实验3配合物键合异构体的制备

实验3配合物键合异构体的制备
实验3配合物键合异构体的制备

实验3:配合物键合异构体的制备

1. 实验目的

1.1 掌握键合异构的基本概念。

1.2 通过[Co(NH 3)5NO 2]Cl 2和[Co(NH 3)5ONO]Cl 2的制备,了解配合物的键合异构现象。

2 实验原理

键合异构体是配合物异构现象中的一个重要类型。配合物的键合异构体是由同一个配体通过不同的配位原子跟中心原子配位而形成的多种配合物。其分为两种情况,一种是由同一配体在与不同的中心原子形成配合物时,用不同的配位原子与中心原子相配位,这种异构体叫做配位键合异构体。另一种是配合物中的中心原子和配体组成完全相同,而只是与中心原子相结合的配位原子不同,这是真正的键合异构体。通常把这两种异构体统称为键合异构体。生成键合异构体的必要条件是配体的两个不同原子都含有孤对电子。如果一种配体中具有两个配位原子,则就有出现键合异构现象的可能,常见的配位体有:亚硝酸根离子(NO 2-和ON =O -)、氰根离子(CN -和NC -)、硫氰酸根离子(SCN -和NCS -)、亚砜R 2SO 中的硫和氧可分别成键。例如,当亚硝酸根离子通过N 原子跟中心原子配位时,这种配合物叫做硝基配合物,而通过O 原子跟中心原子配位时,这种配合物叫做亚硝酸根配合物。同样,硫氰酸根离子通过S 原子跟中心原子配位时,叫做硫氰酸根配合物,而通过N 原子跟中心原子配位时,叫做异硫氰酸根配合物。

红外光谱是测定配合物键合异构体的最有效的方法。每一基团都有它自己的特征频率,基团的特征频率是受其原子质量和键的力常数等因素所影响的,可用下式表示:

1

21

2k υπμ??= ???

式中ν为频率,k 为基团的化学键力常数,μ为基团中成键原子的折合质量。由上式可知,基团的化学键力常数k 越大,折合质量μ越小,则基团的特征频率就越高。反之,基团的力常数越小,折合质量越大,则基团的特征频率就越低。当基团与金属离子形成配合物时,由于配位键的形成不仅引起了金属离子与配位原子之间的振动,这种振动被称为配合物的骨架振动,而且还影响配体中原来基团的特征频率。配合物的骨架振动直接反映了配位键的特性和强度,这样就可以通过骨架振动的测定直接研究配合物的配位键性质。但是,由于配合物中心原子的质量一般都比较大,而且配位键的力常数比较小。因此,这种配位键的振动频率都很低,一般出现在200-500cm -1的低频范围,这对研究配位键带来很大的困难。

然而由于配合物的形成,配体中的配位原子与中心原子的配位作用会改变整个配体的对称性和配体中某些原子的电子云,同时还可能使配体的构型发生变化,这些因素都能引起配体特征频率的变化。因此,可以利用这种配体特征频率的变化来研究配位键的性质。

本实验是测定二氯化一硝基五氨合钴([Co(NH 3)5NO 2]Cl 2)和测定二氯化一亚硝酸根五氨合钴[Co(NH 3)5ONO]Cl 2)配合物的红外光谱,利用它们的谱图可以识别哪一个配合物是通过氮原子配位的硝基配合物,哪一个是通过氧原子配位的亚硝基配合物。亚硝酸根离子(NO 2-)中的N 或O 原子与Co 3+配位时,对N-O 键特征频率的影响是不同的,当NO 2-以N 原子配位形成

价的,则在二个N-O 键之间键力常数的减弱是平均分配的,由于键力常数的减

弱,而使N-O 键的伸缩频率降低,在1428cm -1左右出现特征吸收峰;当NO 2-

峰出现在1065cm -1附近,而另一个没有配位的O-N 键力常数比用N 配位时的N-O 键力常数大,故在1468cm -1出现特征吸收峰。因此,我们可以从它们的红外光谱图来识别其键合异构体。

3 仪器与试剂

仪器:100 ml 烧杯、250 ml 烧杯、500 ml 烧杯、抽滤瓶、布氏漏斗、量筒。 试剂:亚硝酸钠、浓盐酸、浓氨水(25-28%,14 M )、双氧水、95%乙醇、六水合二氯化钴(CoCl 2?6H 2O ),氯化铵,纯度均为AR 级。冰水、广泛pH 试纸。

4 实验步骤

4.1 制备二氯化一氯五氨合钴

以“二氯化一氯五氨合钴”为关键词查文献 (也可用中心网站提供的英文文献),产物100℃烘30min ,计算产率,转移至自封袋中,干燥保存。

4.2 键合异构体的制备

以“配合键合异构体”和“红外光谱”为关键词查文献。

二氯化亚一硝酸根五氨合钴[Co(NH 3)5ONO]Cl 2不稳定,容易转变为二氯化一硝基五氨合钴[Co(NH 3)5NO 2]Cl 2,因此,必须用新鲜制备的样品来测定其红外光谱。

Co 3+时,由于N 给出电荷,使N-O 键力常数减弱,因为两个N-O

是等Co 以O 原子配位形成时,则配位的O-N 键力常数减弱,其特征吸收

5 数据处理

分别计算二氯化一氯五氨合钴、键合异构体(I)和键合异构体(II)的产率。

6. 思考题

(1)为何配合物中配位键的特征频率不易直接测定?

(2)若能测得配合物中配位键的特征频率,能否利用这种特征频率来鉴别上述两

种键合异构体?在何种情况下,可以直接利用这种特征来鉴别键合异构体?

(3)在制备二氯化一氯五氨合钴时,最后分别用稀盐酸、水、乙醇洗涤产物,三

者的作用各是什么?

(4)写出制备二氯化一氯五氨合钴时,每一步的反应式,并注明每一步产物的颜

色。

实验3配合物键合异构体的制备

实验3:配合物键合异构体的制备 1. 实验目的 1.1 掌握键合异构的基本概念。 1.2 通过[Co(NH 3)5NO 2]Cl 2和[Co(NH 3)5ONO]Cl 2的制备,了解配合物的键合异构现象。 2 实验原理 键合异构体是配合物异构现象中的一个重要类型。配合物的键合异构体是由同一个配体通过不同的配位原子跟中心原子配位而形成的多种配合物。其分为两种情况,一种是由同一配体在与不同的中心原子形成配合物时,用不同的配位原子与中心原子相配位,这种异构体叫做配位键合异构体。另一种是配合物中的中心原子和配体组成完全相同,而只是与中心原子相结合的配位原子不同,这是真正的键合异构体。通常把这两种异构体统称为键合异构体。生成键合异构体的必要条件是配体的两个不同原子都含有孤对电子。如果一种配体中具有两个配位原子,则就有出现键合异构现象的可能,常见的配位体有:亚硝酸根离子(NO 2-和ON =O -)、氰根离子(CN -和NC -)、硫氰酸根离子(SCN -和NCS -)、亚砜R 2SO 中的硫和氧可分别成键。例如,当亚硝酸根离子通过N 原子跟中心原子配位时,这种配合物叫做硝基配合物,而通过O 原子跟中心原子配位时,这种配合物叫做亚硝酸根配合物。同样,硫氰酸根离子通过S 原子跟中心原子配位时,叫做硫氰酸根配合物,而通过N 原子跟中心原子配位时,叫做异硫氰酸根配合物。 红外光谱是测定配合物键合异构体的最有效的方法。每一基团都有它自己的特征频率,基团的特征频率是受其原子质量和键的力常数等因素所影响的,可用下式表示: 1 21 2k υπμ??= ??? 式中ν为频率,k 为基团的化学键力常数,μ为基团中成键原子的折合质量。由上式可知,基团的化学键力常数k 越大,折合质量μ越小,则基团的特征频率就越高。反之,基团的力常数越小,折合质量越大,则基团的特征频率就越低。当基团与金属离子形成配合物时,由于配位键的形成不仅引起了金属离子与配位原子之间的振动,这种振动被称为配合物的骨架振动,而且还影响配体中原来基团的特征频率。配合物的骨架振动直接反映了配位键的特性和强度,这样就可以通过骨架振动的测定直接研究配合物的配位键性质。但是,由于配合物中心原子的质量一般都比较大,而且配位键的力常数比较小。因此,这种配位键的振动频率都很低,一般出现在200-500cm -1的低频范围,这对研究配位键带来很大的困难。

有机物同分异构体书写技巧

关于同分异构体书写的方法 一.基本方法 (一)在书写的时候要优先考虑碳骨架的对称,找到对称轴(以四联苯为例) 同一个C 上的H 是等效的,同一个C 上的—CH 3是等效的 CH 3 CH 3 CH 3 CH 3—C —CH 3 4个—CH 3等效(一氯代物1种) CH 3-C-C-CH 3 CH 3 CH 3 CH 3 Cl定 (三)定一移二(以C3H6Cl2为例) C-C-C 先画出碳链,然后找对称轴C-C-C,再定第一个Cl原子的位置,有2个 Cl定 Cl定 Cl定 Cl定 Cl定 C-C-C C-C-C C-C-C C-C-C C-C-C (无对称轴) Cl移 Cl移 Cl移 再找对称轴 Cl定 Cl定 Cl定 C-C-C C-C-C(与上面第二种重复),C-C-C Cl移 Cl移 (四)碳链异构(以C6H14为例) ①先把C排成一条线 C-C-C-C-C-C(1) ②取下一个C,C-C-C-C-C,找到对称轴,取下的C由心到边放,不能放到边,有两个位置C-C-C-C-C(2)C-C-C-C-C(3) C定 C定 ③再取一个C,依照上面的定一移二法,放置C-C-C-C C-C-C-C ④取下的C个数<总数/2 C移 (4) C移(5) (五)官能团异构 烯烃 CH 3 CH =CH 2 醇 CH 3 CH 2OH CnH2n+2 烷烃 CnH2n CnH2n+2O 环烷烃 醚 CH 3OCH 3 醛CH 3 CH 2C HO 酸CH 3 C OOH CnH2nO O CnH2nO2 酮 CH 3 CCH 3 酯HCOOCH3 二.特殊方法 (一)基团法 ①单基团(以下基团接一个—X、—CHO、-COOH、-OH、 ) X X -C3H7 2种 C-C-C C-C-C (一种碳链) X X X X -C4H9 4种 C-C-C-C C-C-C-C C-C-C C-C-C (两种碳链) C C X X X -C5H11 8种 C -C -C -C -C C -C -C -C -C C -C -C -C -C (三种碳链)X X X X X C C -C -C -C C -C -C -C C -C -C -C C -C -C -C C -C -C C C C C C ②双基团(接两个相同或者不同的基团) X X X X 两个一样 4种 C-C-C C-C-C C-C-C C-C-C y y y y -C3H6 X X X X X 两个不同 5种C-C-C C-C-C C-C-C C-C-C C-C-C y y y y y

配合物 习题及答案

配合物习题及答案 一、判断题: 1.含有配离子的配合物,其带异号电荷离子的内界和外界之间以离子键结合,在水中几乎完全解离成内界和外界。 .... () 2.在1.0 L 6.0 mol·L-1氨水溶液中溶解0.10 mol CuSO4固体,假定Cu2+ 全部生成[ Cu (NH3 )4 ]2+,则平衡时NH3的浓度至少为 5.6 mol·L-1 。.........................() 3.在M2+溶液中,加入含有X-和Y-的溶液,可生成MX2沉淀和[MY4]2-配离子。如果K( MX2 )和K([ MY4]2- ) 越大,越有利于生成[MY4]2-。() 4.金属离子A3+、B2+可分别形成[ A(NH3 )6 ]3+和[ B(NH3 )6 ]2+,它们的稳定常数依次为 4 ?105 和 2 ?1010,则相同浓度的[ A(NH3 )6 ]3+和[ B(NH3 )6 ]2+溶液中,A3+和B2+ 的浓度关系是c ( A3+ ) > c ( B2+ ) 。() 5.在多数配位化合物中,内界的中心原子与配体之间的结合力总是比内界与外界之间的结合力强。因此配合物溶于水时较容易解离为内界和外界,而较难解离为中心离子(或原子)和配体。.........................................................................................................................() 6. 已知K2 [ Ni (CN)4 ] 与Ni (CO)4均呈反磁性,所以这两种配合物的空间构型均为平面正方形。.....................................................................................() 7.某配离子的逐级稳定常数分别为K、K、K、K,则该配离子的不稳定常数K= K·K·K·K。.......................................................... () 8.HgS 溶解在王水中是由于氧化还原反应和配合反应共同作用的结果。............ () 9.在多数配位化合物中,内界的中心原子与配体之间的结合力总是比内界与外界之间的结合力强。因此配合物溶于水时较容易解离为内界和外界,而较难解离为中心离子(或原子)和配体。.........................................................................................................................() 二、选择题: 1.下列配离子在水溶液中稳定性大小关系中正确的是 . ()。 (A) [ Zn (OH)4 ]2- ( lg K= 17.66 ) > [Al (OH)4 ]- ( lg K= 33.03 ); (B) [ HgI4 ]2- ( lg K= 29.83 ) > [ PbI4 ]2- ( lg K= 4.47 ); (C) [ Cu (en)2 ]+ ( lg K= 10.8 ) > [ Cu (en)2 ]2+ ( lg K= 20.0 ); (D) [ Co (NH3 )6 ]2+ ( lg K= 5.14 ) > [ CoY ]2- ( lg K= 16.31) 。 2.下列配合物中,属于内轨型配合物的是.............................................()。 (A) [ V(H2O)6 ]3+,μ = 2.8 B. M.;(B) [ Mn (CN)6 ]4-,μ = 1.8 B. M.; (C) [Zn (OH)4]2-,μ= 0 B. M.;(D) [ Co(NH3)6 ]2+,μ = 4.2 B. M.。 3.在一定温度下,某配离子ML4的逐级稳定常数为K(1)、K(2)、K(3)、K(4),逐级不稳定常数为K(1)、K(2)、K(3)、K(4)。则下列关系式中错误的是.................................................................................. ()。 (A) K(1)·K(2)·K(3)·K(4) = [ K(1)·K(2)·K(3)·K(4) ]-1; (B) K(1) = [K(1) ]-1; (C) K(4) = [K(1) ]-1; (D)K(2) = [K(3) ]-1。 4.下列叙述中错误的是............................................................................... ()。 (A) 配合物必定是含有配离子的化合物; (B) 配位键由配体提供孤对电子,形成体接受孤对电子而形成; (C) 配合物的内界常比外界更不易解离; (D) 配位键与共价键没有本质区别。

有机物的同分异构体知识点汇总

苯甲醇:、苯甲醚:、邻甲苯酚: 间甲苯酚:、对甲苯酚: 例3、分子式为C5H12O且可与金属钠反应放出氢气的有机化合物有(不考虑立体异构)( ) A.5种B.6种 C.7种D.8种 2. 等效氢法 判断“等效氢”的三条原则是: ①同一碳原子上的氢原子是等效的; 如中CH3上的3个氢原子是“等效”的。 ②同一个碳原子上相同取代基上的氢原子属于“等效”氢原子; 如分子中有2种“等效”氢原子。 ③处于对称位置上的氢原子是等效的。 如分子中,在苯环所在的平面内有2条互相垂直的对称轴,故有两类“等效”氢原子。 例4、四联苯的一氯代物有() A.3种 B.4种C.5种 D.6种 【技巧点拨】有几种不同位置的H就有几种一元取代物,而二元取代物代物有几种,一般先固定一个取代基的位置,移动另一个,看有几种可能,然后再固定一个取代基于另一不同位置,依次移动,注意前面固定过的位置不能再放氢,否则重复。

3. 换元法(替代法) 将有机物分子中的不同原子或基团换位进行思考. 如:乙烷分子中共有6个H原子,若有一个氢原子被Cl原子取代所得一氯乙烷只有一种结构,那么五氯乙烷有多少种,假设把五氯乙烷分子中的Cl看作H原子,而H 原子看成Cl原子,其情况跟一氯乙烷完全相同,故五氯乙烷也有一种结构.同理:二氯乙烷有二种结构,四氯乙烷也有二种结构.又如:二氯苯有三种,四氯苯也有三种。 例5、已知分子式为C12H12的物质A的结构简式为,A苯环上的二溴代物有9种同分异构体,由此推断A苯环上的四溴代物的同分异构体数目为( ) A.9种B.10种C.11种D.12种 4.定一移一转一法 苯环上的氢原子被其他原子或原子团取代,烃分子中的氢原子被两个取代基取代,常采用定一移一法。 例有三种不同的基团,分别为—Cl、—Br、—I,若同时分别取代苯环上的三个氢原 子,生成的同分异构体可以先把Cl原子固定在苯环的上面顶点上,Br原子放在Cl 原子的邻位上,把I原子绕苯环旋转,有4种结构;把Br原子移到Cl原子间位,再把I原子绕苯环旋转,又有4种结构;把Br原子移到Cl原子对位,把I原子绕苯环旋转,有2种结构,共有10种。 典例4甲苯苯环上的一个H原子被—C3H6Cl取代,形成的同分异构体有(不考虑立体异构)() A.9种 B.12种 C.15种 D.18种 5. 排列组合法 对于不同的有机物分子间形成化合物时,要考虑排列组合的方式。如:甲醇CH3OH 和丙醇C3H7OH,混合加热形成醚时,丙醇有两种结构,1-丙醇和2-丙醇,形成醚时可

同分异构体的书写及判断

同分异构体的书写及判断方法 一. 书写同分异构体的一个基本策略 1. 判类别:据有机物的分子组成判定其可能 的类别异构 (一般用通式判断)。 2 .写碳链:据有机物的类别异构写出各类异构的可能的碳链异构。 一般采用“减链法”, 可概括为:写直链,一线串;取代基,挂中间;一边排,不到端;多碳时,整到散。即①写 出最长碳链,②依次写出 少一个碳原子的碳链, 余下的碳原子作为取代基, 找出中心对称线, 先把取代基挂主链的中心碳,依次外推,但到末端距离应比支链长,③多个碳作取代基时, 先做一个,再做两个、多个,依然本着由整大到散的准则。 3. 移官位:一般是先写出不带官能团的烃的同分异构体, 然后在各余碳链上依次移动官 能团的位置,有两个或两个以上的官能团时, 先上一个官能团,依次上第二个官能团, 依次 类推。 4. 氢饱和:按“碳四键”的原理, 碳原子剩余的价键用氢原子去饱和, 就可得所有同分 异构体的结构简式。 按“类别异构一碳链异构一官能团或取代基位置异构” 用“对称性”防漏剔增。 二. 确定同分异构体的二个基本技巧 1. 转换技巧一一适于已知某物质某种取代物异构体数来确定其另一种取代物的种数。 此类题 目重在分析结构,找清关系即找出取代氢原子数与取代基团的关系, 不必写出异构体即得另 一种异构体数。 2. 对称技巧一--适于已知有机物结构简式, 确定取代产物的同分异构体种数, 判断有机物发 生取代反应后,能形成几种同分异构体的规律。可通过分析有几种不等效氢原子来得出结论。 ① 同一碳原子上的氢原子是等效的。 ② 同一碳原子上所连甲基上的氢原子是等效的。 ③ 处于镜面对称位置上的氢原子是等效的 (相当于平面镜成像时,物与像的关系 三. 书写或判断同分异构体的基本方法 1.有序分析法 例题1主链上有4个碳原子的某烷烃,有两种同分异构体,含有相同碳原子数且主链上也 有4个碳原子的单烯烃的同分异构体有 A . 2种 B . 3种 C.4 种 D 。5种 解析:根据烷烃同分异构体的书写方法可推断,主链上有 4个碳原子的烷烃及其同分 异构体数分别为:一个甲基(1种);两个甲基(2种);三个甲基(1种);四个甲基(1种)。所 以符合此条件的烷烃的碳原子数为 6个。故含有相同碳原子数且主链上也有 4个碳原子的单 烯烃有: CiHj 共4种。故答案为C 项。 注意:(1)含官能团的开链有机物的同分异构体一般按“类别异构一碳链异构一官能团 或取代基位置异构”的顺序有序列举,一定要充分利用“对称性”防漏剔增。 (2) 碳链异构可采用“减链法”,此法可概括为“两注意、四句话” 。两注意:①选择 最长的碳链为主链;②找出中心对称线。四句话:主链由长到短(短不过三),支链由整到散, 位置由心到边(但 的顺序有序列举的同时要充分利 CHj CH??C ——. C ;I4—O —乙 CHj-C-CHs-CH]. CHj-CH-C-CHi CEb

2017-试验配合物键合异构体的制备及用红外-化学试验教学中心

实验4 配合物键合异构体的制备及用红外光谱对其进行分析与鉴别 1. 实验目的 1.1 掌握键合异构的基本概念。 1.2 通过[Co(NH3)5NO2]Cl2和[Co(NH3)5ONO]Cl2的制备,了解配合物的键合异构现象。 1.3利用红外光谱图分析与鉴别键合异构体。 2 实验原理 键合异构体是配合物异构现象中的一个重要类型。配合物的键合异构体是由同一个配体通过不同的配位原子跟中心原子配位而形成的多种配合物。其分为两种情况,一种是由同一配体在与不同的中心原子形成配合物时,用不同的配位原子与中心原子相配位,这种异构体叫做配位键合异构体。另一种是配合物中的中心原子和配体组成完全相同,而只是与中心原子相结合的配位原子不同,这是真正的键合异构体。通常把这两种异构体统称为键合异构体。生成键合异构体的必要条件是配体的两个不同原子都含有孤对电子。如果一种配体中具有两个配位原子,则就有出现键合异构现象的可能,常见的配位体有:亚硝酸根离子(NO2-和ON=O-)、氰根离子(CN-和NC-)、硫氰酸根离子(SCN-和NCS-)、亚砜R2SO 中的硫和氧可分别成键。例如,当亚硝酸根离子通过N原子跟中心原子配位时,这种配合物叫做硝基配合物,而通过O原子跟中心原子配位时,这种配合物叫做亚硝酸根配合物。同样,硫氰酸根离子通过S原子跟中心原子配位时,叫做硫氰酸根配合物,而通过N原子跟中心原子配位时,叫做异硫氰酸根配合物。 红外吸收光谱法是根据物质对红外辐射的选择性吸收特性而建立起来的一种光谱分析方法。分子吸收红外辐射后发生振动和转动能级的跃迁,所以红外光谱法实质上是根据分子内部原子间的相对振动和转动等信息来鉴别化合物和确定物质分子结构的分析方法。

(完整版)同分异构体的书写及判断专题

同分异构体的书写及判断专题 一、碳链异构 熟记C1-C6的碳链异构: CH4、C2H6、C3H8无异构体;C4H10 2种、C5H12 3种、C6H14 5种。 书写方法:减碳法 例1:C7H16的同分异构体共有几种 例2:相对分子质量100的烃分子结构中有4个甲基共有几种 例3:C9H20的烷烃众多同分异构体中有A B C三种,分别只能有且只有一种单烯烃加氢得到,则A B C的结构简式分别为 【方法小结】:主链由长到短,支链由整到散,位置由心到边,连接不能到端,排布对邻到间,对称碳上防重现。碳总为四键,规律牢记心间。 二、位置异构 1、烯炔的异构(碳链的异构和双键或叁键官能团的位置异构) 方法:先写出所有的碳链异构,再根据碳的四键,在合适位置放双键或叁键官能团。 例4:请写出C6H12的单烯烃主链4个碳的同分异构体 例5:C5H12O2的二元醇主链3个碳的有____种,主链4个碳的有____种 2、苯同系物的异构(侧链碳链异构及侧链位置“邻、间、对”的异构) 例6:请写出如C9H12属于苯的同系物的所有同分异构体 【注意】苯环上有两个取代基时有3种,苯环上连三个相同取代基有3种、连三个不同取代基有10种 3、烃的一元取代物的异构:卤代烃、醇、醛、羧酸、胺都可看着烃的一元取代物 方法:取代等效氢法(对称法)、烃基转换法 【取代等效氢法】 等效氢的概念: ①分子中同一个碳原子上连接的氢原子等效。 ②同一个碳原子上所连接的甲基上的氢原子等效。③分子中处于对称位置上的氢原子是等效的。如 分子中的18个H原子是等效的。 取代等效氢法的关键:观察并找出分子结构中的对称要素 例7、C3H7X ________种碳链,共有__________种异构体 C4H9X ________种碳链,共有_________种异构体 C5H11X ________种碳链,共有_________ 种异构体 【注意】这里的一元取代基X,可以是原子,如卤原子,也可以是原子团,如-OH、-NH2、-CHO、-COOH、HCOO-等。因此,已知丁基-C4H9有四种,则可断定丁醇、丁胺、戊醛、戊酸以及甲酸丁酯都有4种异构体。 《针对练习》 1、乙苯的异构体有4种,则对应环上的一氯代物的种数为() A.12种B.10种C.9种D.7种 2、菲和蒽互为同分异构体,菲的结构简式如右图,从菲的结构简式分析,菲的一氯取代物共有() A.4种B.5种C.10种D.14种 3.分子式为C11H16的一烷基取代苯的同分异体共有种 4.对位上有-C4H9的苯胺可能的同分异构体共有种,写出它们的结构简式: 5.含碳原数少于10的烷烃中,其中一卤代物不存在异构体的有4 种,它们分别是: 6.已知烯烃C6H12的一氯代物只有一种,则可断定该烯烃的分子结构为______________。 【烃基转换法】 概念方法:烃基转化法是先找出组成有机物的烃基种类,然后再写出它的同分异构体,这种方法适合于烃的衍生物,如根据丙基有2种结构,丁基有4种结构,戊基有8种结构,就可快速判断短链烃的衍生物的同分异构体种类。《针对练习》丁基异构的应用 (1)写出丁基的四种同分异构体: CH3CH2CH2CH2- (2)写出分子式为C5H10O的醛的各种同分异构体并命名: CH3-CH2-CH2-CH2-CHO 戊醛 (3)分子式为C5H12O的醇有种能被红热的CuO氧化成醛? 4、烃的二元(或三元、多元)取代物的异构 方法:有序法(定一移一)、换元法、 【有序法(定一移一)】 概念:有序法要求解决问题时遵循一定的特定线索和步骤去探索的一种思维方法。 应用有序法解决烃的多元取代物异构体问题的步骤顺序是:先写出碳链异构,再在各碳链上依次先定一个官能团,接着在此基础上移动第二个官能团,依此类推,即定一移一 例8:二氯丙烷有__________种异构体,它们的结构简式是: 《针对练习》 1.蒽的结构式为它的一氯代物有种,二氯代物又有种。 2.1,2,3-三苯基环丙烷的三个苯基可以分布在环丙烷环平面的上下,因此有如下两个异构体: 据此,可判断1,2,3,4,5-五氯环戊烷(假定五个碳原子也处于同一平面上)的异构体数目是() A.4 B.5 C.6 D.7 【换元法】 例9.已知C6H4Cl2有三种异构体,则C6H2Cl4有___________种异构体。(将H代替Cl) 《针对练习》 1.如图所示,C8H8分子呈正六面体结构,因而称为“立方烷”,它的六氯代物的 同分异构体共有_________种

试验配合物键合异构体的制备及用红外光谱对其进行分析与鉴别

实验4 配合物键合异构体的制备及用红外光谱对其进行分析与鉴别 1. 实验目的 1.1 掌握键合异构的基本概念。 1.2 通过[Co(NH 3)5NO 2]Cl 2和[Co(NH 3)5ONO]Cl 2的制备,了解配合物的键合异构现象。 1.3利用红外光谱图分析与鉴别键合异构体。 2 实验原理 键合异构体是配合物异构现象中的一个重要类型。配合物的键合异构体是由同一个配体通过不同的配位原子跟中心原子配位而形成的多种配合物。其分为两种情况,一种是由同一配体在与不同的中心原子形成配合物时,用不同的配位原子与中心原子相配位,这种异构体叫做配位键合异构体。另一种是配合物中的中心原子和配体组成完全相同,而只是与中心原子相结合的配位原子不同,这是真正的键合异构体。通常把这两种异构体统称为键合异构体。生成键合异构体的必要条件是配体的两个不同原子都含有孤对电子。如果一种配体中具有两个配位原子,则就有出现键合异构现象的可能,常见的配位体有:亚硝酸根离子(NO 2-和ON =O -)、氰根离子(CN -和NC -)、硫氰酸根离子(SCN -和NCS -)、亚砜R 2SO 中的硫和氧可分别成键。例如,当亚硝酸根离子通过N 原子跟中心原子配位时,这种配合物叫做硝基配合物,而通过O 原子跟中心原子配位时,这种配合物叫做亚硝酸根配合物。同样,硫氰酸根离子通过S 原子跟中心原子配位时,叫做硫氰酸根配合物,而通过N 原子跟中心原子配位时,叫做异硫氰酸根配合物。 红外光谱是测定配合物键合异构体的最有效的方法。每一基团都有它自己的特征频率,基团的特征频率是受其原子质量和键的力常数等因素所影响的,可用下式表示: 1 212k υπμ??= ??? 式中ν为频率,k 为基团的化学键力常数,μ为基团中成键原子的折合质量。由上式可知,基团的化学键力常数k 越大,折合质量μ越小,则基团的特征频率就越高。反之,基团的力常数越小,折合质量越大,则基团的特征频率就越低。当基团与金属离子形成配合物时,由于配位键的形成不仅引起了金属离子与配位原子之间的振动(称为配合物的骨架振动),而且还影响配体中原来基团的特征频率。配合物的骨架振动直接反映了配位键的特性和强度,这样就可以通过骨架振动的测定直接研究配合物的配位键性质。但是,由于配合物中心原子的质量一般

配位结构和异构

配位结构和异构 A 组 1.已知[Co(NH 3)6]3+ 呈正八面体结构:各NH 3分子间距相等,Co 3+位于正八面的中心。 若其中二个NH 3分子被Cl -取代,所形成的[Co(NH 3)4Cl 2]+的同分异构体的种数有 A 2种 B 3种 C 4种 D 5种 2.Co(NH 3)63+离子是正八面体而非三棱柱或平面六边形构型的理由是 A 其一氯取代物不存在同分异构体 B 它是非极性分子 C 它的键长与键角都相等 D 其二氯取代物只存在两种同分异构体 3.我国科学工作者合成了许多结构复杂的天然有机化合物,如叶绿素、血红素、维生素B 12等。叶绿素的结构如图。下 列有关说法中正确的是 A 叶绿素属于高分子化合物 B 叶绿素分子中含有三种类型的双键 C 叶绿素不属于芳香烃 D 在一定条件下,叶绿素能发生加成、水解、酯化等反应 4.本题涉及4种组成不同的配合物,它们都是平面正方形结构。 (1)PtCl 2·2KCl 的水溶液与二乙硫醚(Et 2S )反应(摩尔比1︰2)得到两种结构不同的黄色配合物,该反应的化学方程式和配合物的立体结构是: (2)PtCl 2·2KCl 的水溶液与足量Et 2S 反应获得的配合物为淡红色晶体,它与AgNO 3反应(摩尔比1︰2)得到两种组成不同的配合物,写出上述两个反应的化学方程式。 5.本题涉及3种组成不同的铂配合物,它们都是八面体的单核配合物,配体为OH -和/或Cl -。 (1)PtCl 4·5H 2O 的水溶液与等摩尔NH 3反应,生成两种铂配合物,反应式为: (2)BaCl 2·PtCl 4和Ba(OH)2反应(摩尔比2︰5),生成两种产物,其中一种为配合物,该反应的化学方程式为: 6.铍及锌分别为ⅡA 及ⅡB 族元素,在很多性质上相类似。例如,它们的氧化物及其水合物表现为两性,卤化物有显著的共价性,易于形成配位数为4的配合物。 (1)Be 和Zn 都可以形成结构相似的Be 4O(CH 3COO)6及Zn 4O(CH 3COO)6配合物,试说明它们的结构特点,画出结构式,分别说明中心原子及Be 、Zn 的杂化态。 (2)试从结构特点解释为什么Be 4O(CH 3COO)6不易水解而Zn 4O(CH 3COO)6却极易于水解。 7.据报道,某些(Z )式非碳环醇类有机锡化合物是一类有抗癌活性物质,有人在N 2保护下将三苯基氢化锡的乙醚溶液与等摩尔1,1-二苯基炔丙醇在过氧化苯甲酸的存在下于室温搅拌30h ,蒸去溶剂后用无水乙醇重结晶3次得化合物A 纯品。将ICl 的四氯化碳溶液滴入等摩尔A 的四氯化碳溶液中继续反应2.5h ,蒸去溶剂后残留物用环己烷的四氯化碳混合溶剂重结晶3次得产物B 。B 中含Cl 而不含I ,且Cl 元素的百分含量约为7%。A 中Sn 是sp 3杂化的,而B 中Sn 是sp 3d 杂化的,且由A 转变为B 时Z 式结构不变。请回答: H 332CH 3H 3CH 2C O COCH O O C 20H 39

高考复习-配合物

配合物是如何形成的 一、配合物 1、概念:由提供的配位体和提供的中心原子以结合形成 的化合物。 2、形成条件:中心原子必须存在(通常在成键时进行杂化) 配位体必须存在 二、配合物的组成 ①中心原子——配合物的中心。 常见的是过渡金属的原子或离子,如: (也可以是主族元素阳离子,如:) ②配位体——指配合物中与中心原子结合的离子或分子。 内界常见的有:阴离子,如: 中性分子,如: (配位原子——指配合物中直接与中心原子相联结的配位体中的原子,它含有孤电子对) ③配位数——配位体的数目 外界:内界以外的其他离子构成外界。有的配合物只有内界,没有外界,如:。 注:(1)配离子的电荷数=中心离子和配位体总电荷的代数和,配合物整体(包括内界和外界)应显电中性。 (2)配合物的内界和外界通过离子键结合,在水溶液中较易电离;中心原子和配位体通过配位键结合,一般很难电离。 例:1、KAl(SO4)2和Na3[AlF6]均是复盐吗?两者在电离上有何区别? 试写出它们的电离方程式。 2、现有两种配合物晶体[Co(NH3)6]Cl3和[Co(NH3)5Cl]Cl2,一种为橙黄色,另一种为紫红色。请设计实验方案将这 两种配合物区别开来。(提示:先写出两者的电离方程式进行比较) 三、配合物的空间构型 配合物的空间构型是由中心原子杂化方式决定的 例:1969年美国化学家罗森伯格发现了一种抗癌药物,分子式为Pt(NH3)2Cl2。但在应用中发现同为Pt(NH3)2Cl2,部分药物有抗癌作用,另一部分则没有抗癌作用,为什么?写出它们的结构。

三、配合物的性质 1.配合物形成后,颜色、溶解性都有可能发生改变。 如:Fe3+棕黄色Fe2+ 浅绿色 [Fe(SCN)3]3-血红色[Fe(CN)4]2- 无色 AgCl、AgBr、AgI可与NH3·H2O反应生成易溶的[Ag(NH3)2]+ 2.配合物的稳定性: 配合物中的配位键越强,配合物越稳定。 [练习] 1.由配位键形成的离子[Pt(NH3)6]2+和[PtCl4]2—中,两个中心离子铂的化合价是() A.都是+8 B.都是+6 C.都是+4 D.都是+2 2.0.01 mol氯化铬(CrCl3·6H2O)在水溶液中用过量硝酸银溶液处理,产生0.02 mol AgCl沉淀。此氯化铬最可能是() A.[Cr(H2O)6]Cl3B.[Cr(H2O)5Cl]Cl2 C.[Cr(H2O)4Cl2]Cl·2H2O D.[Cr(H2O)3Cl3]·3H2O 3.下列大气污染物中,能与人体中血红蛋白中Fe2+以配位键结合而引起中毒的气体是 A.SO2B.CO2C.NO D.CO 4.已知[Co(NH3)6]3+呈正八面体结构:各NH3分子的间距相等,Co3+位于正八面的中心。若其中二个NH3分子被Cl-取代,所形成的[Co(NH3)4Cl2]+的同分异构体的种数有() A.2种B.3种C.4种D.5种 5.下列各组物质中,两者互为同分异构的是() A.NH4CNO与CO(NH2)2B.CuSO4·3H2O与CuSO4·5H2O C.[Cr(H2O)4Cl2]Cl·2H2O与[Cr(H2O)5Cl]Cl2·H2O D.H2O与D2O(重水) 6.下列离子中与氨水反应不能形成配合物的是() A.Ag+B.Fe2+C.Zn2+D.Cu2+ 7.下列组合中,中心离子的电荷数和配位数均相同的是() A.K[Ag(CN)2]、[Cu(NH3)4]SO4B.[Ni(NH3)4]Cl2、[Cu(NH3)4]SO4 C.[Ag(NH3)2]Cl、K[Ag(CN)2] D.[Ni(NH3)4]Cl2、[Ag(NH3)2]Cl 8.某物质的实验式为PtCl4·2NH3,其水溶液不导电,加入AgNO3溶液反应也不产生沉淀,以强碱处理并没有NH3放出,则关于此化合物的说法中正确的是() A.配合物中中心原子的电荷数和配位数均为6 B.该配合物可能是平面正方型构型 C.Cl—和NH3分子均与Pt4+配位 D.配合物中Cl—与Pt4+配位,而NH3分子不配位 9.+3价Co的八面体配合物CoCl m·nNH3,中心原子的配位数为6,若1mol配合物与AgNO3作用生成1molAgCl沉淀,则m和n的值是() A.m = 1、n = 5 B.m = 3、n =4 C.m = 5、n = 1 D.m = 4、n = 5 10.下列常见化合物的溶液中,滴入足量氨水最后仍为澄清溶液的是() A.硫酸镁B.氯化铁C.氯化锌D.氯化铜 11.完成化学方程式: AgNO3溶液中加入氨水,先沉淀然后又变澄清 12.在照相底片定影时,硫代硫酸钠(Na2S2O3)溶液能溶解掉未反应的溴化银,这是因为银离子与硫代硫酸根离子生成配离子。银离子的配位数为2,若硫代硫酸钠与溴化银刚好完全反应,则所得溶液中的溶质为 13.已知[Ni(NH3)2Cl2]可以形成A、B两种固体,A在水中溶解度较大;B在CCl4中溶解度较大。试画出A、B分子的几何构型。

第三种配位场理论和络合物结构

第三章配位场理论和络合物结构 一、重点 1.本章应始终抓住对中心原子d轨道对称性的分析,使学生会分析中心原子d轨道在各种场中的分裂情况,并通过晶体场与分子轨道的结果对比(如:它们都能解释d 轨道的分裂能),使同学们认识到它们之所以有一致的结论,关键在于它们都是从中心原子的d轨道对称性来考虑问题的。 2.晶体场理论 二、基本要求 1.掌握晶体场理论的基本思想、内容及应用。 2.会分析d轨道的分裂情况,会计算晶体场稳定化能,能利用姜——泰勒效应分析和解决问题。 3.了解分子轨道理论的思想,掌握它的基本结论。 三、基本内容 配位化合物的一般概念 1.配位化合物(络合物) 络合单元:由中心过渡金属的原子或离子及其周围的分子和离子(称配体)按一定的组成和空间构型组合成的结构单元叫络合单元。 中心离子M:通常是含d电子的过渡金属原子或离子,具有空的价轨道。 配位体L:分子或离子,含孤对电子或 键 L→M 络离子: 带电荷的络合单元叫络离子,如[Fe(CN)6]4-,[Co(NH3)6]3+等, 络合物: 络离子与带异性电荷的离子组成的化合物叫络合物。 不带电荷的络合单元本身就是络合物。如Ni(CO)4,PtCl2(NH3)2等。 金属配位化合物的配位数常见的有2、4、6、8,最常见是4和6两种: 配位数为4的常见几何构型为正四面体和平面正方形; 配位数为6的常为正八面体构型。

2、络合物的磁性:如果具有自旋未成对电子,络合物具有顺磁性。 磁矩大小ββμμ+=μ,)2n (n 为玻尔磁子。 根据磁矩大小可以分成高自旋,低自旋络合物。 3、络合物的化学键理论 价键理论; 晶体场理论; 分子轨道理论; 配位场理论:晶体场理论+分子轨道理论结果 4、配位化合物命名 命名方式与无机盐类似: NaCl →[Co(NH3)6]Cl3 氯化六氨合钴(? ) Na2SO4 →K2[PtCl6] 六氯合铂(?)酸钾 内界次序: 阴离子→中性配位→合→中心离子(罗马数字) K[Co(NH3)2(NO2)4] 四硝基二氨合钴(?)酸钾 K4[Fe(CN)6] 六氰合铁(?)酸钾 NH4[Cr(NH3)2(SCN)4] 四硫氰根二氨合钴(?)酸铵 [Cu(NH3)4]SO4 硫酸四氨合铜(?) [Pt(NH3)4(NO2)Cl]CO3碳酸一氯一硝基四氨合铂(?) Na[Co(CO)4] 四羰基合钴(-?)酸钠 K4[Ni(CN)4] 四氰合钴(0)酸钾 5、配合物的空间结构 1)几何构型 1.配位数(C.N )=4,配体采用四面体空间结构,中心原子轨道采用sp3 杂化。采用平面正方形时,采用dsp 2杂化。Ni(3d 84s 2) Ni(CN)42- 平面正方形 NiX 42- 正四面体 ZnCl 42- 正四面体(中心原子没有空d 轨道) Zn(CN)42- 正四面体 2. C.N =6,配体采用正八面体空间结构,中心原子轨道采用sp 3d 2杂化或

螯合物配合物络合物

配位键,又称配位共价键,或简称配键,是一种特殊的共价键。当共价键中共用的电子对是由其中一原子独自供应时,就称配位键。配位键形成后,就与一般共价键无异。 形成条件 配位键的形成需要两个条件:一是中心原子或离子,它必须有能接受电子对的空轨道;二是配位体,组成配位体的原子必须能提供配对的孤对电子。 当一路易斯碱供应电子对给路易斯酸而形成化合物时,配位键就形成了。例如气态氨NH3和气体三氟化硼BF3形成固体NH3BF3 化合价 在配位化合物中,由电负性小的元素原子向电负性大的元素原子提供孤对电子形成配位键时,每个有一对孤对电子的前者(电负性小的原子)显示+2价,后者显示-2价。反之,由电负性大的元素原子提供孤对电子与电负性小的元素原子之间形成配位键时,两种元素都无价态变化。 常见配位键化合物 ?一氧化碳CO,其中碳氧间的三对共用电子对有一配位键,两个正常共价键。 ?铵根NH4+,其中N原子与左下右的H原子以极性键结合,与上边的H以配位键结合,由N原子提供孤对电子 螯合物(英语:Chelation)是配合物的一种 在螯合物的结构中,一定有一个或多个多齿配体提供多对电子与中心体形成配位键。“螯”指螃蟹的大钳,此名称比喻多齿配体像螃蟹一样用两只大钳紧紧夹住中心体。

金属EDTA螯合物 螯合物通常比一般配合物要稳定,其结构中经常具有的五或六元环结构更增强了稳定性。正因为这样,螯合物的稳定常数都非常高,许多螯合反应都是定量进行的,可以用来滴定。使用螯合物还可以掩蔽金属离子。 可形成螯合物的配体叫螯合剂。常见的螯合剂如下: ?乙二胺(en),二齿 ?2,2'-联吡啶(bipy),二齿 ?1,10-邻二氮杂菲(phen),二齿 ?草酸根(ox),二齿 ?乙二胺四乙酸(EDTA),六齿 值得一提的是EDTA。它能提供2个氮原子和4个羧基氧原子与金属配合,可以用1个分子把需要6配位的钙离子紧紧包裹起来,生成极稳定的产物。

络合物的化学键理论

第三章络合物的化学键理论 络合物的中心原子(或离子)与配体之间的化学键称为配位键(简称配键)。早期的络合物化学键理论有价键理论,后来发展出配位场理论,配位场理论包括两个部分:晶体场理论和络合物的分子轨道理论。 §3-1 价键理论 价键理论认为:中心原子(或离子)与配体之间的化学键可分为电价配键和共价配键,相应的络合物称电价络合物和共价络合物。 ㈠电价配键和电价络合物 带正电的中心离子与带负电或具有偶极矩的配体之间靠静电引力结合,形成电价配键。相应的络合物称为电价络合物。 ?通常,配位原子的电负性和中心原子相差很大时,容易形成电价配键。含有卤素和氧的配体(如F-、H2O 等)常与金属离子形成电价配合物。NH3也可与金属离子形成电价配合物。 ?在电价络合物中,中心离子的电子层结构和自由离子相同,服从洪特规则,络合物中具有较多自旋平行的电子,是高自旋络合物。 【例】[FeF6]3-[Fe3+, d1d1d1d1d1]?6F- (中心离子的电子层结构和自由离子相同)[Fe(H2O)6]2+[Fe2+, d2d1d1d1d1]?6H2O [Ni(NH3)4]2+[Ni2+, d2d2d2d1d1]?4NH3 ㈡共价配键和共价络合物 中心原子或离子以空的价轨道接受配体的孤对电子,形成共价配键。相应的络合物称为共价络合物。 当中心离子为过渡金属离子时,价轨道为(n-1)d、ns和np轨道。其中(n-1)d被价电子部分占据,ns和np 为空轨道。按照杂化轨道理论,部分空的d轨道可以和s、p轨道组成杂化轨道,常见的杂化轨道为d2sp3和dsp2杂化。此外,还有dsp3、d4sp3杂化。s和p轨道还可以组成sp、sp2、sp3等杂化轨道。过渡金属离子杂化轨道类型和配合物几何构型的对应关系如下:

配合物键合异构体的制备及红外光谱测定

配合物键合异构体的制备及红外光谱测定 医药化工学院化学教育专业学生:周丽婷指导老师:梁华定 一、实验目的 (1)通过[Co(NH3)5NO2]Cl2和[Co(NH3)5ONO]Cl2的制备,了解配合物的键合异构现象。 (2)利用配合物的红外光谱图鉴别这两种不同的键合异构体。 二、实验原理 键合异构体是配合物异构现象中的一个重要类型。配合物的键合异构体是指相同的配体以不同的配位方式形成的多种配合物。在这类配合物中,配合物的化学式相同,中心原子与配体及配位数也相同,只是与中心原子键合的配体的配位原子不同。当配体中有两个不同的原子都可以作为配位原子时,配体可以不同的配位原子与中心原子键合而生成键合异构配合物。如本实验中合成的 [Co(NH3)5NO2]Cl2和[Co(NH3)5ONO]Cl2就是一例。当亚硝酸根离子通过氧原子跟中心原子配位(M←ONO)时称为亚硝酸根配合物,而以氮原子与中心原子配位(M←NO2)时形成的配合物叫硝基配合物。 红外光谱法是测定配合物键合异构体的有效方法。分子或基团的振动导致相结合原子间的偶极矩发生改变时,它就可以吸收相应频率的红外辐射而产生对应的红外吸收光谱。分子或基团内键合原子间的特征吸收频率ν受其原子质量和键的力常数等因素影响,可用下式表示:式中ν为频率,k为基团的化学键力常数,μ为基团中成键原子的折合质量,μ=m1m2/( m1+ m2), m1和m2分别为相键合的两原子的各自的相对原子质量。由上式可知,基团的化学键力常数k 越大,折合质量μ越小,则基团的特征频率就越高,反之,基团的力常数k 越小,折合质量μ越大,则基团的特征频率就越低,当基团与金属离子形成配合物时,由于配位键的形成不仅引起了金属离子与配位原子之间的振动(称配合物的骨架振动),而且还将影响配体内原来基团的特征频率。配合物的骨架振动直接反映了配位键的特性和强度,这样就可以通过骨架振动的测定直接研究配合物的配位键性质。但是,由于配合物中心原子的质量都比较大,即μ值一般都大,而且配位键的键力常数比较小,则k值比较小,因此,这种配位键的振动频率都很低,一般出现在200~500cm-1的低频范围,这对研究配位键带来很多的困难。然而由于配合物的形成,配体中的配位原子与中心原子的配位作用会改变整个配体的对称性和配体

第三章配位场理论和络合物结构

第三章配位场理论和络合物结构 第三章配位场理论和络合物结构 一、选择题 1.中央金属固定,下列离子或化合物作为配体时,场强最强的是:() A. - B. NH3 C. CN HO D.SCN - 2 2.具有理想正八面体的电子组态(高自旋时)是:() A.(t2g)3 B.(t 2g) 1 C. (t 2g)4(eg) 2 D. 以上都 不对 3.平面正方形场中,d轨道的最高简并度是:() A. 2 B. 3 C. 4 D.1 4.导致Ni2+水合能在第一系列过渡金属元素中最大的主要原因是:() A.CFSE最大 B.电子成对能最大 C. 原子序数最大 D.H2O是弱 场 5.下列原子作为电子给予体时,哪个原子引起的分裂能最大:() A.C B.F C.O D.N 6.决定成对能P的主要因素是:() A.分裂能 B.库仑能 C.交换能 D.配位场强度 7.下列配位化合物高自旋的是:() A.[Co(NH3)6]3+ B.[Co(NH3)6]2+ C.[Co(NO2)6]3- D.[Co(CN)6]4- 8.下列配位化合物磁矩最大的是:() A.[FeF6]3- B.[Mn(CN)6]3- C.[Ni(H2O) 6]2+ D.[Co(NH3)6]3+ 9.判断下列配位化合物的稳定化能大小的次序是: () (1)[CoF6]4-(2)[NiF6]4-(3)[FeF 6]3- A.(1)>(2)>(3) B.(1)=(2)<(3) C.(1)<(2)<(3) D.(2)>(1)>(3) 10.Ni和CO可形成羰基配合物Ni(CO)n,其中n是:( ) A.6 B.3 C.4 D.5 11.[Cu(HO) 2+ )·2HO]溶液出现蓝色的原因是:( 2 4 2 A.自旋相关效应 B.d-d 跃迁 C. σ-π跃迁 D.姜-泰勒效应12.配位化合物d-d跃迁光谱一般出现在什么区域:() A.红外 B.微波 C. 远紫外 D. 可见—紫外 13.关于[FeF6]3-络离子,下列哪个叙述是错误的:()A.是高自旋络离子 B.CFSE 为0 C.中心离子的电子排斥与Fe3+相同 D.CFSE不为0 14.下列哪个轨道上的电子在XY平面上出现的几率密度为零:()A.3Pz B.3dx 2-y2 C.3s D.3dz2 15.下列分子中,呈反磁性的是:() A.B2 B.NO C.CO D.O 2 16.晶体场稳定化能正确的大小顺序是:()

相关文档
最新文档