd+m的值为.18.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p ×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:、例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个整数的平方,则F(n)=1.其中正确说法的有.三、(本大题6个大题,共54分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.(8分)计算:(1)8+(﹣10)+(﹣2)﹣(﹣5)(2 )﹣7+13﹣6+20.20.(8分)计算(1)(﹣2)÷×(﹣3)(2)(+﹣)×(﹣12).21.(8分)把下列各数填在相应的集合里:1,﹣1,﹣2013,0.5,,﹣,﹣0.75,0,2014,20%,π.正数集合:{…}负数集合:{…}整数集合:{…}正分数集合:{…}.22.(12分)计算(1)(﹣0.6)﹣(﹣3)﹣(+7)+2﹣|﹣2|(2)﹣12﹣(﹣10)÷×2+(﹣4)2(3)﹣5×(﹣3)+(﹣9)×(+3)+17×(﹣3).23.(6分)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示1和3两点之间的距离.(2)数轴上表示﹣12和﹣6的两点之间的距离是.(3)数轴上表示x和1的两点之间的距离表示为.(4)若x表示一个有理数,且﹣4<x<2,则|x﹣2|+|x+4|=.24.(12分)出租车司机李师傅某日上午8:00﹣9:20一直在某市区一条东西方向的公路上营运,共连续运载八批乘客.若规定向东为正,向西为负,李师傅营运八批乘客里程如下:(单位:千米)+8,﹣6,+3,﹣4,+8,﹣4,+4,﹣3(1)将最后一批乘客送到目的地时,李师傅位于第一批乘客出发地的什么方向?距离多少千米?(2)这时间段李师傅开车的平均速度是多少?(3)若出租车的收费标准为:起步价10元(不超过5千米),超过5千米,超过部分每千米2元.则李师傅在这期间一共收入多少元?四、(本大题2个大题,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.(12分)如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(注:结果保留π)(1)把圆片沿数轴向右滚动半周,点B到达数轴上点C的位置,点C表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3.①第次滚动后,A点距离原点最近,第次滚动后,A点距离原点最远.②当圆片结束运动时,A点运动的路程共有,此时点A所表示的数是.26.(12分)已知:|a+1|+(5﹣b)2+|c+2|=0且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出A、B、C.(2)若甲、乙、丙三个动点分别从A、B、C三点同时出发沿数轴负方向运动,它们的速度分别是、2、(单位长度/秒),当乙追上丙时,乙是否追上了甲?为什么?(3)在数轴上是否存在一点P,使P到A、B、C的距离和等于10?若存在,请直接指出点P对应的数;若不存在,请说明理由.2018-2019学年吉林省长春108中七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共48分)1.﹣的相反数是()A.﹣B.C.﹣2D.2【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的相反数是,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(﹣)×(﹣)×(﹣)×(﹣)可以表示为()A.(﹣)×4B.﹣C.﹣()4D.(﹣)4【分析】原式利用乘方的意义变形即可得到结果.【解答】解:(﹣)×(﹣)×(﹣)×(﹣)=(﹣)4,故选:D.【点评】此题考查了有理数的乘方,以及有理数的乘法,熟练掌握运算法则是解本题的关键.3.绝对值大于1且小于5的所有的整数的和是()A.9B.﹣9C.6D.0【分析】利用数轴可得到绝对值大于1且小于5的所有的整数为﹣2、﹣3、﹣4、2、3、4,然后计算它们的和即可.【解答】解:绝对值大于1且小于5的所有的整数为﹣2、﹣3、﹣4、2、3、4,所以绝对值大于1且小于5的所有的整数的和为0.故选:D.【点评】本题考查了有理数大小比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.4.一个数的相反数比它的本身大,则这个数是()A.正数B.负数C.0D.负数和0【分析】根据相反数的定义和有理数的大小比较解答.【解答】解:∵一个数的相反数比它的本身大,∴这个数是负数.故选:B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.5.计算(﹣2)2﹣(﹣2)3的结果是()A.﹣4B.2C.4D.12【分析】先算乘方,再算减法.【解答】解:(﹣2)2﹣(﹣2)3=4﹣(﹣8)=12.故选:D.【点评】本题主要考查了学生利用有理数的乘方法则计算,较简单.6.有理数a、b在数轴上的位置如图,则a+b的值为()A.大于0B.小于0C.等于0D.无法确定【分析】根据数轴表示数的方得到a<0,b>0,且|a|>|b|,于是可判断a+b为负数.【解答】解:根据题意得a<0,b>0,且|a|>|b|,所以a+b<0.故选:B.【点评】本题考查了数轴:规定了原点、正方向、单位长度的直线叫做数轴;所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数;一般来说,当数轴方向朝右时,右边的数总比左边的数大.7.有一种记分方法:以90分为基准,95分记为+5分,某同学得87分,则应记为()A.+3分B.﹣3分C.+7分D.﹣7分【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵以90分为基准,95分记为+5分,∴87分记为﹣3分.故选:B.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.8.如果|a+2|与(b﹣1)2互为相反数,那么代数式(a+b)2011的值是()A.1B.﹣1C.±1D.2008【分析】根据非负数的性质,可确定a、b的值,代入运算即可.【解答】解:∵|a+2|与(b﹣1)2均为非负数,且互为相反数,∴|a+2|=0,(b﹣1)2=0,∴a=﹣2,b=1,∴(a+b)2011=﹣1.故选:B.【点评】本题考查了代数式求值的知识,解答本题的关键是掌握绝对值及偶次方的非负性.9.地球上陆地的面积约为148 000 000平方千米,用科学记数法表示为()A.148×106平方千米B.14.8×107平方千米C.1.48×108平方千米D.1.48×109平方千米【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:148 000 000=1.48×108平方千米.故选:C.【点评】用科学记数法表示数,一定要注意a的形式,以及指数n的确定方法.10.如果规定符号“⊗”的意义为a⊗b=,则2⊗(﹣3)的值是()A.6B.﹣6C.D.【分析】按照规定的运算方法改为有理数的混合运算计算即可.【解答】解:2⊗(﹣3)==6.故选:A.【点评】此题考查有理数的混合运算,掌握规定的运算方法,利用有理数混合运算的计算方法计算即可.11.已知|x|=3,|y|=2,且xy>0,则x﹣y的值等于()A.5或﹣5B.1或﹣1C.5或1D.﹣5或﹣1【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.有理数的乘法法则:同号得正,异号得负.【解答】解:∵|x|=3,|y|=2,∴x=±3,y=±2.又xy>0,∴x=3,y=2或x=﹣3,y=﹣2.∴x﹣y=±1.故选:B.【点评】本题考查绝对值的性质:互为相反数的绝对值相等.能够根据两个数的乘积的符号判断两个数的符号的关系.12.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm【分析】设桌子的高度为hcm,第一个长方体的长为xcm,第二个长方体的宽为ycm,建立关于h,x,y的方程组求解.【解答】解:设桌子的高度为hcm,第一个长方体的长为xcm,第二个长方体的宽为ycm,由第一个图形可知桌子的高度为:h﹣y+x=80,由第二个图形可知桌子的高度为:h﹣x+y=70,两个方程相加得:(h﹣y+x)+(h﹣x+y)=150,解得:h=75cm.故选:C.【点评】本题是一道能力题,考查方程思想、整体思想的应用及观察图形的能力.二、填空题(每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.若向东走5米记作+5米,则向西走5米应记作﹣5米.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以向东走5米,记作+5米,则向西走5米,记作﹣5米.故为﹣5.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.14.比较大小:﹣π<﹣3.14(选填“>”、“=”、“<”).【分析】先比较π和3.14的大小,再根据“两个负数,绝对值大的反而小”即可比较﹣π<﹣3.14的大小.【解答】解:因为π是无理数所以π>3.14,故﹣π<﹣3.14.故填空答案:<.【点评】此题主要考查了实数的大小的比较,实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.15.用四舍五入法把0.07902精确到万分位为0.0790.【分析】根据四舍五法和题意,可以写出相应的数据,本题得以解决.【解答】解:0.07902≈0.0790(精确到万分位),故答案为:0.0790.【点评】本题考查近似数和有效数字,解答本题的关键是明确近似数和有效数字的含义.16.数轴上到原点的距离是3的点表示的数是±3.【分析】先设出这个数为x,再根据数轴上各点到原点的距离进行解答即可.【解答】解:设这个数是x,则|x|=3,解得x=±3.故答案为:±3.【点评】本题考查的是数轴的特点,熟知数轴上各点到原点的距离的定义是解答此题的关键.17.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则:+3cd+m的值为5或1.【分析】根据a、b互为相反数,c、d互为倒数,m的绝对值为2,从而可以求得a+b、cd、m的值,进而求得题目中所求式子的值.【解答】解:∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2,∴当m=2时,+3cd+m=0+3+2=5,当m=﹣2时,+3cd+m=0+3﹣2=1.故答案为:5或1.【点评】本题考查代数式求值、相反数、倒数、绝对值,解答本题的关键是明确题意,运用相关知识求出代数式的值.18.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p ×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:、例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个整数的平方,则F(n)=1.其中正确说法的有(1)(4).【分析】根据所给出定义和示例,对四种结论逐一判断即可.【解答】解:(1)2可以分解成1×2,所以;故正确.(2)24可以分解成1×24,2×12,3×8,4×6这四种,所以;故(2)错误.(3)27可以分解成1×27,3×9这两种,所以;故(3)错误.(4)n是一个整数的平方,则F(n)==1,故(4)正确.所以正确的说法是(1)(4).【点评】本题新概念题,是中考的热点,解题的关键是读懂题意,弄清所给示例展示的规律.三、(本大题6个大题,共54分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.(8分)计算:(1)8+(﹣10)+(﹣2)﹣(﹣5)(2 )﹣7+13﹣6+20.【分析】(1)将减法转化为加法后,利用加法交换律和结合律,依据加法的运算法则计算可得;(2)利用加法交换律和结合律,依据加法的运算法则计算可得.【解答】解:(1)原式=8+5+(﹣10)+(﹣2)=13﹣12=1;(2)原式=(﹣7﹣6)+(13+20)=﹣13+33=20.【点评】本题主要考查有理数的加减混合运算,解题的关键是熟练掌握有理数加、减运算法则和加法的运算律.20.(8分)计算(1)(﹣2)÷×(﹣3)(2)(+﹣)×(﹣12).【分析】(1)从左往右依此计算即可求解;(2)根据乘法分配律简便计算.【解答】解:(1)(﹣2)÷×(﹣3)=﹣6×(﹣3)=18;(2)(+﹣)×(﹣12)=×(﹣12)+×(﹣12)﹣×(﹣12)=﹣5﹣8+9=﹣4.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.21.(8分)把下列各数填在相应的集合里:1,﹣1,﹣2013,0.5,,﹣,﹣0.75,0,2014,20%,π.正数集合:{1,0.5,,2014,20%,π…}负数集合:{﹣1,﹣2013,﹣,﹣0.75…}整数集合:{1,﹣1,﹣2013,0,2014…}正分数集合:{0.5,,20%…}.【分析】根据有理数的分类,可得答案.【解答】解:正数集合:{ 1,0.5,,2014,20%,π…}负数集合:{﹣1,﹣2013,﹣,﹣0.75…}整数集合:{1,﹣1,﹣2013,0,2014…}正分数集合:{0.5,,20%…},故答案为:1,0.5,,2014,20%,π;﹣1,﹣2013,﹣,﹣0.75;1,﹣1,﹣2013,0,2014;0.5,,20%.【点评】本题考查了有理数,利用有理数的分类是解题关键.22.(12分)计算(1)(﹣0.6)﹣(﹣3)﹣(+7)+2﹣|﹣2|(2)﹣12﹣(﹣10)÷×2+(﹣4)2(3)﹣5×(﹣3)+(﹣9)×(+3)+17×(﹣3).【分析】(1)先算同分母分数,再相加即可求解;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(3)根据乘法分配律简便计算.【解答】解:(1)(﹣0.6)﹣(﹣3)﹣(+7)+2﹣|﹣2|=(﹣0.6﹣7)+(3+2)﹣2=﹣8+6﹣2=﹣4;(2)﹣12﹣(﹣10)÷×2+(﹣4)2=﹣1+40+16=55(3)﹣5×(﹣3)+(﹣9)×(+3)+17×(﹣3)=(5﹣9﹣17)×(+3)=(﹣21)×(+3)=﹣75.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.23.(6分)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示1和3两点之间的距离2.(2)数轴上表示﹣12和﹣6的两点之间的距离是6.(3)数轴上表示x和1的两点之间的距离表示为|x﹣1|.(4)若x表示一个有理数,且﹣4<x<2,则|x﹣2|+|x+4|=6.【分析】(1)依据在数轴上A、B两点之间的距离AB=|a﹣b|,即可得到结果.(2)依据在数轴上A、B两点之间的距离AB=|a﹣b|,即可得到结果.(3)依据在数轴上A、B两点之间的距离AB=|a﹣b|,即可得到结果.(4)依据﹣4<x<2,可得表示x的点在表示﹣4和2的两点之间,即可得到|x﹣2|+|x+4|的值即为|﹣4﹣2|的值.【解答】解:(1)数轴上表示1和3两点之间的距离为|3﹣1|=2;(2)数轴上表示﹣12和﹣6的两点之间的距离是|﹣6﹣(﹣12)|=6;(3)数轴上表示x和1的两点之间的距离表示为|x﹣1|;(4)∵﹣4<x<2,∴|x﹣2|+|x+4|=|﹣4﹣2|=6,故答案为:2,6,|x﹣1|,6.【点评】本题考查的是绝对值的几何意义,两点间的距离,理解绝对值的几何意义是解决问题的关键.24.(12分)出租车司机李师傅某日上午8:00﹣9:20一直在某市区一条东西方向的公路上营运,共连续运载八批乘客.若规定向东为正,向西为负,李师傅营运八批乘客里程如下:(单位:千米)+8,﹣6,+3,﹣4,+8,﹣4,+4,﹣3(1)将最后一批乘客送到目的地时,李师傅位于第一批乘客出发地的什么方向?距离多少千米?(2)这时间段李师傅开车的平均速度是多少?(3)若出租车的收费标准为:起步价10元(不超过5千米),超过5千米,超过部分每千米2元.则李师傅在这期间一共收入多少元?【分析】(1)把记录的数字相加即可得到结果;(2)把记录数字绝对值之和除以80,再乘以60即可得到结果;(3)根据收费标准确定出收入即可.【解答】解:(1)+8﹣6+3﹣4+8﹣4+4﹣3=6,答:在出发地东边,距离6千米;(2)(|+8|+|﹣6|+|+3|+|﹣4|+|+8|+|﹣4|+|+4|+|﹣3|)÷80×60=30,答:平均速度为30千米/每小时;(3)10×8+(8﹣5)×2×2+(6﹣5)×2=94,答:李师傅在这期间一共收入94元.【点评】此题考查了正数与负数,弄清题意是解本题的关键.四、(本大题2个大题,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.(12分)如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(注:结果保留π)(1)把圆片沿数轴向右滚动半周,点B到达数轴上点C的位置,点C表示的数是无理数(填“无理”或“有理”),这个数是π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3.①第4次滚动后,A点距离原点最近,第3次滚动后,A点距离原点最远.②当圆片结束运动时,A点运动的路程共有26π,此时点A所表示的数是﹣6π.【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.【解答】解:(1)把圆片沿数轴向左滚动半周,点B到达数轴上点C的位置,点C表示的数是无理数,这个数是π;故答案为:无理,π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;故答案为:4π或﹣4π;(3)①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3,∴第4次滚动后,A点距离原点最近,第3次滚动后,A点距离原点最远,故答案为:4,3;②∵|+2|+|﹣1|+|+3|+|﹣4|+|﹣3|=13,∴13×2π×1=26π,∴A点运动的路程共有26π;∵(+2)+(﹣1)+(+3)+(﹣4)+(﹣3)=﹣3,(﹣3)×2π=﹣6π,∴此时点A所表示的数是:﹣6π,故答案为:26π,﹣6π.【点评】此题主要考查了数轴的应用以及绝对值的性质和圆的周长公式应用,利用数轴得出对应数是解题关键.26.(12分)已知:|a+1|+(5﹣b)2+|c+2|=0且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出A、B、C.(2)若甲、乙、丙三个动点分别从A、B、C三点同时出发沿数轴负方向运动,它们的速度分别是、2、(单位长度/秒),当乙追上丙时,乙是否追上了甲?为什么?(3)在数轴上是否存在一点P,使P到A、B、C的距离和等于10?若存在,请直接指出点P对应的数;若不存在,请说明理由.【分析】(1)根据非负数的性质即可求出a、b、c的值,在数轴上画出点A、B、C即可;(2)设乙用x秒追上丙,根据追击问题的相等关系列出方程,求出x的值,再求出x秒时甲与乙在数轴上的位置,即可解决问题;(3)分四种情形讨论:①当点P在点C左边时;②当点P在A、C之间时,PA+PB+PC <10,不存在;③当点P在A、B之间时;④当点P在点B右侧时,分别根据PA+PB+PC =10列出方程,即可解决问题.【解答】解:(1)∵|a+1|+(5﹣b)2+|c+2|=0,∴a+1=0,5﹣b=0,c+2=0,∴a=﹣1,b=5,c=﹣2.A、B、C三点在数轴上表示如下:(2)当乙追上丙时,乙也刚好追上了甲.由题意知道:AB=6,AC=1,BC=7.设乙用x秒追上丙,则2x﹣x=7,解得:x=4.则当乙追上丙时,甲运动了×4=2个单位长度,乙运动了2×4=8个单位长度,此时恰好有AB+2=8,故乙同时追上甲和丙;(3)设点P 对应的数为m ,①当点P 在点C 左边时,由题意,(5﹣m )+(﹣1﹣m )+(﹣2﹣m )=10,解得m =﹣; ②当点P 在A 、C 之间时,PA +PB +PC <10,不存在;③当点P 在A 、B 之间时,(5﹣m )+(m +1)+(m +2)=10,解得m =2,④当点P 在点B 右侧时,(m ﹣5)+(m +1)+(m +2)=10,解得m =4(不合题意舍去), 综上所述,当P 对应的数是﹣或2时,P 到A 、B 、C 的距离和等于10.【点评】本题考查一元一次方程的应用,两点间的距离,非负数的性质,行程问题关系的应用,解题的关键是学会利用方程解决问题,属于中考常考题型.七年级(上)期中考试数学试题及答案一、选择题(每小题2分,共20分)1.2018年国庆节期间,我市接待旅游总人数总人数达到918600人次,比去年同期增长1.9%,将918600用科学计数法表示应为( )A. 2918610⨯B. 491.8610⨯C. 59.18610⨯D. 60.918610⨯2.若a b =,那么下列等式不一定成立的是( )A.55a b +=+B.55b a -=-C.m a m b -=-D.a b x x= 3.若a ,b 两数之积为负数,且a b >,则A.a 为正数,b 为正数 B .a 为正数,b 为负数C.a 为负数,b 为正数D.a 为负数,b 为负数4.下列结论中正确的是( ) A.27-比大13- B.132-的倒数是27 C.最小的负整数是-1 D.10.5||2>- 5.以下说法正确的是( )A.单项式ab π-的系数为-1B.2213x y -+-多项式的常数项为-1 C.多项式2324x y x +-是四次三项式 D.43.1410⨯精确到百位6.一个两位数,个位数字为x ,十位数字是个位数字的平方的2倍,则这两个位数表示为( )A.22x x +B.220x x +C.210x x +D.240x x +7.如图所示,数轴上点A 、B 对应的有理数分别为a 、b ,下列说法正确的是( )A.0ab >B. 0a b +>C.0a b -<D.0a b -<8.当1x =时,代数式31ax bx ++的值为5,当1x =-时,代数式31ax bx ++的值等于( )A.0B.-3C.-4D.39.如图①、②是两个形状、大小完全相同的两个大长方形,在每个大长方形内放入如图的小长方形,大长方形的长为a ,宽为b ,则图①阴影部分的周长与图②阴影部分的周长的差的绝对值是( )A.a b -B.2()a b -C.2aD.2b10.若0a b c ++=,且a b c >>,以下结论:①0a >,0c >;②22()a b c =+;③关于x 的方程0ax b c ++=的解为1x =;④a b c abc a b c abc+++的值为0或2;⑤在数轴上点A 、B 、C 表示数a 、b 、c ,0b ≤,则线段AB 与线段BC 的大小关系是AB BC >.其中正确的结论有( )个.A.2个B.3个C.4个D.5个二、填空题(每小题2分,共12分)11.若单项式53m a b 与22n a b -人教版七年级第一学期期中模拟数学试卷(含答案)一、选择题(每小题3分,共计36分)1.﹣6的倒数是( )A.6 B.﹣6 C.D.﹣2.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为()A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨3.计算(﹣0.5)2013×(﹣2)2014的结果是()A.﹣0.5 B.0.5 C.﹣2 D.24.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.5.下列计算中正确的是()A.5a3﹣6a3=﹣a B.3a2+4a2=7a4C.7a+3a2=10a3D.a2+4a2=5a26.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c是单项式C.是多项式D.中,系数是7.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个8.长方形的一边长等于3x+2y,另一边长比它长x﹣y,这个长方形的周长是()A.4x+y B.12x+2y C.8x+2y D.14x+6y9.在(﹣1)3,(﹣1)2,﹣22,(﹣3)2,这四个数中,最大的数与最小的数的和等于()A.6 B.﹣5 C.8 D.510.若|x|=7,|y|=5,且x+y>0,那么x+y的值是()A.2或12 B.2或﹣12 C.﹣2或12 D.﹣2或﹣12 11.已知整式x2﹣2x的值为3,则2x2﹣4x+6的值为()A.7 B.9 C.12 D.1812.对正整数n,记n!=1×2×3×…×n,则1!+2!+3!+…+10!的末尾数为()A.0 B.1 C.3 D.5二、填空题(每小题3分,共计12分)13.单项式﹣y的系数是.14.a、b互为相反数,c、d互为倒数,则=.15.设[x]表示不大于x的最大整数,例如[1.8]表示不超过1.8的最大整数就是1,[﹣3.8]表示不超过﹣3.8的最大整数﹣4,计算[2.7]+[﹣4.5]的值为.16.如图,是一个数值转换机,根据所给的程序计算,若输入x的值为1,则输出y的值为.三.解答题(共计52分)17.(12分)计算:(1)25.7+(﹣7.3)+(﹣13.7)+7.3(2)(3)(4)﹣14﹣(1﹣0.5)×18.(6分)先化简,再求值:(3a+2a﹣4a3)﹣(﹣a+3a3﹣2a2),其中a=﹣219.(6分)一个物体是由棱长为3cm的正方体模型堆砌而成的,其视图如图:(1)请在俯视图上标出小正方体的个数(2)求出该物体的体积是多少.(3)该物体的表面积是多少?20.(6分)有理数a、b、c在数轴上的点如图所示:化简:|c|+|a﹣c|﹣2|c+b|+|a+b|.21.(6分)某商场销售一种西装和领带,西装每套定价500元,领带每条定价100元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.现某客户要到商场购买西服20套,领带x条(x>20).方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.(1)若客户按方案一购买,需付款元;若客户按方案二购买,需付款元;(2)若x=30,请通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算此方案需要付款多少元?22.(8分)我们知道,|a|可以理解为|a﹣0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a﹣b|,反过来,式子|a﹣b|的几何意义是:数轴上表示数a 的点和表示数b的点之间的距离.利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是,数轴上表示数﹣1的点和表示数﹣3的点之间的距离是.(2)数轴上点A用数a表示,若|a|=5,那么a的值为.(3)数轴上点A用数a表示,①若|a﹣3|=5,那么a的值是.②当|a+2|+|a﹣3|=5时,数a的取值范围是,这样的整数a有个③|a﹣3|+|a+2017|有最小值,最小值是.23.(8分)23、如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出的值吗?参考答案一、选择题1.﹣6的倒数是()A.6 B.﹣6 C.D.﹣【分析】根据倒数的定义求解.解:﹣6的倒数是﹣.故选:D.【点评】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为()A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤a<10,n 表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.11 000 000=1.1×107.解:11 000 000=1.1×107.故选:B.【点评】本题考查学生对科学记数法的掌握.科学记数法要求前面的部分的绝对值是大于或等于1,而小于10,小数点向左移动7位,应该为1.1×107.3.计算(﹣0.5)2013×(﹣2)2014的结果是()A.﹣0.5 B.0.5 C.﹣2 D.2【分析】把(﹣2)2014写成(﹣2)×(﹣2)2013,然后根据有理数的乘方的定义,先乘积再乘方进行计算即可得解.解:(﹣0.5)2013×(﹣2)2014,=(﹣0.5)2013×(﹣2)×(﹣2)2013,=(﹣2)×[(﹣0.5)×(﹣2)]2013,=﹣2×1,=﹣2.故选:C.。
天津市 七年级(上)期中数学试卷-(含答案)
七年级(上)期中数学试卷一、选择题(本大题共12小题,共36.0分)1.其中温差最大的一天是()A. 1月1日B. 1月2日C. 1月3日D. 1月4日2.据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为()A. 0.227×lO7B. 2.27×106C. 22.7×l05D. 227×1043.下列说法正确的是()A. 不是负数的数是正数B. 正数和负数构成有理数C. 整数和分数构成有理数D. 正整数和负整数构成整数4.在数轴上,与表示数-1的点的距离是2的点表示的数是()A. 1B. 3C. ±2D. 1或−35.已知单项式-5a m-1b6与12ab2n的和仍是单项式,则m-n的值是()A. 1B. −1C. −2D. −36.计算6a2-5a+3与5a2+2a-1的差,结果正确的是()A. a2−3a+4B. a2−3a+2C. a2−7a+2D. a2−7a+47.下列结论正确的是()A. 3x2−x+1的一次项系数是1B. xyz的系数是0C. a2b3c是五次单项式D. x5+3x2y4−27是六次三项式8.多项式12x|m|y-(m-3)xy+7是关于x、y的四次三项式,则m的值是()A. 3或−3B. −3C. 4或−4D. 39.小玉想找一个解为x=-6的方程,那么他可以选择下面哪一个方程()A. 2x−1=x+7B. 12x=13x−1 C. 2(x+5)=−4−x D. 23x=x−210.小敏去一家超市买洗衣粉和肥皂,恰好赶上某种品牌的洗涤用品正在该超市搞促销活动:买一袋洗衣粉赠送一块肥皂.小敏决定购买该产品,已知洗衣粉的价格为x 元/袋,肥皂的价格为y元/块,小敏一共买回3袋洗衣粉,10块肥皂,共花销()A. (3x+13y)元B. (3x+10y)元C. (3x+7y)元D. (3x−3y)元11.一个小虫在数轴上先向右爬2个单位,再向左爬6个单位,所在位置正好距离数轴原点2个单位,则小虫的起始位置所表示的数是()A. 6B. −2C. 2或6D. −2或412.如图,用火柴棍拼成一排由三角形组成的图形,按此规律,如果图形中含有41根火柴棍,则可以拼成的三角形的个数为()A. 20个B. 21个C. 22个D. 3个二、填空题(本大题共6小题,共18.0分)13. 比较大小:−12______−13(用“>或=或<”填空).14. 若关于x 的方程3x =2x +m 与3x +2m =6x +1的解相同,则方程的解为______ . 15. 已知代数式x +2y +1的值是3,则代数式2x +4y +1值是______ .(写过程) 16. 已知|x |=3,|y |=4,且x >y ,则2x -y 的值为______ .17. 若关于a ,b 的多项式2(a 2−2ab −b 2)−(a 2+mab +2b 2)不含ab 项,则m = ______ .18. 根据图提供的信息,可知一个杯子的价格是______ 元.三、计算题(本大题共2小题,共24.0分) 19. 计算:(1)(-212)-(-56)+(-0.5)-(-116) (2)-4÷23-(-23)×(-30) (3)-24×(-12+34-13) (4)-22+|5-8|+24÷(-3)×13.20. (1)解方程:4(x -1)=1-x(2)解方程:x+12−2−3x 3=1.四、解答题(本大题共5小题,共42.0分)21.化简:(1)-3x+2y-5x-7y(2)-5m2n+4mn2-2mn+6m2n+3mn(3)(4x2y-3xy2)-(1+4x2y-3xy2)(4)4y2-[3y-(3-2y)+2y2].22.化简求值:已知|a-4|+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]+4a2b的值.23.某检修小组从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,()求收工时距地多远?(2)在第______ 次纪录时距A地最远.(3)若每千米耗油0.3升,每升汽油需7.2元,问检修小组工作一天需汽油费多少元?24.(列方程解应用题)把一批图书分给七年级(12)班的同学阅读,若每人分3本,则剩余17本,若每人分4本,则缺25本,这个班有多少学生?25.下图为魔术师在小美面前表演的经过:根据图中所述,我们无法知道小美所写数字是多少,那么魔术师一定能做到吗?如果能,请利用所学知识推导出魔术师猜出的结果.如果不能,请说明理由.答案和解析1.【答案】C【解析】解:1月1日的温差:4-(-4)=8(℃),1月2日的温差:7-(-2)=9(℃),1月3日的温差:7-(-3)=10(℃),1月4日的温差:7-1=6(℃),所以温差最大的是1月3日的温差10℃.故选:C.首先用每天的最高气温减去最低气温,求出每天的温差各是多少;然后根据有理数大小比较的方法,判断出温差最大的一天是哪天即可.此题主要考查了正、负数的运算方法的运用.解决问题的关键是掌握有理数减法的运算法则.2.【答案】B【解析】解:将2270000用科学记数法表示为2.27×106.故选B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:A、不是负数的数是非负数,不一定是正数,故本选项错误;B、整数和分数构成有理数,故本选项错误;C、整数和分数构成有理数,故本选项正确;D、正整数和负整数和0构成整数,故本选项错误;故选C.根据正数、负数、整数及有理数的概念,结合选项即可作出判断.本题考查了实数的意义,解答此题要明确有理数和无理数的概念和分类,有理数包括正整数,零,负整数,正分数,负分数,无限不循环小数是无理数.4.【答案】D【解析】解:在数轴上,与表示数-1的点的距离是2的点表示的数有两个:-1-2=-3;-1+2=1.故选:D.此题可借助数轴用数形结合的方法求解.在数轴上,与表示数-1的点的距离是2的点有两个,分别位于与表示数-1的点的左右两边.注意此类题应有两种情况,再根据“左减右加”的规律计算.5.【答案】B【解析】解:根据题意得m-1=1,2n=6,解得m=2,n=3.则m-n=2-3=-1.故选B.根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.6.【答案】D【解析】【分析】每个多项式应作为一个整体,用括号括起来,再去掉括号,合并同类项,化简.注意括号前面是负号时,括号里的各项注意要变号.能够熟练正确合并同类项.【解答】(6a2-5a+3 )-(5a2+2a-1)=6a2-5a+3-5a2-2a+1=a2-7a+4.故选D.7.【答案】D【解析】解:A、3x2-x+1的一次项是-x,所以一次项系数是-1,故本选项错误;B、xyz的系数是1,故本选项错误;C、a2b3c是六次单项式,故本选项错误;D、x5+3x2y4-27是六次三项式,故本选项正确.故选D.根据单项式的系数与次数,多项式的项数与次数的定义,对各选项分析判断后利用排除法求解.本题考查了单项式的系数与次数,多项式的项数与次数的定义,是基础题,熟记定义是解题的关键.8.【答案】B【解析】解:∵多项式x|m|y-(m-3)x+7是关于x的四次三项式,∴|m|=3且-(m-3)≠0,∴m=-3.故选:B.根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.本题考查了与多项式有关的概念,解题的关键是理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.9.【答案】B【解析】【分析】本题的关键是正确理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.方程的解的定义,就是能够使方程左右两边相等的未知数的值.所以把x=-6分别代入四个选项进行检验即可.【解答】解:A.把x=-6代入方程的左边=-13≠右边,不是方程的解;B.把x=-6代入方程的左边=-3=右边,所以是方程的解;C.把x=-6代入方程的左边=-2≠右边,不是方程的解;D.把x=-6代入方程的左边=-4≠右边,不是方程的解.故选B.10.【答案】C【解析】解:需花费钱数为:3x+(10-3)y=3x+7y(元),故选C.需花费钱数=3袋洗衣粉钱数+(10-3)块肥皂钱数.解决问题的关键是读懂题意,找到所求的量的等量关系.注意只需再付7块肥皂的价钱.11.【答案】C【解析】解:设小虫的起始位置所表示的数是a,则根据题意知,x+2-6=-2或x+2-6=2,解得,x=2或x=6.故选C.根据数轴的相关知识解题.本题考查了数轴.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴;(1)从原点出发朝正方向的射线上的点对应正数,相反方向的射线上的点对应负数,原点对应零.(2)在数轴上表示的两个数,正方向的数大于负方向的数.(3)正数都大于0,负数都小于0,正数大于一切负数.(4)若从点A向右移动|a|个单位,得到B,则B点坐标为A的坐标加|a|,反之B 点坐标为A的坐标减|a|.12.【答案】A【解析】解:∵1个三角形所需火柴棍的根数=3,2个三角形所需火柴棍的根数=3+2,3个三角形所需火柴棍的根数=3+2×2,…设41根火柴棍能拼成n个三角形,∴3+2×(n-1)=41.解得n=20.故选A.观察图形得到1个三角形所需火柴棍的根数=3,2个三角形所需火柴棍的根数=3+2,3个三角形所需火柴棍的根数=3+2×2,…,设41根火柴棍能拼成n 个三角形,于是得到41=3+2×(n-1),解得n即可.本题考查了图形的变化,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况是解答此题的关键.13.【答案】<【解析】解:∵>,∴<;故答案为:<.根据两个负数比较大小,绝对值大的反而小,即可得出答案.此题考查了有理数的大小比较,掌握两个负数比较大小,绝对值大的反而小是解题的关键.14.【答案】x=-1【解析】解:由方程3x=2x+m可得x=m,将x=m代入3x+2m=6x+1,得:3m+2m=6m+1,解得:m=-1,∴x=m=-1,故答案为:x=-1.由方程3x=2x+m可得x=m,代入方程3x+2m=6x+1,解之得出m的值,即可知答案.本题主要考查方程的解,熟练掌握方程的解的定义是解题的关键.15.【答案】5【解析】解:∵x+2y+1=3,即x+2y=2,∴原式=2(x+2y)+1=4+1=5,故答案为:5原式前两项提取2变形后,将x+2y的值代入计算即可求出值.此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.16.【答案】10或-2【解析】解:∵|x|=3,|y|=4,且x>y,∴x=3,y=-4;x=-3,y=-4,则2x-y=10或-2,故答案为:10或-2.根据题意,利用绝对值的代数意义求出x与y的值,即可求出2x-y的值.此题考查了代数式求值,绝对值,熟练掌握运算法则是解本题的关键.17.【答案】-4【解析】解:,又∵不含ab项,故4+m=0,m=-4.故填:-4.先整理整式,不含ab项及ab项的系数为0,由此可得出m的值.本题考查整式的加减,关键是对整式的整理,难度不大.18.【答案】8【解析】解:设水壶单价为x元,杯子单价为y元,则有,解得.答:一个杯子的价格是8元.故答案为:8.仔细观察图形,可知本题存在两个等量关系,即一个水壶的价格+一个杯子的价格=43,两个水壶的价格+三个杯子的价格=94.根据这两个等量关系可列出方程组.解题关键是弄清题意,找到合适的等量关系,列出方程组.19.【答案】解:(1)原式=-212-0.5+56+116=-3+2=-1;(2)原式=-4×32-23×30=-6-20=-26; (3)原式=12-18+8=2;(4)原式=-4+3-83=-113.【解析】(1)原式利用减法法则变形,结合后相加即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果.此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)去括号,得4x -4=1-x ,移项,得4x +x =1+4,合并同类项,得5x =5,系数化为1,得x =1;(2)去分母,得3(x +1)-2(2-3x )=6,去括号,得3x +3-4+6x =6,移项,得3x +6x =6-3+4,合并同类项,得9x =7,系数化为1,得x =79.【解析】(1)先去括号,再移项,合并同类项,系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,系数化为1即可.本题考查了一元一次方程的解法.解题步骤:去分母,去括号,移项,合并同类项,系数化为1.21.【答案】解:(1)-3x+2y-5x-7y=-8x-5y;(2)-5m2n+4mn2-2mn+6m2n+3mn=m2n+4mn2+mn;(3)(4x2y-3xy2)-(1+4x2y-3xy2)=4x2y-3xy2-1-4x2y+3xy2=-1;(4)4y2-[3y-(3-2y)+2y2]=4y2-[3y-3+2y+2y2]=4y2-3y+3-2y-2y2=2y2-5y+3.【解析】(1)(2)直接合并多项式中的同类项即可;(3)(4)先去括号,再合并同类项即可.本题考查了整式的加减,整式的加减的实质就是去括号、合并同类项.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.22.【答案】解:∵|a-4|+(b+1)2=0,∴a=4,b=-1;原式=5ab2-(2a2b-4ab2+2a2b)+4a2b=5ab2-4a2b+4ab2+4a2b=9ab2=36.【解析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.熟练地进行整式的加减运算,并能运用加减运算进行整式的化简求值.注意非负数的性质的应用.23.【答案】解:(1)-3+8-9+10+4-6-2=2(千米).故收工时距A地2千米.(2)由题意得,第一次距A地3千米;第二次距A地-3+8=5千米;第三次距A地|-3+8-9|=4千米;第四次距A地|-3+8-9+10|=6千米;第五次距A地|-3+8-9+10+4|=10千米;第六次距A地|-3+8-9+10+4-6|=4千米;第七次距A地|-3+8-9+10+4-6-2|=2千米,所以在第五次纪录时距A地最远;(3)(3+8+9+10+4+6+2)×0.3×7.2=42×0.3×7.2=90.72(元)答:检修小组工作一天需汽油费90.72元.【解析】解:(1)-3+8-9+10+4-6-2=2(千米).故收工时距A地2千米.(2)由题意得,第一次距A地3千米;第二次距A地-3+8=5千米;第三次距A地|-3+8-9|=4千米;第四次距A地|-3+8-9+10|=6千米;第五次距A地|-3+8-9+10+4|=10千米;第六次距A地|-3+8-9+10+4-6|=4千米;第七次距A地|-3+8-9+10+4-6-2|=2千米,所以在第五次纪录时距A地最远;(3)(3+8+9+10+4+6+2)×0.3×7.2=42×0.3×7.2=90.72(元)答:检修小组工作一天需汽油费90.72元.故答案为:五.(1)收工时距A地的距离等于所有记录数字的和的绝对值;(2)分别计算每次距A地的距离,进行比较即可;(3)所有记录数的绝对值的和×0.3升,就是共耗油数,再根据总价=单价×数量计算即可求解.此题主查考查正负数在实际生活中的应用及有理数的加减混合运算,学生在学这一部分时一定要联系实际,不能死学.24.【答案】解:设这个班有x个学生,根据题意得:3x+17=4x-25,解得:x=42.答:这个班有42个学生.【解析】根据实际书的数量可得相应的等量关系:3×学生数量+17=4×学生数量-25,把相关数值代入即可求解.此题考查用一元一次方程解决实际问题,得到书的总数量的等量关系是解决本题的关键.25.【答案】解:设小美所写数字是x,则由题意得:魔术师要求小妹算出的数字=(3x+6)÷3-x=x+2-x=2.因此无论小美写哪一个数字,魔术师都可以猜中小美得出的答案,答案总是为2.【解析】根据题意列出算式,去括号合并即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.。
2015-2016学年度第一学期期中考试七年级数学附答案
2015-2016学年度第一学期期中考试七年级数学(总分:150分 时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分.每题的四个选项中,只有一个选项是符合要求的)。
1.用代数式表示“比m 的相反数大1的数”是:A .m+1B .m-1C .-m-1D .-m+1 2. -21的倒数是: A .2 B .21 C .-2 D .-21 3.若43=-x ax 的解为x=-4,则a 的值是:A .4B .-4C .2D .-24. 下列说法,正确的是: A .5-、a 不是单项式B .2abc-的系数是2- C .223x y -的系数是13-,次数是4D .2x y 的系数是0,次数是25. 方程17.0123.01=--+x x 可变形为( ) A.17102031010=--+x x B.171203110=--+x x C.1071203110=--+x x D.107102031010=--+x x 6. 实数a ,b 在数轴上的位置如图所示,以下说法正确的是:A. a+b=0B. b <aC. ab >0D. |b|<|a| 7. 现有几种说法:①3的平方等于9 ②平方后等于9的数是3 ③倒数等于本身的数有0,1,-l ; ④平方后等于本身的数是0,1,-1; ⑤如果A 和B 都是四次多项式,则A +B 一定是四次多项式. 其中正确的说法有:A .1个B .2个C .3个D .4个 8. 已知4433xyz xyz -=,则x z y x y z++值为多少:A .1或-1B .1或-3C .-1或3D .3或-3二、填空题(本大题共10题,每题3分,共30分)。
9.如果将盈利2万元记作2万元,那么-4万元表示_________________。
10. 绝对值等于6的数是___________。
11. 2ab+b 2+( )=3ab-b 2。
12. 用“>”连接:-2, 4,-0.5,-(-2),这几个数:___________________________。
2015~2016学年第一学期初一数学期中考试试卷及答案
2015~2016学年第一学期初一数学期中考试试卷(考试时间:90分钟 满分:100分) 一、细心选一选 (每小题3分,共24分)1.下面的计算正确的是 ( )A .6a -5a =1B .a + 2a 2 =3a 3C .-(a -b ) =-a + bD .2(a + b ) =2a + b 2.在(-1)3,(-1)2012,-22,(-3)2这四个数中,最大的数与最小的数的差等于 ( ) A .10 B .8 C .5 D .13 3.下列各组代数式中,是同类项的是 ( )A .5x 2 y 与15xy B .-522 y 与15yx 2 C .5ax 2与15yx 2 D .83与x 34.给出下列判断:①单项式5×103x 2的系数是5;②x -2xy + y 是二次三项式;③多项式-3a 2 b +7a 2b 2-2ab +1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是( )A .1个B .2个C .3个D .4个5.有理数a ,b ,c 在数轴上的位置如图所示, 则a c ++c b --b a += ( )A .-2bB .0C .2cD .2c -2b 6.若m =3,n =5且m -n >0,则m + n 的值是 ( )A .-2B .-8或-2C .-8或8D .8或-27.上等米每千克售价为x 元,次等米每千克售价为y 元,取上等米a 千克和次等米b 千克,混合后的大米每千克售价为 ( ) A .a b x y++ B .ax by ab+ C .ax by a b++ D .2x y +8.观察图中每一个正方形各顶点所标数字的规律,2 012应标在 ( )A .第502个正方形左上角顶点处B .第502个正方形右上角顶点处C .第503个正方形左上角顶点处D .第503个正方形右上角顶点处二、认真填一填 (每小题2分,共20分)9.-23的倒数为 ;绝对值等于3的数是 .10.钓鱼岛是钓鱼岛列岛的主岛,是中国固有领土,位于中国东海,面积4 384 000 m 2,将这个数据用科学记数法可表示为 m 2. 11.比较大小,用“<”“>”或“一”连接:(1) -34--(-23) (2) -3.14 -π-12.已知4x 2m y m+n 与3x 6 y 2是同类项,则m -n = .13.数轴上与表示-2的点距离3个长度单位的点所表示的数是 . 14.已知代数式x -2y 的值是12,则代数式-2x + 4y -1的值是 .15·若a ,b 互为相反数,c ,d 互为倒数,m 到原点的距离为2,则代数式m —cd +a b m+的值为 .16.定义新运算“⊗”,规定:a ⊗b =13a -4b ,则12⊗(-1) = .17.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .18.观察表一,寻找规律.表二,表三,表四分别是从表一中截取的一部分,其中a + b + c的值为 .三、耐心解一解 (共56分)19.计算:(每小题3分,共12分)(1) -10-(-16)+(-24); (2) 5÷(-35)×53(3) -22×7-(-3)×6+5 (4) (113+18-2.75)×(-24)+(-1)2014+(-3)3.20.化简:(每小题3分,共6分)(1) 2x +(5x -3y )一(3x + y ); (2) 3(4x 2-3x +2)-2(1-4x 2-x ).21.(5分) 将-2.5,12,2,-2,-(-3),0在数轴上表示出来,并用“<”号把它们连接起来.22.(5分) 已知多项式A,B,其中A=x2-2x + 1,小马在计算A+B时,由于粗心把A+B看成了A-B求得结果为-3x2-2x-1,请你帮小马算出A+B的正确结果.23.(本题满分8分)“十一”国庆期间,俄罗斯特技飞行队在黄山湖公园特技表演,其中一架飞机起飞后的高度变化如左下表:(1) 此时这架飞机比起飞点高了多少千米?(2) 如果飞机每上升或下降1千米需消耗2升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?(3) 如果飞机做特技表演时,有4个规定动作,起飞后高度变化如下:上升3.8千米,下降2.9千米,再上升1.6千米.若要使飞机最终比起飞点高出1千米,问第4个动作是上升还是下降,上升或下降多少千米?24.(10分) 在边长为1的小正方形组成的网格中,把一个点先沿水平方向平移a格(当a 为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移b格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的点,我们把这个过程记为(a,b).例如,从A到B记为:A→B (+1,+3);从C到D记为:C→D (+1,-2).回答下列问题:(1) 如图1,若点A的运动路线为:A→B→C→A,请计算点A运动过的总路程.(2) 若点A运动的路线依次为:A→M(+2,+3),M→N (+1,-1),N→P(-2,+2),P→Q(+4,-4).请你依次在图2上标出点M,N,P,Q的位置.(3) 在图2中,若点A经过(m,n)得到点E,点E再经过(p,q)后得到Q,则m与p满足的数量关系是;n与q满足的数量关系是.25.(10分) 如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,a +(c-7)2=0.且a,b满足2(1) a=,b=,c=.(2) 若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合.(3) 点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=.(用含t的代数式表示)(4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.2015~2016学年第一学期初一数学期中考试试卷参考答案1.C 2.D 3.B 4.A 5.B 6.B 7.C 8.C 9.-323或-310.4.384×10611.< > 12.4 13.-5,1 14.-2 15. 1 16.8 17.3018.76 19.(1) -18 (2) -1259 (3) -5 (4) 5 20.(1) 4x -4y (2) 20x 2-7x + 421.画图略,-2.5<-2-<0<12<2<-(-3) 22.B =4x 2 + 2 A +B =5x 2-2x + 323.解:(1) +4.4+(-3.2)+1.1+(-1.5) =0.8(km) 答:这架飞机比起飞点高了0.8千米 (2) 2×( 4.4++ 3.2-+ 1.1++ 1.5-=20.4(升),答:4个动作表演完,一共消耗20.5升燃油. (3) 3.8-2.9+1.6-1=1.5, 答:第4个动作下降1.5千米. 24.(1) 1+3+2+1+3+4=14 (2)(3) m + p =5,n + q =0 25.(1) a =2,b =1,c =7 (2) 4 (3) AB =3t + 3,AC =5t + 9,BC =2t + 6 (4) 不变,始终为12.。
2015-2016年人教版七年级上期中数学试卷含答案解析
2015-2016学年天津市津南区南片学区七年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.|﹣3|的相反数是( )A.3 B.﹣3 C.D.﹣2.在﹣(﹣8),(﹣1)2007,﹣32,0,﹣|﹣1|,﹣中,负数的个数有( )A.2个 B.3个 C.4个 D.5个3.绝对值等于本身的数是( )A.正数 B.负数 C.正数或零 D.零4.下列计算正确的个数是( )(﹣1)2010=﹣1;0﹣(﹣1)=1;﹣.A.1 B.2 C.3 D.45.若a>1,则a,﹣a,从大到小排列正确的是( )A.a>﹣a>B.a>>﹣a C.>﹣a>a D.﹣a>a>6.若(a+3)2+|b﹣2|=0,则a b=( )A.9 B.﹣6 C.﹣9 D.67.下列说法中,正确的是( )A.单项式的系数为﹣2,次数为2B.单项式a的系数是0,次数是0C.是二次单项式D.单项式的系数是,次数是38.下列计算正确的是( )A.4x﹣7x=3x B.5a﹣3a=2 C.a2+a=a D.﹣2a﹣2a=﹣4a9.某天上午6:00柳江河水位为80.4米,到上午11:30水位上涨了5.3米,到下午6:00水位又跌了0.9米,下午6:00水位应为( )A.76米 B.84.8米 C.85.8米 D.86.6米10.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…那么32011的末尾数字应该是( )A.3 B.9 C.7 D.1二、填空题(每小题3分,共24分)11.如果﹣30表示逆时针旋转30圈,那么50表示 .12.﹣0.5的相反数是 ,倒数是 .13.是 次 项式,最高项的系数为 . 14.数轴上点A表示﹣3,则与点A相距3个单位长度的点所表示的数为 .15.用科学记数法表示256500= .16.0.0056的近似数为 (精确到百分位).17.一艘轮船在静水中的速度是50千米/时,水流速度是a千米/时,则该轮船在逆水中航行3小时的路程为 千米.18.绝对值不大于3的整数有 .三、解答题(共66分)19.求出下列各数的绝对值,并在数轴上表示下列各数.﹣2,﹣(﹣3),﹣,0,,+(﹣4),1,|﹣6|20.计算(1)|﹣5﹣4|﹣5×(﹣2)2+1÷(﹣3);(2)(3)(﹣1)10×2﹣(﹣2)3÷4;(4).21.已知a2=16,b2=9,且ab>0,求:(1)2a﹣3b的值;(2)a+b的值.22.某人用400元购买了8套儿童服装,准备以一定价格出售,如果每套儿童服装以56元的价格作为标准卖出,超出的记为正数,不足的记为负数,记录如下:﹣3,+7,﹣8,+9,﹣2,0,﹣1,﹣6.当他卖完这8套儿童服装后是盈利还是亏损?23.化简求值:(1)5x2+6x﹣6﹣(﹣5x2+4x+1),其中;(2)2(3m+2n)+2[m+2n﹣(m﹣n)],其中m=﹣1,n=2.24.已知A=x3+3x2y﹣5xy2+6y3﹣1,B=﹣6y3+5xy2+x2y﹣2x3+2,C=x3﹣4x2y+3,试说明A+B+C的值与x,y无关.25.如图,阴影部分的面积是5平方厘米,以OA为直径的半圆的面积是多少平方厘米?2015-2016学年天津市津南区南片学区七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.|﹣3|的相反数是( )A.3 B.﹣3 C.D.﹣【考点】绝对值;相反数.【分析】根据相反数的定义:只有符号不同的两个数叫互为相反数.【解答】解:|﹣3|的相反数是﹣3.故选B.【点评】本题考查绝对值与相反数的意义,是一道基础题.可能会混淆倒数、相反数和绝对值的概念,错误地认为﹣3的绝对值等于,或认为﹣|﹣3|=3,把绝对值符号等同于括号.2.在﹣(﹣8),(﹣1)2007,﹣32,0,﹣|﹣1|,﹣中,负数的个数有( )A.2个 B.3个 C.4个 D.5个【考点】正数和负数.【分析】负数就是小于0的数,依据定义即可求解.【解答】解:﹣(﹣8)=8,(﹣1)2007=﹣1,﹣32=﹣9,﹣|﹣1|=﹣1,负数有:﹣(﹣8),(﹣1)2007,﹣32,﹣|﹣1|,﹣,负数的个数有5个,故选:D.【点评】本题考查了正数和负数,判断一个数是正数还是负数,要把它化简成最后形式再判断.3.绝对值等于本身的数是( )A.正数 B.负数 C.正数或零 D.零【考点】绝对值.【分析】根据0的绝对值等于0,正数的绝对值等于他本身,可得答案.【解答】解:绝对值等于本身的数是0和正数,故选:C.【点评】本题考查了绝对值,注意绝对值等于他本身的数是非负数. 4.下列计算正确的个数是( )(﹣1)2010=﹣1;0﹣(﹣1)=1;﹣.A.1 B.2 C.3 D.4【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式各项计算得到结果,即可做出判断.【解答】解:原式=1,错误;原式=0+1=1,正确;原式=﹣+=﹣,正确;原式=﹣,正确;则正确的个数是3.故选C.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.5.若a>1,则a,﹣a,从大到小排列正确的是( )A.a>﹣a>B.a>>﹣a C.>﹣a>a D.﹣a>a>【考点】有理数大小比较.【专题】推理填空题;实数.【分析】首先根据a>1,可得﹣a<0,0<<1;然后根据根据有理数大小比较的方法,把a,﹣a,从大到小排列即可.【解答】解:∵a>1,∴﹣a<0,0<<1,∴a>>﹣a.故选:B.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.6.若(a+3)2+|b﹣2|=0,则a b=( )A.9 B.﹣6 C.﹣9 D.6【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a+3=0,b﹣2=0,解得a=﹣3,b=2,所以,a b=9故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.下列说法中,正确的是( )A.单项式的系数为﹣2,次数为2B.单项式a的系数是0,次数是0C.是二次单项式D.单项式的系数是,次数是3【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:A、单项式的系数为﹣,次数为3,故本选项错误;B、单项式a的系数是1,次数是1,故本选项错误;C、是多项式,故本选项错误;D、单项式的系数是,次数是3是正确的,故本选项正确.故选D.【点评】考查了单项式的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.8.下列计算正确的是( )A.4x﹣7x=3x B.5a﹣3a=2 C.a2+a=a D.﹣2a﹣2a=﹣4a【考点】合并同类项.【分析】根据合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、合并同类项系数相加字母及指数不变,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.【点评】本题考查了合并同类项,合并同类项系数相加字母及指数不变.9.某天上午6:00柳江河水位为80.4米,到上午11:30水位上涨了5.3米,到下午6:00水位又跌了0.9米,下午6:00水位应为( )A.76米 B.84.8米 C.85.8米 D.86.6米【考点】有理数的加减混合运算.【专题】应用题.【分析】水位上涨用加,下跌用减,列出算式求解即可.【解答】解:根据题意列算式得:80.4+5.3﹣0.9,=85.7﹣0.9,=84.8(米).故选B.【点评】本题考查了负数的意义和有理数的加减混合运算,熟练掌握概念和法则是解题的关键.10.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…那么32011的末尾数字应该是( )A.3 B.9 C.7 D.1【考点】尾数特征.【分析】观察不难发现,每4个数为一个循环组依次循环,用2011除以4,根据余数的情况确定末尾数字即可.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…;∴每4个数为一个循环组依次循环,2011÷4=502…3,∴32011的末位数字与33的末位数字相同,是7.故选:7.【点评】本题考查了有理数的乘方,仔细观察末位数字的变化规律,发现每4个数为一个循环组依次循环是解题的关键.二、填空题(每小题3分,共24分)11.如果﹣30表示逆时针旋转30圈,那么50表示 顺时针旋转50圈 .【考点】正数和负数.【分析】主要用正负数来表示具有意义相反的两种量:逆时针旋转记作“﹣”,那么顺时针旋转就记作“+”.据此解答.【解答】解:如果﹣30表示逆时针旋转30圈,那么50表示顺时针旋转50圈,故答案为:顺时针旋转50圈.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.12.﹣0.5的相反数是 0.5 ,倒数是 ﹣2 .【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣0.5的相反数是0.5,倒数是﹣2,故答案为:0.5,﹣2.【点评】本题考查了倒数,数的前面加负号就是这个数的相反数,先把小数化成分数,再把分子分母交换位置.13.是 三 次 三 项式,最高项的系数为 ﹣ .【考点】多项式.【分析】直接利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【解答】解:是三次三项式,最高项的系数为:﹣.故答案为:三,三,﹣.【点评】此题主要考查了多项式,正确把握多项式次数与项数的确定方法是解题关键.14.数轴上点A表示﹣3,则与点A相距3个单位长度的点所表示的数为 ﹣6或0 .【考点】数轴.【分析】与点A相距3个单位长度的点可能在点A的左边,也可能在点A 的右边,再根据“左减右加”进行计算.【解答】解:当要求的点在点A的左边时,则﹣3﹣3=﹣6;当要求的点在点A的右边时,则﹣3+3=0.故答案为﹣6或0.【点评】此题考查了数轴上的点和数之间的对应关系,同时注意“左减右加”.15.用科学记数法表示256500= 2.565×105 .【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:256500=2.565×105,故答案为:2.565×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.0.0056的近似数为 0.01 (精确到百分位).【考点】近似数和有效数字.【分析】把千分位上的数字5进行四舍五入即可得出答案.【解答】解:0.0056的近似数为0.01(精确到百分位);故答案为:0.01.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.17.一艘轮船在静水中的速度是50千米/时,水流速度是a千米/时,则该轮船在逆水中航行3小时的路程为 3(50﹣a) 千米.【考点】列代数式.【分析】根据题意先得轮船在逆水中航行的速度为“静水中的速度﹣水流速度”,再得3小时航行的路程.【解答】解:由题意得,该轮船在逆水中航行3小时的路程为3(50﹣a)千米.【点评】本题考查了代数式的列法,正确理解题意是解决这类题的关键.18.绝对值不大于3的整数有 0,±1,±2,±3 .【考点】绝对值.【专题】应用题.【分析】根据绝对值的意义,正数和0的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.【解答】解:根据绝对值的意义,绝对值不大于3的整数有0,±1,±2,±3,故答案为0,±1,±2,±3.【点评】本题主要考查了绝对值的意义,注意“0”属于非负整数,比较简单.三、解答题(共66分)19.求出下列各数的绝对值,并在数轴上表示下列各数.﹣2,﹣(﹣3),﹣,0,,+(﹣4),1,|﹣6|【考点】数轴;绝对值.【分析】先根据正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,求出各数的绝对值,再画出数轴表示.【解答】解:|﹣2|=2,|﹣(﹣3)|=3,|﹣|=,|0|=0,||=,|+(﹣4)|=4,|1|=1,|﹣6|=6,如图,【点评】本题考查了数轴,解决本题的关键是熟记绝对值的性质.20.计算(1)|﹣5﹣4|﹣5×(﹣2)2+1÷(﹣3);(2)(3)(﹣1)10×2﹣(﹣2)3÷4;(4).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=9﹣20﹣=﹣11;(2)原式=﹣4×3×(﹣11)=132;(3)原式=2+2=4;(4)原式=﹣8+9+1=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.已知a2=16,b2=9,且ab>0,求:(1)2a﹣3b的值;(2)a+b的值.【考点】代数式求值.【分析】先求得a、b的值,然后根据ab>0可确定出a、b的取值情况,最后代入求值即可.【解答】解:∵a2=16,b2=9,∴a=±4,b=±3.∵ab>0,∴a=4,b=3或a=﹣4,b=﹣3.(1)当a=4,b=3时,2a﹣3b=2×4﹣3×3=﹣1;当a=﹣4,b=﹣3时,2a﹣3b=2×(﹣4)﹣3×(﹣3)=1.(2)当a=4,b=3时,a+b=4+3=7;当a=﹣4,b=﹣3时,a+b=(﹣4)+(﹣3)=﹣7.【点评】本题主要考查的是求代数式的值,求得a、b的值是解题的关键.22.某人用400元购买了8套儿童服装,准备以一定价格出售,如果每套儿童服装以56元的价格作为标准卖出,超出的记为正数,不足的记为负数,记录如下:﹣3,+7,﹣8,+9,﹣2,0,﹣1,﹣6.当他卖完这8套儿童服装后是盈利还是亏损?【考点】有理数的加减混合运算;正数和负数.【专题】应用题.【分析】让所得的正负数相加,再加上预计销售的总价,减去总进价即可得到是盈利还是亏损.【解答】解:总售价为:56×8+(﹣3+7﹣8+9﹣2+0﹣1﹣6)=448﹣4=444元,444﹣400=44元.答:盈利44元.【点评】考查有理数的混合运算;得到总售价是解决本题的突破点. 23.化简求值:(1)5x2+6x﹣6﹣(﹣5x2+4x+1),其中;(2)2(3m+2n)+2[m+2n﹣(m﹣n)],其中m=﹣1,n=2.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把m与n的值代入计算即可求出值.【解答】解:(1)原式=5x2+6x﹣6+5x2﹣4x﹣1=10x2+2x﹣7,当x=﹣时,原式=﹣1﹣7=﹣;(2)原式=6m+4n+2m+4n﹣2m+2n=6m+10n,当m=﹣1,n=2时,原式=﹣6+20=14.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.已知A=x3+3x2y﹣5xy2+6y3﹣1,B=﹣6y3+5xy2+x2y﹣2x3+2,C=x3﹣4x2y+3,试说明A+B+C的值与x,y无关.【考点】整式的加减.【分析】先列出A+B+C的表达式,再去括号,合并同类项即可.【解答】解:∵A=x3+3x2y﹣5xy2+6y3﹣1,B=﹣6y3+5xy2+x2y﹣2x3+2,C=x3﹣4x2y+3,∴A+B+C=(x3+3x2y﹣5xy2+6y3﹣1)+(﹣6y3+5xy2+x2y﹣2x3+2)+(x3﹣4x2y+3)=x3+3x2y﹣5xy2+6y3﹣1﹣6y3+5xy2+x2y﹣2x3+2+x3﹣4x2y+3=(1﹣2+1)x3+(3+1﹣4)x2y﹣(5﹣5)xy2+(6﹣6)y3﹣(1﹣3﹣2)=4,∴A+B+C的值与x,y无关.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.25.如图,阴影部分的面积是5平方厘米,以OA为直径的半圆的面积是多少平方厘米?【考点】有理数的混合运算.【分析】设OA的长为2r厘米,根据题意可得:圆的面积﹣半圆的面积=5平方厘米,由此列方程整理得出πr2=5,然后根据圆的面积公式即可求出以OA为直径的半圆的面积.【解答】解:设OA的长为2r厘米,根据题意可得:×π×(2r)2﹣×π×(2r÷2)2=5,πr2﹣πr2=5,即πr2=5,半圆的面积:×π×(2r÷2)2=πr2=5(平方厘米).答:以OA为直径的半圆的面积是5平方厘米.【点评】本题考查了有理数的混合运算,组合图形的面积,解答此题的关键是根据阴影部分的面积是5平方厘米列出方程.。
新人教版2015-2016学年七年级数学(上)期中数学试卷及答案
2015-2016学年七年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分,每小题只有一个选项是符合题意的)1.﹣的倒数是()A.B.﹣C.﹣D.2.如果一个物体向东移动8m记为+8m,那么向西移动3m记为()A.+3m B.﹣3m C.+5m D.﹣5m3.多项式x2﹣4xy2+y2的次数为()A.2 B. 3 C. 4 D.﹣44.在有理数0,1,﹣4,﹣2.5中,属于负整数的是()A.0 B. 1 C.﹣4 D.﹣2.55.今年由于降水明显偏少,气温持续偏高,河库水量锐减,据统计,某市造成直接经济损失达560 000 000元,该数据用科学记数法表示为()A.5.6×107元B. 5.6×108元C.56×107元D.56×108元6.下列选项中,是同类项的是()A.3ab和3b B.﹣2pq和npq C.b2和2b D.4xy和xy7.比较﹣,5,﹣0.5的大小,下列选项正确的是()A.﹣B.﹣C.﹣0.5D.5<﹣<﹣0.58.一个两位数,个位数是x,十位数是y,如果个位数字与十位数字对调,所得的两位数与原来的两位数的和是()A.10x+y B.10y+x C.2x+2y D.11x+11y9.观察一列单项式:2x3,﹣4x3,8x3,﹣16x3,32x3,﹣64x3,…则第2014个单项式是()A.﹣22014x3 B.22014x3 C.﹣24018x3 D.24018x310.按照如图所示的操作步骤,若输入的值为﹣4,则输出的值为()A.44 B.4 C.﹣D.﹣84二、填空题(共6小题,每小题3分,共18分)11.﹣(﹣3.5)的相反数为.12.(﹣7)8的底数是.13.用计算器计算:7.783+(﹣0.32)2=(精确到百分位)14.求图中阴影部分的面积.15.若a在数轴上所对应的点到数轴上表示﹣3的点和数轴上表示7的点之间的距离相等,则a=.16.小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于3张,且各堆牌现有的张数相同;第二步从左边一堆拿出3张,放入中间一堆;第三步从右边一堆拿出2张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是.三、解答题(共6小题,计72分.解答应写出过程)17.计算:(﹣1)98×()﹣(﹣2)4÷4.18.先化简,再求值:+2(x﹣)﹣(﹣3x2+2y2)﹣x,其中x=2,y=3.19.某村棉花的种植面积是a公顷,玉米的种植面积比棉花的种植面积的2倍多5公顷,蔬菜的种植面积比玉米的种植面积的3倍少2公顷,求棉花、玉米和蔬菜的种植面积和.20.周助平时骑自行车的速度为a km/h.今天风速为16km/h,他顺骑4个小时的路程是多少千米?逆风骑2个小时的路程是多少千米?两个路程相差多少千米?21.(10分)(2014秋•旬阳县期中)某儿童服装店老板以25元的价格买进30件连衣裙,针对不同的顾客,连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表所示:售出件数7 6 3 5 4 5售价/元+3 +2 +1 0 ﹣1 ﹣1问该服装店在售完这30件连衣裙后,赚了多少钱?22.(12分)(2014秋•旬阳县期中)某商场为了促销,推出两种促销方式:方式①:一次性购物超过100元,所有商品打七折;方式②:一次性购物超过100元,超过的部分减半.(1)若单老师一下性购买的商品的标价总额为a(a>100)元,按照方式①付款,单老师实际应付多少钱?按照方式②付款,单老板实际应付多少钱?(2)夏目帮叔叔一次性购买的商品的标价总额为170元,参加促销活动,哪种方式更划算?为什么?若一次性购买的商品的标价总额为370元呢?2015-2016学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分,每小题只有一个选项是符合题意的)1.﹣的倒数是()A.B.﹣C.﹣D.考点:倒数.分析:根据倒数的定义,即可解答.解答:解:﹣的倒数是﹣,故选:B.点评:本题考查了倒数的定义,解决本题的关键是熟记倒数的定义.2.如果一个物体向东移动8m记为+8m,那么向西移动3m记为()A.+3m B.﹣3m C.+5m D.﹣5m考点:正数和负数.分析:认真审题,根据向东移动记为正数则向西移动记为负数,据此即可得到本题的答案.解答:解:向东移动记为8m记为+8,则向西移动3m记为﹣3m.故选B.点评:本题主要考查了正数与负数的意义,用正数与负数可以表示相反意义的量,是经常考查的题目,注意总结.3.多项式x2﹣4xy2+y2的次数为()A.2 B. 3 C. 4 D.﹣4考点:多项式.专题:计算题.分析:利用多项式次数的定义判断即可.解答:解:多项式x2﹣4xy2+y2的次数为3.故选B.点评:此题考查了多项式,熟练掌握多项式次数的定义是解本题的关键.4.在有理数0,1,﹣4,﹣2.5中,属于负整数的是()A.0 B. 1 C.﹣4 D.﹣2.5考点:有理数.分析:根据负整数是小于0的整数,判断出在有理数0,1,﹣4,﹣2.5中,属于负整数的有哪些即可.解答:解:在有理数0,1,﹣4,﹣2.5中,属于负整数的是﹣4.故选:C.点评:此题主要考查了有理数的分类,要熟练掌握,解答此题的关键是要明确:负整数是小于0的整数.5.今年由于降水明显偏少,气温持续偏高,河库水量锐减,据统计,某市造成直接经济损失达560 000 000元,该数据用科学记数法表示为()A.5.6×107元B. 5.6×108元C.56×107元D.56×108元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将560 000 000用科学记数法表示为:5.6×108.故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.下列选项中,是同类项的是()A.3ab和3b B.﹣2pq和npq C.b2和2b D.4xy和xy考点:同类项.分析:根据同类项的定义(所含字母相同,相同字母的指数相同),即可作出判断.解答:解:A、所含字母不同,则不是同类项,B、所含字母不同,则不是同类项,C、相同的字母的指数不同,故不是同类项.D、正确.故选D.点评:本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.7.比较﹣,5,﹣0.5的大小,下列选项正确的是()A.﹣B.﹣C.﹣0.5D.5<﹣<﹣0.5考点:有理数大小比较.分析:有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.解答:解:根据有理数比较大小的方法,可得﹣0.5.故选:C.点评:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.8.一个两位数,个位数是x,十位数是y,如果个位数字与十位数字对调,所得的两位数与原来的两位数的和是()A.10x+y B.10y+x C.2x+2y D.11x+11y考点:列代数式.分析:分别表示出两数,然后相加即可得到正确的选项.解答:解:∵两位数的个位数是x,十位数是y,∴两位数为10y+x,个位数字与十位数字对调的两位数为10x+y,∴两位数的和为10y+x+10x+y=11x+11y,故选D.点评:本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.9.观察一列单项式:2x3,﹣4x3,8x3,﹣16x3,32x3,﹣64x3,…则第2014个单项式是()A.﹣22014x3 B.22014x3 C.﹣24018x3 D.24018x3考点:单项式.专题:规律型.分析:根据已知得出单项式变化规律进而得出即可.解答:解:∵2x3,﹣4x3,8x3,﹣16x3,32x3,﹣64x3,…∴系数为(﹣1)n+12n,次数都为3,∴第2014个单项式是:(﹣1)2014+122014x3=﹣22014x3.故选A.点评:此题主要考查了单项式,正确利用已知得出变化规律是解题关键.10.按照如图所示的操作步骤,若输入的值为﹣4,则输出的值为()A.44 B.4 C.﹣D.﹣84考点:有理数的混合运算.专题:图表型.分析:把﹣4代入程序框图中计算,判断结果与15大小,即可得到输出的值.解答:解:根据题意得:(﹣4)2=16>15,可得﹣4×(16+5)=﹣84,故选D点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(共6小题,每小题3分,共18分)11.﹣(﹣3.5)的相反数为﹣3.5.考点:相反数.分析:先化简,再求相反数.解答:解:﹣(﹣3.5)=3.5,3.5的相反数是﹣3.5,故答案为:﹣3.5.点评:本题考查了相反数,解决本题的关键是熟记相反数的定义.12.(﹣7)8的底数是﹣7.考点:有理数的乘方.分析:根据有理数的乘方,即可解答.解答:解:(﹣7)8的底数是﹣7.故答案为:﹣7.点评:本题考查了有理数的乘方,解决本题的关键是熟记有理数乘方的定义.13.用计算器计算:7.783+(﹣0.32)2=471.01(精确到百分位)考点:计算器—有理数.分析:首先用计算器分别求出7.783、(﹣0.32)2的值各是多少;然后把它们求和,并应用四舍五入法,求出算式7.783+(﹣0.32)2精确度百分位的结果是多少即可.解答:解:7.783+(﹣0.32)2=470.910952+0.1024=471.013352≈471.01.故答案为:471.01.点评:此题主要考查了计算器的使用方法,以及四舍五入法求近似值问题的应用,要熟练掌握.14.求图中阴影部分的面积2ab﹣2b2.考点:列代数式.分析:图中两个阴影部分的面积都是长为b,宽为(a﹣b)的矩形.根据矩形的面积公式得:阴影部分的面积是2b(a﹣b).解答:解:阴影部分的面积=b(a﹣b)×2=2ab﹣2b2.点评:正确表示阴影矩形的宽,运用矩形的面积公式列式计算.15.若a在数轴上所对应的点到数轴上表示﹣3的点和数轴上表示7的点之间的距离相等,则a=2.考点:数轴.分析:画出数轴,找出表示﹣3与7的两点中点表示的数即为a的值.解答:解:作图如下:则a=2.故答案为:2.点评:此题考查了数轴的认识,作出相应的图形是解本题的关键.16.小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于3张,且各堆牌现有的张数相同;第二步从左边一堆拿出3张,放入中间一堆;第三步从右边一堆拿出2张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是8.考点:整式的加减.专题:压轴题.分析:把每堆牌的数量用相应的字母表示出来,列式表示变化情况即可找出最后答案.解答:解:设第一步时候,每堆牌的数量都是x(x≥3);第二步时候:左边x﹣3,中间x+3,右边x;第三步时候:左边x﹣3,中间x+3+2,右边x﹣2;第四步开始时候,左边有(x﹣3)张牌,则从中间拿走(x﹣3)张,则中间所剩牌数为(x+5)﹣(x﹣3)=x+5﹣x+3=8.所以中间一堆牌此时有8张牌.故答案为8点评:本题考查了整式的加减运算,解决此题,根据题目中所给的数量关系,建立数学模型.根据运算提示,找出相应的等量关系.三、解答题(共6小题,计72分.解答应写出过程)17.计算:(﹣1)98×()﹣(﹣2)4÷4.考点:有理数的混合运算.专题:计算题.分析:原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:原式=1×(﹣)﹣16×=﹣4=﹣.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.先化简,再求值:+2(x﹣)﹣(﹣3x2+2y2)﹣x,其中x=2,y=3.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解答:解:原式=x2+2x﹣y2+x2﹣y2﹣x=x2+x﹣2y2,当x=2,y=3时,原式=5+3﹣18=﹣10.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.某村棉花的种植面积是a公顷,玉米的种植面积比棉花的种植面积的2倍多5公顷,蔬菜的种植面积比玉米的种植面积的3倍少2公顷,求棉花、玉米和蔬菜的种植面积和.考点:整式的加减.分析:根据题意得出玉米及蔬菜的种植面积,再把两式相加即可.解答:解:由题意得:玉米的种植面积是(2a+5)公顷,蔬菜的种植面积是[3(2a+5)﹣2]公顷,a+(2a+5)+[3(2a+5)﹣2]=a+2a+5+6a+13=(9a+18)(公顷).答:棉花、玉米和蔬菜的种植面积和为=(9a+18)公顷.点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.20.周助平时骑自行车的速度为a km/h.今天风速为16km/h,他顺骑4个小时的路程是多少千米?逆风骑2个小时的路程是多少千米?两个路程相差多少千米?考点:整式的加减.分析:先根据顺风骑的路程=(a+16)×4,逆风骑的路程=(a﹣16)×2,再作查差比较其大小即可.解答:解:∵周助平时骑自行车的速度为a km/h.今天风速为16km/h,∴顺风骑的路程=(a+16)×4=(4a+64)千米,逆风骑的路程=(a﹣16)×2=(2a﹣32)千米,∴(4a+64)﹣(2a﹣32)=4a+64﹣2a+32=(2a+96)(千米).答:周助顺骑4个小时的路程是(4a+64)千米,逆风骑2个小时的路程是(2a﹣32)千米,两个路程相差(2a+96)千米.点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.21.(10分)(2014秋•旬阳县期中)某儿童服装店老板以25元的价格买进30件连衣裙,针对不同的顾客,连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表所示:售出件数7 6 3 5 4 5售价/元+3 +2 +1 0 ﹣1 ﹣1问该服装店在售完这30件连衣裙后,赚了多少钱?考点:正数和负数.分析:认真审题,首先求出总售价的变化,再求出按标准售价进行出售所赚的钱数,加在一起就是最后赚的钱数.解答:解:7×3+6×2+3×1+5×0+4×(﹣1)+5×(﹣2)=21+12+3+0﹣4﹣10=22(元),(45﹣25)×30+22=20×30+22=622(元).答:赚了622元.点评:本题主要考查了正数与负数的意义,让学生理解正数与负数只是一种“记法”,理解“记法”与原数之间的关系是解题的关键,注意认真总结.22.(12分)(2014秋•旬阳县期中)某商场为了促销,推出两种促销方式:方式①:一次性购物超过100元,所有商品打七折;方式②:一次性购物超过100元,超过的部分减半.(1)若单老师一下性购买的商品的标价总额为a(a>100)元,按照方式①付款,单老师实际应付多少钱?按照方式②付款,单老板实际应付多少钱?(2)夏目帮叔叔一次性购买的商品的标价总额为170元,参加促销活动,哪种方式更划算?为什么?若一次性购买的商品的标价总额为370元呢?考点:列代数式;代数式求值.分析:(1)按照两种方式直接列出代数式即可;(2)分别代入数值计算,比较得出答案即可.解答:解:(1)方式①付款:0.7a(元)方式②付款:100+0.5(a﹣100)=0.5a+50(元);(2)商品的标价总额为170元,参加促销活动,方式①更划算;方式①:170×0.7=119(元)方式②:0.7×170+50=135(元)119<135所以方式①更划算;商品的标价总额为370元,参加促销活动,方式②更划算;方式①:370×0.7=259(元)方式②:0.7×370+50=235(元)259>235所以方式②更划算.点评:此题考查列代数式以及代数式求值,理解优惠方法,列出代数式是解决问题的前提.。
2015-2016学年新人教版七年级(上)期中数学试卷及答案
2015-2016学年七年级(上)期中数学试卷一、选择题(本题包括10小题,每小题3分,共30分)1.在1,0,﹣2,3这四个数中,比0小的数是()A.1 B.0 C.﹣2 D.32.下列化简,正确的是()A.﹣(﹣3)=﹣3 B.﹣[﹣(﹣10)]=﹣10 C.﹣(+5)=5 D.﹣[﹣(+8)]=﹣83.绝对值大于3且小于6的所有整数的和是()A.0 B.9 C. 6 D.184.下列各式2m+n,3ab,,,a,﹣8中,单项式的个数有()A.3个B.4个C.5个D.6个5.如图所示,则﹣a、﹣b的大小关系是()A.﹣a>﹣b B.﹣a<﹣b C.﹣a=﹣b D.都有可能6.下列各组是同类项的是()A.5x与xy B.﹣x2y与2xy2 C.3x2y3与﹣y3x2 D.a与b7.下列运算正确的是()A.2x+3y=5 B.4x2y﹣5xy2=﹣x2yC.a5+a6=a11 D.3ab2﹣b2a=2ab28.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.99.已知代数式3x2﹣2x+6的值是8,则代数式x2﹣x+4的值是()A.1 B. 5 C. 3 D. 410.若4<a<5时,化简|a﹣4|+|a﹣5|=()A.2a﹣9 B.2a﹣1 C.1 D.9二、填空题(每题3分,共24分)11.如果水库的水位高于标准水位6m时,记作+6m,那么低于标准水位2m,应记作m.12.﹣|﹣3|的相反数是.13.近似数1.5万精确到位.14.若(2x+1)2+|y﹣|=0,则x2+y2=.15.若单项式3x4y n与﹣2x m y3的和仍是单项式,则m﹣n=.16.地球上的海洋面积约为361000000km2,则科学记数法可表示为km2.17.在数轴上到表示﹣2的点的距离为4的点所表示的数是.18.观察下列数据,按某种规律在横线上填上适当的数:1,﹣,,﹣,,,…三、解答题(共46分)19.画一根数轴,用数轴上的点把如下的有理数﹣2,﹣0.5,0,﹣4表示出来,并用“<”把它们连接起来.20.计算:(1)(﹣40)﹣(+28)﹣(﹣19)﹣(+32)(2)﹣10+8+(﹣2)3﹣(﹣40)×(﹣3)(3)(﹣3)2﹣(1)3×+|﹣|3.21.(10分)(2014秋•蓟县期中)先化简,再求值:(1)5(3x2y﹣xy2)﹣(xy2﹣3x2y),其中x=,y=﹣1.(2)2x2y+(2y2﹣x2)﹣(x2+2y2),其中x=1,y=﹣10.22.已知a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式(a+b)•cd+|x|的值.23.下表给出了某班6名同学身高情况(单位:cm)姓名A B C D E F身高165 167 172身高与班级平均身高的差值﹣2 +2 ﹣3 +4(1)完成表中空的部分;(2)他们的最高与最矮相差多少?(3)他们的平均身高是多少?24.一汽车在东西方向公路来回行驶,约定向东为正,向西为负,某天自A地出发到达B 地,行驶记录如下:(单位:km)+8,﹣9,+4,+7,﹣2,﹣10,+18,﹣3,+7,+5.回答下列问题:(1)B地在A地的哪个方向?两地距离多远?(2)汽车行驶的路程有多少千米?若每千米耗油0.3升,这一过程共耗油多少升?25.已知A=﹣3x2﹣2mx+3x+1,B=2x2+mx﹣1,且2A+3B的值与x无关,求m的值.2015-2016学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题包括10小题,每小题3分,共30分)1.在1,0,﹣2,3这四个数中,比0小的数是()A.1 B.0 C.﹣2 D.3考点:有理数大小比较.分析:根据正数都大于0,负数都小于0即可得出结论.解答:解:∵1,3是正数,﹣2是负数,∴1>0,3>0,﹣2<0.故选C.点评:本题考查的是有理数的大小比较,熟知正数都大于0,负数都小于0,正数大于一切负数是解答此题的关键.2.下列化简,正确的是()A.﹣(﹣3)=﹣3 B.﹣[﹣(﹣10)]=﹣10 C.﹣(+5)=5 D.﹣[﹣(+8)]=﹣8考点:相反数.分析:在一个数前面放上“﹣”,就是该数的相反数,利用这个性质可化简.解答:解:A、∵﹣(﹣3)=3,∴错误;B、∵﹣[﹣(﹣10)]=﹣10,∴正确;C、∵﹣(+5)=﹣5,∴错误;D、∵﹣[﹣(+8)]=8,∴错误.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.绝对值大于3且小于6的所有整数的和是()A.0 B.9 C. 6 D.18考点:有理数的加法;绝对值.分析:大于3小于6的整数绝对值是4或5,因为互为相反数的两个数的绝对值相等,所以绝对值大于3且小于6的所有整数有±4,±5.解答:解:绝对值大于3小于6的所有整数是±4,±5.4+(﹣4)+5+(﹣5)=0+0=0.故选:A.点评:本题主要考查了绝对值的定义、有理数的加法法则,解题关键是掌握互为相反数的两个数的绝对值相等.4.下列各式2m+n,3ab,,,a,﹣8中,单项式的个数有()A.3个B.4个C.5个D.6个考点:单项式.分析:根据单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式,求解即可.解答:解:根据单项式的定义:3ab,a,﹣8,是单项式,共3个.故选:A.点评:本题考查了单项式的知识,解答本题的关键是掌握单项式的定义,属于基础题.5.如图所示,则﹣a、﹣b的大小关系是()A.﹣a>﹣b B.﹣a<﹣b C.﹣a=﹣b D.都有可能考点:有理数大小比较;数轴.专题:数形结合.分析:由数轴和相反数的定义可知﹣a、﹣b都表示正有理数,根据两个正数,绝对值大的其值就大比较大小.解答:解:观察数轴可知:a,b都表示负有理数,且|a|<|b|,∴﹣a、﹣b都表示正有理数,|﹣a|<|﹣b|,∴﹣a<﹣b.故选B.点评:本题考查了有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小;⑤两个正数,绝对值大的其值就大.6.下列各组是同类项的是()A.5x与xy B.﹣x2y与2xy2 C.3x2y3与﹣y3x2 D.a与b考点:同类项.分析:同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项,所以只要判断所含有的字母是否相同,相同字母的指数是否相同即可.解答:解:A、5x与xy中所含不相同字母的指数不同,不是同类项.故选项错误;B、﹣x2y与2xy2所含字母指数不同,不是同类项.故选项错误;C、3x2y3与﹣y3x2所含字母相同,指数也相同,所以是同类项.故选项正确;D、a与b不是同类项,故选项错误.故选:C.点评:本题考查了同类项的定义.判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.缺少其中任何一条,就不是同类项.注意所有常数项都是同类项.7.下列运算正确的是()A.2x+3y=5 B.4x2y﹣5xy2=﹣x2yC.a5+a6=a11 D.3ab2﹣b2a=2ab2考点:合并同类项.分析:直接利用合并同类项法则分析求出即可.解答:解:A、2x+3y无法计算,故此选项错误;B、4x2y﹣5xy2无法计算,故此选项错误;C、a5+a6无法计算,故此选项错误;D、3ab2﹣b2a=2ab2,正确.故选:D.点评:此题主要考查了合并同类项,正确掌握运算法则是解题关键.8.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9考点:有理数的乘方.分析:先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.解答:解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.点评:解决此类题目的关键是熟记平方数的特点,任何数的平方都是非负数,所以平方为正数的数有两个,且互为相反数.9.已知代数式3x2﹣2x+6的值是8,则代数式x2﹣x+4的值是()A.1 B. 5 C. 3 D. 4考点:代数式求值.分析:由代数式3x2﹣2x+6的值是8,得出3x2﹣2x=2,易得x2﹣x的值,再整体代入原式即可.解答:解;由题意得,3x2﹣2x+6=8,∴3x2﹣2x=2,∴x2﹣x=1,∴x2﹣x+4=1+4=5,故选B.点评:本题主要考查了代数式求值,先根据题意得出x2﹣x的值,再整体代入是解答此题的关键.10.若4<a<5时,化简|a﹣4|+|a﹣5|=()A.2a﹣9 B.2a﹣1 C.1 D.9考点:整式的加减;绝对值.分析:根据题意4<a<5,利用此条件先去掉绝对值,然后进行计算.解答:解:∵4<a<5,∴|a﹣4|=a﹣4,|a﹣5|=5﹣a,∴|a﹣4|+|a﹣5|=a﹣4+5﹣a=1.故选C.点评:本题考查了整式的加减以及绝对值的运算,根据绝对值的意义去掉绝对值符号是解题的关键.二、填空题(每题3分,共24分)11.如果水库的水位高于标准水位6m时,记作+6m,那么低于标准水位2m,应记作﹣2 m.考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:“高”和“低”相对,若水库的水位高于标准水位6米时,记作+6米,则低于标准水位2米时,应记﹣2m.故答案为:﹣2.点评:本题主要考查的是正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.﹣|﹣3|的相反数是3.考点:相反数;绝对值.专题:计算题.分析:首先把﹣|﹣3|化简,再根据相反数的定义;只有符号不同的两个数叫相反数,得到答案.解答:解:﹣|﹣3|=﹣3,﹣3的相反数是:3,故答案为:3.点评:此题主要考查了绝对值与相反数,关键是把握相反数和绝对值的定义.13.近似数1.5万精确到千位.考点:近似数和有效数字.分析:根据精确值的确定方法,首先得出原数据,再从原数据找出5后面0所在数据的位置,再确定精确到了多少位.解答:解:近似数1.5万=1500,5所在数据的千位,故答案为:千.点评:此题主要考查了精确值的确定方法,必须写出原数据,确定准最后一位所在的位置是解决问题的关键.14.若(2x+1)2+|y﹣|=0,则x2+y2=.考点:代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.分析:利用非负数的性质得出x,y,代入即可.解答:解:∵(2x+1)2+|y﹣|=0,∴2x+1=0,y﹣=0,∴x=,y=,∴x2+y2==,故答案为:.点评:本题主要考查了代数式求值和非负数的性质,利用非负数的性质解的x,y是解答此题的关键.15.若单项式3x4y n与﹣2x m y3的和仍是单项式,则m﹣n=1.考点:合并同类项.分析:直接利用合并同类项法则得出x,y的次数相同,进而得出答案.解答:解:∵单项式3x4y n与﹣2x m y3的和仍是单项式,∴m=4,n=3,则m﹣n=4﹣3=1.故答案为:1.点评:此题主要考查了合并同类项,正确掌握运算法则是解题关键.16.地球上的海洋面积约为361000000km2,则科学记数法可表示为 3.61×108km2.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将361 000 000用科学记数法表示为3.61×108.故答案为3.61×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.在数轴上到表示﹣2的点的距离为4的点所表示的数是﹣6或2.考点:数轴.专题:常规题型.分析:根据数轴的特点,数轴上与表示﹣2的点的距离为4的点有两个:一个在数轴的左边,一个在数轴的右边,分两种情况讨论即可求出答案.解答:解:该点可能在﹣2的左侧,则为﹣2﹣4=﹣6;也可能在﹣2的右侧,即为﹣2+4=2.故答案为:﹣6或2.点评:此题主要考查了实数与数轴之间的对应关系,解题应该会根据距离和已知的一点的坐标确定另一点的坐标方法:左减右加.18.观察下列数据,按某种规律在横线上填上适当的数:1,﹣,,﹣,,﹣,…考点:规律型:数字的变化类.分析:分子是从1开始的连续奇数,分母是从1开始连续自然数的平方,奇数位置为正,偶数位置为负,第n个数为(﹣1)n+1,由此代入求得答案即可.解答:解:数列为:1,﹣,,﹣,,﹣,.故答案为:,﹣,.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.三、解答题(共46分)19.画一根数轴,用数轴上的点把如下的有理数﹣2,﹣0.5,0,﹣4表示出来,并用“<”把它们连接起来.考点:有理数大小比较;数轴.专题:计算题.分析:先利用数轴表示四个数,然后根据负数小于零;负数的绝对值越大,这个数反而越小即可得到它们的大小关系.解答:解:用数轴表示为:它们的大小关系为﹣4<﹣2<﹣0.5<0.点评:本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.也考查了数轴.20.计算:(1)(﹣40)﹣(+28)﹣(﹣19)﹣(+32)(2)﹣10+8+(﹣2)3﹣(﹣40)×(﹣3)(3)(﹣3)2﹣(1)3×+|﹣|3.考点:有理数的混合运算.分析:(1)先化简,再计算加减法;(2)(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解答:解:(1)(﹣40)﹣(+28)﹣(﹣19)﹣(+32)=﹣40﹣28+19﹣32=﹣81(2)﹣10+8+(﹣2)3﹣(﹣40)×(﹣3)=﹣10+8﹣8﹣120=﹣130;(3)(﹣3)2﹣(1)3×+|﹣|3.=9﹣×+=9﹣+=9.点评:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.21.(10分)(2014秋•蓟县期中)先化简,再求值:(1)5(3x2y﹣xy2)﹣(xy2﹣3x2y),其中x=,y=﹣1.(2)2x2y+(2y2﹣x2)﹣(x2+2y2),其中x=1,y=﹣10.考点:整式的加减—化简求值.专题:计算题.分析:(1)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解答:解:(1)原式=15x2y﹣5xy2﹣xy2+3x2y=12x2y﹣6xy2,当x=,y=﹣1时,原式=﹣3﹣3=﹣6;(2)原式=2x2y+2y2﹣x2﹣x2﹣2y2=2x2y﹣2x2,当x=1,y=﹣10时,原式=﹣20﹣2=﹣22.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.已知a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式(a+b)•cd+|x|的值.考点:代数式求值;相反数;绝对值;倒数.分析:首先根据相反数和倒数的定义得a+b=0,cd=1,再由x的绝对值是1,代入原式即可.解答:解:∵a,b互为相反数∴a+b=0,∵c,d互为倒数∴cd=1,∵x的绝对值是1,∴原式=0×1+1=1.点评:本题主要考查了代数式求值,利用相反数和倒数的定义得出a+b=0,cd=1,然后代入是解答此题的关键.23.下表给出了某班6名同学身高情况(单位:cm)姓名A B C D E F身高165 169167 164171172身高与班级平均身高的差值﹣2 +2 0﹣3 +4 +5(1)完成表中空的部分;(2)他们的最高与最矮相差多少?(3)他们的平均身高是多少?考点:有理数的加减混合运算.专题:计算题.分析:(1)根据表格中的数据得出标准身高为167,得出空白处的数字即可;(2)找出最高的与最矮的之差即可;(3)根据表格中的数据求出他们的平均身高即可.解答:解:(1)下表给出了某班6名同学身高情况(单位:cm)姓名A B C D E F身高165 169 167 164 171 172身高与班级平均身高的差值﹣2 +2 0 ﹣3 +4 +5故答案为:169,164,171,0,+5;(2)根据题意得:172﹣164=8(cm),则他们的最高与最矮相差8cm;(3)他们的平均身高为×(﹣2+2+0﹣3+4+5)+167=1+167=168(cm).点评:此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.24.一汽车在东西方向公路来回行驶,约定向东为正,向西为负,某天自A地出发到达B 地,行驶记录如下:(单位:km)+8,﹣9,+4,+7,﹣2,﹣10,+18,﹣3,+7,+5.回答下列问题:(1)B地在A地的哪个方向?两地距离多远?(2)汽车行驶的路程有多少千米?若每千米耗油0.3升,这一过程共耗油多少升?考点:正数和负数.分析:(1)把当天记录相加,然后根据正数和负数的规定解答即可;(2)先求出行驶记录的绝对值的和,再乘以0.3计算即可得解.解答:解:(1)(+8)+(﹣9)+(+4)+(+7)+(﹣2)+(﹣10)+(+18)+(﹣3)+(+7)+(+5)=25km所以B地在A地的东边25km处;(2)8+9+4+7+2+10+18+3+7+5=73km,(8+9+4+7+2+10+18+3+7+5)×0.3=21.9升.点评:此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.已知A=﹣3x2﹣2mx+3x+1,B=2x2+mx﹣1,且2A+3B的值与x无关,求m的值.考点:整式的加减.分析:把A与B代入2A+3B中,去括号合并得到最简结果,由结果与x无关,求出m的值即可.解答:解:把A=﹣3x2﹣2mx+3x+1,B=2x2+mx﹣1代入得:2A+3B=2(﹣3x2﹣2mx+3x+1)+3(2x2+mx﹣1)=(﹣m+6)x﹣1,由结果与x无关,得到﹣m+6=0,解得:m=6.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.。
天津市武清区七年级上期中数学试卷含答案解析
2016-2017学年天津市武清区七年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.如果用﹣10%表示某商品的出口额比上一年减少10%,那么+12%则表示该商品的出口额比上一年()A.减少12% B.增加12% C.减少22% D.增加2%3.下列说法正确的是()A.有理数分为正数和负数B.有理数都有相反数C.倒数等于它本身的数只有一个D.若a为有理数,则﹣a一定是负数4.数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A.﹣3+5 B.﹣3﹣5 C.|﹣3+5|D.|﹣3﹣5|5.下列比较大小的式子中,正确的是()A.2<﹣(+5)B.﹣1>﹣0.01 C.|﹣3|<|+3|D.﹣(﹣5)>+(﹣7)6.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000,4400000000这个数用科学记数法表示为()A.44×108B.4.4×108C.4.4×109D.0.44×10107.在代数式2xy,0,﹣,8y2,,x+2y中,整式共有()A.5 B.4 C.6 D.38.若A是五次多项式,B是三次多项式,则A+B一定是()A.五次多项式B.八次多项式C.三次多项式D.次数不能确定9.下列各组的两项是同类项的是()A.3m2n2与3m3n2B.2xy与yx C.53与a3D.3x2y2与4x2z210.下列计算正确的是()A.﹣2(x+3y)=﹣2x+3y B.﹣2(x+3y)=﹣2x﹣3yC.﹣2(x+3y)=﹣2x+6y D.﹣2(x+3y)=﹣2x﹣6y11.下列说法正确的是()A.a是单项式B.a没有系数C.a的指数是0 D.﹣3是一次单项式12.设“,,”分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么在右盘处应放“■”的个数为()A.2个B.3个C.4个D.5个二、填空题(共6小题,每小题3分,满分18分)13.﹣5的倒数是.14.若3a2b n与﹣5a m b4所得的差是单项式,则这个单项式是.15.把3.1415取近似数(精确到0.01)为.16.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“1cm”和“9cm”分别对应数轴上的﹣3和x,那么x的值为.17.若mn=m+3,则2mn+3m﹣5mn+10=.18.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+…+3101,因此3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52016的值是.三、解答题(共7小题,满分64分)19.在数轴上表示下列各数:0,﹣4,,﹣2,|﹣5|,﹣(﹣1),并用“<”号连接.20.解方程:(1)2x+2=3x﹣1(2)1﹣x=3﹣x.21.计算:(1)(+﹣﹣+)÷(2)﹣8×(﹣2)4﹣(﹣)3×(﹣16)+(﹣3)2×.22.王明在计算一个多项式减去2b2﹣b﹣5的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是b2+3b﹣1.据此你能求出这个多项式并算出正确的结果吗?23.(1)化简2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y(2)若2a10x b与﹣a2b y是同类项,求(1)结果中的值.24.小明有五张写着不同数字的卡片,请你按要求抽出卡片,完成下列问题(1)从中抽出2张卡片,使这两张卡片上数字乘积最大,最大值是;(2)从中抽出2张卡片,使这两张卡片上数字相除的商最小,最小值是;(3)从中抽出4张卡片,用学过的运算方法,使结果为24,请你写出运算式子(至少写出两种).25.小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔买水性笔的费用.(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.。
2015—2016学年度第一学期七年级数学期中试卷
2015—2016学年度第一学期七年级数学期中试卷注意事项:全卷满分100分,考试时间100分钟.考生答题全部答在答题卡上,答在本试卷上无效.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.答选择题必须用2B 钢笔将答题卡上对应的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定地,在其他位置答题一律无效. 作图必须用2B 钢笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.2-的相反数是( )A .12 B .2 C .12- D .2- 2.2008年我国的国民生产总值约130800亿元,那么130800用科学记数法表示正确的是( ) A .51.30810⨯ B .413.0810⨯ C .41.30810⨯D .21.30810⨯3.下列各组是同类项的一组是( ) A .5xy 与2xyzB .2与7-C .22x y -与25y xD .3ac 与7bc4.下列各组数中,数值相等的是( ) A .23和32B .23-和()23-C .()32-和32-D .()2--和2--5.单项式222x yz -的系数和次数分别是( )A .2-,2B .2-,5C .12-,2D .12-,56.以下各正方形的边长是无理数的是( ) A .面积为3的正方形 B .面积为1.44的正方形 C .面积为25的正方形 D .面积为16的正方形二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答.题卡相应位置......上) 7.112-的倒数是__________;()20151-=__________. 8.比较大小:234⎛⎫- ⎪⎝⎭__________12-)(填“<”、“=”、“>”).9.在数轴上将点A 向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是__________.10.多项式232x x -+-的次数为__________,项数为__________.11.钢笔每支2元,钢笔每支0.5元,n 支钢笔和m 支钢笔共__________元. 12.有理数a 、b 、c 在数轴上的位置如图,化简a b c b +--的结果为__________.13.如图所示的阴影部分面积用代数式表示为__________.14.长方形的周长为53a b +,其中一边长为2a b -,则这个长方形的另一边长为__________.(写出化简后的结果)15.已知2235x x -+的值为9,则代数式2468x x -+的值为__________.16.观察下列图形,它们是按一定规律排列的,依照此规律,第n 个图形有__________个太阳.(图4)(图3)(图2)(图1)三、解答题(本大题共8小题,共68分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(4分)画出数轴并标出表示下列各数的点,并用“<”把下列各数连接起来.132-,4,2.5,1,7,5- 18.计算:((1)(2)每题4分,(3)(4)每题5分,共18分) (1)24+(-14)+(-16)+8;(2)()142722449-÷⨯÷-;(3)()357124468⎛⎫-+-⨯- ⎪⎝⎭;(4)()()341110.5243⎡⎤---÷⨯--⎣⎦.19.计算:(第(1)题4分,第(2)(3)题5分,共14分)(1)3257x y x y -+--(2)()()5322a a b a b +---(3)()()22222222x y xy x y x xy y +---- 20.(6分)先化简再求值:222214332332x y xy xy x y xy xy ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦,其中34x =,1y =-.21.(6分)出租车司机小王某天下午营运全是东西走向的玄武大道进行的,如果规定向东为正,向西为负,他这天下午的行驶记录如下:(单位:千米)(1)将最后一名乘客送到目的地时,小王距下午出车地点的距离是多少千米? (2)若汽车耗油量为a 升/千米,这天下午汽车共耗油多少升?(3)出租车油箱内原有5升油,请问:当0.05a =时,小王途中是否需要加油?若需要加油,至少需要加多少升油?若不需要加油,说明理由. 22.(5分)如图,两摞规格完全相同的课本整齐叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:(1)每本课本的厚度为__________cm ;(2)若有一摞上述规格的课本x 本,整齐叠放在讲台上,请用含x 的代数式表示出这一摞数学课本的顶部距离地面的高度;(3)当56x =时,若从中取走14本,求余下的课本的顶部距离地面的高度.23.(5分)从2开始的连续偶数相加,它们和的情况如下表:(1)根据表中的规律,直接写出24681012+++++=__________.(2)根据表中的规律猜想:24682S n =+++++=__________(用n 的代数式表示) (3)利用上题中的公式计算102104106200++++的值(要求写出计算过程). 24.(10分) 【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,()()()()3333-÷-÷-÷-等.类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”,()()()()3333-÷-÷-÷-记作()3-④,读作“3-的圈4次方”,一般地,把n aa a a a ÷÷÷÷个(0a ≠)记作n a ,读作“a 的圈n 次方”. 【初步探究】(1)直接写出计算结果:2=█__________,12⎛⎫-= ⎪⎝⎭█__________.(2)关于除方,下列说法错误的是( ) A .任何非零数的圈2次方都等于1B .对于任何正整数n ,1=1█C .3=4██D .负数的圈奇数次方结果是负数,负数的圈子偶数次方结果是正数 【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?=(12)2=2×122④=2÷2÷2÷2除方(1)试一试:依照上面的算式,将下列运算结果直接写成幂.的形式. ()3=-█__________; 5=█__________;1=2⎛⎫- ⎪⎝⎭█__________. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于__________; (3)算一算:23111123423⎛⎫⎛⎫⎛⎫÷-⨯---÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭███.。
2015-2016学年度第一学期七年级期中数学试卷(含答案)
2015-2016学年度第一学期七年级期中试卷数学一、选择题:(共8小题,每小题3分,共24分) 1.6-的绝对值是( )A 6-B 6C 16D 16-2.如果30+m 表示向东走30m ,那么向西走40m 表示为( ) A 40+m B 40-m C 30+m D 30-m3.国家提倡“低碳减排”,某公司计划在海边建风能发电站,电站年均发电量约为213000000度,若将数据213000000用科学记数法表示为( )A 610213⨯B 71013.2⨯C 81013.2⨯D 91013.2⨯ 4.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A 3,3- B 3,2- C 3,5- D 3,25.根据《国家中长期教育改革和发展规划纲要》,教育经费投入应占当年GDP 的4%.若设2012年GDP 的总值为n 亿元,则2012年教育经费投入可表示为( )亿元. A n %4 B ()n %41+ C ()n %41- D n +%4 6.把方程2113332x x x -++=-去分母正确的是( ) A ()()131812218+-=-+x x x B ()()13123+-=-+x x x C ()()1181218+-=-+x x x D ()()1331223+-=-+x x x7.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y =( ) A 2 B 3 C 6 D 3x +8.已知关于x 的方程540x a -+=无解,430x b -+=有两个解,320x c -+=只有一个解,则化简a c c b a b -+---的结果是( )A 2aB 2bC 2cD 0二.填空题:(共4小题,每小题3分,共12分)9.圆周率 3.1415926π= ,取近似值3.142,是精确到 位. 10.如果单项式13a x y +与32b x y 是同类项,那么b a = .11.若2x =是关于x 的方程2310x m +-=的解,则m 的值等于 .12.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是 .三.解答题:(共10小题,其中13、14题每题12分,其余每题5分,共64分) 13.计算题:(每小题3分) (1)()234-⨯⨯- (2)()()232524-⨯--÷(3)()()32233103104b b a b b a +-+- (4)⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛---22232153x x x x14.解下列方程:(每小题3分) (1)x x 312-=+- (2)0.50.7 6.5 1.3x x -=-(3)()1236365x x -=- (4)1231337x x -+=-15.先化简,再求值:()()4231x y x y --++,其中1x =,13y =-.16.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a 升,这一天上午共耗油多少升?17.根据下图的数值转换器,当输入的x 与y 满足21102x y ⎛⎫++-= ⎪⎝⎭时,请列式求出输出的结果.18.已知:21A ax x =+-,2321B x x =-+(a 为常数) (1)若A 与B 的和中不含2x 项,求a 的值; (2)在(1)的条件下化简:2B A -.19.我们定义一种新的运算“⊗”,并且规定:22a b a b ⊗=-.例如:2232232⊗=-⨯=-,()()222242a a a ⊗-=--=+.(1)()32-⊗= ;(2)若()37x ⊗-=,求x 的值;(3)若()()()2242x x -⊗⊗=⊗,求x 的值.20.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数,求m 的值.21.(1)比较下列各式的大小:23-+ 23-+;35-+- ()()35-+-;05+-()05+-;…(2)通过(1)的比较,请你分析,归纳出当a ,b 为有理数时,a b +与a b +的大小关系. (3)根据(2)中你得出的结论,求当55x x +=-时,x 的取值范围.22.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+¼+n =n n +1()2.如果图3、图4中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,…,求图4中所有圆圈中各数的绝对值之和.附加题:(每小题4分,共20分)1.对任意有理数,,,a b c d ,规定一种新运算:bc ad d c b a -=,已知2132=-x ,则x = .2.若,,a b c 为整数,且1=-+-a c b a ,则=-+-+-a c c b b a .3.如图,化简=--++---+b a c c b a c b a .b a 0 c4.是否存在整数k ,使关于x 的方程()4615k x x -+=-有整数解?若存在,请求出k 的值,并求出此方程的解;若不存在,请说明理由.5. 将1,2,…,2014这2014个正整数任意分成1007组,每组两个数,分别记作a 1,b 1{},a 2,b 2{},a 3,b 3{},¼,a 1007,b 1007{}.若()1111112c a b a b =-++,()2222212c a b a b =-++,()3333312c a b a b =-++…, ()1007100710071007200721b a b ac ++-=.设1231007S c c c c =++++…,求S 的最大值和最小值,并给出相应的分组方案.2015-2016学年度第一学期七年级期中数学试卷答案 一、 选择题: BBCAABAD 二、 填空题:9. 0.001(或千分位) 10. 8 11. 1- 12. 2213n n -+三、解答题:13.(1)24 (2)22 (3)32243a b a b - (4)2932x x --14.(1)1x =- (2)4x = (3)20x =- (4)6723x =15.原式=126126113-=---+=x y ⎛⎫-+⨯ ⎪⎝⎭16.(1)A 处在岗亭南方6km (2)34a 升17.()()2213212121222x y ⎡⎤++÷=-+⨯+÷=⎢⎥⎣⎦18.(1)3a =- (2)2943x x -+ 19.(1)5 (2)1x =- (3)52x =20.83m =-21.(1),,>==(2)≥a b a b ++ 当0≥ab 时,a b a b +=+(3)0≤x22.(1)67 (2)1761 附加题:1. 8-2. 23.3a b c --+4.当6k =-时,1x =;当4k =时,1x =-;当2k =-时,5x =;当0k =时,5x =-5.()max100820141007100810091010201415215772…S +⨯=++++==此时的分组为{}{}{}{}{}1,1008,2,1009,3,10101006,20131007,2014…,()min 2201410072462012201410150562…S +⨯=+++++==此时的分组为{}{}{}{}{}1,2,3,4,5,62011,20122013,2014…,。
2015-2016学年度第一学期七年级期中数学试卷(含答案)
2015-2016学年度第一学期七年级期中试卷数学一、选择题:(共8小题,每小题3分,共24分) 1.6-的绝对值是( )A 6-B 6C 16D 16-2.如果30+m 表示向东走30m ,那么向西走40m 表示为( ) A 40+m B 40-m C 30+m D 30-m3.国家提倡“低碳减排”,某公司计划在海边建风能发电站,电站年均发电量约为213000000度,若将数据213000000用科学记数法表示为( )A 610213⨯B 71013.2⨯C 81013.2⨯D 91013.2⨯ 4.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A 3,3- B 3,2- C 3,5- D 3,25.根据《国家中长期教育改革和发展规划纲要》,教育经费投入应占当年GDP 的4%.若设2012年GDP 的总值为n 亿元,则2012年教育经费投入可表示为( )亿元. A n %4 B ()n %41+ C ()n %41- D n +%4 6.把方程2113332x x x -++=-去分母正确的是( ) A ()()131812218+-=-+x x x B ()()13123+-=-+x x x C ()()1181218+-=-+x x x D ()()1331223+-=-+x x x7.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y =( )A 2B 3C 6D 3x +8.已知关于x 的方程540x a -+=无解,430x b -+=有两个解,320x c -+=只有一个解,则化简a c c b a b -+---的结果是( )A 2aB 2bC 2cD 0二.填空题:(共4小题,每小题3分,共12分)9.圆周率 3.1415926π=,取近似值3.142,是精确到 位. 10.如果单项式13a x y +与32b x y 是同类项,那么b a = .11.若2x =是关于x 的方程2310x m +-=的解,则m 的值等于 .12.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是 .三.解答题:(共10小题,其中13、14题每题12分,其余每题5分,共64分) 13.计算题:(每小题3分) (1)()234-⨯⨯- (2)()()232524-⨯--÷(3)()()32233103104b b a b b a +-+- (4)⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛---22232153x x x x14.解下列方程:(每小题3分)(1)x x 312-=+- (2)0.50.7 6.5 1.3x x -=- (3)()1236365x x -=- (4)1231337x x -+=-15.先化简,再求值:()()4231x y x y --++,其中1x =,13y =-.16.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a 升,这一天上午共耗油多少升?17.根据下图的数值转换器,当输入的x 与y 满足21102x y ⎛⎫++-= ⎪⎝⎭时,请列式求出输出的结果.18.已知:21A ax x =+-,2321B x x =-+(a 为常数) (1)若A 与B 的和中不含2x 项,求a 的值; (2)在(1)的条件下化简:2B A -.19.我们定义一种新的运算“⊗”,并且规定:22a b a b ⊗=-.例如:2232232⊗=-⨯=-,()()222242a a a ⊗-=--=+.(1)()32-⊗= ;(2)若()37x ⊗-=,求x 的值;(3)若()()()2242x x -⊗⊗=⊗,求x 的值.20.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数,求m 的值.21.(1)比较下列各式的大小:23-+23+;35-+-)()35-+-;05+-()5+-;…(2)通过(1)的比较,请你分析,归纳出当a ,b 为有理数时,a b +与a b +的大小关系. (3)根据(2)中你得出的结论,求当55x x +=-时,x 的取值范围.22.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+¼+n =n n +1()2.如果图3、图4中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,…,求图4中所有圆圈中各数的绝对值之和.附加题:(每小题4分,共20分) 1.对任意有理数,,,a b c d ,规定一种新运算:bc ad dc b a -=,已知2132=-x ,则x = .2.若,,a b c 为整数,且1=-+-a c b a ,则=-+-+-a c c b b a .3.如图,化简=--++---+b a c c b a c b a .b a 0 c4.是否存在整数k ,使关于x 的方程()4615k x x -+=-有整数解?若存在,请求出k 的值,并求出此方程的解;若不存在,请说明理由.5. 将1,2,…,2014这2014个正整数任意分成1007组,每组两个数,分别记作a 1,b 1{},a 2,b 2{},a 3,b 3{},¼,a 1007,b 1007{}.2015-2016学年度第一学期七年级期中数学试卷答案 一、 选择题: BBCAABAD 二、 填空题:9. 0.001(或千分位) 10. 8 11. 1- 12. 2213n n -+三、解答题:13.(1)24 (2)22 (3)32243a b a b - (4)2932x x --14.(1)1x =- (2)4x = (3)20x =- (4)6723x =15.原式=126126113-=---+=x y ⎛⎫-+⨯ ⎪⎝⎭16.(1)A 处在岗亭南方6km (2)34a 升17.()()2213212121222x y ⎡⎤++÷=-+⨯+÷=⎢⎥⎣⎦18.(1)3a =- (2)2943x x -+ 19.(1)5 (2)1x =- (3)52x =20.83m =-21.(1),,>== (2)≥a b a b ++ 当0≥ab 时,a b a b +=+(3)0≤x22.(1)67 (2)1761 附加题:1. 8-2. 23.3a b c --+4.当6k =-时,1x =;当4k =时,1x =-;当2k =-时,5x =;当0k =时,5x =-5.()max 100820141007100810091010201415215772…S +⨯=++++==此时的分组为{}{}{}{}{}1,1008,2,1009,3,10101006,20131007,2014…,()min 2201410072462012201410150562…S +⨯=+++++==此时的分组为{}{}{}{}{}1,2,3,4,5,62011,20122013,2014…,。
天津市武清区2016-2017学年七年级上期中数学试卷含答案解析
天津市武清区2016-2017学年七年级上期中数学试卷含答案解析【一】选择题〔共12小题,每题3分,总分值36分〕1、﹣3旳相反数是〔〕A、3B、﹣3C、D、﹣2、假如用﹣10%表示某商品旳出口额比上一年减少10%,那么+12%那么表示该商品旳出口额比上一年〔〕A、减少12%B、增加12%C、减少22%D、增加2%3、以下说法正确旳选项是〔〕A、有理数分为正数和负数B、有理数都有相反数C、倒数等于它本身旳数只有一个D、假设a为有理数,那么﹣a一定是负数4、数轴上点A、B表示旳数分别是5、﹣3,它们之间旳距离能够表示为〔〕A、﹣3+5B、﹣3﹣5C、|﹣3+5|D、|﹣3﹣5|5、以下比较大小旳式子中,正确旳选项是〔〕A、2<﹣〔+5〕B、﹣1>﹣0.01C、|﹣3|<|+3|D、﹣〔﹣5〕>+〔﹣7〕6、中国倡导旳“一带一路”建设将促进我国与世界各国旳互利合作,依照规划,“一带一路”地区覆盖总人口约为4400000000,4400000000那个数用科学记数法表示为〔〕A、44×108B、4.4×108C、4.4×109D、0.44×10107、在代数式2xy,0,﹣,8y2,,x+2y中,整式共有〔〕A、5B、4C、6D、38、假设A是五次多项式,B是三次多项式,那么A+B一定是〔〕A、五次多项式B、八次多项式C、三次多项式D、次数不能确定9、以下各组旳两项是同类项旳是〔〕A、3m2n2与3m3n2B、2xy与yxC、53与a3D、3x2y2与4x2z210、以下计算正确旳选项是〔〕A、﹣2〔x+3y〕=﹣2x+3yB、﹣2〔x+3y〕=﹣2x﹣3yC、﹣2〔x+3y〕=﹣2x+6yD、﹣2〔x+3y〕=﹣2x﹣6y11、以下说法正确旳选项是〔〕A、a是单项式B、a没有系数C、a旳指数是0D、﹣3是一次单项式12、设“,,”分别表示三种不同旳物体,如下图,前两架天平保持平衡,假如要使第三架天平也平衡,那么在右盘处应放“■”旳个数为〔〕A、2个B、3个C、4个D、5个【二】填空题〔共6小题,每题3分,总分值18分〕13、﹣5旳倒数是、14、假设3a2b n与﹣5a m b4所得旳差是单项式,那么那个单项式是、15、把3.1415取近似数〔精确到0.01〕为、16、如图,将一刻度尺放在数轴上〔数轴旳单位长度是1cm〕,刻度尺上“1cm”和“9cm”分别对应数轴上旳﹣3和x,那么x旳值为、17、假设mn=m+3,那么2mn+3m﹣5mn+10=、18、为了求1+3+32+33+…+3100旳值,可令M=1+3+32+33+…+3100,那么3M=3+32+33+…+3101,因此3M﹣M=3101﹣1,因此M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52016旳值是、【三】解答题〔共7小题,总分值64分〕19、在数轴上表示以下各数:0,﹣4,,﹣2,|﹣5|,﹣〔﹣1〕,并用“<”号连接、20、解方程:〔1〕2x+2=3x﹣1〔2〕1﹣x=3﹣x、21、计算:〔1〕〔+﹣﹣+〕÷〔2〕﹣8×〔﹣2〕4﹣〔﹣〕3×〔﹣16〕+〔﹣3〕2×、22、王明在计算一个多项式减去2b2﹣b﹣5旳差时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到旳差是b2+3b﹣1、据此你能求出那个多项式并算出正确旳结果吗?23、〔1〕化简2〔x2y+xy〕﹣3〔x2y﹣xy〕﹣4x2y〔2〕假设2a10x b与﹣a2b y是同类项,求〔1〕结果中旳值、24、小明有五张写着不同数字旳卡片,请你按要求抽出卡片,完成以下问题〔1〕从中抽出2张卡片,使这两张卡片上数字乘积最大,最大值是;〔2〕从中抽出2张卡片,使这两张卡片上数字相除旳商最小,最小值是;〔3〕从中抽出4张卡片,用学过旳运算方法,使结果为24,请你写出运算式子〔至少写出两种〕、25、小明去文具用品商店给同学买某品牌水性笔,甲、乙两商店都有该品牌旳水性笔且标价差不多上1.50元/支,但甲、乙两商店旳优惠条件却不同、甲商店:假设购买不超过10支,那么按标价付款;假设一次购10支以上,那么超过10支旳部分按标价旳60%付款、乙商店:按标价旳80%付款、在水性笔旳质量等因素相同旳条件下、〔1〕设小明要购买旳该品牌笔数是x〔x>10〕支,请用含x旳式子分别表示在甲、乙两个商店购买该品牌笔买水性笔旳费用、〔2〕假设小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由、2016-2017学年天津市武清区七年级〔上〕期中数学试卷参考【答案】与试题【解析】【一】选择题〔共12小题,每题3分,总分值36分〕1、﹣3旳相反数是〔〕A、3B、﹣3C、D、﹣【考点】相反数、【分析】依照相反数旳概念解答即可、【解答】解:﹣3旳相反数是3,应选:A、2、假如用﹣10%表示某商品旳出口额比上一年减少10%,那么+12%那么表示该商品旳出口额比上一年〔〕A、减少12%B、增加12%C、减少22%D、增加2%【考点】正数和负数、【分析】利用相反意义量旳定义推断即可、【解答】解:假如用﹣10%表示某商品旳出口额比上一年减少10%,那么+12%那么表示该商品旳出口额比上一年增加20%,应选B3、以下说法正确旳选项是〔〕A、有理数分为正数和负数B、有理数都有相反数C、倒数等于它本身旳数只有一个D、假设a为有理数,那么﹣a一定是负数【考点】倒数;有理数;相反数、【分析】依照乘积为1旳两个数互为倒数,可得【答案】、【解答】解:A、有理数分为正数、零、负数,故A错误;B、有理数都有相反数,故B正确;C、倒数等于它本身旳数是1或﹣1,故C错误;D、a为有理数,那么﹣a是负数、零、正数,故D错误;应选:B、4、数轴上点A、B表示旳数分别是5、﹣3,它们之间旳距离能够表示为〔〕A、﹣3+5B、﹣3﹣5C、|﹣3+5|D、|﹣3﹣5|【考点】绝对值;数轴、【分析】由距离旳定义和绝对值旳关系容易得出结果、【解答】解:∵点A、B表示旳数分别是5、﹣3,∴它们之间旳距离=|﹣3﹣5|=8,应选:D、5、以下比较大小旳式子中,正确旳选项是〔〕A、2<﹣〔+5〕B、﹣1>﹣0.01C、|﹣3|<|+3|D、﹣〔﹣5〕>+〔﹣7〕【考点】有理数大小比较、【分析】将各项两式化为最简,比较大小即可、【解答】解:A、﹣〔+5〕=﹣5,∴2>﹣5,本选项错误;B、∵|﹣1|=1,|﹣0.01|=0.01,∴|﹣1|>|﹣0.01|,∴﹣1<﹣0.01,本选项错误;C、∵|﹣3|=3,|+3|=3,∴|﹣3|=|+3|,本选项错误;D、﹣〔﹣5〕=5,+〔﹣7〕=﹣7,∴﹣〔﹣5〕>+〔﹣7〕,本选项正确,应选D6、中国倡导旳“一带一路”建设将促进我国与世界各国旳互利合作,依照规划,“一带一路”地区覆盖总人口约为4400000000,4400000000那个数用科学记数法表示为〔〕A、44×108B、4.4×108C、4.4×109D、0.44×1010【考点】科学记数法—表示较大旳数、【分析】科学记数法旳表示形式为a×10n旳形式,其中1≤|a|<10,n为整数、确定n旳值时,要看把原数变成a时,小数点移动了多少位,n旳绝对值与小数点移动旳位数相同、当原数绝对值>1时,n是正数;当原数旳绝对值<1时,n是负数、【解答】解:4400000000=4.4×109,应选:C、7、在代数式2xy,0,﹣,8y2,,x+2y中,整式共有〔〕A、5B、4C、6D、3【考点】整式、【分析】解决此题关键是搞清整式、单项式、多项式旳概念,紧扣概念作出推断、【解答】解:整式有:2xy,0,﹣,8y2,x+2y共有5个、应选A、8、假设A是五次多项式,B是三次多项式,那么A+B一定是〔〕A、五次多项式B、八次多项式C、三次多项式D、次数不能确定【考点】整式旳加减、【分析】依照题意,利用整式旳加减运算法那么计算即可、【解答】解:假设A是五次多项式,B是三次多项式,那么A+B一定是五次多项式,应选A9、以下各组旳两项是同类项旳是〔〕A、3m2n2与3m3n2B、2xy与yxC、53与a3D、3x2y2与4x2z2【考点】同类项、【分析】依照同类项旳定义:所含字母相同,相同字母旳次数相同,依据定义即可推断、【解答】解:A、m旳次数不同,故不是同类项,选项错误;B、是同类项,选项正确;C、所含字母不同,不是同类项,选项错误;D、所含字母不同,不是同类项,选项错误、应选B、10、以下计算正确旳选项是〔〕A、﹣2〔x+3y〕=﹣2x+3yB、﹣2〔x+3y〕=﹣2x﹣3yC、﹣2〔x+3y〕=﹣2x+6yD、﹣2〔x+3y〕=﹣2x﹣6y【考点】去括号与添括号、【分析】原式利用去括号法那么计算得到结果,即可作出推断、【解答】解:﹣2〔x+3y〕=﹣2x﹣6y,应选D11、以下说法正确旳选项是〔〕A、a是单项式B、a没有系数C、a旳指数是0D、﹣3是一次单项式【考点】单项式、【分析】依照单项式旳系数、次数进行选择即可、【解答】解:A、a是单项式,正确;B、a旳系数为1,错误;C、a旳指数为1,错误;D、﹣3是零次单项式,错误;应选A、12、设“,,”分别表示三种不同旳物体,如下图,前两架天平保持平衡,假如要使第三架天平也平衡,那么在右盘处应放“■”旳个数为〔〕A、2个B、3个C、4个D、5个【考点】等式旳性质、【分析】首先依照图示可知,2×○=△+□〔1〕,○+□=△〔2〕,据此推断出○、△与□旳关系,然后推断出结果、【解答】解:依照图示可得,2×○=△+□〔1〕,○+□=△〔2〕,由〔1〕,〔2〕可得,○=2□,△=3□,∴○+△=2□+3□=5□,应选D、【二】填空题〔共6小题,每题3分,总分值18分〕13、﹣5旳倒数是、【考点】倒数、【分析】依照倒数旳定义可直截了当解答、【解答】解:因为﹣5×〔〕=1,因此﹣5旳倒数是、14、假设3a2b n与﹣5a m b4所得旳差是单项式,那么那个单项式是8a2b4、【考点】合并同类项、【分析】依照差是单项式,可得同类项,依照合并同类项,可得【答案】、【解答】解:由3a2b n与﹣5a m b4所得旳差是单项式,得3a2b4﹣〔﹣5a2b4〕=8a2b4,故【答案】为:8a2b4、15、把3.1415取近似数〔精确到0.01〕为3.14、【考点】近似数和有效数字、【分析】把千分位上旳数字1进行四舍五入即可、【解答】解:3.1415≈3.14〔精确到0.01〕、故【答案】为3.14、16、如图,将一刻度尺放在数轴上〔数轴旳单位长度是1cm〕,刻度尺上“1cm”和“9cm”分别对应数轴上旳﹣3和x,那么x旳值为5、【考点】数轴、【分析】先确定原点对应旳刻度尺旳4cm、再运用9cm减去4cm求解即可、【解答】解:x旳值为9﹣4=5、故【答案】为:5、17、假设mn=m+3,那么2mn+3m﹣5mn+10=1、【考点】整式旳加减—化简求值、【分析】原式合并后,将等式代入计算即可求出值、【解答】解:原式=﹣3mn+3m+10,把mn=m+3代入得:原式=﹣3m﹣9+3m+10=1,故【答案】为:118、为了求1+3+32+33+…+3100旳值,可令M=1+3+32+33+…+3100,那么3M=3+32+33+…+3101,因此3M﹣M=3101﹣1,因此M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52016旳值是、【考点】规律型:数字旳变化类;有理数旳乘方、【分析】依照题目信息,设M=1+5+52+53+…+52016,求出5M,然后相减计算即可得解、【解答】解:设M=1+5+52+53+ (52016)那么5M=5+52+53+54 (52017)两式相减得:4M=52017﹣1,那么M=、故【答案】为、【三】解答题〔共7小题,总分值64分〕19、在数轴上表示以下各数:0,﹣4,,﹣2,|﹣5|,﹣〔﹣1〕,并用“<”号连接、【考点】有理数大小比较;数轴;绝对值、【分析】依照数轴是表示数旳一条直线,可把数在数轴上表示出来,依照数轴上旳点表示旳数右边旳总比左边旳大,可得【答案】、【解答】解:﹣4<﹣2<0<﹣〔﹣1〕<2<|﹣5|、20、解方程:〔1〕2x+2=3x﹣1〔2〕1﹣x=3﹣x、【考点】解一元一次方程、【分析】〔1〕方程移项合并,把x系数化为1,即可求出解;〔2〕方程去分母,去括号,移项合并,把x系数化为1,即可求出解、【解答】解:〔1〕移项,得3x﹣2x=3,合并同类项,得x=3;〔2〕移项,得﹣x+x=3﹣1,合并同类项,得﹣x=2,系数化1,得x=﹣6、21、计算:〔1〕〔+﹣﹣+〕÷〔2〕﹣8×〔﹣2〕4﹣〔﹣〕3×〔﹣16〕+〔﹣3〕2×、【考点】有理数旳混合运算、【分析】〔1〕先将除法转化为乘法,再依照乘法分配律能够解答此题;〔2〕依照幂旳乘方、有理数旳乘法、加法和减法能够解答此题、【解答】解:〔1〕〔+﹣﹣+〕÷=〔+﹣﹣+〕×36==28+30﹣27﹣33+14=12;〔2〕﹣8×〔﹣2〕4﹣〔﹣〕3×〔﹣16〕+〔﹣3〕2×=﹣8×16﹣=﹣128﹣2+4=﹣126、22、王明在计算一个多项式减去2b2﹣b﹣5旳差时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到旳差是b2+3b﹣1、据此你能求出那个多项式并算出正确旳结果吗?【考点】整式旳加减、【分析】先把b2+3b﹣1和2b2+b+5相加,求得原多项式,再用求得旳多项式减去2b2﹣b﹣5,求得正确旳结果、【解答】解:依照题意得:〔b2+3b﹣1〕+〔2b2+b+5〕=b2+3b﹣1+2b2+b+5=3b2+4b+4、即原多项式是3b2+4b+4、∴〔3b2+4b+4〕﹣〔2b2﹣b﹣5〕=3b2+4b+4﹣2b2+b+5=b2+5b+9、即算出正确旳结果是b2+5b+9、23、〔1〕化简2〔x2y+xy〕﹣3〔x2y﹣xy〕﹣4x2y〔2〕假设2a10x b与﹣a2b y是同类项,求〔1〕结果中旳值、【考点】整式旳加减—化简求值;同类项;整式旳加减、【分析】〔1〕原式去括号合并即可得到结果;〔2〕利用同类项定义求出x与y旳值,代入计算〔1〕中计算即可求出值、【解答】解:〔1〕原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy;〔2〕由2a10x b与﹣a2b y是同类项,得到x=,y=1,那么原式=﹣+1=、24、小明有五张写着不同数字旳卡片,请你按要求抽出卡片,完成以下问题〔1〕从中抽出2张卡片,使这两张卡片上数字乘积最大,最大值是15;〔2〕从中抽出2张卡片,使这两张卡片上数字相除旳商最小,最小值是;〔3〕从中抽出4张卡片,用学过旳运算方法,使结果为24,请你写出运算式子〔至少写出两种〕、【考点】有理数旳混合运算、【分析】〔1〕依照题意能够找到四张卡片中乘积最大旳两张;〔2〕依照题意能够找到四张卡片中相除乘积最小旳两张;〔3〕依照题意能够得到用运算符号连接结果为24旳四张卡片,此题得以解决、【解答】解:〔1〕由题意可得,从中抽出2张卡片,使这两张卡片上数字乘积最大,最大值是:〔﹣5〕×〔﹣3〕=15,故【答案】为:15;〔2〕由题意可得,从中抽出2张卡片,使这两张卡片上数字相除旳商最小,最小值是:〔﹣5〕÷3=,故【答案】为:;〔3〕由题意可得,[〔﹣3〕﹣〔﹣5〕]×3×4=24,4×[3﹣〔﹣3〕]+0=24,[3﹣〔﹣5〕]×[0﹣〔﹣3〕]=24、25、小明去文具用品商店给同学买某品牌水性笔,甲、乙两商店都有该品牌旳水性笔且标价差不多上1.50元/支,但甲、乙两商店旳优惠条件却不同、甲商店:假设购买不超过10支,那么按标价付款;假设一次购10支以上,那么超过10支旳部分按标价旳60%付款、乙商店:按标价旳80%付款、在水性笔旳质量等因素相同旳条件下、〔1〕设小明要购买旳该品牌笔数是x〔x>10〕支,请用含x旳式子分别表示在甲、乙两个商店购买该品牌笔买水性笔旳费用、〔2〕假设小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由、【考点】列代数式、【分析】〔1〕先求出甲商店10支水性笔旳价钱,然后再求出超过10支旳部分旳价钱,然后列出代数式;乙商店每支水性笔旳价钱是1.5×0.8元,那么x支旳价钱是1.5×0.8×x元;〔2〕把x=30代入以上两式即可得到【答案】、【解答】解:〔1〕在甲商店需要:10×1.5+0.6×1.5×〔x﹣10〕=0.9x+6〔元〕,在乙商店需要:1.5×0.8×x=1.2x〔元〕,〔2〕当x=30时,0.9x+6=33,1.2x=36,因为33<36,因此小明要买30支笔应到甲商店买比较省钱、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年天津市武清区七年级(上)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合要求的)1.(3分)计算﹣(﹣5)的结果是()A.5 B.﹣5 C.D.﹣2.(3分)已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.﹣2xy2B.3x2C.2xy3 D.2x33.(3分)比较的大小,结果正确的是()A.B.C.D.4.(3分)如果由四舍五入得到的近似数是35,那么在下列各数中不可能是真值的数是()A.34.49 B.34.51 C.34.99 D.35.015.(3分)如图,在数轴上点A表示的数可能是()A.1.5 B.﹣1.5 C.﹣2.4 D.2.46.(3分)在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×1097.(3分)一个数的倒数是它本身,则这个数是()A.1 B.﹣1 C.0 D.±18.(3分)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2 B.3 C.4 D.59.(3分)已知下列方程:(1)2x+3=;(2)7x=9;(3)4x﹣2=3x+1;(4)x2+6x+9=0;(5)x=3;(6)x+y=8.其中是一元一次方程的个数是()A.2 B.3 C.4 D.510.(3分)下列各组中,不是同类项的是()A.52与25B.﹣ab与baC.0.2a2b与﹣a2b D.a2b3与﹣a3b211.(3分)下列变形是属于移项的是()A.由2x=2,得x=1 B.由=﹣1,得x=﹣2C.由3x﹣=0,得3x=D.由﹣2x﹣2=0,得x=﹣112.(3分)计算(﹣2)2015+3×(﹣2)2014的结果是()A.﹣22014B.22014C.1 D.﹣22015二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)单项式﹣5x2y的系数是.14.(3分)在数轴上到原点距离是2.5个单位长度的点表示的数为.15.(3分)加上﹣2x2﹣3xy的结果得6x2﹣2xy+1的多项式是.16.(3分)在等式3×□﹣2×□=15的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立.则第一个方格内的数是.17.(3分)已知|x|=4,|y|=,且xy<0,则的值等于.18.(3分)按如下规律摆放三角形:则第(4)堆三角形的个数为;第(n)堆三角形的个数为.三、解答题(本大题共5小题,其中19-20题每题8分,其余每题10分)19.(8分)比较下列各组数的大小:(1)﹣100与1(2)﹣(﹣)与﹣|+2|(3)﹣与﹣(4)|﹣|与|﹣|20.(8分)解方程:(1)3x=2x+8(2)2+x=2x+1.21.(10分)已知:3x2﹣2x+b与x2+bx﹣1的和不含关于x的一次项.(1)求b的值,并写出它们的和;(2)请你说明不论x取什么值,这两个多项式的和总是正数的理由.22.(10分)计算:(1)84﹣[×(﹣3)﹣+7]÷(2)﹣22×|﹣3|+(﹣6)2×(﹣)﹣|+|÷(﹣)3.23.(10分)已知a,b,c为有理数,且它们在数轴上的位置如图所示.(1)试判断a,b,c的正负性;(2)在数轴上标出a,b,c相反数的位置;(3)若|a|=5,|b|=2.5,|c|=7.5,求a+b﹣c的值.2015-2016学年天津市武清区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合要求的)1.(3分)计算﹣(﹣5)的结果是()A.5 B.﹣5 C.D.﹣【解答】解:﹣(﹣5)=5.故选:A.2.(3分)已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.﹣2xy2B.3x2C.2xy3 D.2x3【解答】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A、﹣2xy2系数是﹣2,错误;B、3x2系数是3,错误;C、2xy3次数是4,错误;D、2x3符合系数是2,次数是3,正确;故选:D.3.(3分)比较的大小,结果正确的是()A.B.C.D.【解答】解:∵﹣<0,﹣<0,>0,∴最大;又∵>,∴﹣<﹣;∴.故选:A.4.(3分)如果由四舍五入得到的近似数是35,那么在下列各数中不可能是真值的数是()A.34.49 B.34.51 C.34.99 D.35.01【解答】解:由于B、34.51,C、34.99,D、35.01四舍五入的近似值都可能是35,而只有A、34.49不可能是真值.故选:A.5.(3分)如图,在数轴上点A表示的数可能是()A.1.5 B.﹣1.5 C.﹣2.4 D.2.4【解答】解:∵点A表示的数大于﹣3且小于﹣2,∴A、B、D三选项错误,C选项正确.故选:C.6.(3分)在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.7.(3分)一个数的倒数是它本身,则这个数是()A.1 B.﹣1 C.0 D.±1【解答】解:一个数的倒数是它本身,则这个数是±1;故选:D.8.(3分)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2 B.3 C.4 D.5【解答】解;∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选:D.9.(3分)已知下列方程:(1)2x+3=;(2)7x=9;(3)4x﹣2=3x+1;(4)x2+6x+9=0;(5)x=3;(6)x+y=8.其中是一元一次方程的个数是()A.2 B.3 C.4 D.5【解答】解:(1)错误,2x+3=,分母中含有未知数,是分式方程;(2)正确,7x=9,符合一元一次方程的定义;(3)正确,4x﹣2=3x+1,符合一元一次方程的定义;(4)错误,x2+6x+9=0,未知数的次数为2,是一元二次方程;(5)正确,x=3,符合一元一次方程的定义;(6)错误,x+y=8,含有两个未知数,是二元一次方程.故选:B.10.(3分)下列各组中,不是同类项的是()A.52与25B.﹣ab与baC.0.2a2b与﹣a2b D.a2b3与﹣a3b2【解答】解:不是同类项的是a2b3与﹣a3b2.故选:D.11.(3分)下列变形是属于移项的是()A.由2x=2,得x=1 B.由=﹣1,得x=﹣2C.由3x﹣=0,得3x=D.由﹣2x﹣2=0,得x=﹣1【解答】解:下列变形是属于移项的是由3x﹣=0,得3x=,故选:C.12.(3分)计算(﹣2)2015+3×(﹣2)2014的结果是()A.﹣22014B.22014C.1 D.﹣22015【解答】解:原式=(﹣2)2014×(﹣2+3)=22014.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)单项式﹣5x2y的系数是﹣5.【解答】解:﹣5x2y=﹣5•x2y,所以该单项式的系数是﹣5.故答案是:﹣5.14.(3分)在数轴上到原点距离是2.5个单位长度的点表示的数为±2.5.【解答】解:设在数轴上到原点距离是2.5个单位长度的点表示的数为x,则|x|=2.5,解得x=±2.5.故答案为:±2.5.15.(3分)加上﹣2x2﹣3xy的结果得6x2﹣2xy+1的多项式是8x2+xy+1.【解答】解:(6x2﹣2xy+1)﹣(﹣2x2﹣3xy)=6x2﹣2xy+1+2x2+3xy=8x2+xy+1.故答案为:8x2+xy+1.16.(3分)在等式3×□﹣2×□=15的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立.则第一个方格内的数是3.【解答】解:设第一个□为x,则第二个□为﹣x.依题意得3x﹣2×(﹣x)=15,解得x=3.故第一个方格内的数是3.故答案为:3.17.(3分)已知|x|=4,|y|=,且xy<0,则的值等于﹣8.【解答】解:∵|x|=4,|y|=,∴x=±4,y=±;又∵xy<0,∴x=4,y=﹣或x=﹣4,y=,则=﹣8.故答案为:﹣8.18.(3分)按如下规律摆放三角形:则第(4)堆三角形的个数为14;第(n)堆三角形的个数为3n+2.【解答】解:∵n=1时,有5个,即(3×1+2)个;n=2时,有8个,即(3×2+2)个;n=3时,有11个,即(3×3+2)个;n=4时,有12+2=14个;…;∴n=n时,有(3n+2)个.三、解答题(本大题共5小题,其中19-20题每题8分,其余每题10分)19.(8分)比较下列各组数的大小:(1)﹣100与1(2)﹣(﹣)与﹣|+2|(3)﹣与﹣(4)|﹣|与|﹣|【解答】解:(1)∵﹣100<0,1>0,∴﹣100<1;(2)∵﹣(﹣)=>0,﹣|+2|=﹣2<0,∴﹣(﹣)>﹣|+2|;(3)∵|﹣|==,|﹣|==,>,∴﹣<﹣;(4)∵|﹣|==,|﹣|==,<,∴|﹣|<|﹣|.20.(8分)解方程:(1)3x=2x+8(2)2+x=2x+1.【解答】解:(1)方程移项合并得:x=8;(2)方程去分母得:4+x=4x+2,移项合并得:3x=2,解得:x=.21.(10分)已知:3x2﹣2x+b与x2+bx﹣1的和不含关于x的一次项.(1)求b的值,并写出它们的和;(2)请你说明不论x取什么值,这两个多项式的和总是正数的理由.【解答】解:(1)根据题意得:(3x2﹣2x+b)+(x2+bx﹣1)=3x2﹣2x+b+x2+bx﹣1=4x2+(b﹣2)x+b﹣1,由结果不含x的一次项,得到b﹣2=0,解得:b=2,则它们的和为4x2+1;(2)∵x2≥0,即4x2≥0,∴4x2+1≥1>0,则这两个多项式的和总是正数.22.(10分)计算:(1)84﹣[×(﹣3)﹣+7]÷(2)﹣22×|﹣3|+(﹣6)2×(﹣)﹣|+|÷(﹣)3.【解答】解:(1)原式=84﹣(﹣﹣+7)×12=84+9+10﹣84=19;(2)原式=﹣12﹣15+1=﹣27+1=﹣26.23.(10分)已知a,b,c为有理数,且它们在数轴上的位置如图所示.(1)试判断a,b,c的正负性;(2)在数轴上标出a,b,c相反数的位置;(3)若|a|=5,|b|=2.5,|c|=7.5,求a+b﹣c的值.【解答】解:(1)如图所示:a<0,b>0,c>0;(2)如图所示:;(3)∵|a|=5,|b|=2.5,|c|=7.5,∴a=﹣5,b=2.5,c=7.5,∴a+b﹣c=﹣5+2.5﹣7.5=﹣10.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;xyB CAO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E .(1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。