K的几何意义
K的几何意义
反比例函数比例系数k 的几何意义知识梳理:如图所示,过双曲线)0(k≠=k x y 上任一点),(y x P 作x 轴、y 轴的垂线PM 、PN,垂足为M 、N ,所得矩形PMON 的面积S=PM ∙PN=|y|∙|x|.,y xk=∴||k S k xy ==,。
1.反比例函数图像上任意一点“对应的直角三角形的面积”S=12│k │2.反比例函数图像上任意一点“对应的矩形的面积”S=│k │这就说明,过双曲线上任意一点作x 轴、y 轴的垂线,所得到的矩形的面积为常数|k|。
这是系数k 几何意义,明确了k 的几何意义,会给解题带来许多方便。
典例精析专题一 K 值与面积直接应用 例1:已知如图,A 是反比例函数ky x=错误!未找到引用源。
的图象上的一点,AB 丄x 轴于点B ,且△ABO 的面积是3,则k 的值是( )A 、3B 、﹣3C 、6D 、﹣6变式练习1:如图,点P 是反比例函数6y x=错误!未找到引用源。
图象上的一点,则矩形PEOF 的面积是 .变式练习2: 如图:点A 在双曲线 y=kx 上,AB 丄x 轴于B ,且△AOB 的面积S △AOB =2,则k= .变式练习3:如图,A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴上:△ABP 的面积为2,则这个反比例函数的解析式为______________.变式练习4:如图反比例函数4y x=-的图象与直线13y x =-的交点为A ,B ,过点A 作y 轴的平行线与过点B 作x 轴的平行线相交于点C ,则ABC △的面积为( )A .8B .6C .4D .2变式练习5:如图,A 、B 为双曲线x12-y =上的点,AD ⊥x 轴于D,BC ⊥y 轴于点C ,则四边形ABCD 的面积为 。
A B Px y OA OBC xyOABxy:例2:如图1所示,直线l 与双曲线)0(ky >=k x交A 、B 两点,P 是AB 上的点,试比较⊿AOC 的面积S 1,⊿BOD 的面积S 2,⊿POE 的面积S 3的大小:。
5.3反比例函数中k的几何意义及应用
反比例函数应用学案(3)研究函数问题要透视函数的本质特征。
反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N(如图1所示),则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。
从而有。
在解相关反比例函数的问题时,若能灵活使用反比例函数中k的几何意义,会给解题带来很多方便。
现举例说明。
例1、如图所示,P是反比例函数的图象上的一点,由P分别向x轴、y轴引垂线,得阴影部分(矩形)的面积为3,则这个反比例函数的解析式是_____________。
应用二:比较面积大小例2、如图2,在函数(x>0)的图象上有三点A、B、C。
过这三点分别向x轴、y 轴作垂线。
过每一点所作的两条垂线与x轴、y轴围成的矩形的面积分别为,则()。
A、 B、C、 D、应用三:确定解析式例3、解答题已知反比例函数的图象经过,过点A作AB⊥x轴于点B,且△AOB的面积为.(1)求k和m的值;(2)若一次函数y=ax+1经过A点,并且与x轴相交于点C,求∠ACO的度数和|AO|:|AC|的值.评析:本题考查学生函数、方程的数学思想及待定系数法的使用.解: (1)由,∴ .∵,∴.∴y= .把代人双曲线,得m=2.(2) ∵点在一次函数y=ax+1上,∴ . ∴ .∴一次函数y= . ∴当y=0,则x= ,即C(,)又∵B(- ,0)则 BC= ,AB= .∴RtΔABC中,AC= . ∴AC=AB. ∴∠AC0= .在RtΔABO中,可求|AO|= ,∴|AO|:|AC|= .练习、1、(2003年全国初中数学联赛试题)若函数与函数的图象相交于A、C两点,AB垂直x轴于B,则△ABC的面积为()A、1B、2C、kD、2、如图,在直角坐标系中,直线y=6-x与函数y=(x>0)的图像相交于点 A、B,设点A的坐标为(x1,,y1),那么长为x1,宽为y1的矩形面积和周长分别为( )A.4,12 B.8,12 C.4,6 D.8,63、如图4,反比例函数与一次函数的图象相交于A点,过A点作AB ⊥x轴于点B。
[整理版]正比例函数K的几何意义专
当k>0时,直线从左下方向右上方倾斜,倾斜角α为锐角;当k<0时,直线从左 上向右下方倾斜,倾斜角α为钝角。
直线斜率与面积关系
斜率K与三角形面积
在直角坐标系中,若直线y=kx与x轴、y轴围成一个三角形,则该三角形的面积S 与斜率k之间存在关系S=1/2*|k|。
斜率K与平行四边形面积
VS
方法二
利用相似三角形的性质,若两个三角形相 似,则它们的对应边成比例。设两个相似 三角形的对应边分别为$l_1, l_2$和$l_1', l_2'$,则有$frac{l_1}{l_1'} = frac{l_2}{l_2'}$。若这两个三角形的一条 边与x轴平行,那么这条边的长度比就等 于两三角形的斜率之比,即$frac{k}{k'} = frac{l_1}{l_1'} = frac{l_2}{l_2'}$。
工程学中效率与工作量关系
工作效率与工作量关系
在工程学中,工作效率η通常与工作量W成正比关系。高效率意味着在相同时间内可以完成更多的工 作,即η=kW,其中k为比例系数。
机器性能与工作负载关系
机器的性能表现通常与其工作负载成正比。当机器承受的负载增加时,其性能表现也会相应提升,以 保持稳定的工作效率,即P=kW,其中k为比例系数。
正比例函数与反比例函数关系
01
正比例函数和反比例函数是两种不同类型的函数,它
们之间没有直接的转化关系。
02
正比例函数的自变量和因变量之间是线性关系,而反
比例函数的自变量和因变量之间是倒数关系。
03
在平面直角坐标系中,正比例函数的图像是一条过原
点的直线,而反比例函数的图像是一条双曲线。
斜率k的几何意义
斜率k的几何意义斜率是数学中一个重要的概念,它在几何中有着重要的意义。
斜率k可以用来描述直线的倾斜程度,它告诉我们直线上的两点之间的高度差与水平距离的比值。
斜率k的几何意义是直观的,它可以帮助我们理解直线的特性和性质。
在平面几何中,通过斜率k,我们可以判断直线的方向、倾斜程度以及与其他直线的关系。
我们来讨论斜率为零的情况。
当直线的斜率k为零时,意味着直线是水平的,与x轴平行。
这是因为斜率为零表示直线上的任意两点之间的高度差为零,即直线不上下移动。
例如,直线y = 3是一条水平线,其斜率为零。
我们来讨论斜率为正数的情况。
当直线的斜率k为正数时,意味着直线向上倾斜。
斜率的绝对值越大,直线的倾斜程度越大。
斜率为正数的直线与正方向的x轴夹角为锐角。
例如,直线y = 2x + 1的斜率为2,表示直线每向右移动一个单位,纵坐标会增加2个单位。
接下来,我们来讨论斜率为负数的情况。
当直线的斜率k为负数时,意味着直线向下倾斜。
斜率的绝对值越大,直线的倾斜程度越大。
斜率为负数的直线与正方向的x轴夹角为钝角。
例如,直线y = -0.5x + 3的斜率为-0.5,表示直线每向右移动一个单位,纵坐标会减少0.5个单位。
斜率还可以帮助我们判断两条直线之间的关系。
如果两条直线的斜率相等,那么它们是平行的。
如果两条直线的斜率互为倒数,那么它们是垂直的。
这是因为两条平行直线的倾斜程度相同,而两条垂直直线的倾斜程度互为倒数。
例如,直线y = 2x + 1和直线y = 0.5x + 3互为垂直直线。
斜率k的几何意义还可以延伸到曲线的切线上。
对于曲线上的某一点,斜率可以描述曲线在该点的切线的倾斜程度。
切线的斜率越大,曲线在该点的变化越快。
斜率为零的切线表示曲线在该点水平,斜率不存在的情况表示曲线在该点垂直。
斜率k在几何中有着重要的意义,它可以帮助我们理解直线和曲线的性质,判断直线之间的关系,以及描述曲线在某一点的切线。
通过斜率,我们可以更好地理解和分析几何问题,进而应用到实际生活和工作中。
《反比例函数图像性质-k的几何意义》课件
随着x的增大或减小,曲线会逐渐靠近 坐标轴,但永远不会与坐标轴相交。
曲线形状
图像是由两支分别位于第一和第三象 限的曲线组成,这两支曲线关于原点 对称。
k<0时图像特征
1 2
图像位于第二、四象限
当k<0时,反比例函数的图像会出现在第二和第 四象限。
曲线形状
图像同样是由两支分别位于第二和第四象限的曲 线组成,这两支曲线也关于原点对称。
图像的性质。
总结
反比例函数的图像性质与 $k$ 的 正负有关。当 $k > 0$ 时,图像 位于第一、三象限;当 $k < 0$
时,图像位于第二、四象限。
涉及综合应用问题
01
例题5
已知反比例函数 $y = frac{k}{x}$ 的图像与一次函数 $y = ax + b$ 的
图像交于点 $M(2,1)$ 和 $N(-1,-2)$,求这两个函数的解析式。
反比例函数的极限与连续性问题
讨论反比例函数在特定点的极限行为,以 及在定义域内的连续性。
反比例函数与其他函数的复合问 题
研究反比例函数与其他基本函数(如幂函 数、三角函数等)的复合性质及图像特征 。
THANK YOU
06
总结回顾与拓展延伸
重点知识点总结回顾
反比例函数图像的基本性质
反比例函数图像为双曲线,当k>0时,图像位于第一、三象限;当k<0时,图像位于第二 、四象限。
k的几何意义
k的绝对值表示双曲线与坐标轴所围成的矩形的面积。当k>0时,矩形在第一象限;当 k<0时,矩形在第二象限。
反比例函数图像的对称性
通过中心对称性,我们可以更好 地理解反比例函数的性质和行为 ,以及它在解决实际问题中的应
反比例函数背景下的面积问题(解析版)-2023年中考数学重难点解题大招复习讲义-函数
模型介绍一、反比例函数k 的几何意义1.反比例函数k 的几何意义:如图,在反比例函数图象上任选一点,向两坐标轴作垂线,垂线与坐标轴所围成矩形的面积为k 。
如图二,所围成三角形的面积为2k二、利用k 的几何意义进行面积转化1.如图,直线AB 与反比例函数k y x=(0k ≠)交于A 、B 两点,与x 、y 轴的交点分别为C 、D ,那么OAB OCD OBD OAC S S S S ∆∆∆∆=--,此方法是绝大部分学生选用的方法。
但是,从效率来讲,就比较低2.如图,过点A 、B 作x 轴的垂线,垂足分别为E 、F ,则根据k 的几何意义可得,OBF OAE S S ∆∆=,而OBF OAB OAE ABFE S S S S ∆∆∆+=+梯形,所以OAB ABFE S S ∆=梯形,此方法的好处,在于方便,快捷,不易出错。
【例1】.如图,反比例函数y=在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB的面积是8.过点A作AC⊥y轴于点C,过点B作BD⊥x轴于点D,∴x=2时,y=3;x=6时,y=1,=S△OBD=3,故S△ACOS四边形AODB=×(3+1)×4+3=11,故△AOB的面积是:11﹣3=8.故答案为:8.变式训练【变1-1】.如图,点A在反比例函数(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若,△AOB的面积为12,则k的值为()A.4B.6C.10D.12解:如图,过点A作AD⊥x轴,垂足为D,∵OC∥AD,,∴,∴,k>0,∴k=12,故选:D.【变1-2】.如图,反比例函数y=(k>0)的图象与矩形ABCO的两边相交于E,F两点,=4,则k的值为16.若E是AB的中点,S△BEF解:设E(a,),则B纵坐标也为,∵E是AB中点,∴F点坐标为(2a,),∴BF=BC﹣FC=﹣=,=4,∵S△BEF∴a•=4,∴k=16.故答案是:16.【例2】.如图,平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为6,4,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为12.解:解法一:过点A作x轴的垂线,交CB的延长线于点E,∵BC∥x轴,∴AE⊥BC,∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为6,4,∴A(,6),B(,4),∴AE=2,BE=﹣=,∵菱形ABCD的面积为2,∴BC×AE=2,即BC=,∴AB=BC=,在Rt△AEB中,BE===1,∴k=1,∴k=12.解法二:同理知:BE=1,设A(a,6),则B(a+1,4),∴6a=4(a+1),∴a=2,∴k=2×6=12.故答案为12.变式训练【变2-1】.如图,点A、B在反比例函数y=的图象上,A、B的纵坐标分别是3和6,连接OA、OB,则△OAB的面积是()A.9B.8C.7D.6解:∵点A、B在反比例函数y=的图象上,A、B的纵坐标分别是3和6,∴A(4,3),B(2,6),作AD⊥y轴于D,BE⊥y轴于E,=S△BOE=×12=6,∴S△AOD=S△AOD+S梯形ABED﹣S△BOE=S梯形ABED,∵S△OAB=(4+2)×(6﹣3)=9,∴S△AOB故选:A.【变2-2】.如图,在直角坐标系中,O为坐标原点,函数y=与y=(a>b>0)在第一象限的图象分别为曲线C1,C2,点P为曲线C1上的任意一点,过点P作y轴的垂线交C2于点A,作x轴的垂线交C2于点B,则阴影部分的面积S△AOB=a﹣.(结果用a,b表示)解:设B(m,),A(,n),则P(m,n),∵点P为曲线C1上的任意一点,∴mn=a,=mn﹣b﹣b﹣(m﹣)(n﹣)∴阴影部分的面积S△AOB=mn﹣b﹣(mn﹣b﹣b+)=mn﹣b﹣mn+b﹣=a﹣.故答案为:a﹣.1.如图,在△ABC中,AB=AC,点A在反比例函数y=(k>0,x>0)的图象上,点B,C在x轴上,OC=OB,延长AC交y轴于点D,连接BD,若△BCD的面积等于1,则k的值为()A.3B.2C.D.4解:作AE⊥BC于E,连接OA,∵AB=AC,∴CE=BE,∵OC=OB,∴OC=BC=×2CE=CE,∵AE∥OD,∴△COD∽△CEA,∴=()2=4,∵△BCD的面积等于1,OC=OB,=S△BCD=,∴S△COD=4×=1,∴S△CEA∵OC=CE,=S△CEA=,∴S△AOC=+1=,∴S△AOE=k(k>0),∵S△AOE∴k=3,故选:A.2.如图,OC交双曲线y=于点A,且OC:OA=5:3,若矩形ABCD的面积是8,且AB ∥x轴,则k的值是()A.18B.50C.12D.解:延长DA、交x轴于E,∵四边形ABCD是矩形,且AB∥x轴,∴∠CAB=∠AOE,∴DE⊥x轴,CB⊥x轴,∴∠AEO=∠ABC∴△AOE∽△CAB,∴=()2,∵矩形ABCD的面积是8,OC:OA=5:3,∴△ABC的面积为4,AC:OA=2:3,∴=()2=,=9,∴S△AOE∵双曲线y=经过点A,=|k|=9,∴S△AOE∵k>0,∴k=18,故选:A.3.如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB 的中点,则k的值为()A.﹣8B.8C.﹣2D.﹣4解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=﹣的图象上,∴ab=﹣2;∵B点在反比例函数y2=的图象上,∴k=2a•2b=4ab=﹣8.故选:A.4.如图,点A(m,n),B(4,)在双曲线y=上,且0<m<n.若△AOB的面积为,则m+n=()A.7B.C.D.3解:∵点A(m,n),B(4,)在双曲线y=上,∴mn=4×=k,∴mn=k=6,∴双曲线为y=,∴n=,作AD⊥x轴于D,BE⊥x轴于E,=S△AOD+S梯形ADEB﹣S△BOE=S梯形ADEB,∵S△AOB∴(+)(4﹣m)=,解得m1=1,m2=﹣16,∵0<m<n.∴m=1,∴n=6,∴m+n=7,故选:A.5.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴=3,则S△于点C,BD⊥x轴于点D,连接OA、BC,已知点C(2,0),BD=3,S△BCDAOC为()A.2B.3C.4D.6解:在Rt△BCD中,∵×CD×BD=3,∴×CD×3=3,∴CD=2,∵C(2,0),∴OC=2,∴OD=4,∴B(4,3),∵点B是反比例函数y=(x>0)图象上的点,∴k=12,∵AC⊥x轴,==6,∴S△AOC故选:D.6.如图,平行于y轴的直线分别交y=与y=的图象(部分)于点A、B,点C是y 轴上的动点,则△ABC的面积为()A.k1﹣k2B.(k1﹣k2)C.k2﹣k1D.(k2﹣k1)解:由题意可知,AB=﹣,AB边上的高为x,=×(﹣)•x=(k1﹣k2),∴S△ABC故选:B.7.已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线y=与边BC交于点D、与对角线OB交于中点E,若△OBD的面积为10,则k的值是()A.10B.5C.D.解:设E点的坐标是(x,y),∵E是OB的中点,∴B点的坐标是(2x,2y),则D点的坐标是(,2y),∵△OBD的面积为10,∴×(2x﹣)×2y=10,解得,k=,故选:D.8.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是12,则k=()A.6B.9C.D.解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵BD=3AD,∴D(,b)∵D、E在反比例函数的图象上,∴=k,设E的坐标为(a,y),∴ay=k∴E(a,),=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=ab﹣k﹣k﹣••(b﹣)=12,∵S△ODE∴4k﹣k﹣+=12k=故选:D.9.如图,一直线经过原点O,且与反比例函数y=(k>0)相交于点A、点B,过点A作AC⊥y轴,垂足为C,连接BC.若△ABC面积为8,则k=8.解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=8÷2=4,又∵A是反比例函数y=图象上的点,且AC⊥y轴于点C,∴△AOC的面积=|k|,∴|k|=4,∵k>0,∴k=8.故答案为8.10.如图,若反比例函数y=的图象经过等边三角形POQ的顶点P,则△POQ的边长为2.解:如图,过点P作x轴的垂线于M,∵△POQ为等边三角形,∴OP=OQ,OM=QM=OQ,∵反比例函数的图象经过点P,∴设P(a,)(a>0),则OM=a,OQ=OP=2a,PM=,在Rt△OPM中,PM===a,∴=a,∴a=1(负值舍去),∴OQ=2a=2,故答案为:2.11.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x 轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.则△OAP 的面积为5.解:过P作MN⊥x轴于M,交AB于N,过A作AD⊥x轴于D,∵A(4,3),∴AD=3,OD=4,∴AO==5,∵AB=AO,∴AB=5,∵AB∥x轴,点B的横坐标是4+5=9,纵坐标是3,即点B的坐标是(9,3),设直线OB的解析式是y=ax,把B点的坐标(9,3)代入得:3=9a,解得:a=,即y=x,∵AB∥x轴,∴MN⊥AB,把A(4,3)代入y=,得k=12,即y=,解方程组得:或,∵点P在第一象限,∴点P的坐标是(6,2),∵A(4,3),AB∥x轴,P(6,2),∴MN=AD=3,PN=3﹣2=1,﹣S△APB=3﹣=5,∴△OAP的面积是S△ABO故答案为:5.12.如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC 面积的最小值为6.解:方法一:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.=AC•BC∵S△ABC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.方法二:因为y=x+m斜率为1,且BC∥x轴,AC∥y轴,∴∠ABC=∠BAC=45°,∴△ABC为等腰直角三角形,∴AC=BC=AB,=AC•BC=AB2,∴S△ABC当AB最小时,m=0,直线为y=x,联立方程,解得或,∴A(,),B(﹣,﹣),AB=×2=2,=×4×6=6.∴S△ABC最小故答案为:6.13.如图,在平面直角坐标系中,△OAB的边OA在x轴正半轴上,其中∠OAB=90°,AO =AB,点C为斜边OB的中点,反比例函数y=(k>0,x>0)的图象过点C,且交线=6,则k的值为8.段AB于点D,连接CD,OD.若S△OCD解:根据题意设B(m,m),则A(m,0),∵点C为斜边OB的中点,∴C(,),∵反比例函数y=(k>0,x>0)的图象过点C,∴k=•=,∵∠OAB=90°,∴D的横坐标为m,∵反比例函数y=(k>0,x>0)的图象过点D,∴D的纵坐标为,作CE⊥x轴于E,=S△AOD,∵S△COES△OCD=S△COE+S梯形ADCE﹣S△AOD=S梯形ADCE,S△OCD=6,∴(AD+CE)•AE=6,即(+)•(m﹣m)=6,∴m2=32,∴k==8,故答案为:8.解法二:作CE⊥OA于E,∵C为AB的中点,OA=AB,∠OAB=90°,=S△AOD=k,S△AOB=2k,∴S△OEC=k,∴S△BOD∵C为斜边OB的中点,=S△BCD=S△BOD=6,∴S△OCD∴×k=6,∴k=8.故答案为:8.14.如图,在平面直角坐标系中,▱OABC的顶点A,B在第一象限内,顶点C在y轴上,经过点A的反比例函数y=(x>0)的图象交BC于点D.若CD=2BD,▱OABC的面积为15,则k的值为18.解:过点D作DN⊥y轴于N,过点B作BM⊥y轴于M,设OC=a,CN=2b,MN=b,∵▱OABC的面积为15,∴BM=,∴ND=BM=,∴A,D点坐标分别为(,3b),(,a+2b),∴•3b=(a+2b),∴b=a,∴k=•3b=•3×a=18,故答案为:18.15.如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x 轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.解:连DC,如图,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1,∴△ADC的面积为4,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,=S△ABD+S△ADC+S△ODC,∵S梯形OBAC∴(a+2a)×b=a×b+4+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故答案为:.16.如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(1,8),B(﹣4,m)两点.(1)求k1,k2,b的值;(2)求△AOB的面积;(3)请直接写出不等式x+b的解.解:(1)∵反比例函数y1=与一次函数y2=k2x+b的图象交于点A(1,8)、B(﹣4,m),∴k1=8,B(﹣4,﹣2),解方程组,解得;(2)由(1)知一次函数y=k2x+b的图象与y轴的交点坐标为(0,6),=×6×4+×6×1=15;∴S△AOB(3)﹣4≤x<0或x≥1.17.如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,cos∠OAB=,反比例函数y=的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为.(1)求反比例函数的解析式;(2)求直线EB的解析式;.(3)求S△OEB解:(1)∵A点的坐标为(a,6),AB⊥x轴,∴AB=6,∵cos∠OAB==,∴,∴OA=10,由勾股定理得:OB=8,∴A(8,6),∴D(8,),∵点D在反比例函数的图象上,∴k=8×=12,∴反比例函数的解析式为:y=;(2)设直线OA的解析式为:y=bx,∵A(8,6),∴8b=6,b=,∴直线OA的解析式为:y=x,则,x=±4,∴E(﹣4,﹣3),设直线BE的解式为:y=mx+n,把B(8,0),E(﹣4,﹣3)代入得:,解得:,∴直线BE的解式为:y=x﹣2;=OB•|y E|=×8×3=12.(3)S△OEB18.如图,直线y=x与反比例函数的图象交于点A(3,a),第一象限内的点B在这个反比例函数图象上,OB与x轴正半轴的夹角为α,且tanα=.(1)求反比例函数的解析式;(2)求点B的坐标;.(3)求S△OAB解:(1)∵直线y=x与反比例函数的图象交于点A(3,a),∴a=×3=4,∴点A的坐标为(3,4),∴k=3×4=12,∴反比例函数解析式y=.(2)∵点B在这个反比例函数图象上,设点B坐标为(x,),∵tanα=,∴=,解得:x=±6,∵点B在第一象限,∴x=6,∴点B的坐标为(6,2).(3)设直线OB为y=kx,(k≠0),将点B(6,2)代入得:2=6k,解得:k=,∴OB直线解析式为:y=x.过A点做AC⊥x轴,交OB于点C,如图所示:则点C坐标为(3,1),∴AC=3.S△OAB的面积=S△OAC的面积+S△ACB的面积=×|AC|×6=9.∴△OAB的面积为9.19.已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣2,0),与反比=4.例函数在第一象限内的图象的交于点B(2,n),连接BO,若S△AOB (1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与双曲线的另一交点为D点,求△ODB的面积.=•|x A|•y B,解:(1)由题意得:S△AOB即×2×y B=4,y B=4,∴B(2,4),设反比例函数的解析式为:y=,把点B的坐标代入得:k=2×4=8,∴y=,设直线AB的解析式为:y=ax+b,把A(﹣2,0)、B(2,4)代入得:,解得:,∴y=x+2;(2)由题意得:x+2=,解得:x1=﹣4,x2=2,∴D(﹣4,﹣2),=S△OAD+S△OAB=×2×2+4=6.∴S△ODB20.如图,在平行四边形OABC中,,点A在x轴上,点D是AB 的中点,反比例函数的图象经过C,D两点.(1)求k的值;(2)求四边形OABC的面积.解:(1)过点C作CE⊥x轴于E,∵∠AOC=45°,∴OE=CE,∴OE2+CE2=OC2∵OC=2,∴OE=CE=2,∴C(2,2),∵反比例函数的图象经过点C点,∴k=2×2=4;(2)过点D作DF⊥x轴于F,∵四边形OABC是平行四边形,∴AB=OC=2,∠DAF=∠AOC=45°,又∵点D是AB的中点,∴AD=,AF=DF,∴AF2+DF2=AD2,∴AF=DF=1,∴D点的纵坐标为1,∵反比例函数的图象过点D点,∴D(4,1),∴OF=4,OA=OF﹣AF=4﹣1=3,∴平行四边形OABC的面积S=OA•CE=3×2=6.21.如图,直线y=6x与双曲线y=(k≠0,且x>0)交于点A,点A的横坐标为2.(1)求点A的坐标及双曲线的解析式;(2)点B是双曲线上的点,且点B的纵坐标是6,连接OB,AB,求△AOB的面积.解:(1)将x=2代入y=6x,得:y=12,∴点A的坐标为(2,12),将A(2,12)代入y=,得:k=24,∴反比例函数的解析式为y=;(2)在y=中y=6时,x=4,∴点B(4,6),而A(2,12),如图,过A作AC⊥y轴,BD⊥x轴,交于点E,则OD=4,OC=12,BD=6,AC=2,AE=2,BE=6,=S矩形OCED﹣S△AOC﹣S△BOD﹣S△ABE∴S△AOB=4×12﹣×2×12﹣×4×6﹣×2×6=48﹣12﹣12﹣6=18.22.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)求△AOB的面积;(3)若D(x,0)是x轴上原点左侧的一点,且满足,求x的取值范围.解:(1)∵B(2,﹣4)在反比例函数y=的图象上,∴m=﹣8,∴反比例函数的表达式为y=﹣.∵A(﹣4,n)在y=﹣的图象上,∴n=2,∴A(﹣4,2).∵y=kx+b经过A(﹣4,2)和B(2,﹣4),∴,解得∴一次函数的表达式为y=﹣x﹣2.(2)当y=﹣x﹣2=0时,解得x=﹣2.∴点C(﹣2,0),∴OC=2,=S△AOC+S△COB∴S△AOB=×2×2+×2×4=6.(3)根据函数的图象可知:若D(x,0)是x轴上原点左侧的一点,当﹣4<x<0时,满足kx+b﹣<0.23.如图,一次函数y=k1x+b的图象与反比例函数y=(x<0)的图象相交于点A(﹣1,2)、点B(﹣4,n).(1)求此一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在x轴上存在一点P,使△PAB的周长最小,求点P的坐标.解:(1)∵反比例函数y=(x<0)的图象经过点A(﹣1,2),∴k2=﹣1×2=﹣2,∴反比例函数表达式为:y=﹣,∵反比例y=﹣的图象经过点B(﹣4,n),∴﹣4n=﹣2,解得n=,∴B点坐标为(﹣4,),∵直线y=k1x+b经过点A(﹣1,2),点B(﹣4,),∴,解得:,∴一次函数表达式为:y=+.(2)设直线AB与x轴的交点为C,如图1,当y=0时,x+=0,x=﹣5;∴C点坐标(﹣5,0),∴OC=5.S△AOC=•OC•|y A|=×5×2=5.S△BOC=•OC•|y B|=×5×=.S△AOB=S△AOC﹣S△BOC=5﹣=;(3)如图2,作点A关于x轴的对称点A′,连接A′B,交x轴于点P,此时△PAB的周长最小,∵点A′和A(﹣1,2)关于x轴对称,∴点A′的坐标为(﹣1,﹣2),设直线A′B的表达式为y=ax+c,∵经过点A′(﹣1,﹣2),点B(﹣4,)∴,解得:,∴直线A′B的表达式为:y=﹣x﹣,当y=0时,则x=﹣,∴P点坐标为(﹣,0).24.如图,在平面直角坐标系xOy中,已知四边形DOBC是矩形,且D(0,4),B(6,0).若反比例函数y=(x>0)的图象经过线段OC的中点A(3,2),交DC于点E,交BC于点F.设直线EF的解析式为y=k2x+b.(1)求反比例函数和直线EF的解析式;(2)求△OEF的面积;(3)请结合图象直接写出不等式k2x+b>0的解集.解:(1)∵四边形DOBC是矩形,且D(0,4),B(6,0),∴C点坐标为(6,4),∵A点坐标为(3,2),∴k1=3×2=6,∴反比例函数解析式为y=;把x=6代入y=得x=1,则F点的坐标为(6,1);把y=4代入y=得x=,则E点坐标为(,4),把F(6,1)、E(,4)代入y=k2x+b,得,解得,,∴直线EF的解析式为y=﹣x+5;﹣S△ODE﹣S△OBF﹣S△CEF(2)△OEF的面积=S矩形BCDO=4×6﹣×4×﹣×6×1﹣×(6﹣)×(4﹣1)=;(3)由图象得:不等式k2x+b﹣>0的解集为<x<6.25.如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P,连结OP、OQ.求△OPQ的面积.解:(1)反比例函数y=(m≠0)的图象经过点(1,4),解得m=4,故反比例函数的表达式为y=.一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n),所以,解得n=﹣1,b=﹣5.∴一次函数的表达式y=﹣x﹣5;(2)由,解得或.∴点P(﹣1,﹣4),在一次函数y=﹣x﹣5中,令y=0,得﹣x﹣5=0,解得x=﹣5,故点A(﹣5,0),S△OPQ=S△OP A﹣S△OAQ=×5×4−×5×1=7.5.26.如图,在平面直角坐标系中,边长为4的等边△OAB的边OB在x轴的负半轴上,反比例函数y=(x<0)的图象经过AB边的中点C,且与OA边交于点D.(1)求k的值;(2)连接OC,CD,求△OCD的面积;(3)若直线y=mx+n与直线CD平行,且与△OAB的边有交点,直接写出n的取值范围.解:(1)∵等边△OAB,∴AB=BO=AO=4,∠ABO=∠BOA=∠OAB=60°,∵点C是AB的中点,∴BC=AC=2,过点C作CM⊥OB,垂足为M,在Rt△BCM中,∠BCM=90°﹣60°=30°,BC=2,∴BM=1,CM=,∴OM=4﹣1=3,∴点C 的坐标为(﹣3,),代入y =得:k =﹣3答:k 的值为﹣3;(2)过点A 作AN ⊥OB ,垂足为N ,由题意得:AN =2CM =2,ON =OB =2,∴A (﹣2,2),设直线OA 的关系式为y =kx ,将A 的坐标代入得:k =﹣,∴直线OA 的关系式为:y =﹣x ,由题意得:,解得:舍去,,∴D (﹣,3)过D 作DE ⊥OB ,垂足为E ,S △OCD =S CMED +S △DOE ﹣S △COM =S CMED =(+3)×(3﹣)=3,答:△OCD 的面积为3.(3)①当与直线CD 平行的直线y =mx +n 过点O 时,此时y =mx +n 的n =0,②当与直线CD 平行的直线y =mx +n 经过点A 时,设直线CD 的关系式为y =ax +b ,把C 、D 坐标代入得:,解得:a =1,b =3+∴直线CD 的关系式为y =x +3+,∵y =mx +n 与直线y =x +3+平行,∴m =1,把A (﹣2,2)代入y =x +n 得:n =2+2因此:0≤n ≤2+2且n .答:n 的取值范围为:0≤n ≤2+2且n ≠3+.。
反比例函数K的几何意义
【山东·全国考题回访】
1.(2014·济南中考)如图,△OAC和△BAD都是等
如图,过y轴正半轴上的任意一点P,作x轴 的平行线,分别与反比例函数y=-4/x和 y=2/x交于点A和点B,若点C是x轴上任意一 点,连接AC、BC,则△ABC的面积为
点B,D在反比例函数y=b/x(b<0)的图象上,
AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,
AB与CD的距离为5,则a-b的值是
则S△OBC=
1·(-x)·22y=6.解得k=xy=-6. 2
答案:-6
如图,直线l⊥x轴于点P,且与反比例函数 y1=k1/x(x>0)及y2=k2/x(x>0)的图像分别交于点A, B,连接OA,OB,已知△OAB的面积为3,则k1-k2 的值等于( )
如图△P1OA1,△P2A1A2是等腰直角三角形,点P1, P2在函数y=4/x(x>0)的图象上,斜边OA1,A1A2 都在x轴上,则点A2的坐标是______.
答案:6
(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同 时落在反比例函数的图象上,猜想是哪两个点, 并求矩形的平移距离和反比例函数的解析式.
(1)∵四边形ABCD是矩形,平行于x轴,且AB=2,AD=4, 点A的坐标为(2,6). ∴AB=CD=2,AD=BC=4, ∴B(2,4),C(6,4),D(6,6);
腰直角三角形,∠ACO=∠ADB=90°,反比例函数 y= k 在第一象限的图象经过点B,若OA2-AB2=12, 则kx的值为_______.
K的几何意义
② 注意面积相等的变换.
How —反比例函数中k的几何意义
k 中,任意一点 x
1、过反比例函数 y
2、如图,连接OP,则
S OAP
1 1 1 OA AP m n k 2 2 2
P(m ,n ) 分别作x轴,y轴的垂线, y 垂足分别为A,B , 则S 矩形OAPB OA AP
mn
B
P(m,n)
A
k
o
x
反比例函数 K 值的几何意义的应用
扫 扫 学
saosaoxue
What —反比例函数的概念 反比例函数
如果两个变量x、y之间的关系可表示为
y式,那么,称y是x的反比例函数.
定义域: 应注意自变量x的取值不能为0.
Why —反比例系数k的本性要求 1.k≠0; 2.k值决定反比例函数图像所在象限, 当k>0,图像在第一、三象限; 当k<0,图像在第二、四象限.
Why —反比例函数 y k 中k的几何意义(基本) x
Why —反比例函数 y k 中k的几何意义(扩展) x
k y x
典例 赏析
4
=
典例 赏析
点评
①已知k值求面积
②已知面积求k值
典例 赏析
点评
对于K的几何意义的运用需注意: ① 过双曲线上任意一点作x轴、y轴的垂线,所得到的矩 形的面积为常数|k|;
反比例函数k的几何意义公开课
反比例函数k的几何意义公开课一、引言在数学中,函数是一种非常重要的数学工具,用于描述和研究自然界和社会现象中的变化规律。
其中,反比例函数是一类特殊的函数,它在图像上表现为一条曲线而非直线。
本文章将深入探讨反比例函数k的几何意义,并介绍其在几何图形中的应用。
二、反比例函数的定义反比例函数是指形如y=k/x的函数,其中k是常数,x不等于0。
反比例函数的特点是,当x趋近于0时,y趋近于无穷大;当x趋近于无穷大时,y趋近于0。
反比例函数是一种非线性函数,其图像呈现出一种特殊的曲线。
三、反比例函数的图像特点1. 反比例函数的对称性反比例函数的图像具有关于x轴和y轴的对称性。
即,当(x, y)在图像上时,(-x, -y)也在图像上。
这是因为当x为正时,y为负,反之亦然。
2. 反比例函数的渐近线反比例函数的图像具有两条渐近线,分别为x轴和y轴。
当x无限趋近于0时,y趋近于无穷大,因此曲线趋近于y轴。
当y无限趋近于0时,x趋近于无穷大,因此曲线趋近于x轴。
3. 反比例函数的变化幅度反比例函数的图像在x轴正半轴上增大,而在x轴负半轴上减小。
当x趋近于0时,y的变化幅度趋近于无穷大;当x趋近于无穷大时,y的变化幅度趋近于0。
四、反比例函数的几何应用反比例函数在几何中有许多重要的应用,下面将介绍其中的一些应用场景。
1. 反比例函数在电磁学中的应用在电磁学中,反比例函数被广泛应用于描述电磁感应定律中的变化规律。
根据法拉第电磁感应定律,电流的大小与磁场的变化率成反比例关系。
用数学语言表示,即I=k/dt,其中I代表电流的大小,dt代表时间的微小变化量,k为常数。
这种反比例关系能够帮助我们理解电磁学中的各种现象,如电感、电感耦合等。
2. 反比例函数在物理学中的应用在物理学中,反比例函数也有许多实际应用。
例如,单位质量下落物体的速度与空气阻力的大小成反比例关系。
根据牛顿第二定律和受力分析,可以得到v=k/m,其中v为速度,m为物体的质量,k为常数。
2020中考专题复习----反比例函数
第1讲 反比例函数的有关面积问题(一)【学习目标】1.理解并掌握反比例函数中的比例系数k 的几何意义;2.会灵活运用k 的几何意义求图形面积或由图形面积求k 的值.【重难点】k 的几何意义和面积的转化.知识点与方法技巧梳理:k 的几何意义1.过反比例函数y =kx图象上任意一点P (x ,y )作两坐标轴的垂线,两垂足、原点、P 点组成一个矩形,则矩形的面积S =|x |·|y |=|x y |=|k |.2.反比例函数y =kx图象上任意一点P (x ,y )作x 轴或y 轴的垂线,垂足、原点、P 点组成一个直角三角形,则三角形的面积S =1 2 |x |·|y |=1 2 |x y |=12|k |.【例1】若直线y =kx (k >0)与函数y =1x的图象交于A 、C 两点,AB ⊥x 轴于B ,则△ABC 的面积为( )A .1B .2C .kD .k2【变式】如图,A 、B 是函数y =2x的图象上关于原点O 对称的任意两点,AC ∥y 轴,BC ∥x 轴,则△ABC的面积为____________.【例2】如图,在x 轴的正半轴上依次间隔相等的距离取点A 1,A 2,A 3,A 4,A 5,分别过这些点作x 轴的垂线与反比例函数y =2x的图象相交于点P 1,P 2,P 3,P 4,P 5,连接OP 1,A 1P 2,A 2P 3,A 3P 4,A 4P 5,得到Rt △OP 1A 1,Rt △A 1P 2A 2,Rt △A 2P 3A 3,Rt △A 3P 4A 4,Rt △A 4P 5A 5,设它们的面积分别为S 1,S 2,S 3,S 4,S 5,则S 1+S 2+S 3+S 4+S 5=_____________.【变式】如图,在x 轴的正半轴上依次间隔相等的距离取点A 1,A 2,A 3,A 4,…,A n ,分别过这些点作x轴的垂线与反比例函数y =1x的图象相交于点P 1,P 2,P 3,P 4,…,P n ,再分别过P 2,P 3,P 4,…,P n 作P 2B 1⊥A 1P 1,P 3B 2⊥A 2P 2,P 4B 3⊥A 3P 3,…,P n B n -1⊥A n -1P n -1,垂足分别为B 1,B 2,B 3,B 4,…,B n -1,连接P 1P 2,P 2P 3,P 3P 4,…,P n -1P n ,得到Rt △P 1B 1P 2,Rt △P 2B 2P 3,Rt △P 3B 3P 4,…,Rt △P n -1B n -1P n ,设它们的面积分别为S 1,S 2,S 3,…,S n ,则S 1+S 2+S 3+…+S n =_____________.(用含n 的式子表示)【例3】如图,正方形OABC 的面积为9,点B 在反比例函数y =kx(k >0,x >0)的图象上.(1)求反比例函数的解析式;(2)点P 是反比例函数图象上异于点B 的一点,过点P 分别作x 轴、y 轴的垂线,垂足为E 、F .设矩形OEPF 和正方形OABC 不重合的两部分的面积和为S ,当S =92时,求点P 的坐标.【变式】如图,正方形OABC 的面积是4,点B 在反比例函数y =kx(k >0,x <0)的图象上,若点R 是该反比例函数图象上异于点B 的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩余部分的面积为S ,则当S =m (m 为常数,且0<m <4)时,求点R 的坐标(用含m 的代数式表示).【例3】如图,在△OAB 中,C 是AB 的中点,反比例函数y =kx(k>0)在第一象限的图象经过A 、C 两点,若△OAB 的面积为9,则k 的值为____________.【变式1】如图,A 、B 是双曲线y =kx上的两点,过A 点作AC ⊥x 轴于C ,交OB 于D ,若D 为OB 的中点,△ADO 的面积为1,则k 的值为____________.【变式2】如图,反比例函数y =k x (k >0,x >0)的图象经过Rt △AOB 的斜边OA 上的点C ,且 OC OA = 13,与AB 边交于点D ,连接OD ,若△AOD 的面积为8,则k 的值为【能力提升】1.如图,正方形ABCD 的边长为2,AB ∥x 轴,AD ∥y 轴,顶点A在双曲线y =12x上,边CD 、BC 分别交双曲线于E 、F ,且线段AE 恰好经过原点,则△AEF 的面积为2A (-1,0),B (0,-2),AD 边交y 轴于点E ,S四边形BCDE =5S △ABE .反比例函数ky x的图象经过点C ,与BC 边交于另一点F ,则点F 的坐标为____________.3.已知直线y =1 2 x 与双曲线y =kx(k >0)交于A 、B 两点,且点A 的横坐标为4.过原点O 的另一条直线交双曲线y =kx(k >0)于C 、D 两点(点C 在第一象限),若以A 、B 、C 、D 为顶点的四边形的面积为24,则点C 的坐标为________________.4.如图,A 、B 两点在第一象限,点A 在反比例函数y =kx的图象上,交反比例函数y =k x 的图象于D ,连接OB 交反比例函数y =kx图中阴影部分的面积和最小时,点C 的坐标为____________.5.如图,双曲线2y x =、2y x=-O 是对角线AC 与BD 的交点,若阴影部分的面积为10,AB 所在直线的解析式为y =2x +b ,则点A 的坐标为____________. 6.已知A (-3,0),B (0,-4),P 为反比例函数y =12x(x >0)图象上的动点,PC ⊥x 轴于C ,PD ⊥y 轴于D ,则四边形ABCD 面积的最小值为____________.7.一次函数y =ax +b 的图象分别与x 轴、y 轴交于点A 、B ,与反比例函数ky x=的图象相交于点C 、D ,作CE ⊥x 轴于E ,DF ⊥y 轴于F ,连接EF .(1)如图1,若点C 、D 在反比例函数图象的同一分支上,试证明:①EF ∥AB ;②AC =BD ; (2)如图2,若点C 、D 在分别在反比例函数图象的不同分支上,(1)中的结论是否还成立,请证明.图1 图2第2讲 反比例函数的有关面积问题(二)【学习目标】1.理解并掌握反比例函数中的比例系数k 的几何意义;2.会灵活运用k 的几何意义求图形面积或由图形面积求k 的值.【重难点】k 的几何意义和面积的转化.【例1】如图,双曲线交矩形OABC 的边于点D 、E ,若BD =2AD ,四边形ODBE 的面积为8,则k 的值为____________.【变式1】如图,反比例函数y =kx(k>0)的图象与矩形ABCO 的两边相交于E 、F 两点.若E 是AB 的中点,S △BEF =2,则k 的值为____________.【变式2】如图,知矩形OABC 的一边OA 在x 轴上,OC 在y 轴上,O 为坐标原点,连接OB ;双曲线y=kx交BC 于D ,交OB 于E ,连接OD ,若BE =2OE ,△OBD 的面积等于S ,则k 的值为____________.【例2】如图,点A 在反比例函数y =kx(x>0)的图象上,AB ⊥y 轴于B ,点C 在x 轴正半轴上,且OC=2AB ,点E 在线段AC 上,且AE =3EC ,D 是OB 的中点,△ADE 的面积是9,则k =_____________.【变式】如图,B 、D 两点均在双曲线y =kx上,BC ⊥y 轴于C ,点D 为AB 的中点,点E 在线段OC 上,且CE =2OE ,若△BDE 的面积为7,则k 的值为_____________.【例3】如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数y =-k2+5k -62x的图象上.若点A 的坐标为(-3,-2),则k 的值为【变式】如图,平面直角坐标系中,□OABC 的顶点C 的坐标为(3,4),边OA 在x 轴正半轴上,P 为对角线AC 上一点,过点P 分别作DE ∥OC ,FG ∥OA 交平行四边形各边,若反比例函数y =kx的图象经过点D ,四边形BCFG 的面积为8,则k 的值为_____________.【例4】如图,在平面直角坐标系xO y 中,直线y =3 2x 与双曲线y =6x相交于A ,B 两点,C 是第一象限内双曲线上一点,连接CA 并延长交y 轴于点P ,连接BP ,BC .若△PBC 的面积是20,则点C 的坐标为_____________.【变式】如图,点A 、B 在双曲线y =k x 的第一象限分支上,AO 的延长线交第三象限的双曲线y =kx于点C ,AB 的延长线与x 轴交于点D ,连接CD 与y 轴交于点E ,若AB =BD ,S △ODE=94,则k =___________.【能力提升】1.如图,A 是反比例函数ky x=2OC ,CD ⊥x 轴于D ,交反比例函数图象于点B ,若S △ABC =8,则2.如图,矩形OABC 中,D 是对角线OB 上的一点,OD =2 3OB ,反比例函数y =kx(x >0)的图象经过点D ,分别与边AB 、BC 交于点E 、F ,若四边形BFDE 的面积为 56,则k 的值为_____________,矩形OABC 的面积为_____________.3.Rt △ABC 在直角坐标系中的位置如图所示,∠ACB =90°,AC =2BC ,反比例函数y =kx在第一象限的图象与AB 边交于点D (2,m ),与BC 边交于点E (4,n ),且△BDE 的面积为2,则k =__________. 4.如图,△AOB 为等边三角形,点B 的坐标为(-2,0),过点C (2,0)的直线交AO 于D ,交AB 于E ,E5.如图,在平面直角坐标系中,正方形ABCD 的中心在原点O ,且一组对边与x 轴平行,点P (3a ,a )是反比例函数y =kx(k>0)的图象与正方形的一个交点,若图中阴影部分的面积为14,则k 的值为____________.6.如图,A 、B 是反比例函数y =k x 图象上的两点,AC ⊥y 轴于C ,BD ⊥x 轴于D ,AC =BD = 14OC ,S 四边形ABDC=14,则k =____________.7.如图,已知平行四边形OABC 的面积为18,对角线AC 、OB 交于点D ,双曲线y =kx(k >0)经过C 、D 两点,则k 的值为____________.8.如图,平行四边形OABC的边OA在x轴的负半轴上,顶点B、C在第二象限,反比例函数y=kx的图象经过点C,与线段OB、AB分别交于点D、E,若BD=2OD,△OCE的面积为8,则k的值为____________.9.如图,平行四边形ABCD中,点C在y轴正半轴上,点D在反比例函数y=kx(x>0)的图象上,且CD∥x轴,AC的延长线交x轴于点E,若△BCE的面积为2,则k的值为_____________.10.如图,四边形ABCD的顶点都在坐标轴上,AB∥CD,△ABD与△ACD的面积分别为10和20,若双曲线y=kx恰好经过BC的中点E,则k的值为____________.第3讲 反比例函数经典题1.如图,在平面直角坐标系中,□OABC 的顶点A 在x 轴上,顶点B 的坐标为(2k,2k),反比例函数y =kx在第一象限的图象将□OABC 分成上、下两部分,其面积分别为S 1、S 2,则S 1、S 2的大小关系是_____________.变式3:如图,直线y =kx +b (k <0,b >0)与x 轴、y 轴交于点A 、B ,与反比例函数my=的图象交于点C 、D .若BD =DC ,△OCD 的面积为6,求反比例函数的解析式.3.如图,一次函数y =mx (m >0)与反比例函数y =kx的图象的图象交于A 、B 两点,点P 是第一象限内反比例函数图象上的动点,直线P A 、PB 与y 轴分别交于点C 、D,求证:PC =PD .4.如图,点A 、B 是直线y =x 上的两点,过A 、B 两点分别作y 轴的平行线交双曲线y =1x(x >0)于C 、D 两点.若BD =2AC ,则4OC 2-OD 2的值为____________.5.如图,直线l 与x 轴、y 轴交于点A (2,0)、B (0,2),点P 双曲线2(0)y x =>上一动点,过点P 作PM ⊥x 轴于M ,PN ⊥y 轴于N ,分别交直线l 于E 、F . (1)求AF ·BE 的值; (2)求证:∠EOF =45°.6.如图,直线y =-x +1与x 轴、y 轴交于点A 、B ,点P 为双曲线(00)ky k x x=>>,上一动点,过点P 作PM ⊥x 轴于M ,PN ⊥y 轴于N ,分别交直线AB 于E 、F ,∠EOF =45°. (1)求证:△AOF ∽△BEO ; (2)求双曲线的解析式.7.如图,P 为双曲线y =3x上的一点,过点P 作x 轴、y 轴的垂线,分别交直线y =-3x +m 于D 、C 两点,若直线y =-3x +m 与y 轴交于点A ,与x 轴交于点B ,则AD ·BC 的值为____________.8.如图,在Rt △OAB 中,O 为坐标原点,直角顶点A 在x 轴的正半轴上,OA =2,AB =4,反比例函数y=kx(k>0)的图象分别与边OB 、AB 交于点C 、D ,若以B 、C 、D 为顶点的三角形与△BAO 相似,则k 的值为____________.9.11.如图,矩形OABC 的面积为2,反比例函数y =kx(k>0)的图象与矩形的两边AB 、BC 分别交于点E 、F ,则四边形OAEF 面积的最大值为___________.12.如图,矩形OABC 的面积为定值,反比例函数y =kx(k>0)的图象与矩形OABC 的边AB 、BC 分别交于点E 、F ,若四边形OAEF 面积的最大值为 54,则k =___________,矩形OABC 的面积为___________.13.如图,直线l 分别交x 、y 轴的正半轴于点E 、F ,交反比例函数y =kx(k>0,x>0)的图象于点A 、C (A 在C 的左侧),AB ⊥x 轴于B ,CD ⊥x 轴于D ,连接OA 、BC ,若BD =OB +DE ,S △AOF+S △CDE=1,则△ABC 的面积为_____________.14.如图,点A 、B 在反比例函数y =1x(x>0)的图象上,点A 在点B 的左侧,且OA =OB ,点A 关于y 轴的对称点为A ′,点B 关于x 轴的对称点为B ′,连接A ′B ′ 分别交OA 、OB 于点D 、C ,若四边形ABCD 的面积为65,则点A 的坐标为______________.15.如图,矩形AOBC 中,OA =4,OB =6,反比例函数y =k x(k >0)的图象与边AC 、BC 分别交于点E 、F ,将△CEF 沿EF 对折后,C 点恰好落在OB 上,则k =____________.17.18.如图,点A 是反比例函数y = 22 x的图象第一象限分支上的动点,连接AO 并延长交另一分支于点B ,以AB 为斜边作等腰直角三角形ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连接BP ,当BP 平分∠ABC 时,点C 的坐标是____________.20.如图,点A (a ,3)在反比例函数y = k x (k >0,x >0)的图象上,点P 为反比例函数y = k x(k>0,x>0)图象上的一个动点,当△OAP 为等腰三角形且满足条件的P 点恰好只有2个时,k 的值为_____________.21.在平面直角坐标系xO y 中,等边△PQM 的顶点P 、Q 在x 轴上,顶点M 在反比例函数y = 3x的图象上,若P 点坐标为(t ,0),且满足条件的等边△PQM 恰好有三个,则t 的值为_____________.4.如图,双曲线交矩形OABC 的边于点D 、E ,求证:DE ∥AC .5.如图,点A、B在双曲线的同一分支上,AC⊥x轴于C,BD⊥y轴于D,求证:DC∥AB.12.如图P是函数y=kx(k>0,x>0)图象上一点,直线y=-x+1分别交x轴、y轴于点A、B,过点P 分别作PM⊥x轴于点M,交AB于点E,作PN⊥y轴于点N,交AB于点F,则AF·BE的值为___________.(用含k的代数式表示)13.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx在第一象限的图象经过点B,若OA2-AB2=12,则k的值为__________.14.如图,在平面直角坐标系中,点A、B分别在x轴、y轴的正半轴上,OA=4,AB=5,点D在反比例函数y=kx(k>0)的图象上,DA⊥OA,点P在y轴负半轴上,PD⊥BD,OP=7,则k的值为_________xO MPABNEFADBCO xy12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 回顾复习
1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质
练习:1、若反比例函数y =(k ≠0)的图象经过点P (﹣2,3)
,则该函数的图象的点是( )
2、在反比例函数y x
=
的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( ) A .1-
B .0
C .1
D .2
3、已知点),1(1y -,),2(2y ,),3(3y 在反比例函数x
k y 1
2--=的图像上. 下列结论中正确的是( )
A .321y y y >>
B .231y y y >>
C .213y y y >>
D . 132y y y >>
4、如果A (m ,y 1) 、B(-3,y 2) 是函数2y x =的图象上的点,且y 1 > y 2 则m 的取值范围是
【思考】比较大小的三种常用方法: 、 、 。
二、新课学习
(一)k 的几何意义
1、例1:自学课本21页例3,尝试在练习本上写出解答过程。
2、【思考】反比例函数y =k
x
(k ≠0)中比例系数k 的几何意义: 即过双曲线y =
k
x
(k ≠0)上任意一点P 作x 轴、y 轴的垂线,设垂足分别为A 、B , 则所得矩形OAPB 的面积为 :Rt △OAP 或Rt △OBP 的面积为 。
练习:
1、 如图是反比例函数y =
k
x
在第二象限内的图象,若图中的矩形OABC 的面积为2,则k =
2、如图,A 、B 两点在双曲线y =上,分别经过A 、B 两点向轴作垂线段,已知S 阴影=1,则S 1+S 2=( )
3、反比例函数y x
=
在第一象限的图象如图所示,则k 的值可能是( )A .1 B .2 C .3 D .4
(二)拓展与延伸
例2、如图,A 、B 是函数2y x =的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面
积记为S ,则( ) A . 2S = B . 4S = C .24S << D .4S > 例3、如图,已知双曲线)0k (x
k
y >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若
△OBC 的面积为3,则k =____________.
练习:
1、如图,双曲线)0(>k x
k
y =
经过矩形QABC 的边BC 的中点E ,交AB 于点D 。
若梯形ODBC 的面积为3,则双曲线的解析式为( )(A )x y 1= (B )x y 2=(C ) x y 3= (D )x
y 6
=
2、如图,已知在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数y =(k ≠0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD .若△OCD ∽△ACO ,则直线OA 的解析式为 .。