二次根式、勾股定理

合集下载

计算100题(勾股定理、二次根式、不等式)

计算100题(勾股定理、二次根式、不等式)
以下 100 以内整数的开方问题,就以此开篇,来挑战一下:
1 _______; 2 _______; 3 _______; 4 _______; 5 _______; 6 _______; 7 _______; 8 _______; 9 _______; 10 ______; 11 _______; 12 _______; 13 _______; 14 _______; 15 _______; 16 _______; 17 _______; 18 _______; 19 _______; 20 _______; 21 _______; 22 _______; 23 _______; 24 _______; 25 _______; 26 _______; 27 _______; 28 _______; 29 _______; 30 _______; 31 _______; 32 _______; 33 _______; 34 _______; 35 _______; 36 _______; 37 _______; 38 _______; 39 _______; 40 _______; 41 _______; 42 _______; 43 _______; 44 _______; 45 _______; 46 _______; 47 _______; 48 _______; 49 _______; 50 _______; 51 _______; 52 _______; 53 _______; 54 _______; 55 _______; 56 _______; 57 _______; 58 _______; 59 _______; 60 _______; 61 _______; 62 _______; 63 _______; 64 _______; 65 _______; 66 _______; 67 _______; 68 _______; 69 _______; 70 _______; 71 _______; 72 _______; 73 _______; 74 _______; 75 _______; 76 _______; 77 _______; 78 _______; 79 _______; 80 _______; 81 _______; 82 _______; 83 _______; 84 _______; 85 _______; 86 _______; 87 _______; 88 _______; 89 _______; 90 _______; 91 _______; 92 _______; 93 _______; 94 _______; 95 _______; 96 _______; 97 _______; 98 _______; 99 _______; 100 _______;

二次根式与勾股定理

二次根式与勾股定理

图5
例 7 如图 6,在 △ABC 中, AB AC 2 , BC 边上有 100 个不同的点 P1,P2,…,P100 ,
记 mi APi 2 BPi PiC(i 1,2,,100),求 m1 m2 … m100 的值.
A
B Pi D
C
图6
学高为师、身正为范!
专注个性化教育
二次根式
学高为师、身正为范!
专注个性化教育
5、勾股定理及其逆定理的应用(重点)
①用于求线段的长;②用于求角的度数;③用于求面积;④用于判定三角
C
形的形状;⑤用于证明两线段垂直;⑥用于证明几条线段间的等量关系;
⑦用于求值 B
6、“双垂图”的计算题,“双垂图”是中考重要的考点,所以要求学生对图
DA
形及性质掌握非常熟练,能够灵活应用。目前“双垂图”需要掌握的知识点有:3 个直角三角
例 5 如图 4,正方形 ABCD中, AE BE,AF 1 AD ,求证: CE EF . 4
AF
D
E
B
C
图4
用于证明几条线段间的等量关系 例 6 如图 5,在△ABC 中, BAC 90,AB AC , D 是 BC 上的点. 求证: BD2 CD2 2AD2 .
A
用于求值
B
E
D
C
60
2
D
1 30
B
C
E
图3
用于判定三角形的形状
例 4 若 三 角 形 的 三 条 边 a,b,c 满 足 关 系 式 a4 b2c2 a2c2 b4 0 , 则 此 三 角 形 形 状


学高为师、身正为范!
变式:若直角三角形的三边长分别是 n+1,n+2,n+3,求 n。

八年级数学下册目录

八年级数学下册目录

八年级数学下册目录教材是开展八年级数学教学活动的主要凭借,那么教材目录是哪些知识呢?小编整理了关于八年级数学下册目录,希望对大家有帮助!八年级数学下册课本目录第十六章二次根式16.1 二次根式16.2 二次根式的乘除16.3 二次根式的加减数学活动小结复习题16第十七章勾股定理17.1 勾股定理阅读与思考勾股定理的证明17.2 勾股定理的逆定理阅读与思考费马大定理数学活动小结复习题17第十八章平行四边形18.1 平行四边形18.2 特殊的平行四边形实验与探究丰富多彩的正方形数学活动小结复习题18第十九章一次函数19.1 函数阅读与思考科学家如何测算岩石的年龄19.2 一次函数信息技术应用用计算机画函数图象14.3 课题学习选择方案数学活动小结复习题19第二十章数据的分析20.1 数据的集中趋势20.2 数据的波动程度阅读与思考数据波动程度的几种度量20.3 课题学习体质健康测试中的数据分析数学活动小结复习题20部分中英文词汇索引八年级数学证明知识点一、对事情作出判断的句子,就叫做命题. 即:命题是判断一件事情的句子。

一般情况下:疑问句不是命题.图形的作法不是命题. 每个命题都有条件(condition)和结论(conclusion)两部分组成. 条件是已知的事项,结论是由已知事项推断出的事项. 一般地,命题都可以写成“如果……,那么……”的形式.其中“如果”引出的部分是条件,“那么”引出的部分是结论. 要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例。

二、三角形内角和定理:三角形三个内角的和等于180度。

1、证明三角形内角和定理的思路是将原三角形中的三个角“凑”到一起组成一个平角.一般需要作辅助线.既可以作平行线,也可以作一个角等于三角形中的一个角.2、三角形的外角与它相邻的内角是互为补角.三、三角形的外角与它不相邻的内角关系是:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.四、证明一个命题是真命题的基本步骤是:(1)根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程.在证明时需注意:(1)在一般情况下,分析的过程不要求写出来.(2)证明中的每一步推理都要有根据. 如果两条直线都和第三条直线平行,那么这两条直线也相互平行。

二次根式及勾股定理的知识点总结

二次根式及勾股定理的知识点总结

二次根式的知识点知识点一:二次根式的概念形如√a(a≥0)的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a≥0是√a为二次根式的前提条件,如√5,√(x2+1),√(x-1) (x≥1)等是二次根式,而√(-2),√(-x2-7)等都不是二次根式。

知识点二:取值范围1. 二次根式有意义的条件:由二次根式的意义可知,当a≥0时√a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

2. 二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,√a没有意义。

知识点三:二次根式√a(a≥0)的非负性√a(a≥0)表示a的算术平方根,也就是说,√a(a≥0)是一个非负数,即√a≥0(a≥0)。

注:因为二次根式√a表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a≥0)的算术平方根是非负数,即√a≥0(a≥0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。

这个性质在解答题目时应用较多,如若√a+√b=0,则a=0,b=0;若√a+|b|=0,则a=0,b=0;若√a+b2=0,则a=0,b=0。

知识点四:二次根式(√a)的性质(√a)2=a(a≥0)文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。

注:二次根式的性质公式(√a)2=a(a≥0)是逆用平方根的定义得出的结论。

上面的公式也可以反过来应用:若a≥0,则a=(√a)2,如:2=(√2)2,1/2=(√1/2)2.知识点五:二次根式的性质√a2=|a|文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。

注:1、化简√a2时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即√a2=|a|=a (a≥0);若a是负数,则等于a的相反数-a,即√a2=|a|=-a (a﹤0);2、√a2中的a的取值范围可以是任意实数,即不论a取何值,√a2一定有意义;3、化简√a2时,先将它化成|a|,再根据绝对值的意义来进行化简。

人教版八年级数学下册课件勾股定理复习课(课2)

人教版八年级数学下册课件勾股定理复习课(课2)

c
(1)如果∠A和∠B是邻补角,那么∠A+∠B=180〫.
重难点3:勾股定理逆定理的应用
Ca B
知识梳理
3. 勾股定理逆定理的应用
② 实质:由“数”到“形”的转化; ③ 应用:判定一个三角形是否为直角三角形.
知识梳理
4. 勾股数
勾股数
正整数
判断一组数是不是勾股数的步骤: 看、找、算、判.
重点解析
反走私艇 B 离走私艇 C 12 海里,若走私艇 C
从边的方面判断:如果已知条件与边有关系,则可以通过勾股定理的逆定理进行判断.
两个角都是40〫
重点解析
1.有些命题在不容易确定题设和结论的情况下,可 以先改写成“如果……那么……”的形式,然后确 定题设和结论. 2.判断一个命题是假命题只需要举出一个反例即可.
重点解析
重难点2:勾股定理的逆定理
判断满足下列条件的三角形是不是直角三角形.如果是, 请指出哪个角是直角. (1)在△ABC中,∠A=25〫、∠B=65〫; 解:(1)在△ABC中,因为∠A=25〫、∠B=65〫,所以 ∠C=180〫-∠A-∠B=90〫,所以这个三角形是直角三角形. ∠C是直角.
重点解析
重难点4:勾股数
判断下列各组数是不是勾股数:
深化练习
1.在△ABC中,∠A、 ∠B 、 ∠C的对边分别是a、b、c,下列判断 错误的是( B ).
A.如果∠C- ∠B= ∠A,则△ABC是直角三角形.
深化练习
A.如果∠C- ∠B= ∠A,则△ABC是直角三角形. 解析:因为∠C- ∠B=∠A,所以 ∠C=∠B+∠A. 因为∠C+∠B+∠A=180〫,所以 ∠C+∠C=180〫. 解得:∠C=90〫,所以△ABC是直角三角形.

勾股定理及二次根式综合复习(含答案)

勾股定理及二次根式综合复习(含答案)

勾股定理及⼆次根式综合复习(含答案)勾股定理及⼆次根式复习⼀、知识梳理:(⼀)勾股定理:1、勾股定理定义:如果直⾓三⾓形的两直⾓边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.即直⾓三⾓形两直⾓边的平⽅和等于斜边的平⽅勾:直⾓三⾓形较短的直⾓边股:直⾓三⾓形较长的直⾓边弦:斜边勾股定理的逆定理:如果三⾓形的三边长a ,b ,c 有下⾯关系:a 2+b 2=c 2,那么这个三⾓形是直⾓三⾓形。

2. 勾股数:满⾜a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。

) *附:常见勾股数:3,4,5; 6,8,10; 9,12,15;5,12,13 3. 判断直⾓三⾓形:如果三⾓形的三边长a 、b 、c 满⾜a 2+b 2=c 2 ,那么这个三⾓形是直⾓三⾓形。

(经典直⾓三⾓形:勾三、股四、弦五)其他⽅法:(1)有⼀个⾓为90°的三⾓形是直⾓三⾓形;(2)有两个⾓互余的三⾓形是直⾓三⾓形。

⽤它判断三⾓形是否为直⾓三⾓形的⼀般步骤是:(1)确定最⼤边(不妨设为c );(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直⾓的三⾓形;若a 2+b 2<c 2,则此三⾓形为钝⾓三⾓形(其中c 为最⼤边);若a 2+b 2>c 2,则此三⾓形为锐⾓三⾓形(其中c 为最⼤边)4.注意:(1)直⾓三⾓形斜边上的中线等于斜边的⼀半(2)在直⾓三⾓形中,如果⼀个锐⾓等于30°,那么它所对的直⾓边等于斜边的⼀半。

(3)在直⾓三⾓形中,如果⼀条直⾓边等于斜边的⼀半,那么这条直⾓边所对的⾓等于30°。

5. 勾股定理的作⽤:(1)已知直⾓三⾓形的两边求第三边;(2)已知直⾓三⾓形的⼀边,求另两边的关系;(3)⽤于证明线段平⽅关系的问题;(4)利⽤勾股定理,作出长为n 的线段. (⼆)⼆次根式:1.⼆次根式的概念:形如a (a≥0)的式⼦叫做⼆次根式(⼆次根式中,被开⽅数⼀定是⾮负数,否则就没有意义,并且根式a ≥0)2.最简⼆次根式:同时满⾜:①被开⽅数的因数是整数,因式是整式(分母中不含根号);②被开⽅数中不含能开得尽⽅的因数或因式.这样的⼆次根式叫做最简⼆次根式. 3. 同类⼆次根式:⼏个⼆次根式化成最简⼆次根式后,如果被开⽅数相同,这⼏个⼆次根式就叫同类⼆次根式. 4.⼆次根式的性质:①a a ≥≥00()②()a a a 20=≥()③a aa aaa a200==>=-<||()()()④ab a b a b=?≥≥(,)00⑤babaa b=>≥(,)005.分母有理化及有理化因式:把分母中的根号化去,叫做分母有理化;两个含有⼆次根式的代数式相乘,?若它们的积不含⼆次根式,则称这两个代数式互为有理化因式.6.⼆次根式的运算(1)因式的外移和内移:如果被开⽅数中有的因式能够开得尽⽅,那么,就可以⽤它的算术根代替⽽移到根号外⾯;如果被开⽅数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外⾯,反之也可以将根号外⾯的正因式平⽅后移到根号⾥⾯.(2)⼆次根式的加减法:先把⼆次根式化成最简⼆次根式再合并同类⼆次根式.(3)⼆次根式的乘除法:⼆次根式相乘(除),将被开⽅数相乘(除),所得的积(商)仍作积(商)的被开⽅数并将运算结果化为最简⼆次根式.(4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适⽤于⼆次根式的运算.7.使分母不带根号(分母有理化)常⽤⽅法:①化去分母中的根号关键是确定与分母相乘后,其结果不再含根号的因式。

勾股定理和二次根式综合练习题

勾股定理和二次根式综合练习题

BA二次根式和勾股定理综合练习题一·填空题1、若x x -+有意义,则=+1x 。

2、实数a 在数轴上的位置如图所示,化简:=-+-2)2(|1|a a __3.若实数a 、b 满足32)2(2+-+-+a b b a =0,则a= , b=4、一只蚂蚁从长为12cm 、宽为3 cm ,高是4 cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是_____________.5.在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,1234S S S S +++= .6·计算 (121++231++…200520061+)×(2006+1)=__________7·已知实数x 、y 滿足x 2+Y 2-4X -2Y +5=0,则xy x 231-+的值为____________________。

123lCB8·若1-x -x -1=(x+y)2,则x -Y 的值为__________________9.已知:()022=+++y x x ,则=-xy x 2 。

10、已知,11=+-x x 则=-⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛-414122x x x x 。

11·()=-231 ,()=-25334。

二·选择题1、等腰三角形腰长10cm ,底边16cm ,则面积( ) A .296cmB .248cmC .224cmD .232cm2、如图,若数轴上的点A ,B ,C ,D 表示数-2,1,2,3,则表示34-的点P 应在线段 ( )A.线段AB 上B.线段BC 上C.线段CD 上 D 、线段OB 上3、如图,有一块直角三角形纸片,两直角边AC=5cm,BC=12cm,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于 ( )A.m 310B.m 3C.m 38D.m 54. 一个直角三角形两直角边长分别为5cm 、12cm ,其斜边上的高为( ) A.6cmB.8cm C.8013cmD.6013cm5. -- )A. 32--B. 32--C. -=-不能确定6. 若12x)A. 21x -B. 21x -+C. 3D. -37数部分为x ,小数部分为y ,y -的值是( )A. 3-3 43 2 1 0 -1 -2 DC8、3+5的小数部分是a ,3-5的小数部分是b ,则a +b 等于( ) A 、 0 B 、-1 C 、1 D 、±19、下列各式是二次根式的是( )(A )、7- (B )、m (C )、12+a (D )、33三.计算:(每小题4分)(1)2484554+-+ (2)521312321⨯÷(2)(3)22(- (4) 20245-(5)284)23()21(01--+-⨯- (6)32218+-(7)20112010)23()23(+⋅- (8))1(932x xx x +-四.先化简,再求值:16·已知m 是13的整数部分,n 是13的小数部分,求22m n -的值17、已知x=2+3,y=2-3,计算代数式⎪⎪⎭⎫⎝⎛-⋅⎪⎪⎭⎫⎝⎛+---+2211y xy x y x y x y x 的值。

八年级数学下册期中专题复习学案(二次根式,勾股定理,平行四边形)(有答案)【精品】

八年级数学下册期中专题复习学案(二次根式,勾股定理,平行四边形)(有答案)【精品】

《第十六章二次根式》专题复习知识结构图重难点 1 二次根式有意义的条件例1.若式子m+1+(m-2)0有意义,则实数m的取值范围是( ) A.m>-2 B.m>-2且m≠1C.m≥-1 D.m≥-1且m≠2【方法指导】1.使得式子x4-x有意义的x的取值范围是( )A.x≥4 B.x>4 C.x≤4 D.x<42.要使式子x+3x-1+(x-2)0有意义,则x的取值范围为.3.使代数式1x+3+4-3x有意义的整数x有.重难点2 二次根式的非负性例2. 若a-1+b2-4b+4=0,则ab的值等于( )A.-2 B.0 C.1 D.2【方法指导】这类问题主要利用非负数的和为0,进而得出每一个非负数的式子为0,从而构造方程求未知数的值,通常利用的非负数有:(1)||x≥0; (2)x2≥0; (3)x≥0.针对练习:4.若a +b +5+|2a -b +1|=0,则(b -a )2 020=( ) A .-1 B .1 C .-52 020 D .52 0205.已知y =x -4+4-x +2,则 xy的值为 .6.已知|a -5|+b +3=0,那么点P (a ,b )在第 象限. 7.已知实数a ,b 在数轴上的位置如图所示,化简:()()b a b a ---++22123.重难点3 二次根式的运算例3.计算:()22331312-+⨯-【方法指导】二次根式的运算中,多项式乘法法则、除法法则以及乘法公式仍然适用. 针对练习: 8.计算: (1)4821319125+- (2)()()2222336-++- (3)()()362546322÷++-重难点 4 与二次根式有关的化简求值例4. 先化简,再求值:⎪⎪⎭⎫⎝⎛+⋅⎪⎪⎭⎫ ⎝⎛++÷--y x x y xy x xy x x y 1122222,其中32,32-=+=y x .将二次根式的运算与分式的化简求值相结合考查,是最常见的考查形式.当未知数的值是无理数时,求值时就用到二次根式的运算. 针对练习:9.先化简,再求值:12212122++-÷⎪⎭⎫⎝⎛+---a a a a a a aa ,其中2=a .重难点 5 与二次根式有关的规律探究例5.先阅读,再解答:由()()()()235353522=-=-⋅+可以看出,两个含有二次根式的代数式相乘,积可能不含有二次根式.在进行二次根式计算时,可以利用这种运算规律化去分母中的根号,例如:()()23232323231-=-+-=+,根据以上运算请完成下列问题:(1)2019-2017(填“>”或“<”); (2)利用你发现的规律计算下面式子的值:()12019201820191341231121+⋅⎪⎭⎫ ⎝⎛++⋅⋅⋅++++++.针对练习:10.观察下列各式:514513,413412,312311=+=+=+,…,请你将发现的规律用含自然数n(n ≥1)的代数式表示出来: .《第十七章 勾股定理》专题复习。

八年二次根式、勾股定理综合复习经典知识讲解

八年二次根式、勾股定理综合复习经典知识讲解

学习过程一、知识点复习讲解1.二次根式:式子a(a≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)(a)2=a(a≥0);(2)==a a25.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(a≥0,b≥0);=b≥0,a>0)(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222a b c+=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明0 (勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGHS S S ∆+=正方形正方形ABCD,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形, 化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用cba HG F EDCBAbacbac cabcab a bc cbaE D CBA①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c ,b =,a =②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a cb +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角 边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:ABC30°D C BA ADB C二、例题精析与课堂运用 第一部分:二次根式【例题】【历年考点例析】 考点1、无理数知识回顾:无限不循环的小数,叫做无理数。

初中数学中的二次根式

初中数学中的二次根式

二次根式:从基本概念到应用解析概述:在数学中,二次根式是初中阶段的重要内容之一。

它不仅涉及数学基础知识,还有广泛的应用领域。

本文将详细介绍二次根式的定义、性质以及解题方法,并探讨其在实际生活中的应用。

通过阅读本文,您将对二次根式有更深入的理解。

一、二次根式的定义与性质1. 二次根式的定义二次根式是指形如√a的表达式,其中a是一个非负实数。

在二次根式中,根号下的数被称为被开方数。

二次根式的值是使得该值的平方等于被开方数的非负实数。

2. 二次根式的性质- 二次根式的值是非负实数。

- 二次根式的平方等于被开方数。

- 二次根式可以进行加减乘除运算。

二、二次根式的解题方法1. 化简二次根式当二次根式中的根号下含有可以分解的因子时,我们可以利用数的性质将其化简。

例如,√12可以化简为2√3。

2. 合并二次根式当二次根式中的根号下含有相同的因子时,我们可以将其合并。

例如,√7 + √7可以合并为2√7。

3. 有理化分母当二次根式出现在分母中时,我们可以通过有理化分母的方法将其转化为有理数。

例如,1/√2可以有理化为√2/2。

4. 求解二次根式的值对于给定的二次根式,我们可以利用数的性质和运算法则求解其具体的数值。

例如,求解√9就是求解方程x²=9的解,得到x=±3。

三、二次根式的应用1. 几何应用二次根式在几何学中有广泛的应用。

例如,勾股定理中的斜边长度就是两个直角边平方和的二次根式表达。

2. 物理应用二次根式在物理学领域也有重要的应用。

例如,牛顿第二定律中的动能公式K=1/2mv²中,速度的平方根就是动能的二次根式。

3. 经济金融应用在经济金融领域,二次根式经常用于计算利率、复利等涉及到指数增长的问题。

总结归纳:本文通过对二次根式的定义、性质、解题方法以及应用的详细介绍,使读者对二次根式有了更深入的了解。

二次根式作为初中数学的重要内容,不仅能够帮助我们理解数学的基本概念,还可以应用于几何学、物理学以及经济金融等实际领域。

2023苏州中考数学考点

2023苏州中考数学考点

2023苏州中考数学考点苏州中考数学考点二次根式、勾股定理、四边形、一次函数和数据的分析。

(1)二次根式(2)勾股定理:解直角三角形,解直角三角形的知识是近几年各地中考命题的热点之一,考察题型为选择题,填空题,应用题为主,分值一般8-12分,难易度为难。

【考察内容】①常见锐角的三角函数值的计算②根据图形计算距离,高度,角度的应用题③根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题。

(3)四边形:初中数学中考中的重点内容之一,分值一般为10-14分,题型以选择,填空,解答证明或融合在综合题目中为主,难易度为中。

【考察内容】①多边形的内角和,外角和等问题②图形的镶嵌问题③平行四边形,矩形,菱形,正方形,等腰梯形的性质和判定。

(4)一次函数:一次函数图像与性质是中考必考的内容之一。

中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。

甚至有存在探究题目出现。

【考察内容】①会画一次函数的图像,并掌握其性质。

②会根据已知条件,利用待定系数法确定一次函数的解析式。

③能用一次函数解决实际问题。

④考察一次函数与二元一次方程组,一元一次不等式的关系。

(5)数据的分析二次函数、一元二次方程、旋转、圆和概率初步。

(1)二次函数:二次函数的图像和性质是中考数学命题的热点,难点。

试题难度一般为难。

常见选择,填空题分值为3-5分,综合题分值为10-12分。

【考察内容】①能通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。

②能用数形结合,归纳等熟悉思想,根据二次函数的表达式(图像)确定二次的开口方向,对称轴和顶点的坐标,并获得更多信息。

③综合运用方程,几何图形,函数等知识点解决问题。

(2)一元二次方程:中考分值约为3-5分,题型主要以选择,填空为主,极少出现简答,难易度为易。

【考察内容】①方程及方程解的概念②根据题意列一元一次方程③解一元一次方程。

(3)旋转:图形的平移,旋转是中考题的新题型,热点题型,在试题比重,逐年上升。

人教版 八年级数学下册二次根式、勾股定理 综合测试卷 (含答案解析)

 人教版 八年级数学下册二次根式、勾股定理 综合测试卷 (含答案解析)
20.(1)已知y= ﹣ +8x,求 的平方根.
(2)当﹣4<x<1时,化简 ﹣2 .
21.一个25米长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B也外移4米,对吗?为什么?
22.综合题
(1)试比较 与 的大小;
(2)你能比较 与 的大小吗?其中k为正整数.
A. B. C. D.
2.若式子 在实数范围内有意义,则x的取值范围是( )
A. x>1 B. x<1 C. x≥1 D. x≤1
3.下列变形中,正确的是( )
A.(2 )2=2×3=6 B.
C. D.
4.下列组合哪个不是勾股数()
A.30,40,50 B.7,24,25 C.5,12,13 D.1,2,3
【解析】【分析】(1)先根据二次根式有意义的条件可得x的值,进一步得到y的值,代入 得到它的平方根;
(2)由于﹣4<x<1,根据完全平方公式和二次根式的性质得到 ﹣2 =|x+4|﹣2|x﹣1|,再去绝对值化简即可.
21.【答案】解:不对.
理由:如图,依题意可知
AB=25(米),AO=24(米),∠O=90°,
22.【答案】(1)解: ,

故 <
(2)解: ,

故 <
【考点】二次根式的性质与化简,二次根式的乘除法
【解析】【分析】(1)比较两个二次根式的大小,用分母有理化的法则先将其化为最简二次根式,再比较大小即可;(2)方法同(1).
23.【答案】解:如图,AB=28 ,∠P=45°,∠PAC=90°,∠ABQ=45°,∴∠ACP=45°,
5.下列二次根式中,与 是同类二次根式的是()

二次根式勾股定理知识点复习优秀版

二次根式勾股定理知识点复习优秀版

二次根式勾股定理知识点复习优秀版第十六章:二次根式一、二次根式的意义及性质:题组1:(二次根式的识别:式子a (0a ≥),叫做二次根式)1.下列各式中,是二次根式的有_________________________。

(填序号) ①7; ②9; ③2a ; ④22x +; ⑤3-; ⑥()25-;⑦221x --; ⑧221n +; ⑨21x +; ⑩39; 题组2:(二次根式有意义的条件a (0a ≥))1.当a 是怎样的实数时,下列各式在实数范围内有意义? (1)32x -______;(2)121x -______;(3)421xx -+_________;(4)23x +_______;(5)a -______。

(6);(745++x x2.已知225y x x --,则2x y -的值是_______________。

题组3:0a ) 1.若|2|30x y +-3x y-的值是_________;题组4:(二次根式的性质:2(0)a a a =≥,2||a a =)1.计算:23=_____;(232=_______;(20.2-=______;223⎛ ⎝=_______;2.在实数范围内因式分解:(1)22x -=_______________;(2)49x -=________________。

320.3;223⎛⎫- ⎪⎝⎭210-()23.14π-。

4.若()21221x x --,则x 的取值范围是____________。

题组5:(最简二次根式和同类二次根式)1.在根式①22b a + ②5x ③xy x -2④ abc 27中,最简二次根式是( )A .①②B .③④C .①③D .①④ 2.下列二次根式中,可以合并的是 ( ) A .23a a a 和B .232a a 和C .aa a a 132和 D .2423a a 和 二、二次根式的运算:题组6:a b ab (0a ≥,0b ≥)a abb ⇔0a ≥,0b >)) 1. 12;242331538a b ; 21820758151354273-.1240.568- 4、1486274÷.(3513224a a a -()233223327.先化简,再求值:11212222--÷+++-+x x x x x x x ,其中23-=x .第十七章:勾股定理一、知识点1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。

初二数学二次根式与勾股定理

初二数学二次根式与勾股定理

初二数学二次根式与勾股定理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初二数学二次根式与勾股定理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初二数学二次根式与勾股定理的全部内容。

二次根式【知识要点】1. 二次根式的有关概念(1)二次根式:形如 ( a ≥0 )的式子叫做二次根式。

(2)最简二次根式满足:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式. 练习:化简:(1)= ;(2)= ;(3)= ;(4)= .(5) 下列的根式中,属最简二次根式的是(A B 。

D 。

(3)同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.若最简二次根式与是同类二次根式,则m = 。

2.; ⑵ (≥0) ⑶; ⑷ (); ⑸ () 3. 分母有理化:把分母中的根号化去叫做分母有理化。

练习:化简:;1. 中,字母a的取值范围是__________.2.________.3. 当时,在实数范围内有意义.4. 的倒数是 ;的绝对值是 .5.的有理化因式是,的有理化因式是 .6.7.当时,化简的结果是_________.8.化成最简二次根式,结果是___________.9. ,则___________.a 121824482)9(+x 3m 2()=2a a =2a =ab 0,0≥≥b a=b a0,0>≥b a =⨯⨯=333131()()()=-+-⨯=+1212121121x 12x <<1x -+(a b -ab =10.,且<,化简:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式、勾股定理
【知识点】 勾股定理:2
2
2
c b a =+(c 为最长边)⇔这个三角形是直角三角形.
一、选择题
1. x 的取值范围是( )
A . 1x >
B . 1x ≥
C . 1x ≤
D . 1
x <
2. 10b -=,那么2015)(b a +的值为( )
A . -1
B . 1
C . 2015
3
D . 2015
3
-
3. 下列二次根式中与2是同类二次根式的是( ):
A
.12 B
C D . 18
4. 下列计算正确的是( )
A . 0(2)0-=
B . 2
3
9-=- C
3=
D
=5. 如右上图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( )
A . 25
B . 12.5
C . 9
D . 8.5
6. 如右图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).
A . 12
B . 7
C . 5
D . 13 7.下列说法中,错误的是( )
A . △ABC 中,若∠B=∠C-∠A ,,则△ABC 是直角三角形
B . △AB
C 中,a 2
=(b+c)(b-c), 则△ABC 是直角三角形 C . △ABC 中,∠A:∠B:∠C=3:4:5, 则△ABC 是直角三角形
D . △ABC 中,a:b:c=3:4:5, 则△ABC 是直角三角形 8.如图,某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( ) A . 450a 元
B . 225a 元
C . 150a 元
D . 300a 元
9.如图,已知长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点 B 与点D 重合,折痕为EF ,则△ABE 的面积为( ) A . 6cm 2
B . 8cm 2
C . 10cm 2
D . 12cm 2
10.如图,已知一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12
海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距(
) A . 25海里
B . 30海里
C . 35海里
D . 40海里
C
F
第9题图
150°
20m
30m
第8题图


A 东
第10题图
二、填空题
11.如图,测得某楼梯的斜边长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要_______米。

12.化简:3)5(2
⨯-= ____________
13. 已知4
3
22+-+-=x x y ,则=xy ____________
14. 已知直角三角形的两条边长分别是5和12,则第三边为____________
15.如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D 若BC =8,AD =5,则AC 等于______________. 16.如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是____________.
(第14题) (第15题) (第16题) (第17题) 17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.
18.如图所示,是一个圆柱体,ABCD 是它的一个横截面,AB= ,BC=3,一只蚂蚁,要从A
点沿表面爬行
到C 点,那么,最近的路程长为
. 三、解答题
19.计算:(1(2)
2
3
3
232
6
--
(3(4))622554(83--⨯
20.如下图所示,已知长方形ABCD 中AB
=8 cm ,BC =10 cm ,在边CD 上取一点E ,将△ADE 折叠使点D
5米
3米
恰好落在BC 边上的点F ,求CE 的长.
21.如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?
22.小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度。

A
D
E
B
C
第21题图
23.已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°,求四边形ABCD 的面积。

24. 印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:
“平平湖水清可鉴,面上半尺生红莲; 出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远; 能算诸君请解题,湖水如何知深浅?”
请用学过的数学知识回答这个问题。

25. 如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.
(1) A 城是否受到这次台风的影响?为什么?
(2) 若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?
A
B C
D 第22题图
E A
B。

相关文档
最新文档