酶的分离纯化与制剂
酶的分离纯化方法介绍
酶的分离纯化方法介绍酶的分离纯化一般包括三个基本步骤:即抽提、纯化、结晶或制剂。
首先将所需的酶从原料中引入溶液,此时不可避免地夹带着一些杂质,然后再将此酶从溶液中选择性地分离出来,或者从此溶液中选择性地除去杂质,然后制成纯化的酶。
关键词:酶抽提纯化结晶制剂细胞破碎cell disruption 盐析亲和沉淀有机溶剂沉淀生物细胞产生的酶有两类:一类由细胞内产生后分泌到细胞外进行作用的酶,称为细胞外酶。
这类酶大都是水解酶,如酶法生产葡萄糖所用的两种淀粉酶,就是由枯草杆菌和根酶发酵过程中分泌的。
这类酶一般含量较高,容易得到;另一类酶在细胞内产生后并不分泌到细胞外,而在细胞内起催化作用,称为细胞内酶,如柠檬酸、肌苷酸、味精的发酵生产所进行的一系列化学反应,就是在多种酶催化下在细胞内进行的,在类酶在细胞内往往与细胞结构结合,有一定的分布区域,催化的反应具有一定的顺序性,使许多反应能有条不紊地进行。
酶的来源多为生物细胞。
生物细胞内产生的总的酶量虽然是很高的,但每一种酶的含量却很低,如胰脏中期消化作用的水解酶种类很多,但各种酶的含量却差别很大。
因此,在提取某一种酶时,首先应当根据需要,选择含此酶最丰富的材料,如胰脏是提取胰蛋白酶、胰凝乳蛋白酶、淀粉酶和脂酶的好材料。
由于从动物内脏或植物果实中提取酶制剂受到原料的限制,如不能综合利用,成本又很大。
目前工业上大多采用培养微生物的方法来获得大量的酶制剂。
从微生物中来生产酶制剂的优点有很多,既不受气候地理条件限制,而且动植物体内酶大都可以在微生物中找到,微生物繁殖快,产酶量又丰富,还可以通过选育菌种来提高产量,用廉价原料可以大量生产。
由于在生物组织中,除了我们所需要的某一种酶之外,往往还有许多其它酶和一般蛋白质以及其他杂质,因此为制取某酶制剂时,必须经过分纯化的手续。
酶是具有催化活性的蛋白质,蛋白质很容易变性,所以在酶的提纯过程中应避免用强酸强碱,保持在较低的温度下操作。
酶的生产和利用
酶的生产和利用一、微生物酶制剂的生产主要有以下步骤:1、目的酶生产菌株的分离筛选(1)从自然界分离筛选(2)用物理、化学因子处理诱变(3)用基因重组或细胞融合技术选育2、酶的生产(1)要选择好的培养方法,包括培养基组成配比、培养温度、pH 值、通气量等。
图:微生物在相当于三层楼高的发酵罐里生长繁殖,产生所需的酶(2)确定工业规模大量生产的一系列工程和工艺条件,以及培养罐的形式、大小、通气条件、温度和pH 值的控制等。
图:通过改变培养基类型、酸碱度、氧气浓度和温度,研究人员现了生产某种酶的微生物的最佳生长条件。
三、酶的提取、分离和纯化1、微生物酶制剂的工业提取步骤大致如下:如果是胞内酶,则首先要分离收集其菌体,使之破碎,将酶提取至液相中,此为出发酶液;如果是胞外酶,它的深层发酵液或固体培养物的抽提液则为出发酶液。
2、制取工业酶制剂的步骤:第一步——除去出发酶液中的悬浮固形物,获得澄清酶液,必要时再进行减压浓缩;第二步——根据质量要求和经济性采用适当方法(如用盐析法、有机溶剂沉淀法、丹宁沉淀法等)将酶沉淀分离;图:只有酶和水能通过转鼓式过滤机;培养基和微生物则被留在硅藻土上。
第三步——收集沉淀、干燥、研粉、加适当的稳定剂、填充剂、做成粉末制剂。
••酶粒是在大型连续运转的水平混合机内生产出来的。
提取的酶与盐、纤维素及其他成分混合形成0.5mm大小的粒状物。
然后用一种聚合体包裹,以防止酶尘在使用过程中可能引起的致敏危险。
图:用多聚体包裹酶以减少酶尘引起的致敏危险。
3、其他方法对于质量要求高可提取液中共存有妨碍目的酶工艺效果的其他酶时,常用一些特殊纯化方法将目的酶与其他酶和杂蛋分开,再分别沉淀制取。
常用的方法有:( 1 )蛋白质选择性变性法( 2 )分级盐析法•有机溶剂分级沉淀法•等电点法•柱层析法•电泳法•亲和层析法四、酶的化学修饰技术1、金属离子置换修饰2、大分子结合修饰3、肽链有限水解修饰4、侧链修饰图:微生物的基因经修饰能够产生所需的酶五、固定化酶和固定化细胞固定化酶是通过物理或化学的处理,使水溶性酶和固态的水不溶支持物(载体)相结合或被载体包埋,但仍保留酶活力。
什么是酶制剂?--初步认识酶制剂的基本概念和作用
什么是酶制剂?--初步认识酶制剂的基本概念和作用酶制剂是一种针对生物大分子进行降解、转化或者合成的一类催化剂,应用广泛,可用于食品、医药、饲料、化妆品、日用化学品等多个领域。
本文将详细介绍酶制剂的基本概念、作用、种类和用途、生产、贮存和使用、优点和局限性以及未来发展趋势。
I. 酶制剂的概述A. 定义和基本概念酶制剂是利用生物大分子如蛋白质分子中具有催化作用的酶分子,对生物分子反应进行调控的一种催化剂。
其特点在于可以实现高效、可控和可重复的转化反应。
B. 分类酶制剂可以用于各种具有不同结构、化学性质和功能的生物分子反应,按照作用类型可以分为:酯水解酶、脱氢酶、异构酶、氧化还原酶、氨基酸酰化酶、转移酶等。
按照来源和生产方式可以分为:天然酶制剂、重组酶制剂、合成酶制剂等。
II. 酶制剂的作用A. 在生物体内的作用酶在生物体内可以通过协助转换营养物质,将其转化为对生命活动有益的形式。
例如,消化酶可以帮助人体消化和吸收食物中的营养物质,解决体内能量和代谢物的平衡问题。
其他酶如细胞色素氧化酶、光合作用酶等也在细胞代谢、能量获取、物质转化等方面起着重要的作用。
B. 工业应用酶也被广泛应用于工业生产的各个领域:食品加工业、医药制药业、日用化学品制造业等。
例如,在食品加工业,淀粉酶可以帮助将淀粉质转化为麦芽糖和葡萄糖等可溶性糖,增加可溶性糖的含量,以提高口感和营养价值;牛奶酶可以使牛奶中的乳糖变为葡萄糖和半乳糖等可吸收的糖,有利于消化。
III. 酶制剂的种类和用途A. 淀粉酶淀粉酶是一种酶制剂,主要用于食品加工业,可以将淀粉质转化为多糖和单糖等可溶性糖,以增加食品口感和营养价值。
同时,淀粉酶也可以应用于饲料、葡萄酒等生产中。
B. 脂肪酶脂肪酶能够加速脂肪分子的降解过程,主要应用于食品加工、医药制药、饲料等各个领域。
例如,在卤味制品、黄油和肉制品制造过程中,脂肪酶可以帮助分解脂肪酸和甘油,从而改善风味口感。
C. 蛋白酶蛋白酶是一种专门降解蛋白质分子的酶,主要应用于医药制药业,用于制备医疗用药。
酶的生产与分离纯化
重要
(3) 碳氮比 在微生物酶生产培养基中碳源与氮源的比例是
随生产的酶类、生产菌株的性质和培养阶段的 不同而改变的。 一般蛋白酶 (包括酸性、中性和碱性蛋白酶) 生 产采用碳氮比低的培养基比较有利,例如黑曲 霉3.350酸性蛋白酶生产采用由豆饼粉3.75 %、 玉 米 粉 0.625% 、 鱼 粉 0.625% 。 NH4Cl 1% 、 CaCl2 0.5%、Na2HP04 0.2%、豆饼石灰水解液 10%组成的培养基;
2.2.2.3 液体深层发酵的工艺控制
酶的发酵生产中发酵效果除了受到菌种产酶性能的影响外,还 受到发酵温度、pH、溶氧量等条件的影响。
(1) 温度对产酶的影响 发酵温度的变化主要随着微生物代谢反应、发酵中通风、搅
拌速度的变化而变化的。微生物在生长发育中,不断地吸收 培养基营养成分来合成菌体的细胞物质和酶时的生化反应都 是吸热反应;培养基中的营养物质被大量分解时的生化反应 都是放热反应。发酵初期合成反应吸收的热量大于分解反应 放出的热量,发酵液需要升温。当菌体繁殖旺盛时,情况则 相反,发酵液温度就自行上升,加上通风搅拌所带来的热量, 这时,发酵液必须降温,以保持微生物生长繁殖和产酶所需 的适宜温度。
重要
不同的细胞对各种氮源的要求各不相同,应根据 要求进行选择和配制。一般来说,动物细胞要求 有机氮,植物细胞主要要求无机氮。多数情况下 将有机氮源和无机氮源配合使用才能取得较好的 效果。例如黑曲霉酸性蛋白酶生产,只用铵盐或 硝酸盐为氮源时,酶产量仅为有胨时的30%。只 用有机氮源而不用无机氮源时产量也低,故一般 除使用高浓度有机氮源外尚需添加1%用以基因工程为主的现代分子生物学技术,选育
菌种、增加酶产率和开发新酶种。因此,下面将主要介绍微 生物发酵法产酶的一般原理和工艺。
酶工程-04-酶的提取与分离纯化
三足离心机 32 武汉生物工程学院生物工程系酶工程教研室
1、差速离心
采用不同的离心速度和离心时间,使不同沉降速度的颗粒 先后分离的方法。
应用范围:大小和密度有较大差别的颗粒。
大
中
小
33 武汉生物工程学院生物工程系酶工程教研室
2、密度梯度离心
在离心管中用5~60%的蔗糖溶液,形成由管底到液面逐渐 降低的梯度,将样品放在密度梯度溶液的表面,经过离心,不 同大小、具有一定沉降系数差异的颗粒在密度梯度溶液中形成 若干条不连续的区带。
广泛应用于生物工程、化学、制药、 饮料、电力、冶金、海水淡化、资源 再生等领域。
渗出液 40
膜分离技术的地位和影响
美国官方文件曾说“18世纪电器改变了整个工业进程 ,而20世纪膜技术将改变整个面貌”,“目前没有一 种技术,能像膜技术这么广泛地被应用”
日本和欧洲则把膜技术作为21世纪的基盘技术进行研 究和开发。
常用的离心介质:铯盐,如CsCl,Cs2SO4,CsBr
36 武汉生物工程学院生物工程系酶工程教研室
先把一定浓度的铯盐溶液与样品液混合均匀,也可将一定量 的铯盐加到样品液中使之溶解。 在选定的离心力作用下,经过足够时间的离心分离。 铯盐在离心力的作用下,在离心力场中沉降,自动形成密度 梯度。 样品中不同浮力密度的颗粒在其各自的等密度点位置上形成 区带。
梯度介质:蔗糖密度梯度系统
34 武汉生物工程学院生物工程系酶工程教研室
密度梯度的制备:密度梯度混合器
35 武汉生物工程学院生物工程系酶工程教研室
3、等密度梯度离心
当欲分离的不同颗粒的密度范围处于离心介质的密度范围 时,在离心力的作用下,不同浮力密度的颗粒一直移动到与他 们各自的浮力密度恰好相等的位置,形成区带。
酶的分离 纯化
(2-4)
若酶的总浓度用[E]t表示,那么 [E]= [E]t-[ES],代入式(2-4)并整理得
(2-5)
由于酶的反应速度与[ES]成正比,所以
V = k3 [ES] 将(2-5)代入(2-6),得
(2-6)
(2-7)
第一节 酶促反应动力学
当底物浓度很高时,所有酶都与底物结合生成中间产物ES,则[E]t=[ES]。此时 反应速度达到最大Vmax,即
整理上式可得 Km= [S] 由此可以看出,Km的物理意义就是当酶反应速度达到最大反应速度的一半时的 底物浓度,其单位与物质摩尔浓度单位相同,用mol/L表示。Km数值大小与酶的浓 度无关,是酶反应的特性常数。不同酶的Km值不同,且同一酶在不同的底物下,其 Km值也不同。米氏常数可由实验测得,也可用下面的公式求得:
Vmax= k3 [ES]= k3[E]t
(2-8)
(2-7)除以(2-8),并整理得
(2-9)
这就是米-曼氏方程(Michaelis-Menten equation),又称为米氏方程,式中的 Km是一常数值,称为米氏常数。在特殊情况下,当v = Vmax时,米氏方程可转化为下 式:
第一节 酶促反应动力学
第三章 酶的分离纯化
酶分离纯化的目的
酶分离纯化的目的是使酶制剂 产品达到应用所需的纯度。
分离纯化过程包括3个基本步骤:
1 抽提 2 纯化 3 制剂
Crude product concentration versus selling price (Dwyer, 1984)
第一节 酶促反应动力学
对许多酶的性质的观察和研究得知,在低的底物浓度[S]下,反应速度(v)直接 与底物浓度[S]成正比;在高底物浓度[S]下,速度趋向于最大值(Vmax),此时反应速 度与底物浓度[S]无关(如图2-1)。
第三章 酶的分离纯化
• 更多的用于其他沉淀方法的一个
组合条件。如用于除去杂蛋白。
• 如:纯化血清胆碱酯酶时,调pH 到2.8-3.0以除去酸性杂蛋白。
2、蛋白质的盐溶和盐析
采用加入中性盐的方法使蛋白质沉淀的方 法称为盐析法。 实际常用的盐溶液是硫酸铵,硫酸钠,磷酸 钾,硫酸镁,氯化钠,磷酸钠等。 稀盐溶液浓度为0.02-0.5mol/L
3、化学破碎法 4、酶学破碎法
高 压 细 胞 破 碎 机
JY92-II D超声波细胞粉碎机
细 胞 破 碎 珠
DY89-I型 电动玻璃匀浆机
细胞破碎方法及其原理
机械破碎 通过机械运动产生的剪切 力,使组织、细胞破碎。 捣碎法 研磨法 匀浆法
物理破碎
通过各种物理因素的作用, 使组织、细胞的外层结构破 坏,而使细胞破碎。
温度差破碎法 压力差破碎法 超声波破碎法 有机溶剂: 甲苯、丙酮 丁醇、氯仿 表面活性剂: Triton、Tween 自溶法 外加酶制剂法
本章 目录
化学破碎
通过各种化学试剂对细胞 膜的作用,而使细胞破碎
酶促破碎
通过细胞本身的酶系或外 加酶制剂的催化作用,使 细胞外层结构受到破坏, 而达到细胞破碎
1、机械破碎法
(1)有机溶剂处理:常用的有机溶剂有: 甲苯、丙酮、丁醇、氯仿等等。有机 溶剂可破坏细胞膜的磷脂结构,从而 改变细胞膜的通透性,再经提取可使 膜结合酶或胞内酶等释和细胞膜中的磷脂及脂蛋
白相互作用,使细胞膜结构破坏, 增加膜的通透性。尤其对膜蛋白 酶的提取特别有效在实验室及生 产中均已应用。
(3)匀浆法:利用匀浆器所产生的剪切 力将组织细胞破碎。匀浆器一般有硬质 磨砂玻璃或硬质塑料或不锈钢等制成, 通常用来破碎那些易于分散、柔软细小
酶制剂的制备
酶制剂的制备全文共四篇示例,供读者参考第一篇示例:酶制剂是一种应用于生物工程领域的重要生物催化剂,广泛应用于食品、医药、农业等领域。
酶制剂的制备主要通过菌种培养、酶提取和纯化、酶活力测定等步骤完成。
本文将详细介绍酶制剂的制备的各个环节及其相关技术。
一、菌种培养1. 选择菌株:酶制剂的制备首先要选择适合生产目标酶的菌株。
常见的菌种有大肠杆菌、酵母菌、真菌等。
2. 培养条件:菌种培养需要控制适当的温度、PH值、营养液成分等条件。
常用的培养基有LB培养基、YP培养基等。
3. 菌种培养:将选定的菌株接种到含有适当培养基的培养皿中,进行静态或摇床培养,通过控制时间和条件,使菌株在培养基中生长繁殖。
二、酶提取和纯化1. 酶提取:将培养好的菌株经过离心、过滤等方法将酶提取出来。
不同的酶可采用不同的提取方法,如超声波法、冻融法、离心法等。
2. 酶纯化:提取出的酶一般含有其他杂质,需要经过一系列纯化步骤进行纯化。
纯化的方法包括离子交换层析、凝胶渗透层析等。
三、酶活力测定1. 酶活力测定:通过测定酶的活性来评估酶的品质。
常用的测定方法有比色法、荧光法、密度法等。
2. 酶活性稳定性:除了测定酶的活性,还需要考虑酶的活性稳定性,即在不同温度、PH值下酶的活性是否保持稳定。
四、酶制剂配方设计1. 酶活性强化:根据不同的应用需求,可以对酶进行改良,提高其催化性能和特异性。
2. 辅酶添加:在制备酶制剂的过程中,有时需要添加一些辅酶或辅因子来增强酶的活性。
五、酶制剂的应用1. 食品工业:酶制剂广泛应用于食品加工领域,如发酵剂、酶改良剂等。
2. 医药工业:酶制剂可用于药物合成、酶促反应等,对于特定靶标的酶抑制具有重要意义。
3. 农业领域:酶制剂在农业生产中起着促进土壤改良、提高作物产量等作用。
酶制剂的制备是一个涉及多学科知识的复杂工程,需要科研人员在菌种培养、酶提取和纯化、酶活力测定等方面进行深入研究,以提高酶制剂的生产效率和品质。
Chapter 3 酶的提取与分离纯化
Chapter 3 酶的分离与纯化我们要研究或使用一种酶,首先要采用相关方法先得到它,因此酶的分离与纯化是酶的生产、应用及酶学性质研究的基础。
Section 1 酶制剂的制备过程一个完整的酶制剂制备方案应该包括:酶活力测定体系的建立、材料的选择、材料的预处理、酶的酶学性质初步研究、酶的分离与纯化、酶制剂的保存。
一、材料的选择注意把握植物的季节性、微生物的生长期(对数生长期)和动物的生理状态等。
二、材料的预处理(一)细胞破碎上节课我们提到根据酶的分布,可将酶分为胞内酶和胞外酶。
若是胞外酶,就不存在细胞破碎的问题,但是胞外酶的种类很少,绝大多数酶都属于胞内酶。
要想获得胞内酶,就得先进行细胞破碎,使酶从细胞内释放出来,这样才能进一步进行酶的提取和分离纯化。
细胞破碎的方法很多,有机械破碎法、物理破碎法、化学破碎法和酶溶法。
在实际使用时,我们要根据细胞的特性和酶的特性选择适宜的方法,有时也可以联合采用2种或2种以上的方法,以达到细胞破碎的效果,而又不影响酶的活性。
1、机械破碎法按照所用破碎机械的不同,又可以分为捣碎法、研磨法和匀浆法。
(1)捣碎法:常用于动物内脏、植物叶芽等比较脆嫩的组织细胞的破碎,也可以用于微生物,特别是细菌的细胞破碎。
(2)研磨法:常用于微生物和植物组织细胞的破碎。
(3)匀浆法:常用于破碎易于分散、比较柔软、颗粒细小的组织细胞。
大块的组织或者细胞团需要先用组织捣碎机或研磨器械捣碎分散后才能进行匀浆。
2、物理破碎法根据物理力的不同,可分为冻融法、渗透压法和超声波破碎法。
(1)冻融法:适用于易于破碎的细胞,如革兰氏阴性菌。
如将-20℃冷冻的细胞突然放进沸水浴中,或沸水浴中的热细胞突然放进-70℃冷冻,这样都可以使细胞破坏。
但是,在酶的提取时,要注意不能在过高的温度下操作,以免引起酶的变性失活。
(2)渗透压法:适用于易于破碎的细胞,如动物细胞或革兰氏阴性菌。
使用时,先将细胞分离出来,悬浮在高渗透压的溶液中,平衡一段时间后,将细胞迅速转入低渗透压的蒸馏水或缓冲溶液中,由于渗透压的作用而使细胞破碎。
酶的分离纯化
酶的分离纯化摘要:本文概述了在实验中由于酶浓度、饱和度等不同条件下对酶进行分离纯化的适用方法。
酶的分离纯化有很多种方法,在纯化的工艺上有很大的不同,不同来源的酶在分离纯化中表现出不同的洗脱特性。
现有酶的分离纯化方法都是依据酶和杂蛋白在性质上的差异而建立的。
关键词:酶;分离;纯化;方法前言:酶的分离纯化工作,是酶学研究的基础。
酶的纯化过程在目前来说仍是一门实验科学。
一个特定酶的提纯往往需要经过多个实验的探索才能总结出一般经验规律。
酶的分离纯化又与其他蛋白质的纯化过程存在很大的差异,酶的分离纯化有其自己独有的特点:一是特定酶在细胞中的含量少,二是酶通过测定活力的方法可以加以跟踪,前者给实验带来困难,后者为实验提供了捷径。
正文:1. 酶的分离与纯化的概念[1]酶的分离与纯化是指将酶从细胞或其他含酶材料中提取出来,再与杂质分开,从而获得符合使用目的、有一定纯度和浓度的酶制剂的过程。
酶分离纯化的一般原则:①防止酶变性失活1.)酶纯化一般在低温条件下进行(0~4℃)2.)各种溶液应该用缓冲液,PH应调到使酶最稳定的PH3.)各种溶液中还可以加入酶保护剂②建立一个可靠和快速的测活方法方法专一、灵敏、精确、简便、经济③酶原料的选取选择目的酶含量丰富的原料,且要考虑取材方便、经济节约等因素2. 酶的分离纯化 2.1 细胞破碎[2]各种生物组织的细胞具有不同的特点,在采用破碎方法时,要根据细胞的性质,酶的性质来选取合适的破碎方法。
1.)机械破碎法通过机械运动所产生的剪切力作用,使细胞破碎的方法,称为机械破碎法,常用的有如下几种。
捣碎法:利用高速组织捣碎机的高速旋转叶片所产生的剪切力,将组织细胞破碎。
常用于动物内脏、植物叶芽等脆嫩组织细胞破碎,也可用于微生物,尤其是细菌的细胞破碎。
此法在实验宝和生产规模均可采用。
研磨法:用研钵直接研磨。
常用于微生物的微生物材料的破碎。
匀浆法:利用高压匀浆泵、玻璃或Teflon加研棒匀浆器高速球磨机将细胞破碎。
酶的分离纯化
第三章酶的分离纯化第三章酶的分离纯化第一节酶分离纯化工作的基本原则及步骤第二节细胞破碎第三节酶的抽提第四节酶的纯化第五节酶的纯度与产量第六节酶的剂型与保存第一节酶分离纯化工作的基本原则及步骤1926年Summer制备了第一个结晶酶,自此以后,酶分离纯化工作进展很快,现已有数以百计的酶制成了结晶,相当数量的酶达到了高度纯净,并根据酶的作用特点,理化性质、发展了各种类型的分离纯化方法、试剂和设备。
一、基本原则二、酶分离纯化的基本步骤为了能成功地进行酶的分离纯化,需注意以下两个基本原则:1. 防止酶变性失效防止酶变性失效是酶分离纯化工作很重要的问题,这一点在纯化后期尤为突出。
一般地,凡是用以预防蛋白质变性的方法与措施,都可考虑用于酶分离纯化工作中。
常见的措施有:(1)低温:除少数例外,所有操作应在低温下进行,有有机溶剂存在时,更应注意。
二、酶分离纯化的步骤酶分离纯化时,一般要经过如下步骤:1. 细胞破碎:除在体液中提取酶或胞外酶,一般都要进行细胞破碎,促使胞内酶溶出,以利于抽提。
2. 抽提3. 纯化下面分节对这三个基本环节加以介绍第二节细胞破碎细胞破碎的方法很多,有机械破碎法、物理破碎法、化学破碎法和酶学破碎法。
一、机械破碎法二、物理破碎法三、化学破碎法四、酶学破碎法:通过机械运动所产生的剪切力作用,使细胞破碎的方法,称为机械破碎法,常用的有如下几种。
1. 机械捣碎法:利用高速组织捣碎机的高速旋转叶片所产生的剪切力,将组织细胞破碎,转速可高达10000r/min。
常用于动物内脏、植物叶芽等脆嫩组织细胞破碎,也可用于微生物,尤其是细菌的细胞破碎。
此法在实验宝和生产规模均可采用。
通过温度、压力、声波等各种物理因素作用,使组织细胞破碎的方法,该称为物理破碎法。
物理破碎法包括如下几种方法;1. 温度差破碎法:通过温度的突然变化使细胞破碎。
即将冷冻的细胞突然放进较高温度的水中,或将在较高温度中的细胞突然冷冻都可使细胞破坏。
酶的分离纯化 ppt课件
凝胶电泳
(88.9%)
共六步,总收率仅为16%
staehelin等人:
硫酸铵盐析
免疫亲和层析
阳离子交换层析 仅三步,总收率达81.0%
武汉生物工程学院生物工程系酶工程教研室
在实践工作中选择方法时:
首先,应对被纯化的酶的理化性质有—个比较全面的了解;
其次,判断采用的方法和条件是否得当,始终以测定酶 活性为标准。
适用于耐热的酶,注意常要加适当的酶保护剂。 (2)加凝聚剂或絮凝剂
(3)调pH值 二、固液分离 方法:(1)离心分离;(2)过滤;(3)双水相萃取
武汉生物工程学院生物工程系酶工程教研室
三、细胞破碎
捣碎法:捣碎机
机械破碎法
研磨法:研钵、细菌磨、石磨、球磨等 匀浆法:匀浆器
物理破碎法
温度差破碎法:冻融交替法 压力差破碎法:高压冲击法、突然降压法、渗透压变化
各国研究的热点。
广泛应用于生物工程、化学、制药、 饮料、电力、冶金、海水淡化、资源 再生等领域。
武汉生物工程学院生物工程系酶工程教研室
一、膜分离的类型
1、按推动力不同可分为: (1)扩散膜分离:渗透、透析 (2)压力差膜分离:微滤、超滤、纳滤、反渗透 (3)电位差膜分离:电渗析
2、按膜孔径或截留物质的大小:
水
超滤(UF)
(10-200nm)
纳滤(MF) 反渗透滤(RO)
(2-10nm)
(<2nm)
武汉生物工程学院生物工程系酶工程教研室
各种膜分离法的原理和应用范围
膜分离法 截留的颗粒大小 截留的主要物质 过滤介质 应用举例
微 滤(MF) 0.2~2um
超 滤 (UF) 10nm~200nm 纳滤
酶的分离
大多数蛋白类酶都溶 于水,而且在低浓度 的盐存在的条件下, 酶的溶解度随盐浓度 的升高而增加,这称 为盐溶现象。
在盐浓度达到某一 界限后,酶的溶解 度随盐浓度升高而 降低,这称为盐析 现象。
举例说明
盐溶液提取
例如,固体发酵生产的麸曲中的淀粉酶、蛋白酶等胞 外酶,用 0.14mol/L 的氯化钠溶液或 0.02~0.05mol/L 的磷酸缓冲液提取;枯草杆菌碱性磷 酸酶用 0.1mol/L 氯化镁溶液提取等。有少数酶,如 霉菌脂肪酶,用清水提取的效果较好。 核酸类酶(R-酶)的提取,一般是在细胞破碎后,用 0.14mol/L 的氯化钠溶液提取,得到核糖核蛋白提取 液,再进一步与蛋白质等杂质分离,而得到酶 RNA。
沉淀分离方法 分离原理
盐析沉淀 法 等电点沉 淀法 有机溶剂 沉淀法 复合沉淀 法
利用不同蛋白质在不同的盐浓度条件下溶解 度不同的特性,通过在酶液中添加一定浓度 的中性盐,使酶或杂质从溶液中析出沉淀, 从而使酶与杂质分离 利用两性电解质在等电点时溶解度最低,以 及不同的两性电解质有不同的等电点这一特 性,通过调节溶液的pH值,使酶或杂质沉淀 析出,从而使酶与杂质分离 利用酶与其它杂质在有机溶剂中的溶解度不 同,通过添加一定量的某种有机溶剂,使酶 或杂质沉淀析出,从而使酶与杂质分离 在酶液中加入某些物质,使它与酶形成复合 物而沉淀下来,从而使酶与杂质分离
三 、离心条件
在离心过程中,应该根据需要,选择好离心 力(或离心速度)和离心时间,并且控制好温 度和 pH 值等条件。
1.
离心力
相对离心力
2、离心时间 3、温度和 pH 值
(三 ) 过滤与膜分离
过滤是借助于过滤介质将不同大小、不同形 状的物质分离的技术。 过滤介质多种多样,常用的有滤纸、滤布、 纤维、多孔陶瓷和各种高分子膜等,其中以 各种高分子膜为过滤介质的过滤技术称为膜 分离技术。微滤、超滤、反渗透、透析及电 渗析等都属于膜过滤技术。
酶的分离纯化
细胞破碎方法及其原理
机械破碎
通过机械运动产生的剪切 力,使组织、细胞破碎。
物理破碎 化学破碎
通过各种物理因素的作用, 使组织、细胞的外层结构破 坏,而使细胞破碎。
通过各种化学试剂对细胞 膜的作用,而使细胞破碎
有机溶剂之所以能使酶沉淀析出。主要是由于有机溶剂的存在会使 溶液的介电常数降低。例如,20℃时水的介电常数为80,而82%乙 醇水溶液的介电常数为40。溶液的介电常数降低,就使溶质分子 间的静电引力增大,互相吸引而易于凝集,同时,对于具有水膜 的分子来说,有机溶剂与水互相作用,使溶质分子表面的水膜破 坏,也使其溶解度降低而沉淀析出。
常用于酶的沉淀分离的有机溶剂有乙醇、丙酮、异丙醇、甲醇等
基本原理
➢ 有机溶剂沉淀主要是降低水溶液的介电常数,减小溶剂的极 性,削弱溶剂分子与蛋白质分子间的相互作用力,增加了蛋 白质分子间的相互作用,导致蛋白质溶解度降低而沉淀。
➢ 由于使用的有机溶剂与水互溶,它们在溶解于水的同时从蛋 白质分子周围的水化层中夺走了水分子,破坏了蛋白质分子 的水膜,因而发生沉淀作用
1、中性盐沉淀
➢ 中性盐的亲水性大于蛋白质和酶分子的亲水性,所 以加入大量中性盐后,夺走了水分子,破坏了水膜, 暴露出疏水区域,同时又中和了电荷,破坏了亲水 胶体,蛋白质分子即形成沉淀。
➢ 优点是:①成本低,不需要特别昂贵的设备。②操 作简单、安全。③对许多生物活性物质具有稳定作 用。
➢ 在盐浓度达到某一界限后,酶的溶解 度随盐浓度升高而降低,这称为盐析 现象。
③ 不易引起变性,有稳定酶与蛋白质结构的作用。 有的酶或蛋白质用2~3mol/L的(NH4)2SO4保存可 达数年之久。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、预处理和破细胞
4. 细胞破碎(cell disruption)
(2) ‘‘丙酮干粉’’(acetone powder)处理法 适用于微生物材料 一般程序是先将材料粉碎、分散,然后在0℃以下的低温条件下、加
入5~10倍预先冷至约-20℃的丙酮,迅速搅拌均匀,随即过滤,最后 低温干燥,研磨过筛 丙酮处理优点:
四、酶活性测定贯穿纯化过程的始终
酶具有催化活性,通过检测酶活性可以跟踪酶的来龙去脉,为酶的 抽提、纯化以及制剂过程中选择适当的方法与条件提供直接的依据。 从原料开始,整个过程中每一步都要进行比活力与总活力的检测与 比较,这样,我们就能知道在某一步骤中可采用些什么方法与什么 条件,它们分别使酶的纯度提高了多少,回收了多少酶,从而决定 其取舍。
一、预处理和破细胞
4. 细胞破碎(cell disruption)
(1) 机械破碎法 机械捣碎法,绞肉机、高速组织捣碎器 研磨法 匀浆法
高速捣碎器操作简便、破碎效果高,但易引起局部温度过高,导致酶 失效;
加石英砂研磨,特别是用玻璃粉或氧化铝代替石英砂时,要注意有时 也可能发生吸附变性。
在上述机械处理后,为了有利于下一步抽提,可进一步作成丙酮干粉, 或者进行反复冰冻溶解处理。
一、预处理和破细胞
3. 根据酶的分布可分为细胞内酶和细胞外酶。
(1) 细胞外酶在合成以后就直接分泌到介质中,因而没有破细胞问题; (2) 细胞内酶却只有在细胞破裂后才能释放出来,而且抽提效果往往和
酶在细胞内的分布位置、存在状态以及细胞破碎的程度有关。 ‘‘周质酶”(periplasmic enzyme)通常只需将外层细胞壁或膜 破坏后就可释放; “膜结合酶’’(membrane-binding enzyme)则往往还有一个切 断酶与颗粒体或膜的连结问题。
三、选择有效的纯化方法
酶纯化的最终目的是要将酶以外的一切杂质(包括其他酶)尽可能地 除去,因而,容许在不破坏待纯化的“目的酶”的限度内,使用各 种“激烈”手段。 由于酶和它作用的底物、它的抑制剂等具有高的亲和性,因此可应 用各种亲和分离法;而且,当这些物质存在时,酶的理化性质和稳 定性往往会发生一些有利的变化。这样又扩大了纯化方法与纯化条 件的选择范围。
一、酶分离纯化的概述
3. 酶与一般蛋白质纯化过程相比独有的特点: (1) 特定的一种酶在细胞中的力的方法加以跟踪。
迅速找出纯化过程的关键
二、防止酶变性失效
除了少数例外,所有操作都必须在低温条件下进行,特别是在有机 溶剂存在的情况下更应小心; 大多数酶在pH<4或pH>10的情况下不稳定,应控制整个系统不 要过酸、过碱,同时要避免在调整pH时产生局部酸碱过量; 酶和其他蛋白一样,常易在溶液表面或界面处形成薄膜而变性,故 操作时要尽量减少泡沫形成; 重金属等能引起酶失效,有机溶剂能使酶变性,微生物污染以及蛋 白水解酶的存在都能使酶分解破坏,所有这些必须高度重视。
① 能有效地破坏细胞壁(膜);② 有利于除去大量脂类物质,以免 它在以后的步骤产生干扰;③ 能使某些膜结合酶易于溶解;④ 丙酮 干粉含水量低,便于保存。 缺点:丙酮可能引起某些酶变性失效。
一、预处理和破细胞
4. 细胞破碎(cell disruption)
(3) 物理破碎法 ① 温度差破碎法
② 压力差破碎法:高压冲击法;突然降压法;渗透压差法
二、抽 提
4. 酶提取的注意事项
(1) pH 应考虑的是酶的酸碱稳定性,选择的pH不能超出酶的稳定范围。 从最佳的抽提效果而言,选择的pH最好远离目的酶的等电点。也就
是说,酶如果是酸性蛋白质,则宜用碱性溶液抽提,反之,碱性蛋白 质宜用酸性溶液。例如胰蛋白酶的抽提,通常选用0.125mol/L的硫酸, 这是因为除了考虑到酶的稳定性、溶解性外,这种抽提条件下溶入的 杂质也较少。
①细胞壁溶解酶处理法;②稀盐溶液振荡法;③冷热破壁法。
二、抽 提
1. 抽提方式 (1) “普遍”抽提; (2) 选择性抽提,即先后用不同溶剂进行选择性抽提。 2. 由于大多数酶属于球蛋白类,一般都溶于稀盐、稀酸或稀碱的水溶
液。但抽提液的具体组成和抽提条件的选择则取决于酶的溶解性、稳 定性以及如何最有利于切断酶和其他物质的联系。 3. 酶提取的主要方法 (1) 盐溶液提取 (2) 酸、碱溶液的提取 (3) 有机溶剂提取
第二,有破坏目的酶的危险。
一、预处理和破细胞
4. 细胞破碎(cell disruption) (6) 注意微生物的种类不同处理方法及难易程度也有差异。
霉菌:易处理 细菌:少量超声和溶菌酶;大量丙酮干粉法或自溶法;工业生产中,
细菌材料可以用细菌磨或挤榨器等处理。 酵母:由于其壁厚较难对付,过去多用自溶法,后来采用的办法有:
考虑到有利于切断酶和细胞内其他成分间可能有的联系,通常以选用 pH4~6为佳。
二、抽 提
4. 酶提取的注意事项 (2) 盐 大多数蛋白质在低浓度的盐溶液中有较大的溶解度,所以,抽提液一
般采用等渗盐溶液,最普通的有0.020~0.05mol/L的磷酸缓冲液, 0.15mol/L NaCl溶液等。 焦磷酸钠溶液和柠檬酸钠缓冲液,由于有助于切断酶和其他物质的联 系,并有整合某些金属的作用,因此用得也很多。 某些报道表明,少数情况下,如抽提霉菌脂肪酶,用水的效果亦佳, 这可能与低渗可破坏细胞结构有关。
第二节 酶的抽提
抽提的要求是要将尽可能多的酶、 尽量少的杂质从原料引入溶液。
主要内容:预处理和破细胞 抽提 浓缩
一、预处理和破细胞
着手酶的提取前,通常应先对酶的原料进行适当的预处理 (Pretreatmention)。例如: (1) 动物材料要先剔除结缔组织、脂肪组织和血污等 ; (2) 油质种子最好先用乙醚等脱脂; (3) 种子研磨前应去壳,以免丹宁等物质着色污染; (4) 对于微生物材料则应将菌体和发酵介质加以分离。 2. 在这些预处理后,尽可能以非常新鲜的状态直接应用; 否则,应将 完整材料立即冰冻保存。
③ 超声波破碎法
(4) 化学破碎法 有机溶剂处理 表面活性剂处理
(5) 酶法破碎法 ① 外加酶处理 ② 自溶法(Autolysis)
所谓自溶,就是将浓的菌体悬液在适宜的温 度与pH条件下直接保温,或加甲苯、乙酸乙酯 以及其他溶剂一起保温一定时间,让菌体自溶 液化。
有人认为不是好方法,理由是:
第一,自溶液中成分十分复杂;