2013福建省泉州七中高三第一次质量检查数学文试题及答案
福建省泉州七中2013届高三第一次质量检查文综试题 Word版含答案
泉州七中2013届高三年校质检(一)文科综合试卷(2013.04.30)考试时间:150分钟 满分:300分政治:命卷人:陈江土 复核人:陈松榕历史:命卷人:陈力勋 复核人:肖卿贤地理:命卷人:邓伟华 复核人:王莉青本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题共144分)图1是我国春季开始日期等值线图。
完成1-2题。
1.影响我国入春时间东西差异和南北差异的主导因素分别为( )A .大气环流 地形B .地形 纬度C .纬度 大气环流D .海陆分布 降水2.图中M 点的日期最有可能是( )A .3月1日B .2月24日C .3月15日D .4月1日某电子制造企业1988年开始在中国大陆投资,现已逐渐在许多个城市建立子公司,图2中阴影部分为该企业子公司在中国大陆的集中分布区。
读图,回答3-4题。
3. 图中( )A. 子公司集中分布区形成的时间先后顺序是④③②①B. ④地区最初建立子公司的主导区位优势是市场广阔C. ①地相对于②两地吸引子公司建立的区位优势是海运便利D. 子公司由④地向③地转移主要受廉价土地和劳动力的吸引4.该企业在我国建立子公司,利于当地( )A .产业结构的升级B .环境质量的改善C .城市规模的控制D .能源紧张状况的缓解图2是某国142°E 经线附近气温、降水量分布图。
读图3,回答5-6题。
5.图中( ) 图30 100 300 200 30 20100 10° 20° 40° 30° 乙 甲 1月气温7月气温1月降水量 7月降水量 纬度 降水气温(℃) ① ② ③ ④ 图2 图1A .7月气温自北向南递减B .甲地降水量季节变化比乙地小C .1月降水量南多北少D .甲地气温年较差比乙地大6.该国( )A .地处亚欧板块和太平洋板块交界处B .雨热同期,农业以水稻种植业为主C .人口和城市主要分布在中部平原D .珊瑚礁世界闻名,利于发展旅游业图4景观名为‚佛掌沙丘‛,位于雅鲁藏布江北岸的山麓地带。
2013年泉州市初中学业质量检查数学试题-参考答案及评分标准(特别优化版)直接打印
-1 0 1-1 0 1 -1 0 1-1 0 1A. B. C. D.2013年福建省泉州市初中学业质量检查数学试卷(试卷满分:150分;考试时间:120分钟)友情提示:所有答案必须填写到答题卡相应的位置上.一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分.1.下列各数中,属于负数的是( ).A.0B.3C.3- D. )3(--2.计算:43aa⋅等于().A. 7aB.12aC. 43a D. 34a3.把不等式组⎩⎨⎧≤->+1242xx的解集在数轴上表示出来,正确的是( ).4.一组数据35、38、37、36、37、36、35、36的众数是().A. 35B. 36C. 37D. 385.若n边形的内角和是︒720,则n的值是().A.5B.6C.7D. 86.如图1,由6个形状相同的小正方体搭成的一个几何体,此几何体的左视图是().7.如图2,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a、b)(ba>,则)(ba-等于( ).A.4B.5C.6D.7A. B. C. D.(图1)正面(图2)baD(图4) A B EC 二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.2013-的相反数是 . 9.分解因式:_________22=-m m .10.据军事网站报道,辽宁号航空母舰,简称“辽宁舰”,舷号16,是中国人民解放军海军第一艘可以搭载固定翼飞机的航空母舰.辽宁舰的满载排水量67500吨,将数据67500用科学记数法表示为 .11.计算:=+++aa a 222 . 12.方程532=-x 的解是 .13.如图3,ABC Rt ∆的顶点C 在DE 上,︒=∠90ACB ,AB DE //.若︒=∠30BCE ,则=∠A ︒.14.写出一个你熟悉的既是轴对称又是中心对称的几何图形: .15.一个扇形的弧长是cm π38,面积是2190cm π,这个扇形的半径是 cm .16.如图4,E 是ABC ∆的重心,AE 的延长线交BC 于点D ,则=AD AE : . 17.在平面直角坐标系中,A 、B 两点的坐标分别为)2,3(A ,)5,1(B . (1)若点P 的坐标为),0(m ,当=m 时,PAB ∆的周长最短;(2)若点C 、D 的坐标分别为),0(a 、)4,0(+a ,则当=a 时,四边形ABDC 的周长最短.三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)计算:3)13(5252801-+--⨯+÷-.19.(9分)先化简,再求值:2)2()3)(3(-+-+x x x ,其中2-=x .(图3)ABECD20.(9分)如图5,四边形ABCD 是菱形,AB DE ⊥交BA 的延长线于点E ,BC DF ⊥交BC 的延长线于点F . 求证:DF DE =.21.(9分)《泉州市建设“美丽乡村”五年行动计划(2012年~2016年)》提出:从2013年起,泉州花5年时间把泉州农村建设成为“村庄秀美、环境优美、生活甜美、社会和美”的宜居、宜业、宜游“美丽乡村”.某村从2名女村民和2名男村民中随机抽取环境卫生督查员若干名.(1)若随机抽取1名,求恰好是女村民的概率;(2)若随机抽取2名,请你用画树状图或列表的方法表示所有等可能的结果,并求恰好是1名女村民和1名男村民的概率.22.(9分)如图6,在方格纸中(小正方形的边长为1),直线AB 与两坐标轴交于格点A 、B ,根据所给的直角坐标系(O 是坐标原点),解答下列问题:(1)分别写.出点A 、B 的坐标,画.出直线AB 绕着点O 逆时针旋转︒90的直线''B A ;(2)若线段''B A 的中点C 在反比例函数)0(≠=k xky 的图象上,请求出此反比例 函数的关系式.D(图5)ABE CFo(图6)ABy x23.(9分)世界卫生组织决定从1989年起将每年的5月31日定为世界无烟日,中国也将该日作为中国的无烟日.为宣传“吸烟危害健康”,提倡“戒烟”,某校组织同学们在社区开展了“你支持哪种戒烟方式”的随机问卷调查,并将调查结果绘制成两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)同学们一共调查了 名市民,扇形统计图中“药物戒烟”部分的圆心角是度,请你把折线统计图补充完整;(2)若该社区有1万名市民,请你估计该社区有多少名市民支持“警示戒烟”方式?24.(9分)某工厂生产甲、乙两种不同的产品,所需原料为同一种原材料,生产每吨产品所需原材料的数量和生产过程中投入的生产成本的关系如右表所示:若该工厂生产甲种产品m 吨,乙种产品n 吨,共用原材料160吨,销售甲、乙两种产品的利润y (万元)与销售量x (吨)之间的函数关系如图7所示,全部销售后获得的总利润为200万元. (1)求m 、n 的值;(2)试问:该工厂投入的生产成本多少万元?被抽查的人数折线统计图2007512550100150200250强制戒烟警示戒烟药物戒烟其它戒烟戒烟方式人被抽查的人数扇形统计图强制戒烟40%其它戒烟20%药物戒烟警示戒烟24生产成本(万元) 21原材料数量(吨)乙 甲 产 品 乙632 xy(图7)利润y 与销售量x 之间的函数关系图O甲25.(13分)抛物线k x x y +-=4212与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C )6,0(,动点P 在该抛物线上. (1)求k 的值;(2)当POC ∆是以OC 为底的等腰三角形时,求点P 的横坐标;(3)如图8,当点P 在直线BC 下方时,记POC ∆的面积为1S ,PBC ∆的面积为2S .试问12S S -是否存在最大值?若存在,请求出12S S -的最大值;若不存在,请说明理由.xy(图8) OABPCxy(备用图)OABPC26.(13分)如图9,在ABC Rt ∆中,︒=∠90ACB ,cm AC 10=,cm BC 5=,点P 从点C 出发沿射线..CA 以每秒cm 2的速度运动,同时点Q 从点B 出发沿射线..BC 以每秒cm 1的速度运动.设运动时间为t 秒.(1)填空:=AB cm ;(2)若50<<t ,试问:t 为何值时,PCQ ∆与ACB ∆相似;(3)若ACB ∠的平分线CE 交PCQ ∆的外接圆于点E .试探求:在整个运动过程中,PC 、QC 、EC 三者存在的数量关系式,并说明理由.四、附加题(共10分):在答题卡上相应题目的答题区域内作答.友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分不超过90分;如果你全卷已经达到或超过90分,则本题的得分不计入全卷总分.1.(5分)计算:2235x x -= .2.(5分)已知35A ∠=︒,则A ∠的补角是 度.(图9)ABC(备用图) AB CAPCBHE(图9-2)QAQPCME(图9-3)B2013年福建省泉州市初中学业质量检查数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完该步应得的累计分数.一、选择题(每小题3分,共21分)1. C ;2. A ;3. D ;4.B ;5. B ;6.A ;7. C.二、填空题(每小题4分,共40分)8. 2013; 9. )12(-m m ; 10. 41075.6⨯; 11. 1; 12. 4=x ; 13.60;14. 正方形等(答案不唯一); 15. 10; 16.3:2;17. (1)417;(2)45. 三、解答题(共89分)18.(本小题9分) 解:原式3151252+-⨯+= …………………………………………………………8分 3152+-+=9= ………………………………………………………………………………9分19.(本小题9分)解:原式=44922+-+-x x x ……………………………………………………………4分=134+-x ………………………………………………………………………6分当2-=x 时, 原式=13)2(4+-⨯- =138+21= …………………………………………………………………………………9分20.(本小题9分) 证明:方法一:∵四边形ABCD 是菱形,∴DC DA =,BCD DAB ∠=∠, ……………………………………………………2分 ∵︒=∠+∠180DAE DAB ,︒=∠+∠180DCF BCD∴DCF DAE ∠=∠ …………………………………………………………………4分 又∵AB DE ⊥,BC DF ⊥,∴︒=∠=∠90DFC DEA , ……………………………………………………………6分 在ADE ∆和CDF ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠DC DA DCF DAE DFC DEA ∴ADE ∆≌CDF ∆(AAS ), ………………8分 ∴DF DE =.…………………………………9分 方法二:∵四边形ABCD 是菱形,∴BC AB =,…………………………………4分 又∵AB DE ⊥,BC DF ⊥,∴DF BC DE AB S ABCD ⋅=⋅=菱形 ……………………………………………………8分 ∴DF DE =. ……………………………………………………………………………9分 方法三:连接DB …………………………………………………………………………2分 ∵四边形ABCD 是菱形,∴DBC DBA ∠=∠, ……………………………………………………………………6分 又∵AB DE ⊥,BC DF ⊥,∴DF DE =. ……………………………………………………………………………9分 21.(本小题9分)解:(1)抽取1名恰好是女村民的概率是12;……………………………………………4分 (2)方法一:列举所有等可能的结果,画树状图如下:………………………………………………………………………………8分∴P (一女一男)32128==. …………………………………………………………9分 即抽取2名恰好是一女一男村民的概率是23.方法二:列举所有等可能的结果,列表法如下:……………………………………………………………………………………8分∴P (一女一男)32128==. ……………………………………………………………9分 女1 女2 男1 男2 女1 (女1,女2) (女1,男1) (女1,男2) 女2 (女2,女1)(女2,男1) (女2,男2) 男1 (男1,女1) (男1,女2)(男1,男2) 男2 (男2,女1) (男2,女2)(男2,男1)男2女1第二次女2女2女2男1女1女1男1男1男2男2男2男1女2女1第一次D(图5)ABECF即抽取2名恰好是一女一男村民的概率是23. 22.(本小题9分)解:(1)(6,0)A 、(0,4)B ,旋转后的直线B A ''如图6所示;……………………………………4分 (2) 由(1)可知:点C 的坐标为(2,3)-,……………………………………6分把(2,3)-代入反比例函数的关系式ky x=可得, 32k=-,解得6k =- 故所求的反比例函数的关系式为6y x=-. …………………………………………9分 23.(本小题9分)(1) 500名,54度,折线统计图如图所示:…………………………………………………………………………………6分(2)解:由(1)知,同学们一共调查了500名市民,250010000500125=⨯(名) 答:该社区有2500名市民支持“警示戒烟”方式.……………………………9分24.(本小题9分)解:(1)由图7可知:销售甲、乙两种产品每吨分别获利3万元、2万元.……………………………………………………………………………………2分 根据题意可得:⎩⎨⎧=+=+200231602n m n m 解得⎩⎨⎧==7020n m ……………………………………………6分 (2)由(1)知,甲、乙两种产品分别生产20吨、70吨 220270420=⨯+⨯(万元)答:该工厂投入的生产成本为220万元.……………………………………………9分(图6)25.(本小题13分)解:(1) 抛物线k x x y +-=4212经过点C )6,0( ∴6040212=+⨯-⨯k 解得6=k ……………………………………………………………………………3分(2)如图8-1,过OC 的中点D 作y 轴的垂线,当POC ∆是以OC 为底的等腰三角形时, 由362121=⨯==OC OD 可知,点P 的纵坐标为3. ……………………………5分 由(1)可知,抛物线的解析式为64212+-=x x y , 令3=y 得364212=+-x x ,解得104±=x∴点P 的横坐标为104±.………………………7分(3)由(1)可知,抛物线的解析式为64212+-=x x y 令0=x 得6y =;令0=y 得064212=+-x x ,解得 21=x ,62=x .则点A 、B 、C 坐标分别为(2,0)、)0,6(、)6,0(,OA =2,6OB OC == …8分设点P 为)6421,(2+-m m m ,当点P 在直线BC 下方时,60<<m , …………9分 解法一:过点P 作y PE ⊥轴于点E ,作直线x PG ⊥轴于点G . 当62<≤m 时,如图8-1,m PE =,64212-+-=m m PG ,12S S S COPB -=四边形,POB BOC COPB S S S ∆∆+=四边形 =)(21PG OC OB +⨯⨯=m m 12232+-,m PE OC S 621=⨯= ∴2112COPB S S S S -=-四边形m m m 612232-+-=m m 6232+-= …………10分当20<<m 时,如图8-2,m PE =,64212+-=m m PG ,12S S S S POB BOC --=∆∆同理可求xy(图8-1)O ABP CGDEx y(图8-2)O A B PC G E21S S -m m 6232+-= ………………………………………………11分综上所述,当60<<m 时,2221336(2)622S S m m m -=-+=--+………12分2=m 满足60<<m∴当2=m 时,21S S -存在最大值6. …………………………………………13分解法二:设直线BC 的解析式为)0(≠+=a b ax y ,则⎩⎨⎧=+=+⨯0660b a b a 解得⎩⎨⎧=-=61b a ∴直线BC 的解析式为6+-=x y . …………10分如图8-3,过点P 作y PE ⊥轴于点E ,作直线x PG ⊥轴于点G ,直线PG 交直线BC 于点F ,可设点P 为)6421,(2+-m m m ,则点F 坐标为)6,(+-m m ,∴PE OG m ==,m m m m m PF 321)6421()6(22+-=+--+-=,2111222PCF PBF S S S PF OG PF BG PF OB ∆∆∴=+=⋅+⋅=⋅22113(3)69222m m m m =⨯-+⨯=-+ …………………………………11分 又m m PE OC S 3621211=⨯⨯=⋅=2221336(2)622S S m m m ∴-=-+=--+ …………………………………12分2=m 满足60<<m∴当2=m 时,21S S -存在最大值6. …………………………………………13分26.(本小题13分)解: (1)cm AB 55=; …………………………………………………………3分 (2)如图9-1,由题意可知:2PC t =,QB t =,t QC -=5. …………………4分方法一:ACB PCQ ∠=∠∴要使PCQ ∆与ACB ∆相似,则必须有AQ PCB(图9-1)B PQC ∠=∠或A PQC ∠=∠成立.当A PQC ∠=∠时,PCQ ∆∽BCA ∆ 由BC PC CA CQ =可得52105tt =-解得1=t ……………………………6分当B PQC ∠=∠时,PCQ ∆∽ACB ∆,由AC PC CB CQ =可得10255tt =-解得25=t ………………………………………………………………………7分∴当1=t 或25秒时,PCQ ∆与ACB ∆相似; ……………………………………8分方法二:ACB PCQ ∠=∠∴要使PCQ ∆与ACB ∆相似,则必须有BC PC CA CQ =或ACPCCB CQ =成立 当BC PC CA CQ =时,52105tt =-,解得1=t , …………………………………………6分当AC PC CB CQ =时,10255t t =-,解得25=t , ……………………………………7分 ∴当1=t 或25秒时,PCQ ∆与ACB ∆相似; …………………………………8分(3)当50<<t 时,如图9-2,过点E 作HE CE ⊥交AC 于H ,则=90HEP PEC ︒∠∠+︒=∠90ACB ,∴PQ 为PCQ ∆的外接圆的直径∴90QEP ∠=︒即C C=90QE PE ︒∠∠+ 又∵CE 平分ACB ∠且︒=∠90ACB ∴=45QCE PCE ︒∠∠=∴⌒PE =⌒QE从而可得PE QE = ∴=45QCE PHE ︒∠∠= ∴QCE PHE ∆∆≌(AAS )∴PH QC =……………………………9分 在Rt HEC ∆中,222EC EH HC +=,EH EC =AP CBH E(图9-2)QAQ PCM E(图9-3)B即222()EC CP CQ =+∴CP CQ +=………………………………………………………………………11分当t ≥5时,如图9-3,过点E 作ME CE ⊥交AC 于M ,仿上可证QCE PME ∆∆≌,∴CP CQ -=综上所述,当50<<t 时,CP CQ +=;当t ≥5时,CP CQ -=.…………………………………………………………………………………………13分 四、附加题(共10分) (1)22x -; (2)145。
2013年福建省普通高中毕业班质量检查数学(文)试卷及答案.
2013年福建省普通高中毕业班质量检查文 科 数 学本试卷分第1卷(选择题)和第Ⅱ卷(非选择题).本试卷共5页.满分150分.考试时间120分钟.注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回.参考公式:样本数据x 1,x 2, …,x n 的标准差 锥体体积公式V =31Sh 其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式球的表面积、体积公式 V =Sh24S R =π,343V R =π其中S 为底面面积,h 为高其中R 为球的半径第Ⅰ卷(选择题 共60分)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数1i z =-,z 为z 的共轭复数,则下列结论正确的是A .1i z =--B .1+i z =-C .2z =D .z =2.已知,0a b c >≠,则下列不等式一定成立的是 A .22a b >B .ac bc >C .a c b c +>+D .a b c c> 3.执行如图所示的程序框图,若输入的x 值为2,则输出的x 值为A .3B .8C .9D .63 4.“1x =”是“210x -=”的A.充分而不必要条件 B.必要而充分不条件 C.充要条件 D.既不充分也不必要条件5.函数2cos 22y x x x ππ⎛⎫=-≤≤ ⎪⎝⎭的图象是6.已知集合{}|28M x x =-≤≤,{}2|320N x x x =-+≤,在集合M 中任取一个元素x ,则 “x MN ∈”的概率是A .110B .16C .310D .127.已知1F ,2F 是椭圆C 的两个焦点,焦距为4.若P 为椭圆C 上一点,且12PF F ∆的周长为14,则椭圆C 的离心率e 为 A .15 B .25 C .45D .5A BCD8.若变量,x y 满足约束条件310,3110,2,x y x y y --≥⎧⎪+-≤⎨⎪≥⎩则2z x y =-的最小值为A .4B .1C .0D .1- 9.设,m n 为两条不同的直线,βα,是两个不同的平面,下列命题正确的是 A .若β//,//m n m ,则β//n B .若αα//,//n m ,则n m // C .若β⊥m n m ,//,则β⊥n D .若n m n m //,,βα⊂⊂,则βα// 10.已知点()0,0O ,()1,2A ,()3,2B ,以线段AB 为直径作圆C ,则直线:30l x y +-=与圆C 的位置关系是A .相交且过圆心B .相交但不过圆心C .相切D .相离 11.已知点()()()0000167n O ,,A ,,A ,,点()1212n A ,A ,,A n ,n -∈≥N 是线段0n A A 的n 等分点,则011+n n OA OA OA OA -+++等于A .5nB .10nC .()51n +D .()101n + 12.定义两个实数间的一种新运算“*”:()l g1010,x yx y *=+,x y ∈R .对任意实数,,a b c ,给出如下结论:①()()c b a c b a ****=; ②a b b a **=; ③()()()**a b c a c b c +=++; 其中正确的个数是A . 0B .1C .2D .3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡相应位置. 13.一支田径队有男运动员28人,女运动员21人,现按性别用分层抽样的方法,从中抽取14位运动员进行健康检查,则男运动员应抽取________人. 14.在ABC ∆中,角,,A B C 所对的边分别为,,a b c .已知3a =,8b =,C=3π,则c = .15.若函数2,0,()ln ,0x a x f x x x ⎧-≤=⎨>⎩有两个不同的零点,则实数a 的取值范围是 . 16.观察下列等式:12133+=; 781011123333+++=; 16171920222339333333+++++=; …则当m n <且,m n ∈N 表示最后结果.313232313333n n m m ++--++++= (最后结果用,m n 表示最后结果). 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)某工厂生产,A B 两种元件,其质量按测试指标划分为:大于或等于7.5为正品,小于7.5为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:由于表格被污损,数据y x ,看不清,统计员只记得x y <,且,A B 两种元件的检测数据的平均值相等,方差也相等. (Ⅰ)求表格中x 与y 的值;(Ⅱ)若从被检测的5件B 种元件中任取2件,求2件都为正品的概率. 18.(本小题满分12分)已知函数()sin cos f x x x =+,x ∈R . (Ⅰ)求12f π⎛⎫⎪⎝⎭的值; (Ⅱ)试写出一个函数()g x ,使得()()cos2g x f x x =,并求()g x 的单调区间. 19.(本小题满分12分)某几何体111C B A ABC -的三视图和直观图如图所示. (Ⅰ)求证:平面11AB C ⊥平面11AAC C ; (Ⅱ)若E 是线段1AB 上的一点,且满足1111191C B A ABC C AA E V V --=,求AE 的长.20.(本小题满分12分)某工业城市按照“十二五”(2011年至2015年)期间本地区主要污染物排放总量控制要求,进行减排治污.现以降低SO 2的年排放量为例,原计划“十二五”期间每年的排放量都比上一年减少0.3万吨,已知该城市2011年SO 2的年排放量约为9.3万吨, (Ⅰ)按原计划,“十二五”期间该城市共排放SO 2约多少万吨?(Ⅱ)该城市为响应“十八大”提出的建设“美丽中国”的号召,决定加大减排力度.在2012年刚好按原计划完成减排任务的条件下,自2013年起,SO 2的年排放量每年比上一年减少的百分率为p ,为使2020年这一年的SO 2年排放量控制在6万吨以内,求p 的取值范围.(参考数据9505.0328≈,9559.0329≈). 21.(本小题满分12分)已知函数()2e xf x ax bx =++.(Ⅰ)当0,1a b ==-时,求()f x 的单调区间; (Ⅱ)设函数()f x 在点()(),P t f t ()01t <<处的切线为l ,直线l 与y 轴相交于点Q .若点Q 的纵坐标恒小于1,求实数a 的取值范围. 22.(本小题满分14分)某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线2:2E y px =,在抛物线上任意画一个点S ,度量点S的坐标俯视图侧(左)视图正(主)视图1A(),S S x y ,如图.(Ⅰ)拖动点S ,发现当4S x =时,4S y =,试求抛物线E 的方程;(Ⅱ)设抛物线E 的顶点为A ,焦点为F ,构造直线SF 交抛物线E 于不同两点S 、T ,构造直线AS 、AT 分别交准线于M 、N 两点,构造直线MT 、NS .经观察得:沿着抛物线E ,无论怎样拖动点S ,恒有MT //NS .请你证明这一结论.(Ⅲ)为进一步研究该抛物线E 的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点F ”改变为其它“定点(),0G g ()0g ≠”,其余条件不变,发现“MT 与NS 不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“MT //NS ”成立?如果可以,请写出相应的正确命题;否则,说明理由.2013年福建省普通高中毕业班质量检查 文科数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分. 1.D 2.C 3.B 4.A 5.B 6.A 7.B 8.A 9.C 10.B 11.C 12.D二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分.13.8; 14.7; 15.01a <≤; 16.22n m -.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.本小题主要考查古典概型、统计等基础知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等.满分12分.解:(Ⅰ)因为11=+7+75+9+95=8=858555x x x y ⋅⋅+⋅+⋅+A B (7),(6+), 由=x x A B,得17x y +=. ① ………………………………………2分因为222211=1+1+0.25+1+2.25=1.1=4+8+0.25+0.25+855x y ⎡⎤--⎣⎦A B ,s ()s ()(), 由22=A Bs s ,得228+8=1x y --()(). ② …………………………………………4分由①②解得89x y =⎧⎨=⎩,,或98.x y =⎧⎨=⎩,因为x y <, 所以8x y ==. ………………………………………6分(Ⅱ) 记被检测的5件B 种元件分别为12345,,,,B B B B B ,其中2345,,,B B B B 为正品, 从中任取2件,共有10个基本事件,列举如下:()12,B B ,()13,B B ,()14,B B ,()15,B B ,()23,B B , ()24,B B ,()25,B B ,()34,B B ,()35,B B ,()45,B B , ………………………………………8分记“2件都为正品”为事件C ,则事件C 包含以下6个基本事件:()23,B B ,()24,B B ,()25,B B ,()34,B B ,()35,B B ,()45,B B .……………………………10分所以63()105P C ==,即2件都为正品的概率为35. ………………………………………12分 18.本小题主要考查三角函数的图象与性质、两角和与差三角公式、二倍角公式、三角函数的恒等变换等基础知识,考查运算求解能力,考查化归与转化思想等.满分12分.解法一:(Ⅰ)因为())4f x x π=+,………………………………………3分所以121243f ππππ⎛⎫⎛⎫=+==⎪ ⎪⎝⎭⎝⎭……………………………6分 (Ⅱ)()cos sin g x x x =-. …………………………………………………………7分 下面给出证明:因为()()22(cos sin )(sin cos )cos sin cos2,g x f x x x x x x x x =-+=-=所以()cos sin g x x x =-符合要求.……………………………………………………9分又因为()cos sin 4g x x x x π⎛⎫=-=+ ⎪⎝⎭,…………………………………………10分由222,4k x k πππππ+<+<+得3722,44k x k ππππ+<<+ 所以()g x 的单调递增区间为372244k k ππππ⎛⎫++ ⎪⎝⎭,k ∈Z .………………………………11分又由224k x k ππππ<+<+,得32244k x k ππππ-<<+, 所以()g x 的单调递减区间为32244k k ππππ⎛⎫-+⎪⎝⎭,,k ∈Z .………………………………12分 解法二:(Ⅰ)因为()21s i n 2,fx x =+⎡⎤⎣⎦所以231s i n 1262f ππ⎡⎤⎛⎫=+= ⎪⎢⎥⎝⎭⎣⎦,………………………………3分又因为0,12f π⎛⎫>⎪⎝⎭所以12f π⎛⎫=⎪⎝⎭6分 (Ⅱ)同解法一. 解法三:(Ⅰ)sin cos sin cos 1212123434f πππππππ⎛⎫⎛⎫⎛⎫=+=-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭sincoscossincoscossinsin34343434ππππππππ=-++…………………3分112222=-++=………………………………6分 (Ⅱ)同解法一.注:若通过()()cos 2xg x f x =得到()g x 或由()()(cos sin )(cos sin )g x f x x x x x =+-两边同时约去()f x 得到()g x 不扣分.19.本小题主要考查三视图、直线与直线、直线与平面、平面与平面的位置关系,几何体的体积等基础知识;考查空间想象能力、推理论证能力、运算求解能力;考查函数与方程思想、数形结合思想、化归与转化思想.满分12分.解法一:(Ⅰ)由三视图可知,几何体111C B A ABC -为三棱柱,侧棱1111C B A AA 底面⊥,1111C A C B ⊥,且41==AC AA ,2=BC .………………………………………2分 1111C B A AA 平面⊥ ,11111111,C B AA C B A C B ⊥∴⊂平面, …………………3分 11111111,A C A AA C A C B =⊥ ,1111ACC A C B 平面⊥∴.……………………5分又1111C AB C B 平面⊂ , C C AA C AB 1111平面平面⊥∴.………………………6分 (Ⅱ)过点E 作11//C B EF 交1AC 于F ,由(Ⅰ)知,11ACC A EF 平面⊥,即EF 为C AA E 1-三棱锥的高. ………7分1111191C B A ABC C AA E V V --= ,,9131111AA S EF S ABC C AA ⋅=⋅∴∆∆ ……………………8分1111442443292EF ⎛⎫⎛⎫∴⨯⨯⨯⨯=⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭,解得32=EF .……………………9分在Rt ABC ∆中,AB ===,在1Rt ABB ∆中,16AB ===,……………………10分由111C B EF AB AE =, ……………………11分 得22326C B EFAB AE 111=⨯=⋅=. ……………………12分解法二:(Ⅰ)同解法一.(Ⅱ)过点E 作11//C B EF 交1AC 于F ,由(Ⅰ)知,11ACC A EF 平面⊥,即EF 为C AA E 1-三棱锥的高. ………7分11111111133C AA B C B A A C B A ABC V V V ---== ,111111113191C AA B C B A ABC C AA E V V V ---==∴ ………8分,313131111111C B S EF S C AA C AA ⋅⨯=⋅∴∆∆,3111C B EF =∴ ………9分 在AB C Rt ∆中,5224AB 2222=+=+=BC AC ,在1ABB Rt ∆中,()6452AB 222121=+=+=BB AB ,……………………10分由111C B EFAB AE =, ……………………11分 得2AB 31AE 1==. ……………………12分 20.本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力和应用意识,考查函数与方程思想.满分12分.解:(Ⅰ)设“十二五”期间,该城市共排放SO 2约y 万吨,依题意,2011年至2015年SO 2的年排放量构成首项为9.3,公差为0.3-的等差数列,……………3分 所以()55159.3(0.3)=43.52y ⨯-=⨯+⨯-(万吨). 所以按计划“十二五”期间该城市共排放SO 2约43.5万吨.……………………6分 (2)由已知得, 2012年的SO 2年排放量9.60.32=9-⨯(万吨),……………………7分所以2012年至2020年SO 2的年排放量构成首项为9,公比为1p -的等比数列,…………………9分由题意得891p ⨯-()<6,即1p -<832, 所以10.9505p -<,解得 4.95%p >.所以SO 2的年排放量每年减少的百分率p 的取值范围4.95%1p <<<……………………12分21.本小题主要考查函数、导数等基础知识,考查推理论证能力、运算求解能力,考查分类与整合思想、数形结合思想、化归与转化思想.满分12分.解:(Ⅰ)当0,1a b ==-时,()e x f x x =-,()e 1xf x '=-,……………………1分所以,当(,0x ∈-∞时,()0f x '<;当(0,x ∈+∞时,()0f x '>;……………………3分所以函数()f x 的单调递减区间为(),0-∞,单调递增区间为(0,)+∞.……………………4分(Ⅱ)因为()2xf x e ax b '=++,所以()(),P t f t 处切线的斜率()2tk f t e at b '==++,所以切线l 的方程为()()()22t t y e at bt e at b x t -++=++-,令0x =,得()21ty t e a t=-- ()01t << (5)分当01t <<时,要使得点Q 的纵坐标恒小于1,只需()211tt e at --<,即()2110tt e at -++>()01t <<.……………… 6分令()()211tg t t e at =-++,则()()2t g t t e a '=+,………………………………………………………… 7分 因为01t <<,所以1t e e <<, ①若21a ≥-即12a ≥-时,20te a +>, 所以,当()0,1t ∈时,()0g t '>,即()g t 在()0,1上单调递增, 所以()(0)0g t g >=恒成立,所以12a ≥-满足题意.………………………………8分 ②若2a e ≤-即2e a ≤-时,20te a +<,所以,当()0,1t ∈时,()0g t '<,即()g t 在()0,1上单调递减,所以()(0)0g t g <=,所以2ea ≤-不满足题意.………………………………………9分 ③若21e a -<<-即122e a -<<-时,0ln(2)1a <-<.则t 、()g t '、()g t 的关系如下表:所以()()l n (2)00g a g -<=,所以22a -<<-不满足题意.………………………………11分 综合①②③,可得,当12a ≥-时,()0g t >()01t <<时,此时点Q 的纵坐标恒小于1.…………12分22.本小题主要考查抛物线的标准方程、直线与圆锥曲线的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、分类与整合思想、数形结合思想等.满分14分.解法一:(Ⅰ)把4S x =,4S y =代入22y px =,得248p =,……………………2分所以2p =,………………………………………………………………………3分因此,抛物线E 的方程24y x =.…………………………………………………4分(Ⅱ)因为抛物线E 的焦点为()1,0F ,设()()1122,,,S x y T x y , 依题意可设直线:1l my x =-,由241y x my x ⎧=⎨=-⎩,得2440y my --=,则121244.y y m y y +=⎧⎨⋅=-⎩, ①……………………6分又因为11:AS y l y x x =,22:AT yl y x x =,所以111,y M x ⎛⎫-- ⎪⎝⎭,221,y N x ⎛⎫-- ⎪⎝⎭,所以12211,y MT x y x ⎛⎫=++⎪⎝⎭,21121,y NS x y x ⎛⎫=++ ⎪⎝⎭, ……………………7分 又因为()()1221121211y y y x y x x x ⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭……………………………………8分 2221121241411144y y y y y y ⎛⎫⎛⎫⎛⎫⎛⎫=++-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22122112*********4y y y y y y y y y y ⎛⎫⎛⎫=+++-+++ ⎪ ⎪⎝⎭⎝⎭()21121212144y y y y y y y y -=-+()22121212164y y y y y y ⎛⎫-=- ⎪⎝⎭, ②把①代入②,得()221212121604y y y y y y ⎛⎫--= ⎪⎝⎭, (10)分即()()12211212110y y y x y x x x ⎛⎫⎛⎫++-++= ⎪ ⎪⎝⎭⎝⎭,所以//MT NS ,又因为M 、T 、N 、S 四点不共线,所以MT //NS .……………………………………………11分(Ⅲ)设抛物线2:4E y x =的顶点为A ,定点()(),00G g g ≠,过点G 的直线l 与抛物线E 相交于S 、T 两点,直线AS 、AT 分别交直线x g =-于M 、N 两点,则MT //NS .……………………14分解法二:(Ⅰ)同解法一.(Ⅱ)因为抛物线E 的焦点为()1,0F ,设()()221122,2,,2S t t T t t ,……………………5分依题意,可设直线:1ST l my x =-,由241y x my x ⎧=⎨=-⎩得2440y my --=, 则1212224,224,t t m t t +=⎧⎨⋅=-⎩所以12124,1.t t m t t +=⎧⎨⋅=-⎩ (7)分又因为2:2AS l y t x =-,1:2AT l y t x =-, 所以()21,2M t -,()11,2N t -,………………………………………………………………………10分所以MT k =,0NS k =,………………………………………………………………………………10分又因为M 、T 、N、S四点不共线,所以MT //NS .…………………………………………………11分(Ⅲ)同解法一. 解法三:(Ⅰ)同解法一.(Ⅱ)因为抛物线E 的焦点为()1,0F ,设()()1122,,,S x y T x y , 依题意,设直线:1l my x =-,由241y xmy x ⎧=⎨=-⎩得2440y my --=,则121244y y my y +=⎧⎨⋅=-⎩,…………………………………………6分 又因为11:AS y l y x x =,22:AT yl y x x =,所以111,y M x ⎛⎫-- ⎪⎝⎭,221,y N x ⎛⎫-- ⎪⎝⎭, 又因为212y y x ⎛⎫-- ⎪⎝⎭221122224404y y y y y x y +=+=,……………………………………9分 所以212y y x =-,所以NS 平行于x 轴; 同理可证MT 平行于x 轴;又因为M、T、N、S四点不共线,所以MT//NS.…………………………………………………11分(Ⅲ)同解法一.…………………………………………………14分。
泉州七中2013届高三年校质检语文试题(含答案)
泉州七中2013届高三年校质检语文试题考试时间:150分钟满分:150分一、古代诗文阅读(27分)(一)默写常见的名句名篇(6分)1.补写出下列名句名篇中的空缺部分。
(6分)(1),拄杖无时夜扣门。
(陆游《游山西村》)(2)人生如梦,。
(苏轼《念奴娇·赤壁怀古》)(3)吾尝终日而思矣,。
(荀子《劝学》)(4),而后人哀之。
(杜牧《阿房宫赋》)(5)予独爱莲之出淤泥而不染,。
(周敦颐《爱莲说》)(6)伤心秦汉经行处,。
(张养浩《山坡羊·潼关怀古》)(二)文言文阅读(15分)阅读下面的文言文,完成2~5题。
朱公居陶,生少子。
少子及壮,而朱公中男杀人,囚于楚。
朱公曰:‚杀人而死,职也。
然吾闻千金之子不死于市。
‛告其少子往视之。
乃装黄金千溢,臵褐器中,载以一牛车,且遣其少子。
朱公长男固请欲行,朱公不听。
长男欲自杀。
其母为言曰:‚今遣少子,未必能生中子也,而先空亡长男,奈何?‛朱公不得已而遣长子,为一封书遗故所善庄生,曰:‚至则进千金于庄生所,听其所为,慎无与争事。
‛至楚,庄生家负郭,披藜藿到门,居甚贫。
然长男发书进千金,如其父言。
庄生曰:‚可疾去矣,慎毋留!即弟出,勿问所以然。
‛长男既去,不过庄生而私留,以其私赍献遗楚国贵人用事者。
庄生虽居穷阎,然以廉直闻于国,自楚王以下皆师尊之。
及朱公进金,非有意受也,欲以成事后复归之以为信耳。
而朱公长男不知其意,以为殊无短长也。
庄生间时入见楚王,言‚某星宿某,此则害于楚‛。
楚王素信庄生,曰:‚今为奈何?‛庄生曰:‚独以德为可以除之。
‛楚王曰:‚生休矣,寡人将行之。
‛王乃使使者封三钱之府。
楚贵人惊告朱公长男曰:‚王且赦。
‛曰:‚何以也?‛曰:‚每王且赦,常封三钱之府。
昨暮王使使封之。
‛朱公长男以为赦,弟固当出也,重千金虚弃庄生,无所为也,乃复见庄生。
庄生惊曰:‚若不去邪?‛长男曰:‚固未也。
初为事弟,弟今议自赦,故辞生去。
‛庄生知其意欲复得其金,曰:‚若自入室取金。
(文数答案)泉州市2013届普通中学高中毕业班质量检查(第一次)
泉州市2013届普通中学高中毕业班质量检查文科数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分.1. D 2.C 3.B 4.B 5. A 6. B7. A 8.A 9.C 10.D 11.D 12.B二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分.13.1 14.11 15.3π 16.10.56 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.本小题主要考查等差数列、数列求和等基础知识,考查运算求解能力,考查函数与方程思想等. 满分12分.解:(Ⅰ)设数列{}n a 的公差为d ,由11123,(3) 5.a d a a d +=⎧⎨++=⎩………………………… 2分解得11,1.a d =⎧⎨=⎩………………………… 4分 所以1(1)1(1)1n a a n d n n =+-=+-⋅=. ………………………… 6分(Ⅱ)因为n a n =,所以11n a n +=+,111(1)1n b n n n n ==-++,…………………… 9分 所以1111111(1)()()()223341n S n n =-+-+-+⋅⋅⋅+-+1111n n n =-=++.…… 12分218.本小题主要考查频率分布表、频率分布直方图和古典概型、统计等基础知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等.满分12分.解:(Ⅰ)由频率分布直方图可得0.50.50.25a =⨯=,…………… 2分∴月均用水量为[1.5,2)的频数为25.故2100928b =-=,得4b =. ………………………… 4分由频率分布表可知,户月均用水量不超过3吨的频率为0.92, ……… 5分根据样本估计总体的思想,估计该社区家庭月均用水量不超过3吨的频率为0.92. ……… 6分(Ⅱ)由1A 、2A 、3A 、1B 、2B 五代表中任选2人共有如下10种不同选法,分别为:12()A A ,,13()A A ,,11()A B ,,12()A B ,,23()A A ,,21()A B ,,22()A B ,,31()A B ,,32()A B ,,12()B B ,. ………………………… 8分记“1B 、2B 至少有一人被选中”的事件为A ,事件A 包含的基本事件为:11()A B ,,12()A B ,,21()A B ,,22()A B ,,31()A B ,,32()A B ,,12()B B ,,共包含7个基本事件数. ……………… 10分又基本事件的总数为10,所以7()10P A =. 即居民代表1B 、2B 至少有一人被选中的概率为710. …………………… 12分 19.本小题主要考查抛物线的标准方程、直线与圆等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想等.满分12分.解:(Ⅰ)依题意,可设抛物线C 的方程为22(0)x py p =>,其准线l 的方程为2p y =-. ………………………… 2分 ∵准线l 与圆221x y +=相切,∴所以圆心(0,0)到直线l 的距离0()12p d =--=,解得2p =. ……… 4分 故抛物线C 的方程为:24x y =. ………………………… 5分市质检文科试题答案 第3页(共5页)(Ⅱ)设11(,)A x y ,22(,)B x y ,则2112224,4.x y x y ⎧=⎨=⎩…………① …………………… 6分 ∵(0,1)F ,22(,1)FB x y =-,11(,)OA x y =,2FB OA =,∴22(,1)x y -112(,)x y =11(2,2)x y =,即 21212,2 1.x x y y =⎧⎨=+⎩ …………② ………………… 9分 ②代入①,得211484x y =+,21121x y =+,又2114x y =,所以11421y y =+,解得112y =,1x =即1)2A或1()2. ………………………… 12分20.本小题主要考查平面向量和三角函数等基础知识,考查运算求解能力、推理论证能力,考查化归与转化思想、函数与方程思想、数形结合思想以及分类与整合思想等.解:(Ⅰ)∵()sin()2cos 22g x x x ππ⎛⎫=++ ⎪⎝⎭-2sin cos x x =+, ……………… 2分 ∴(2,1)OM =. ………………………… 4分故22OM =. ……………………… 5分(Ⅱ)由已知可得()sin h x x x =2sin()3x π=+,……………………… 7分 ∵02x π≤≤, ∴336x ππ5π≤+≤,故[]()1,2h x ∈. ……………………… 9分∵当0,6x π⎡⎤∈⎢⎥⎣⎦时,函数()h x 单调递增,且()h x ⎤∈⎦; 当,62x ππ⎛⎤∈ ⎥⎝⎦时,函数()h x 单调递减,且[)()1,2h x ∈. ∴使得关于x 的方程()0h x t -=在[0,]2π内恒有两个不相等实数解的实数t 的取值范围为)2t ∈. … 12分4 21.本小题主要考查直线与直线、直线与平面的位置关系及棱锥体积等基础知识,考查空间想象能力、推理论证能力及运算求解能力,考查化归与转化思想等.满分12分.解:(Ⅰ)∵平面ABCD ⊥平面ABE ,面ABCD 面ABE AB =,BC AB ⊥,BC ⊂面ABCD ,∴BC ⊥面ABE . ………………………… 2分又∵AE ⊂面ABE ,∴BC AE ⊥. ………………………… 3分∵E 在以AB 为直径的半圆上,∴AE BE ⊥,又∵BE BC B =,BC BE ⊂、面BCE ,∴AE ⊥面BCE .…………… 4分 又∵CE ⊂面BCE ,∴EA EC ⊥. ……………………… 5分(Ⅱ)① ∵//AB CD ,AB ⊄面CED ,CD ⊂面CED ,∴//AB 平面CED .… 6分又∵AB ⊂面ABE ,平面ABE 平面CED EF =,∴//AB EF . ……………… 8分②取AB 中点O ,EF 的中点'O ,在'RT OO F ∆中,1OF =,1'2O F =,∴'2OO = (Ⅰ)已证得BC ⊥面ABE ,又已知//AD BC ,∴AD ⊥平面ABE .…………… 10分 故13E ADF D AEF AEF V V S AD --∆==⋅⋅11'32EF OO AD =⋅⋅⋅⋅=. … 12分 22.本小题主要考查函数、导数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、分类与整合思想、函数与方程思想、数形结合思想等.满分14分.解:(Ⅰ)因为R x ∈,所以0x ≥,故0()3e 3e 3x f x a a a =+≥+=+,因为函数()f x 的最小值为3,所以0a =. ……………… 3分 (Ⅱ)由(Ⅰ)得,()3e x f x =.当0x <时,ln ()ln(3e )ln3ln e ln3ln3x x f x x x ==+=+=-+,……… 5分故不等式22ln ()ln3(21)3f x x b x b -<+--可化为:22(21)3x x b x b -<+--,市质检文科试题答案 第5页(共5页) 即22230x bx b +->, ……………… 6分得(3)()0x b x b +->,所以,当0b ≥时,不等式的解为3x b <-;当0b <时,不等式的解为x b <. …………… 8分(Ⅲ)∵当[1,)t ∈-+∞且[1,]x m ∈时,0x t +≥,∴()3e 1ln x t f x t x e ex t x x ++≤⇔≤⇔≤+-.∴原命题等价转化为:存在实数[1,)t ∈-+∞,使得不等式1ln t x x ≤+-对任意[1,]x m ∈恒成立. …………… 10分令()1ln (0)h x x x x =+->. ∵011)('≤-=xx h ,∴函数()h x 在(0,)+∞为减函数. …………… 11分 又∵[1,]x m ∈,∴m m m h x h -+==ln 1)()(min . …………… 12分 ∴要使得对[1,]x m ∈,t 值恒存在,只须1ln 1m m +-≥-.………… 13分 ∵131(3)ln 32ln()ln 1h e e e =-=⋅>=-,2141(4)ln 43ln()ln 1h e e e=-=⋅<=- 且函数()h x 在(0,)+∞为减函数,∴满足条件的最大整数m 的值为3.…… 14分。
福建省泉州七中2013届高三数学第一次质量检查试题_理_新人教A版
2013年泉州七中高中毕业班第一次质量检查理 科 数 学一、选择题:本大题共10小题,每小题5分,共50分. 1.已知全集U =R ,集合2{0}M x x x =->,则M C U =( )A .{|01}x x <<B .{|01}x x ≤≤C .{|01}x x x <>或D .{|01}x x x ≤≥或2.如图,在复平面内,若复数12,z z 对应的向量分别是,OA OB,则复数12z z +所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.设函数)()(R x x f ∈满足)()(x f x f =-,)()2(x f x f =+,则函数)(x f y =的图像可以是( )A. B.C. D.4.已知,l m 为两条不同的直线,α为一个平面。
若α//l ,则“m l //”是“α//m ”的( ) A.充分不必要条件 B.必要不充分条件 C. 充要条件 D. 既不充分又不必要条件5.若等比数列{}n a 的首项为19,且241(2)a x dx =⎰,则数列{}n a 的公比是( ) A. 3 B. 13 C. 27 D. 1276.若双曲线2219x y m -=30y ±=,则椭圆2214x y m +=的离心率为( ) A.21 B. 22215- 7. 如图所示,一个三棱锥的三视图是三个直角三角形,在包围 该三棱锥的外接球内任取一点,则该点落在三棱锥内部的概率为 ( )A. 49πB. 227πC. 427πD. 29π8. 有四个关于三角函数的命题: ①∃x ∈R, 2sin2x +2cos 2x =12②,x y R ∃∈, sin()sin sin x y x y -=-③三角形ABC 的三个内角A 、B 、C 的对边的长分别为a 、b 、c ,若 a 、b 、c 成等差数列,则30π≤<B442正视图侧视图俯视图第2题图第7题图④sin cos 2x y x y π=⇒+=其中假命题...的是( ) A. ①④ B.②④ C. ①③ D.②③9. 如图,已知圆C 直径的两个端点坐标分别为()()010,9,B A --、,点P 为圆C 上(不同于B 、A )的任意一点,连接PB 、AP 分别交y 轴于M 、N 两点,以MN 为直径的圆与x 轴交于D 、F 两点,则弦长DF 为( )A. 7B. 6C. 72D. 6210.对于定义域为[0,1]的函数()f x ,如果同时满足以下三个条件:①对任意的]1,0[∈x ,总有0)(≥x f ②1)1(=f ③若0,021≥≥x x ,121≤+x x ,都有)()()(2121x f x f x x f +≥+ 成立; 则称函数)(x f 为ϖ函数.下面有三个命题:(1)若函数)(x f 为ϖ函数,则0)0(=f ; (2)函数])1,0[(12)(∈-=x x f x 是ϖ函数;(3)若函数)(x f 是ϖ函数,假定存在]1,0[0∈x ,使得]1,0[)(0∈x f ,且00)]([x x f f =, 则00)(x x f =; 其中真命题...个数有 ( ) A. 0个 B. 1个 C. 2个 D. 3个第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡相应位置. 11.6(2)x -的展开式中,3x 的系数是_____.(用数字作答)12.已知正数x 、y 满足⎩⎨⎧≥+-≤-05302y x y x ,则11()()42x yz =⋅的最小值为_____.13.定义一种运算S a b =⊗,在框图所表达的算法中揭示了这种运算“⊗”的含义。
福建省泉州市2013届普通中学高中毕业班质量检查(文科)数学
准考证号________________ 姓名________________(在此卷上答题无效)保密★启用前泉州市2013届普通中学高中毕业班质量检查文 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).本试卷共6页,满分150分.考试时间120分钟. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回. 参考公式:样本数据1x 、2x 、…、n x 的标准差:s =,其中x 为样本平均数;柱体体积公式:V Sh =,其中S 为底面面积,h 为高; 锥体体积公式:13V Sh =,其中S 为底面面积,h 为高;球的表面积、体积公式:24S R π=,343V R π=,其中R 为球的半径.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}0,1,2,3,4U =,{1,2,3}A =,{0,2}B =,则()U A B ð等于A .{}1,2,3,4B .{}0,1,2,3C .{}1,2D .{}1,32.命题“2,220x x x ∃∈++≤R ”的否定是A .2,220x x x ∃∈++>RB .2,220x x x ∃∈++≥RC .2,220x x x ∀∈++>RD .2,220x x x ∀∈++≤R 3.若直线:l 0x y a ++=经过圆:C 22240x y x y +-+=的圆心,则a 的值为A .1-B .1C .2-D .2 4.阅读如图所示的程序框图,执行框图所表达的算法,则输出的结果是A .2B .6C .24D .48 5.若直线l 与幂函数n y x =的图象相切于点A (2,8),则直线l 的方程为A .12160x y --=B .40x y -=C .12160x y +-=D .640x y --= 6. 函数()sin f x x =的图象向左平移4π个单位后,所得图象的一条对称轴是 A .4x =-πB .4x =πC .2x =πD .34x =π7. 已知双曲线()222210,0x y a b ab-=>>的两个焦点恰为椭圆2214xy +=的两个顶点,且离心率为2,则该双曲线的标准方程为 A .2213yx -= B .221412xy-= C .2213xy -= D .221124xy-=8.某几何体的三视图及其相应的度量信息如图所示,则该几何体的表面积为A .20+B .24C .24+D .289.已知单位向量a 、b ,满足⊥a b ,则函数2()()f x x =+a b (x ∈R )A . 既是奇函数又是偶函数B . 既不是奇函数也不是偶函数C . 是偶函数D . 是奇函数 10.给出以下四个说法:①在匀速传递的产品生产流水线上,质检员每间隔20分钟抽取一件产品进行某项指标的检测 ,这样的抽样是分层抽样;②在刻画回归模型的拟合效果时,相关指数2R 的值越大,说明拟合的效果越好;③在回归直线方程122.0ˆ+=x y 中,当解释变量x 每增加一个单位时,预报变量yˆ平均增加0.2个单位;④对分类变量X 与Y ,若它们的随机变量2K 的观测值k 越小,则判断“X 与Y 有关系”的把握程度越大. 其中正确的说法是A .①④B .②④C .①③D .②③11.对于定义域为R 的函数()f x ,若存在非零实数0x ,使函数()f x 在0(,)x -∞和0(,)x +∞上均有零点,则称0x 为函数()f x 的一个“界点”.则下列四个函数中,不存在“界点”的是 A .2()1()f x x bx b =+-∈R B .2()2x f x x =- C .()21f x x =-- D .()sin f x x x =-12.我国齐梁时代的数学家祖暅(公元前5-6世纪)提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任何平面所截,如果截得的两个截面的面积总是相等,那么这两个几何体的体积相等.设:由曲线24x y =和直线4x =,0y =所围成的平面图形,绕y 轴旋转一周所得到的旋转体为1Γ;由同时满足0x ≥,2216x y +≤,22(2)4x y +-≥,22(2)4x y ++≥的点(,)x y 构成的平面图形,绕y 轴旋转一周所得到的旋转体为2Γ.根据祖暅原理等知识,通过考察2Γ可以得到1Γ的体积为A .16πB .32πC .64πD .128π第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.将答案填在答题卡的相应位置. 13.已知(i)i 12i a +=--(a ∈R ,i 是虚数单位),则a 的值为 .14.已知y x ,满足约束条件10,0,3,x y x y x -+≥⎧⎪+≥⎨⎪≤⎩则y x z 2+=的最大值为 .15.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若22sin sin 2sin sin A B B C -=⋅,3c b =,则角A 的值为 .16.利用计算机随机模拟方法计算2y x =与4y =所围成的区域Ω的面积时,可以先运行以下算法步骤:第一步:利用计算机产生两个在01 区间内的均匀随机数,a b ; 第二步:对随机数,a b 实施变换:1142,4,a a b b =⋅-⎧⎨=⎩得到点A ()11,a b ;第三步:判断点A ()11,a b 的坐标是否满足211b a <;第四步:累计所产生的点A 的个数m ,及满足211b a <的点A 的个数n ;第五步:判断m 是否小于M (一个设定的数).若是,则回到第一步,否则,输出n 并终止算法.若设定的100M =,且输出的34n =,则据此用随机模拟方法可以估计出区域Ω的面积为 (保留小数点后两位数字).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)等差数列{}n a 中,33a =,145a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若11n n n b a a +=⋅,求数列{}n b 的前n 项和n S .18.(本小题满分12分)为了解某社区家庭的月均用水量(单位:吨),现从该社区随机抽查100户,获得每户某年的月均用水量,并制作了频率分布表和频率分布直方图(如图).(Ⅰ)分别求出频率分布表中a b 、的值,并估计该社区家庭月均用水量不超过3吨的频率; (Ⅱ)设1A 、2A 、3A 是户月均用水量为[0,2)的居民代表,1B 、2B 是户月均用水量为[2,4]的居民代表. 现从这五位居民代表中任选两人参加水价论证会,请列举出所有不同的选法,并求居民代表1B 、2B 至少有一人被选中的概率.19.(本小题满分12分)如图,抛物线C 的顶点为坐标原点O ,焦点F 在y 轴上,准线l 与圆221x y +=相切.(Ⅰ)求抛物线C 的方程;(Ⅱ)若点A B 、在抛物线C 上,且2FB OA =,求点A 的坐标.20.(本小题满分12分)已知O 为坐标原点,对于函数()sin cos f x a x b x =+,称向量(,)O M a b =为函数()f x 的伴随向量,同时称函数()f x 为向量O M的伴随函数.(Ⅰ)设函数()sin()2cos 22g x x x ππ⎛⎫=++ ⎪⎝⎭-,试求()g x 的伴随向量O M 的模;(Ⅱ)记O N =的伴随函数为()h x ,求使得关于x 的方程()0h x t -=在[0,]2π内恒有两个不相等实数解的实数t 的取值范围.21.(本小题满分12分)如图,E 是以A B 为直径的半圆上异于A 、B 的点,矩形A B C D 所在的平面垂直于该半圆所在的平面,且22AB AD ==. (Ⅰ)求证:E A E C ⊥;(Ⅱ)设平面EC D 与半圆弧的另一个交点为F .①试证://E F A B ;②若1E F =,求三棱锥E A D F -的体积.22.(本小题满分14分)已知函数()3e xf x a =+(e 2.71828=…是自然对数的底数)的最小值为3. (Ⅰ)求实数a 的值;(Ⅱ)已知b ∈R 且0x <,试解关于x 的不等式 22()3(21)3lnf x ln x b x b -<+--;(Ⅲ)已知m Z ∈且1m >.若存在实数[1,)t ∈-+∞,使得对任意的[1,]x m ∈,都有()3e f x t x +≤,试求m 的最大值.泉州市2013届普通中学高中毕业班质量检查文科数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分. 1. D 2.C 3.B 4.B 5. A 6. B 7. A 8.A 9.C 10.D 11.D 12.B二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分.13.2- 14.11 15.3π16.10.56.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.本小题主要考查等差数列、数列求和等基础知识,考查运算求解能力,考查函数与方程思想等. 满分12分.解:(Ⅰ)设数列{}n a 的公差为d ,由11123,(3) 5.a d a a d +=⎧⎨++=⎩………………………… 2分解得11,1.a d =⎧⎨=⎩ ………………………… 4分所以1(1)1(1)1n a a n d n n =+-=+-⋅=. ………………………… 6分(Ⅱ)因为n a n =,所以11n a n +=+,111(1)1n b n n nn ==-++,…………………… 9分所以1111111(1)()()()223341n S n n =-+-+-+⋅⋅⋅+-+1111n n n =-=++.…… 12分18.本小题主要考查频率分布表、频率分布直方图和古典概型、统计等基础知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等.满分12分. 解:(Ⅰ)由频率分布直方图可得0.50.50.25a =⨯=,…………… 2分∴月均用水量为[1.5,2)的频数为25.故2100928b =-=,得4b =. ………………………… 4分由频率分布表可知,户月均用水量不超过3吨的频率为0.92, ……… 5分 根据样本估计总体的思想,估计该社区家庭月均用水量不超过3吨的频率为0.92. ……… 6分(Ⅱ)由1A 、2A 、3A 、1B 、2B 五代表中任选2人共有如下10种不同选法,分别为:12()A A ,,13()A A ,,11()A B ,,12()A B ,,23()A A ,,21()A B ,,22()A B ,,31()A B ,,32()A B ,,12()B B ,. ………………………… 8分记“1B 、2B 至少有一人被选中”的事件为A ,事件A 包含的基本事件为:11()A B ,,12()A B ,,21()A B ,,22()A B ,,31()A B ,,32()A B ,,12()B B ,,共包含7个基本事件数. ……………… 10分 又基本事件的总数为10,所以7()10P A =.即居民代表1B 、2B 至少有一人被选中的概率为710. …………………… 12分19.本小题主要考查抛物线的标准方程、直线与圆等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想等.满分12分. 解:(Ⅰ)依题意,可设抛物线C 的方程为22(0)x py p =>,其准线l 的方程为2p y =-. ………………………… 2分∵准线l 与圆221x y +=相切,∴所以圆心(0,0)到直线l 的距离0()12p d =--=,解得2p =. ……… 4分故抛物线C 的方程为:24x y =. ………………………… 5分(Ⅱ)设11(,)A x y ,22(,)B x y ,则2112224,4.x y x y ⎧=⎨=⎩…………① …………………… 6分∵(0,1)F ,22(,1)FB x y =- ,11(,)OA x y =,2FB OA = ,∴22(,1)x y -112(,)x y =11(2,2)x y =,即 21212,2 1.x x y y =⎧⎨=+⎩ …………② ………………… 9分②代入①,得211484x y =+,21121x y =+, 又2114x y =,所以11421y y =+,解得112y =,1x =即1)2A或1()2. ………………………… 12分20.本小题主要考查平面向量和三角函数等基础知识,考查运算求解能力、推理论证能力,考查化归与转化思想、函数与方程思想、数形结合思想以及分类与整合思想等. 解:(Ⅰ)∵()sin()2cos 22g x x x ππ⎛⎫=++ ⎪⎝⎭-2sin cos x x =+, ……………… 2分 ∴(2,1)O M =. ………………………… 4分故O M ==……………………… 5分(Ⅱ)由已知可得()sin h x x x =+2sin()3x π=+,……………………… 7分∵02x π≤≤, ∴336x ππ5π≤+≤,故[]()1,2h x ∈. ……………………… 9分∵当0,6x π⎡⎤∈⎢⎥⎣⎦时,函数()h x单调递增,且()2h x ⎤∈⎦;当,62x ππ⎛⎤∈⎥⎝⎦时,函数()h x 单调递减,且[)()1,2h x ∈. ∴使得关于x 的方程()0h x t -=在[0,]2π内恒有两个不相等实数解的实数t 的取值范围为)2t ∈. … 12分21.本小题主要考查直线与直线、直线与平面的位置关系及棱锥体积等基础知识,考查空间想象能力、推理论证能力及运算求解能力,考查化归与转化思想等.满分12分. 解:(Ⅰ)∵平面A B C D ⊥平面A B E ,面A B C D 面A B E A B =,B C A B ⊥,B C ⊂面A B C D , ∴B C ⊥面A B E . ………………………… 2分又∵A E ⊂面A B E ,∴BC AE ⊥. ………………………… 3分 ∵E 在以A B 为直径的半圆上,∴AE BE ⊥,又∵BE BC B = ,B C B E ⊂、面BC E ,∴A E ⊥面BC E .…………… 4分 又∵C E ⊂面BC E ,∴E A E C ⊥. ……………………… 5分(Ⅱ)① ∵//A B C D ,A B ⊄面C ED ,C D ⊂面C ED ,∴//A B 平面C ED .… 6分又∵A B ⊂面A B E ,平面ABE 平面C ED E F =, ∴//A B E F . ……………… 8分 ②取A B 中点O ,E F 的中点'O ,在'R T O O F ∆中,1O F =,1'2O F =,∴'2O O =.(Ⅰ)已证得B C ⊥面A B E ,又已知//AD BC , ∴AD ⊥平面A B E .…………… 10分故13E A DF D A E F A E F V V S AD --∆==⋅⋅11'3212EF O O AD =⋅⋅⋅⋅=. … 12分 22.本小题主要考查函数、导数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、分类与整合思想、函数与方程思想、数形结合思想等.满分14分. 解:(Ⅰ)因为R x ∈,所以0x ≥,故0()3e 3e 3xf x a a a =+≥+=+,因为函数()f x 的最小值为3,所以0a =. ……………… 3分(Ⅱ)由(Ⅰ)得,()3e xf x =.当0x <时,ln ()ln(3e )ln 3ln e ln 3ln 3x xf x x x ==+=+=-+,……… 5分故不等式22ln ()ln 3(21)3f x x b x b -<+--可化为:22(21)3x x b x b -<+--,即22230x bx b +->, ……………… 6分 得(3)()0x b x b +->,所以,当0b ≥时,不等式的解为3x b <-;当0b <时,不等式的解为x b <. …………… 8分市质检数学(文科) 第11页(共11页) (Ⅲ)∵当[1,)t ∈-+∞且[1,]x m ∈时,0x t +≥,∴()3e 1ln x t f x t x e ex t x x ++≤⇔≤⇔≤+-. ∴原命题等价转化为:存在实数[1,)t ∈-+∞,使得不等式1ln t x x ≤+-对任意[1,]x m ∈恒成立. …………… 10分 令()1ln (0)h x x x x =+->. ∵011)('≤-=x x h ,∴函数()h x 在(0,)+∞为减函数. …………… 11分 又∵[1,]x m ∈,∴m m m h x h -+==ln 1)()(min . …………… 12分∴要使得对[1,]x m ∈,t 值恒存在,只须1ln 1m m +-≥-.………… 13分 ∵131(3)ln 32ln()ln 1h e e e =-=⋅>=-,2141(4)ln 43ln()ln 1h e e e =-=⋅<=- 且函数()h x 在(0,)+∞为减函数,∴满足条件的最大整数m 的值为3.…… 14分。
福建省2013届高三毕业班质量检测数学文试题 含解析
2013年福建省普通高中毕业班质量检查文 科 数 学本试卷分第1卷(选择题)和第Ⅱ卷(非选择题).本试卷共5页.满分150分.考试时间120分钟.注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上. 2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回.参考公式:样本数据x 1,x 2, …,x n 的标准差 锥体体积公式V =31Sh其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积、体积公式V =Sh24S R =π,343V R =π其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷(选择题 共60分)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数1i z =-,z 为z 的共轭复数,则下列结论正确的是A .1i z =--B .1+i z =-C .2z =D .2z =【答案】D【KS5U 解析】1z i =+,因此,A ,B 不正确;而2z =D 正确.2.已知,0a b c >≠,则下列不等式一定成立的是A .22ab > B .ac bc >C .a c b c +>+D .a b cc >【答案】C【KS5U 解析】当1a =-,2b =-时显然A 项不对;当0c <时B 和D 项不对;不等式两边加上同一个数不等式方向不改变,因此C 项对。
3.执行如图所示的程序框图,若输入的x 值为2,则输出的x 值为 A .3 B .8 C .9 D .63 【答案】B【KS5U 解析】由输入x 的值是2,循环一次x 的值是3,循环两次x 的值是8,恰好可以满足条件8x ≥,结束程序,输出的值是8。
福建省泉州市2013届高三5月质量检查数学文试题Word版附答案
准考证号________________ 姓名________________(在此卷上答题无效)保密★启用前泉州市2013届普通中学高中毕业班质量检测文 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).本试卷共6页,满分150分.考试时间120分钟.注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回.参考公式:样本数据1x 、2x 、…、n x 的标准差:s =,其中x 为样本平均数; 柱体体积公式:V Sh =,其中S 为底面面积,h 为高; 锥体体积公式:13V Sh =,其中S 为底面面积,h 为高; 球的表面积、体积公式:24S R π=,343V R π=,其中R 为球的半径. 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若i 是虚数单位,则复数i (2i)⋅+在复平面内所对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.设全集U =R ,{(3)0}A x x x =+<,{1}B x x =<-,则图中阴影部分表示的集合为A .(3,1)--B .(1,0)-C .[1,0)-D .(,1)-∞-3.某校组织班班有歌声比赛,8个评委为某个班级打出的分数如茎叶图所示,则这些数据的中位数是A .84B .85C .86D .87.54.执行如图所示程序框图所表达的算法,若输出的x 值为48,则输入的x 值为A .3B .6C .8D .125.若0a >,0b >,且1,,,4a b 构成等比数列,则ks5uA .22a b +有最小值4 B .a b +有最小值4C .22a b +无最小值D .a b +有最小值26.圆0422=-+x y x 在点)3,1(P 处的切线方程为 A .023=-+y x B .043=-+y xC .043=+-y xD .023=+-y x 7.下列函数中,既是奇函数又是减函数的是A .13y x =B .x x f tan )(-=C .2()1x f x x =- D .x x x f 22)(-=- 8.设,a b ∈R ,那么“>1a b”是“>>0a b ”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件9.若双曲线()222210,0x y a b a b-=>>的一个焦点在直线20x y a --=上,则其渐近线方程为A .y =B .3y x =±C .13y x =±D .3y x =±10.已知()21()cos cos 02f x x x x ωωωω=⋅->的图象与1y =的图象的两相邻交点间的距离为π,要得到()y f x =的图象,只须把cos 2y x =的图象A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位 11.已知周期函数()f x 的定义域为R ,周期为2,且当11x -<≤时,2()1f x x =-.若直线y x a =-+与曲线()y f x =恰有2个交点,则实数a 的所有可能取值构成的集合为A .3{|24a a k =+或524k +,k ∈Z }B .1{|24a a k =-或324k +,k ∈Z } C .{|21a a k =+或524k +,k ∈Z } D .{|21a a k =+,k ∈Z } 12.如图,在棱长为1的正方体1111ABCD A B C D -的对角线1AC 上任取一点P ,以A 为球心,AP为半径作一个球.设AP x =,记该球面与正方体表面的交线的长度和为()f x ,则函数()f x 的图象最有可能的是ks5uA .B .C .D .第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.将答案填在答题卡的相应位置.13.已知向量(4,)m =a ,(1,2)=-b ,若+=-a b a b ,则实数m 等于 .14.根据2012年初我国发布的《环境空气质量指数AQI 技术规定(试行)》,AQI 共分为六级:(0,50]为优,(50,100]为良,(100,150]为轻度污染,(150,200]为中度污染,(200,300]为重度污染,300以上为严重污染.2013年5月1日出版的《A 市早报》报道了A 市2013年4月份中30天的AQI统计数据,右图是根据统计数据绘制的频率分布直方图. 根据图中的信息可以得出A 市该月环境空气质量优良的总天数为 .15.一水平放置的平面图形OABC ,用斜二测画法画出它的直观图''''O A B C 如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形OABC 的面积为 .16.对于30个互异的实数,可以排成m 行n 列的矩形数阵,右图所示的5行6列的矩形数阵就是其中之一.将30个互异的实数排成m 行n 列的矩形数阵后,把每行中最大的数选出,记为12,,m a a a ⋅⋅⋅,并设其中最小的数为a ;把每列中最小的数选出,记为12,,n b b b ⋅⋅⋅,并设其中最大的数为b .两位同学通过各自的探究,分别得出两个结论如下:①a 和b 必相等; ②a 和b 可能相等;③a 可能大于b ; ④b 可能大于a .以上四个结论中,正确结论的序号是__________________(请写出所有正确结论的序号).126126126x x x y y y z zz三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.在某次模块水平测试中,某同学对于政治、历史、地理这三个学科每个学科是否能达到优秀水平的概率都为12,记政治、历史、地理达到优秀水平的事件分别为1A 、2A 、3A ,未达到优秀水平的事件分别为1A 、2A 、3A .(Ⅰ)若将事件 “该同学这三科中恰有两科达到优秀水平” 记为M ,试求事件M 发生的概率;(Ⅱ)请依据题干信息,仿照(Ⅰ)的叙述,设计一个关于该同学测试成绩情况的事件N ,使得事件N 发生的概率大于%85,并说明理由.18.已知ABC ∆外接圆O 的半径为1,且12OA OB ⋅=-. (Ⅰ)求AB 边的长及角C 的大小;(Ⅱ)从圆O 内随机取一个点M ,若点M 取自ABC ∆内的概率恰为4π,试判断ABC ∆的形状.19.在数列}{n a 和等比数列}{n b 中,01=a ,23=a ,1*2()n a n b n N +=∈.(Ⅰ)求数列{}n b 及}{n a 的通项公式;(Ⅱ)若n n n b a c ⋅=,求数列{}n c 的前n 项和n S .20.已知长方体1111ABCD A B C D -中,底面ABCD 为正方形,1D D ⊥面ABCD ,4AB =,12AA =,点E 在棱11C D 上,且13D E =.(Ⅰ)试在棱CD 上确定一点1E ,使得直线1//EE 平面1D DB ,并证明;(Ⅱ)若动点F 在底面ABCD 内,且2AF =,请说明点F 的轨迹,并探求EF 长度的最小值.21.已知(0,1)F 是中心在坐标原点O 的椭圆C 的一个焦点,且椭圆C 的离心率e 为12. (Ⅰ)求椭圆C 的方程;(Ⅱ)设:11(,)M x y 、22(,)N x y 为椭圆C 上不同的点,直线MN 的斜率为1k ;A 是满足OM ON OA λ+=(0λ≠)的点,且直线OA 的斜率为2k .①求12k k ⋅的值;②若A 的坐标为3(,1)2,求实数λ的取值范围.22.定义域为D 的函数()f x ,其导函数为'()f x .若对x D ∀∈,均有()'()f x f x <,则称函数()f x 为D 上的梦想函数.(Ⅰ)已知函数()sin f x x =,试判断()f x 是否为其定义域上的梦想函数,并说明理由; (Ⅱ)已知函数()1g x ax a =+-(a ∈R ,(0,)x π∈)为其定义域上的梦想函数,求a 的取值范围;(Ⅲ)已知函数()sin 1h x x ax a =++-(a ∈R ,[0,]x π∈)为其定义域上的梦想函数,求a 的最大整数值.泉州市2013届普通中学高中毕业班质量检测文科数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分.1.B 2.A 3.C 4.B 5.B 6.D7.D 8.B 9.A 10.C 11.C 12.B二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分.13.2 14.12 15. 16.②③三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.本小题主要考查古典概型等基础知识,考查运算求解能力以及应用意识,考查必然与或然思想等.满分12分.解:(Ⅰ)依题意,总的基本事件有“123(,,)A A A ,123(,,)A A A ,123(,,)A A A ,123(,,)A A A ,123(,,)A A A ,123(,,)A A A ,123(,,)A A A ,123(,,)A A A ”,共8种,………………2分 事件M 包含的基本事件有“123(,,)A A A ,123(,,)A A A ,123(,,)A A A ”,共3种,…4分 由于每个基本事件发生的可能性都相等,故事件M 发生的概率83)( M P .……6分 (Ⅱ)方案一:记“该同学这三科中至少有一科达到优秀水平”的事件为N ,则事件N 发生的概率大于%85.…………8分理由:事件N 包含的基本事件有“123(,,)A A A ,123(,,)A A A ,123(,,)A A A ,123(,,)A A A ,123(,,)A A A ,123(,,)A A A ,123(,,)A A A ”,共7种,……10分 由于每个基本事件发生的可能性都相等,所以%8587)(>=N P .……12分 方案二:记 “该同学参加这次水平测试成绩不全达到优秀水平”的事件为N ,则事件N 发生的概率大于%85.…………8分理由:事件N 包含的基本事件有“123(,,)A A A ,123(,,)A A A ,123(,,)A A A ,123(,,)A A A ,123(,,)A A A ,123(,,)A A A ,123(,,)A A A ”,共7种,……10分 由于每个基本事件发生的可能性都相等,故%8587)(>=N P .………12分 18.本小题主要考查向量的数量积、几何概型、解三角形等基础知识,考查运算求解能力,考查函数与方程思想等. 满分12分.解:(Ⅰ)依题意1cos 2OA OB OA OB AOB ⋅=⋅⋅∠=-,………………2分 得1cos 2AOB ∠=-,又0AOB π<∠<,故23AOB π∠=,…4分 又AOB ∆为等腰三角形,故AB = …………5分 而123C AOB π∠=∠=或12(2)23C AOB ππ∠=-∠=.………………6分 (Ⅱ)依题意,从圆O 内随机取一个点,取自ABC ∆内的概率O ABC S S P 圆∆=,可得S ABC ∆=.………………8分 设BC a =,AC b =.设23C π∠=,由1sin 2ABC S ab C ∆=⋅⋅=,得3ab =, ……① 由2222cos 3AB a b ab C =+-=,得223a b ab ++=, ……② 联立①②得220a b +=,这是不可能的. 所以必有3C π∠=. …………9分由1sin 2ABC S ab C ∆=⋅⋅=,得3ab =, ……① 由2222cos 3AB a b ab C =+-=,得223a b ab +-=,226a b += …②………11分联立①② 解得a b ==所以ABC ∆为等边三角形.………………12分19.本小题主要考查等比数列、数列通项公式、数列求和等基础知识,考查运算求解能力,考查函数与方程思想等. 满分12分.解法一:(Ⅰ)依题意21=b ,8233==b ,………………2分设数列}{n b 的公比为q ,由120n a n b +=>,可知0q >,………3分由822213=⋅=⋅=q q b b ,得42=q ,又0>q ,则2=q ,………4分故n n n n q b b 222111=⋅==--,………5分又由n a n 221=+,得1-=n a n .………………6分(Ⅱ)依题意n n n c 2)1(⋅-=.………………7分n n n n n S 2)1(2)2(2221201321⋅-+⋅-+⋅⋅⋅+⋅+⋅+⋅=- , ①则14322)1(2)2(2221202+⋅-+⋅-+⋅⋅⋅+⋅+⋅+⋅=n n n n n S ②……9分①-②得21231122222(1)2(1)212n n n n n S n n +++--=++⋅⋅⋅+--⋅=--⋅-, …………11分 即12)2(4+⋅-+-=-n n n S ,故12)2(4+⋅-+=n n n S .………………12分解法二:(Ⅰ)依题意}{n b 为等比数列,则q b b n n =+1(常数), 由120n a n b +=>,可知0q >,………………2分 由q n n n n a a a a ==-++++1122211,得q a a n n 21log =-+(常数),故}{n a 为等差数列,…………4分设}{n a 的公差为d ,由01=a ,220213=+=+=d d a a ,得1=d ,故1-=n a n .…………6分(Ⅱ)同解法一.20.本小题主要考查直线与直线、直线与平面的位置关系等基础知识,考查空间想象能力、推理论证能力及运算求解能力,考查化归与转化思想等.满分12分.解:(Ⅰ)取CD 的四等分点1E ,使得13DE =,则有1//EE平面1D DB . 证明如下:………1分因为11//D E DE 且11D E DE =,所以四边形11D EE D 为平行四边形,则11//D D EE ,………2分因为1DD ⊂平面1D DB ,1EE ⊄平面1D DB ,所以1//EE 平面1D DB .………4分(Ⅱ)因为2AF =,所以点F 在平面ABCD 内的轨迹是以A 为圆心,半径等于2的四分之一圆弧.………………6分因为11//EE DD ,1D D ⊥面ABCD ,所以1E E ⊥面ABCD , ………………7分故EF ==.………………8分所以当1E F 的长度取最小值时,EF 的长度最小,此时点F为线段1AE 和四分之一圆弧的交点,………………10分即11523E F E A AF =-=-=,所以EF ==.即EF 12分21.本小题主要考查椭圆的标准方程、直线与椭圆等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想等.满分12分.解:(Ⅰ)依题意,可设椭圆C 的方程为22221y x a b+=(0a b >>),………………1分由1c =,12c e a ==,得2a =, 由222b ac =-,可得23b =,………………3分故椭圆C 的方程为22143y x +=.………………4分 (Ⅱ)解法一:①由11(,)M x y 、22(,)N x y 且1k 存在,得21121y y k x x -=-,………………5分由OM ON OA λ+=,0λ≠且2k 存在,得21221y y k x x +=+,则222121211222212121y y y y y y k k x x x x x x +--⋅=⋅=+--.………………6分 ∵11(,)M x y ,22(,)N x y 在椭圆上,∴2211143y x +=,2222143y x +=,………7分 两式相减得22222121043y y x x --+=,2221222143y y x x -=--, ∴1243k k ⋅=-.………………8分 ②若A 的坐标为3(,1)2,则223k =,由①可得12k =-.设直线:2MN y x m =-+(m ∈R ),由222,1,43y x m y x =-+⎧⎪⎨+=⎪⎩得2216123120x mx m -+-=,……ks5u ……9分 所以1234mx x +=. ∵OM ON OA λ+=,∴1232x x λ+=,2m λ=. …………10分又由()()22124163120m m ∆=--⋅⋅->,解得44m -<<,………………11分∴22λ-<<且0λ≠.………………12分解法二:①设直线1:MN y k x m =+(m ∈R ),若0m =,则120,x x +=由A 满足OM ON OA λ+=(λ∈R ,0λ≠),得0A x =, ∵直线OA 的斜率2k 存在,∴0m ≠. ………5分由122,1,43y k x m y x =+⎧⎪⎨+=⎪⎩得22211(43)63120k x k mx m +++-=……(*).……………6分 ∵11(,)M x y 、22(,)N x y ,∴11221643k mx x k +=-+. ………7分∵12112()2y y k x x m +=++,A 满足OM ON OA λ+=,∴直线OA 的斜率2121211121214323y y k mk k k x x x x k ++==+=-++, 经化简得1243k k ⋅=-. ………9分 ②若A 的坐标为3(,1)2,则223k =,由①可得12k =-. ………10分∴方程(*)可化为2216123120x mx m -+-=,下同解法一.22.本小题主要考查函数、导数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、分类与整合思想、函数与方程思想、数形结合思想等.满分14分. 解:(Ⅰ)函数()sin f x x =不是其定义域上的梦想函数.………………1分理由如下:()sin f x x =定义域D R =,()'cos f x x =,………………2分存在3x π=,使()'()33f f ππ>,故函数()sin h x x =不是其定义域R D =上的梦想函数.……4分ks5u(Ⅱ)()1g x ax a =+-,()'g x a =,若函数()1g x ax a =+-在(0,)x π∈上为梦想函数,则1ax a a +-<在(0,)x π∈上恒成立,………………5分即1a x <在(0,)x π∈上恒成立, 因为1y x =在(0,)x π∈内的值域为1(,)π+∞,………………7分所以1a π≤.………………8分(Ⅲ)a x x h +=cos )(',由题意)()('x h x h >在[0,]x π∈恒成立,故cos sin 1x a x ax a +>++-,即cos sin 1ax x x <-+在[0,]x π∈上恒成立. ①当0x =时,0cos0sin012a ⋅<-+=显然成立;……………9分 ②当0x π<≤时,由cos sin 1ax x x <-+可得cos sin 1x x a x-+<对任意(]0,x π∈恒成立. 令cos sin 1()x x F x x -+=,则2(s i n c o s )(c o ss i n 1)'()x x x x x F x x --⋅--+=,…10分令)1sin (cos )cos sin ()(+--⋅--=x x x x x x k ,则'()(sin cos )sin()4k x x x x x π=-⋅=⋅-.当(0,]4x π∈时,因为0)('≤x k ,所以)(x k 在(0,]4π单调递减; 当(,]4x ππ∈时,因为0)('≥x k ,所以)(x k 在(,]4ππ单调递增.∵(0)20k =-<,()1044k π=--<, ∴当(0,]4x π∈时,()k x 的值均为负数.∵()1044k π=--<,()0k ππ=>,∴当(,]4x ππ∈时,()k x 有且只有一个零点0x ,且0(,)4x ππ∈. ……………11分∴当0(0,)x x ∈时,0)(<x k ,所以'()0F x <,可得()F x 在0(0,)x 单调递减; 当0(,)x x π∈时,0)(>x k ,所以'()0F x >,可得()F x 在0(,)x π单调递增. 则00min 00cos sin 1()()x x F x F x x -+==.…………12分因为0)(0=x k ,所以00000cos sin 1(sin cos )x x x x x -+=--⋅,min 0000()()sin cos )4F x F x x x x π==--=+.…………13分∵)(x k 在(,]4ππ单调递增,02)2(<-=ππk ,012)43(>-=πk ,∴0324x ππ<<,所以01)04x π-<+<,即01()0F x -<<.ks5u又因为0()a F x <,所以a 的最大整数值为1-.…………14分。
2013福建省泉州七中高三第一次质量检查数学理试题及答案.
2013年泉州七中高中毕业班第一次质量检查理 科 数 学命题:汪木水 饶真平 校对:饶真平 陈建彬参考公式:样本数据x 1,x 2, …,x n 的标准差 锥体体积公式V =31Sh 其中x 为样本平均数其中S 为底面面积,h 为高柱体体积公式球的表面积、体积公式 V=Sh24S R =π,343V R =π其中S 为底面面积,h 为高其中R 为球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合2{0}M x x x =->,则M C U =( )A .{|01}x x <<B .{|01}x x ≤≤C .{|01}x x x <>或D .{|01}x x x ≤≥或2.如图,在复平面内,若复数12,z z 对应的向量分别是,OA OB ,则复数12z z +所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.设函数)()(R x x f ∈满足)()(x f x f =-,)()2(x f x f =+,则函数)(x f y =的图像可 以是( )A .B .C .D .4.已知,l m 为两条不同的直线,α为一个平面。
若α//l ,则“m l //”是“α//m ”的( ) A.充分不必要条件 B.必要不充分条件 C. 充要条件 D. 既不充分又不必要条件5.若等比数列{}n a 的首项为19,且241(2)a x dx =⎰,则数列{}n a 的公比是( ) A. 3 B. 13 C. 27 D. 1276.若双曲线2219x y m -=的渐近线方程为30y ±=,则椭圆2214x y m +=的离心率为( ) A.21 B. 22215- 7. 如图所示,一个三棱锥的三视图是三个直角三角形,在包围 该三棱锥的外接球内任取一点,则该点落在三棱锥内部的概率为 ( )A. 49πB. 227πC. 427πD. 29π8. 有四个关于三角函数的命题:①∃x ∈R, 2sin2x +2cos 2x =12②,x y R ∃∈, sin()sin sin x y x y -=-③三角形ABC 的三个内角A 、B 、C 的对边的长分别为a 、b 、c ,若 a 、b 、c 成等差数列,则30π≤<B ④sin cos 2x y x y π=⇒+=其中假命题...的是( ) A. ①④ B.②④ C. ①③ D.②③9. 如图,已知圆C 直径的两个端点坐标分别为()()010,9,B A --、,点P 为圆C 上(不同于B 、A )的任意一点,连接P B 、AP 分别交y 轴于M 、N 两点,以MN 为直径的圆与x 轴交于D 、F 两点,则弦长DF 为( )A. 7B. 6C. 72D. 6210.对于定义域为[0,1]的函数()f x ,如果同时满足以下三个条件:①对任意的]1,0[∈x ,总有0)(≥x f ②1)1(=f ③若0,021≥≥x x ,121≤+x x ,都有)()()(2121x f x f x x f +≥+ 成立; 则称函数)(x f 为ϖ函数.下面有三个命题:(1)若函数)(x f 为ϖ函数,则0)0(=f ; (2)函数])1,0[(12)(∈-=x x f x是ϖ函数;442正视图侧视图俯视图第7题图第9题图(3)若函数)(x f 是ϖ函数,假定存在]1,0[0∈x ,使得]1,0[)(0∈x f ,且00)]([x x f f =, 则00)(x x f =; 其中真命题...个数有 ( ) A. 0个 B. 1个 C. 2个 D. 3个第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡相应位置. 11.6(2)x -的展开式中,3x 的系数是_____.(用数字作答)12.已知正数x 、y 满足⎩⎨⎧≥+-≤-05302y x y x ,则11()()42x yz =⋅的最小值为_____.13.定义一种运算S a b =⊗,在框图所表达的算法中揭示了这种运算“⊗”的含义。
福建省泉州市高三上学期期末质量检查数学文试题(扫描版)
泉州市2015届普通中学高中毕业班单科质量检查文科数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分.1.C 2.D 3.D 4.C 5.C 6.C7.B 8.B 9.A 10.A 11.C 12.D部分试题考查意图说明:题3 用代数方法运算量偏大,用几何直观判断比较简单. 向量首先属几何范畴,思考向量问题的解决方法,应首先考虑从几何直观入手;引入坐标表示向量后,才使向量进入代数范畴,体现坐标法思想这一课程本质.本题的位置排序,意在检测解题的数形结合意识,检查对课程价值的认识和对课程本质的把握是否到位.题6 方法一:注意到直线45z x y =+的斜率145k =-,直线34P P 的斜率2k =直线45z x y =+考察其纵截距的最大值,可判断答案. 方法二:特殊化地取正六边形的边长为1,分别求出各顶点的坐标,代入45z x y =+,再比较大小. 本题考查直线的斜率、线性规划等基础知识,考查运算求解能力、推理论证能力,考查数形结合思想、函数与方程思想以及特殊与一般思想. 本题有意识地不给出具体的坐标(正六边形边长),意在体现对特殊与一般思想的考查. 题11 本题可再增加一个待定参数(如将圆的方程改为22220x y x Ey +++-=)以进一步提高试题品位,但难度将加大. 直线与圆的位置关系问题,特别强调充分利用平几性质以简化运算.题12 方法一:取焦点(,0)F c ,渐近线b y x a =.则直线:a ac EF y x b b =-+,求得(0,)ac E b ,2(,)a ab M c c ,2(,),(,)ac b ab FE c FM b c c =-=-.得22221c e b e λ==-.再由12λ<<,解得e >方法二:特殊化,令2e =,取焦点(,0)F c ,渐近线y =,求直线:)EF y x c =-,解得4M c x =,由FE FM λ=得4(),(1,2)43c c c λλ-=-=∈,离心率可以为2,故排除A 、B 、C 选项. 二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分.13.28; 14.2425-; 15.8; 16. 5 . 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.本小题主要考查统计的基础知识,考查运算求解能力、数据处理能力以及应用意识,考查必然与或然思想等.满分12分.解:(Ⅰ)众数:9.4;极差:4.0. ……………4分 (Ⅱ)茎叶图如下:……………8分这20名学生视力数据的平均数为 4.71+4.86+4.97+5.04+5.12 4.920x ⨯⨯⨯⨯⨯==, 故这20名学生视力数据的方差为:()()()()()2222212 4.7 4.91+4.8 4.9 4.9 4.97 5.0 4.94 5.1 4.9220s ⎡⎤=⨯⨯⨯-⨯+-⨯+-⨯⎣⎦2--6+ ()1=0.040.0600.040.0820⨯++++0.011=. ……………12分 18.本小题主要考查等比数列以及等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等. 满分12分.解:(Ⅰ)当2n ≥时,2n n S a n =-,①()1121n n S a n --=--,② ……1分由①-②得()1121n n n n S S a a ---=⋅--,整理得121n n a a -=+,……………3分 则2111211111=+++=++---n n n n a a a a . ………5分 所以数列{}1n a +是公比为2的等比数列. ……………6分(Ⅱ)当1n =时,11121S a a ==-,所以11a =. ……………7分由(Ⅰ)知1111(1)222n n n a a --+=+⨯=⨯,所以21n n a =-,…………9分所以()2log 1n n b a n =+=.……………10分 从而()1111111n n b b n n n n +==-⋅⋅++, 所以111111=1+1223111n n T n n n n ⎛⎫⎛⎫⎛⎫-+-+-=-= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭.……………12分 19.本小题主要考查三角函数与解三角形等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想等.. 满分12分.解: (Ⅰ)由2cos c b b A -=,得sin sin 2sin cos C B B A -=.① ……………2分 在ABC ∆中,因为()C A B π=-+,所以()sin sin C A B =+. ……………3分 代入①式,得()sin sin =sin cos sin cos sin 2sin cos A B B A B B A B B A +-+-=, 整理得()sin sin A B B -=. ……………6分 因为角C 为钝角,所以,0222A B B -<-<<<πππ,所以A B B -=,故2A B =. ……………7分 (Ⅱ)由正弦定理得sin sin 2sin cos AC BC BC B A B B ==⋅. ……………8分 又因为12AC =,所以2cos cos BC AC B B =⋅=.……………9分 因为角C 为钝角,所以022A B B B <+=+<π,即06B π<<, ……………11分所以cos 12B <<.所以BC的取值范围为12⎛⎫ ⎪ ⎪⎝⎭,. ……………12分20.本小题主要考查直线与直线、直线与平面的位置关系等基础知识,考查空间想象能力、推理论证能力及运算求解能力,考查化归与转化思想、数形结合思想等.满分12分.解:(Ⅰ)在面11A C 内过点P 画直线11//MN B C ,MN 与棱1111,A B D C 分别交于点,M N ,再连接,BM CN .……………2分理由如下:∵四棱柱中11//B C BC ,//MN BC ∴. ,,M N P ∴与BC 共面,即所画的线,,MN BM CN 都与P 和BC 在同一个平面内. ……5分 (Ⅱ)锯开后较大木块为四棱柱11AA MB DD NC -.若P 为11A C 的中点,则M 为棱11A B 的中点. ()11111131412722AA MB AA B B MB B S S S =-=+⋅-⋅⋅=.…6分 取AB 中点H ,连接DH . ABCD 是边长为4的菱形,且060DAB ∠=,∴DH == ∵222AD AH DH =+,∴且DH AB ⊥. …7分侧面ABCD ⊥底面11ABB A ,且平面 ABCD 底面11ABB A AB =,又DH AB ⊥,DH ⊂平面ABCD ,DH ∴⊥平面11ABB A ,……………11分11111733AA MB DD NC AA MB V S DH -∴=⋅=⋅⋅=12分 21.本小题主要考查圆锥曲线、直线与圆、直线与圆锥曲线的位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想、分类与整1A合思想以及特殊与一般思想等.满分12分.解:(Ⅰ)依题意,可知抛物线G 的焦点为()1,0F . …………1分又因为抛物线G 的顶点在原点,所以2p =,抛物线G 的标准方程为24y x =. …………3分 (Ⅱ)由(Ⅰ)知抛物线的准线方程为1x =-. ………4分设()()1122,,,A x y D x y . 根据抛物线的定义,得121,1AF x DF x =+=+, ………5分 所以1111AB AF BF x x =-=+-=. ……………6分 同理可得2CD x =.方法一:若直线AD 的斜率存在,设直线AD :()1y k x =-(显然0k ≠). 由()21,4,y k x y x ⎧=-⎪⎨=⎪⎩得()2222240k x k x k -++=, ……………7分 则有121x x ⋅=,从而12||||1AC BD x x ⋅==. ……………8分若直线AD 斜率不存在,则直线:1AD x =,此时121x x ==,亦有12||||1AB CD x x ⋅==.综上可知,||||AB CD ⋅恒为定值,且此定值为1. ……………9分(Ⅲ)由(Ⅱ)可知当直线AD 斜率存在时,221222244422k k AD AF DF x x a k k ++=+=++=+==,……………10分 所以2214k a k +==, 因为()0,0O 到直线AD的距离为d ==,所以1122AOD S d AD a ∆=⋅⋅== ……………11分当直线AD 斜率不存在时,则121x x ==,1224AD x x =++=,即4a =,此时亦有11422AOD S ∆=⋅⋅==综上,AOD S ∆= ……………12分方法二:显然直线AD 的斜率不为零,故设直线AD :1x my =+.由21,4,x my y x =+⎧⎨=⎩得2440y my --=, ……………7分 则有12124,4y y m y y +=⋅=-,从而1212||||(1)(1)AC BD x x my my ⋅==++221212()14(4)11m y y m y y m m m m =+++=⋅+-+=.即证得||||AB CD ⋅恒为定值,且此定值为1. ……………9分(Ⅲ)由(Ⅱ)可知,24(1)AD m a ==+=, ……………10分因为()0,0O 到直线AD的距离为d ==, ……………11分所以1122AOD S d AD a ∆=⋅⋅==. ……………12分 (Ⅲ)由(Ⅱ)可知,121(||||)2AOD AOF FOD S S S y y ∆∆∆=+=+==………10分又因为24(1)AD m a ==+=, ……………11分所以AOD S ∆=……………12分22.本小题主要考查函数、导数等基础知识,考查推理论证能力、运算求解能力及应用意识,考查化归与转化思想、分类与整合思想、函数与方程思想、数形结合思想等.满分14分.解:(Ⅰ)因为函数()2(f x a =+()f x '=. ……………2分 设直线1y x =+与函数()y f x =的图象相切于点00(,)x y ,则0002(1,1,y a y x ⎧=+⎪=+⎪⎨⎪=⎪⎩即012(1,x a ⎧+=+⎪⎨=⎪⎩解得001,2,0.x y a =⎧⎪=⎨⎪=⎩ 所以所求的0a =. ……………4分(Ⅱ)记()()()h x f x g x =-,则()ln h x x bx =--,其定义域为{}|0x x >.(i )函数()()y f x g x =-在定义域内有两个极值点的必要条件是导函数'()h x 在定义域{}|0x x >内有两个零点. ……………5分11()(0)bx h x b x x x -+'=--=>. 令()0h x '=,得10bx -=.令t =,则0t >.所以,'()h x 在定义域{}|0x x >内有两个零点等价于方程210bt t -+=有两个不等的正实根1t ,2t , ……6分 等价于1212140,10,b t t t t b ∆=->⎧⎪⎨=+=>⎪⎩解得104b <<. ……………7分 当104b <<时,设'()h x 在定义域{}|0x x >内的两零点分别为1x ,2x ,且12x x <,则1()bx h x x -+'===.因为120,0,0x b x x >><<,所以,当x 1(0,)x ∈时,'()0h x <;当x 12(,)x x ∈时,'()0h x >;当x 2(,)x ∈+∞时,'()0h x <.所以,1x ,2x 都是函数()()()h x f x g x =-的极值点,即函数()()y f x g x =-在定义域内有两个极值点. ……………9分 所以104b <<.(ii )由(i )知方程10bx =的两根为1x ,2x ,=1b =.从而1221x x b ⋅=,212212x x b b+=-=-. ……………10分 因为1211221212()()ln ln ln()()g x g x x bx x bx x x b x x +=+++=⋅++, 所以122121()()2ln ()2ln 2g x g x b b b b b b+=-+-=-+-. …………11分 又因为b x x x f x f 222)()(2121=+=+, 所以b b b x f x f x g x g --=++ln 21)()()()(2121. ……………12分 记11()ln (0)24k b b b b b =--<<.,则()ln 2k b b '=--. 方法一:解()ln 20k b b '=--=,可得211(0,)4e b =∈; 解()ln 20k b b '=--<,得2114e b <<; 解()ln 20k b b '=-->,得210eb <<. ………13分 所以,当21(0,)e b ∈时,()k b 单调递增;当21(,)eb ∈+∞时,()k b 单调递减. 所以当21b =e 时,()k b 取得最大值,即max 22111()()2e e k b k ==+, 所以211)()()()(22121+≤++e x f x f x g x g 成立. ……………14分方法二:令()ln 20k b b '=--=,可得211(0,)4e b =∈. 当b 变化时,()k b 与()k b '的变化情况如下表:………13分 所以当21b =e 时,()k b 取得最大值,即max 22111()()2e e k b k ==+, 所以211)()()()(22121+≤++e x f x f x g x g 成立. ……………14分。
福建省泉州七中高三数学第一次质量检查试题文新人教A版.docx
泉州七中2013届高三年第一次校质检数学试题 (文) 考试时间:120分钟 满分:150分 命卷人:张丽英 黄永生 复 核:黄永生 参考公式: 柱体体积公式:V 二S/z,其屮S 为底面血•积、力为高; 锥体体积公式:V=-Sh 9其中S 为底面面积、力为高; 3 球的表血•积、体积公式:S = 4/rR\V = -其中R 为球 3 的半径. 一、选择题:本大题共12小题;每小题5分,共60分.在每小题 给出的四个选项中,只有一个选项是符合题目要求的,把正确选 项的代号涂在答题卡上.1. 已知复数z 的实部为1,且忖=2,则复数z 的虚部是()A. V3B. V3iC. ±V3iD. ±^32. 在△肋C 中,a = \/3 , c = A /6 , B =—,则b 的长为() 4 A. V2 B. 2V2 C. V3 D. 2V33. 已知集合 M ={x\x 1 -5x < 0}, N = {x \ p < x <6],则 MC\N = {x\2<x<q},则 p + q 等于( )A. 6B. 7C. 8 D ・ 94. 若a,heR,Aah>0,则下列不等式中恒成立的是()I ] 2 baA. a + b> 2yJ~abB. — + — > .——C. —+ — > 2cib yjab a b D. a 2 +b 2 > lab5. 执行如图所示的程序框图,若输入兀=4,则输出y 的值为()5 51 1 A. -- B. - C. -- D.- 4 42 2 6. m,n 是不同的肓线,a 、0是不重合的平面,下列命题为真命 题的是( ) A.若加〃 a.in//n.则a C.若加丄a.m//0,则a 丄0 7.直线2x + y-10 = 0与不等式组< 的公共点有( A. 0个 B. 1个 8. D.若a 丄u a,则加丄0x>0y ~° 表示的平面区域 x- y>-2 4x + 3y <20 C. 2个 D.无数个函数/(x) = lnx B . 3 A. 4 C. 2 D. 1 尹的图像大致是(7 c 兀- V 10.已知抛物线y 2 = 2px (p > 0)的焦点F 与双曲才—* 2 -=1的右焦点重合,抛物线的准 线与x 轴的交点线上R\AK\ = y/2\AF\f 则A 点的横坐标为(A. 2>/2 B. 3 C. 2命 11-在棱长为1的正方体ABCD-A^QD,屮,人,鬥段AB, BD {(不包括端点)上的动点,且线段巴A.ADD,,则四面体P X P 2AB X 的体积的最人值是1 1 , 1 1 A. — B. — C. — 24 12 6 12.已知数列{%} (neN*)是各项均为止数且公比申禅列,对于两数y = /(x ),若数列{In f (昭少彳(兀)为“保比并数列函数”.现有定义在 _ 1 扌勺二个隊I 数:①f (x )=—:②f (x ) =e =\JX ; x 訪f (x ) =2 X ,则为“保比差数列函数”的A.③④ B.①②④ C.①D.①③ 二、填空题:本大题共4小题,每小题4分,共答题卡的相应位置. 13.为了均衡教育资源,加大对偏远地区的教育投若T 户家庭的年收入“(单位:万元)和年位: 万元),调查显示年收入/与年教育支出关系, 并由调杏数据得到y 对x 的冋归直线方程:由回归直线方程可知,家庭年收入每增加1出 平均增加 _______ 万元. 14. 一个儿何体的三视图如图所 示,其中正视图中AABC 是 边长为2的正三角形,俯视 图为止六边形,那么该几何 体的侧视图的而积为第14题图15.给定两个长度为1,且互相垂直的平面向量0A 和0B,点C 在 以。
2013福建省泉州七中高三第一次质量检查数学理试题及答案
2013年泉州七中高中毕业班第一次质量检查理 科 数 学命题:汪木水 饶真平 校对:饶真平 陈建彬参考公式:样本数据x 1,x 2, …,x n 的标准差 锥体体积公式V =31Sh 其中x 为样本平均数 其中S 为底面面积,h 为高柱体体积公式球的表面积、体积公式 V=Sh24S R =π,343V R =π其中S 为底面面积,h 为高其中R 为球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合2{0}M x x x =->,则M C U =( )A .{|01}x x <<B .{|01}x x ≤≤C .{|01}x x x <>或D .{|01}x x x ≤≥或2.如图,在复平面内,若复数12,z z 对应的向量分别是,OA OB,则复数12z z +所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.设函数)()(R x x f ∈满足)()(x f x f =-,)()2(x f x f =+,则函数)(x f y =的图像可 以是( )A .B .C .D .4.已知,l m 为两条不同的直线,α为一个平面。
若α//l ,则“m l //”是“α//m ”的( ) A.充分不必要条件 B.必要不充分条件 C. 充要条件 D. 既不充分又不必要条件5.若等比数列{}n a 的首项为19,且241(2)a x dx =⎰,则数列{}n a 的公比是( ) A. 3 B. 13 C. 27 D. 1276.若双曲线2219x y m -=的渐近线方程为30y ±=,则椭圆2214x y m +=的离心率为( ) A.21 B. 22C. 5D. 215- 7. 如图所示,一个三棱锥的三视图是三个直角三角形,在包围 该三棱锥的外接球内任取一点,则该点落在三棱锥内部的概率为 ( )A. 49πB. 227πC. 427πD. 29π8. 有四个关于三角函数的命题:①∃x ∈R, 2sin2x +2cos 2x =12②,x y R ∃∈, sin()sin sin x y x y -=-③三角形ABC 的三个内角A 、B 、C 的对边的长分别为a 、b 、c ,若 a 、b 、c 成等差数列,则30π≤<B ④sin cos 2x y x y π=⇒+=其中假命题...的是( ) A. ①④ B.②④ C. ①③ D.②③9. 如图,已知圆C 直径的两个端点坐标分别为()()010,9,B A --、,点P 为圆C 上(不同于B 、A )的任意一点,连接PB 、AP 分别交y 轴于M 、N 两点,以MN 为直径的圆与x 轴交于D 、F 两点,则弦长DF 为( )A. 7B. 6C. 72D. 6210.对于定义域为[0,1]的函数()f x ,如果同时满足以下三个条件:①对任意的]1,0[∈x ,总有0)(≥x f ②1)1(=f ③若0,021≥≥x x ,121≤+x x ,都有)()()(2121x f x f x x f +≥+ 成立; 则称函数)(x f 为ϖ函数.下面有三个命题:(1)若函数)(x f 为ϖ函数,则0)0(=f ; (2)函数])1,0[(12)(∈-=x x f x 是ϖ函数;442正视图侧视图俯视图第7题图第9题图(3)若函数)(x f 是ϖ函数,假定存在]1,0[0∈x ,使得]1,0[)(0∈x f ,且00)]([x x f f =, 则00)(x x f =; 其中真命题...个数有 ( ) A. 0个 B. 1个 C. 2个 D. 3个第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡相应位置. 11.6(2)x -的展开式中,3x 的系数是_____.(用数字作答) 12.已知正数x 、y 满足⎩⎨⎧≥+-≤-05302y x y x ,则11()()42x yz =⋅的最小值为_____.13.定义一种运算S a b =⊗,在框图所表达的算法中揭示了这种运算“⊗”的含义。
高三数学月考试题及答案-泉州七中2013届高三第一次质量检查(文)
泉州七中2013届高三年第一次校质检数学试题(文)考试时间:120分钟 满分:150分 命卷人:张丽英 黄永生 复核:黄永生 参考公式: 柱体体积公式:,V Sh =其中S 为底面面积、h 为高;锥体体积公式:1,3V Sh =其中S 为底面面积、h 为高;球的表面积、体积公式: ,34,432R V R S ππ==其中R 为球的半径.一、选择题:本大题共12小题;每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的,把正确选项的代号涂在答题卡上. 1.已知复数z 的实部为1,且2z =,则复数z 的虚部是( ) ABC. D.2.在△ABC中,a =c =4B π=,则b 的长为( )A .2B . 22C .3D .233.已知集合}05|{2<-=x x x M ,}6|{<<=x p x N ,则}2|{q x x N M <<= ,则q p +等于( )A .6B . 7C . 8D . 94.若,,0,a b R ab ∈>且则下列不等式中恒成立的是( )A.a b +≥B.11a b +>C.2b aa b+≥D.222a b ab +>5.执行如图所示的程序框图,若输入4=x ,则输出y 的值为(A.45-B.45C.21- D.216.,m n 是不同的直线,αβ、是不重合的平面,下列命题为真命题的是( ) A .若,,m m n n αα∥∥则∥ B .若,m n αβ⊥⊥,则n m ⊥C .若,,m m αβαβ⊥∥则⊥ D .若,,m m αβαβ⊂⊥则⊥7.直线0102=-+y x 与不等式组0024320x y x y x y ≥⎧⎪≥⎪⎨-≥-⎪⎪+≤⎩表示的平面区域的公共点有( )A .0 个B .1 个C .2个D .无数个 8.函数21()ln 2f x x x =-的图像大致是( )9. 给出下列四个命题: (1)命题“若4πα=,则1tan =α”的逆否命题为假命题;(2)命题1sin ,:≤∈∀x R x p .则R x p ∈∃⌝0:,使1sin 0>x ; (3)“)(2Z k k ∈+=ππϕ”是“函数)2sin(ϕ+=x y 为偶函数”的充要条件;(4)命题:p “R x ∈∃0,使23cos sin 00=+x x ”; 命题:q “若sin sin αβ>,则αβ>”,那么q p ∧⌝)(为真命题. 其中正确的个数是( ) A .4B .3C .2D .110.已知抛物线22(0)y px p =>的焦点F 与双曲22145x y -=的右焦点重合,抛物线的准 线与x 轴的交点为K ,点A在抛物线上且AK =,则A 点的横坐标为( )A. B .3 C. D .411.在棱长为1的正方体1111ABCD A BC D -中,1P ,2P 分别为线段AB ,1BD (不包括端点)上的动点,且线段12P P 平行于平面11A ADD ,则四面体121PP AB 的体积的最大值是( ) A .124 B .112C .16 D .1212.已知数列{}n a (n ∈N *)是各项均为正数且公比不等于1的等比数列,对于函数()y f x =,若数列{ln ()}n f a 为等差数列,则称函数()f x 为“保比差数列函数”.现有定义在(0,)+∞上的三个函数:①f (x )=1x;②f (x )=e x ;③f (x )f (x )=2 x , 则为“保比差数列函数”的是( ) A .③④ B .①②④ C .①③④ D .①③二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在答题卡的相应位置. 13.为了均衡教育资源,加大对偏远地区的教育投入,调查了某地若干户家庭的年收入x (单位:万元)和年教育支出y (单位:万元),调查显示年收入x 与年教育支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:2.015.0ˆ+=x y.由回归直线方程可知,家庭年收入每增加1万元,年教育支出平均增加____________万元.14.一个几何体的三视图如图所示,其中正视图中△ABC 是边长为2的正三角形,俯视图为正六边形,那么该几何体的侧视图的面积为________________15.给定两个长度为1,且互相垂直的平面向量OA 和OB ,点C 在以O 为圆心、||为半径的劣弧AB 上运动,若OB y OA x OC +=,其中x 、R ∈y ,则22)1(-+y x 的最大值为__ ____.16.设函数⎩⎨⎧<-≥⋅=.0,2sin 2,0,2)(x x x x x f x 则方程1)(2+=x x f 的实数解的个数为 .三、解答题:本大题共6小题,共74分,解答时应写出必要文字说明、证明过程演算步骤. 17.投掷一个质地均匀的、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面标的数字是0,两个面标的数字是2,两个面标的数字是4,将此玩具连续抛掷两次,以两次朝上一面出的数字分别作为点P 的横坐标和纵坐标。
泉州七中数学试题及答案
泉州七中数学试题及答案一、选择题(每题5分,共30分)1. 下列哪个选项是正确的?A. 2 > 3B. 0 < 1C. 3 = 3D. 1 > 2答案:B2. 如果a + b = 5,且a - b = 3,那么a的值是多少?A. 1B. 2C. 4D. 6答案:C3. 以下哪个数是质数?A. 4B. 9C. 11D. 12答案:C4. 一个圆的半径为3,其面积是多少?A. 28.26B. 36C. 45D. 94.2答案:A5. 以下哪个表达式等价于\( 2x + 3y \)?A. \( 3x + 2y \)B. \( 2x - 3y \)C. \( 3x + 3y \)D. \( 2x + 2y \)答案:无等价表达式6. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 8D. 4答案:A二、填空题(每题3分,共15分)1. 一个数的相反数是-5,这个数是______。
答案:52. 如果一个三角形的内角和为180°,那么一个直角三角形的两个锐角的和是______。
答案:90°3. 一个数的立方根是2,这个数是______。
答案:84. 一个数的绝对值是3,这个数可以是______或______。
答案:3或-35. 一个数的平方是25,这个数可以是______或______。
答案:5或-5三、计算题(每题10分,共20分)1. 计算下列表达式的值:\( (-3)^2 + 4 \times (-2) - 5 \)答案:42. 解下列方程:\( 3x - 7 = 2x + 8 \)答案:\( x = 15 \)四、解答题(每题15分,共35分)1. 一个长方体的长、宽、高分别是6厘米、4厘米和3厘米,求这个长方体的体积。
答案:长方体的体积是 \( 6 \times 4 \times 3 = 72 \) 立方厘米。
2. 一个直角三角形的两条直角边分别是3厘米和4厘米,求这个直角三角形的斜边长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 泉州七中2013届高三年第一次校质检数学试题(文)考试时间:120分钟 满分:150分 命卷人:张丽英 黄永生 复核:黄永生参考公式: 柱体体积公式:,V Sh =其中S 为底面面积、h 为高;锥体体积公式:1,3V Sh =其中S 为底面面积、h 为高;球的表面积、体积公式: ,34,432R V R S ππ==其中R 为球的半径.一、选择题:本大题共12小题;每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的,把正确选项的代号涂在答题卡上.1.已知复数z 的实部为1,且2z =,则复数z 的虚部是( ) ABC. D.2.在△ABC中,a =c =4B π=,则b 的长为( )A .2B . 22C .3D .233.已知集合}05|{2<-=x x x M ,}6|{<<=x p x N ,则}2|{q x x N M<<= ,则q p +等于( )A .6B . 7C . 8D . 94.若,,0,a b R ab ∈>且则下列不等式中恒成立的是( )A.a b +≥B.11a b +>C.2b a a b +≥ D.222a b ab +>5.执行如图所示的程序框图,若输入4=x ,则输出y 的值为( ) A.45-B.45C.21- D.216.,m n 是不同的直线,αβ、是不重合的平面,下列命题为真命题的是( )A .若,,m m n n αα∥∥则∥B .若,m n αβ⊥⊥,则n m ⊥C .若,,m m αβαβ⊥∥则⊥D .若,,m m αβαβ⊂⊥则⊥ 7.直线0102=-+y x 与不等式组0024320x y x y x y ≥⎧⎪≥⎪⎨-≥-⎪⎪+≤⎩表示的平面区域的公共点有( )A .0 个B .1 个C .2个D .无数个 8.函数21()ln 2f x x x =-的图像大致是( )1”的逆否命题为假命题;R x p ∈∃⌝0:,使1sin 0>x ; )2sin(ϕ+=x y 为偶函数”的23cos 0=+x ”; αβ>”,那么q p ∧⌝)(为真命A .4B .3C .2D .110.已知抛物线22(0)y px p =>的焦点F 与双曲22145x y -=的右焦点重合,抛物线的准 线与x 轴的交点为K ,点A 在抛物线上且AK =,则A 点的横坐标为( )A .B .3C .D .4 11.在棱长为1的正方体1111ABCD A B C D -中,1P ,2P 分别为线段AB ,1BD (不包括端点)上的动点,且线段12P P 平行于平面11A ADD ,则四面体121PP AB 的体积的最大值是( )A .124 B .112C .16D .12 12.已知数列{}n a (n ∈N *)是各项均为正数且公比不等于1的等比数列,对于函数()y f x =,若数列{ln ()}n f a 为等差数列,则称函数()f x 为“保比差数列函数”.现有定义在(0,)+∞上的三个函数:①f (x )=1x;②f (x )=e x ;③f (x )f (x )=2 x , 则为“保比差数列函数”的是( ) A .③④ B .①②④ C .①③④ D .①③二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在答题卡的相应位置.13.为了均衡教育资源,加大对偏远地区的教育投入,调查了某地若干户家庭的年收入x (单位:万元)和年教育支出y (单位:万元),调查显示年收入x 与年教育支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:2.015.0ˆ+=x y.由回归直线方程可知,家庭年收入每增加1万元,年教育支出平均增加____________万元.14.一个几何体的三视图如图所示,其中正视图中△ABC 是边长为2的正三角形,俯视图为正六边形,那么该几何体的侧视图的面积为第14题图2 :_____;姓名:____________;座号:_____………………封……………………………………线……………………………………________________15.给定两个长度为1,且互相垂直的平面向量和,点C 在以O 为圆心、||为半径的劣弧AB 上运动,若y x +=,其中x 、R ∈y ,则22)1(-+y x 的最大值为__ ____. 16.设函数⎩⎨⎧<-≥⋅=.0,2sin 2,0,2)(x x x x x f x 则方程1)(2+=x x f 的实数解的个数为 .三、解答题:本大题共6小题,共74分,解答时应写出必要文字说明、证明过程演算步骤.17.投掷一个质地均匀的、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面标的数字是0,两个面标的数字是2,两个面标的数字是4,将此玩具连续抛掷两次,以两次朝上一面出的数字分别作为点P 的横坐标和纵坐标。
(1)求点P 落在区域C :2210x y +≤内的概率;(2)若以落在区域C 上的所有点为顶点作面积最大的多边形区域M ,在区域C 上随机撒一粒豆子,求豆子落在区域M 上的概率。
18.设{}n a 是公差大于零的等差数列,已知12a =,23210a a =-.(1)求{}n a 的通项公式;(2)设{}n b 是以函数24sin y x π=的最小正周期为首项,以3为公比的等比数列,求数列{}n n a b -的前n 项和n S .19.如图所示的几何体中,四边形ABCD 是菱形,ADNM 是矩形,平面⊥ADNM 平面ABCD ,P 为DN 的中点.(1)求证:MC BD ⊥;(2)在线段AB 是是否存在点E ,使得AP //平面NEC ,若存在,说明其位置,并加以证明;若不存在,请说明理由.20.某海域有A 、B 两个岛屿,B 岛在A 岛正东4海里处。
经多年观察研究发现,某种鱼群洄游的路线是曲线C ,曾有渔船在距A 岛、B 岛距离之和为8海里处发现过鱼群。
以A 、B 所在直线为x 轴,AB 的垂直平分线为y 轴建立平面直角坐标系。
(1)求曲线C 的标准方程;(2)某日,研究人员在A 、B 两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),A 、B 两岛收到鱼群在P 处反射信号的时间比为3:5,能否确定P 处的位置(即点P的坐标)?21.已知函数(),()ln x x f x e ax g x e x =+=(1)设曲线()y f x =在1x =处的切线与直线(1)1x e y +-=垂直,求a 的值。
(2)若对任意实数0,()0x f x ≥>恒成立,确定实数a 的取值范围。
(3)当1a =-时,是否存在实数0[1,]x e ∈,使曲线C :()()y g x f x =-在点0x x =处的切线与y 轴垂直?若存在,求出0x 的值,若不存在,说明理由。
22. 随着私家车的逐渐增多,居民小区“停车难”问题日益突出.本市某居民小区为缓解“停车难”问题,拟建造地下停车库,建筑设计师提供了该地下停车库的入口和进入后的直角转弯处的平面设计示意图. (1)按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图所示数据计算限定高度CD 的值.(精确到0.1m ) (下列数据提供参考:sin 20°=0.3420,cos 20°=0.9397,tan 20°=0.3640)(2)在车库内有一条直角拐弯车道,车道的平面图如图所示,设(rad)PAB θ∠=,车道宽为3米,现有一辆转动灵活的小汽车,其水平截面图为矩形,它的宽为1.8米,长为4.5米,问此车是否能顺利通过此直角拐弯车道?泉州七中2013届高三年第一次质检数学(文) 答题卡一、选择题:(每题5分,共60分)二、填空题:(每题4分,共16分) 13、__________;14、__________; 15、__________;16、__________。
三、解答题:(共74分) 17、(满分12分) 解:A3米 1.8米θ BD OxBA yO ∙∙C18、(满分12分)解:19、(满分12分)解:C320、(满分12分) 解: 21、(满分12分) 解:xBAyO∙∙____ ………线……………………………………22、(满分14分) 解:(1)13、0.15; 14 15、2 16.3 三、解答题:(共74分) 17、(满分12分) .解(1)以0、2、4为横、纵坐标的点P 共有(0,0)、(0,2)、(0, 4)、(2,0)、(2,2)、(2,4)、(4,0)、(4,2)、(4,4)9个,而这些点中,落在域C 内的点有:(0,0)、(0,2)、(2,0)(4,2)(4,4)4,∴所求概率为P=49;(2) 区域M 的面积为4,而区域C 的面积为10π,∴所求概 率为42105P ππ==。
12分18、(满分12分)解:(1)设{}n a 的公差为d ,则()12112210a a d a d ⎧=⎪⎨+=+-⎪⎩解得2d =或4d =-(舍)……5分 所以2(1)22n a n n=+-⨯=…………6分(2)21cos 24sin 42xy x ππ-==⨯2cos 22x π=-+其最小正周期为212ππ=,故首项为1;………7分 因为公比为3,从而13n n b -= …………8分 所以123n n n a b n --=-故()()()011234323n n S n -=-+-++-()2213213n n n +-=--211322nn n =++-⋅………12分19、(满分12分)20、(满分12分)解(1)由题意知曲线C是以A、B为焦点且长轴长为8的椭圆又42=c ,则4,2==a c ,故32=b所以曲线C 的方程是1121622=+y x 6分 (2)由于A 、B 两岛收到鱼群发射信号的时间比为3:5, 因此设此时距A 、B 两岛的距离分别比为3:5 7分 即鱼群分别距A 、B 两岛的距离为5海里和3海里。
8分设),(y x P ,)0,2(B ,由3=PB ∴3)2(22=+-y x ,()⎪⎪⎩⎪⎪⎨⎧≤≤-=+=+-4411216922222x y xy x , ∴3,2±==y x ∴点P 的坐标为()3,2或()3,2- 12分e a +, , ∴(e a +)11e⋅-=-1, ∴a =-1. …………….3分(2)∵当x ≥0时,()xf x e ax =+0>恒成立,∴ 先考虑x =0,此时,()xf x e =,a 可为任意实数;又当x >0时,()xf x e ax =+0>恒成立,则x e a x >-恒成立, 设()h x =x e x -,则()h x '=2(1)xx e x -, 当x ∈(0,1)时,()h x '>0,()h x 在(0,1)上单调递增,当x ∈(1,+∞)时,()h x '<0,()h x 在(1,+∞)上单调递减,故当x =1时,()h x 取得极大值,max ()(1)h x h e ==-,∴ 实数a 的取值范围为(),e -+∞. …………….7分(3)依题意,曲线C 的方程为ln x x y e x e x =-+,令()u x =ln x xe x e x -+,则()ln 1xx x e u x e x e x '=+-+ 设1()ln 1v x x x =+-,则22111()x v x x x x-'=-+=, 当[]1,x e ∈,()0v x '≥,故()v x 在[(1)0v =,所以()v x ≥0,又0x e >,∴()u x '=>0,12分(2)延长CD 与直角走廊的边相交于,E F ,如下图.33cos sin EF OE OF θθ=+=+,其中02θπ<<. 容易得到 1.8tan tan DA DE θθ==,tan 1.8tan CF BC θθ=⋅=.又()AB DC EF DE CF ==-+,于是331() 1.8(tan )cos sin tan f θθθθθ=+-+3(sin cos ) 1.8sin cos θθθθ+-=,其中02θπ<<.………8分设sin cos t θθ+=,则)4t πθ=+,于是1t <≤ 又21sin cos 2t θθ-=,因此26 3.6()()1t f g t t θ-==-. 因为22267.26()(1)t t g t t -+'=-=-0<恒成立, 因此函数26 3.6()1t g t t -=-在t ∈ 3.6 4.5>, 故能顺利通过此直角拐弯车道。