蛋白质的双向电泳
《双向电泳技术》课件
高通量
该技术可以同时分离大量蛋白质,提高了实 验的通量。
高稳定性
该技术具有较高的稳定性,实验结果重复性 好。
缺点
实验周期长
双向电泳技术的实验周期较长 ,需要耗费较多的时间和人力
。
对样品要求高
该技术需要大量的起始样品, 并且对样品的纯度要求较高。
对实验条件要求严格
双向电泳技术的实验条件较为 苛刻,需要精确控制实验参数 。
在药物研发中的应用
总结词
双向电泳技术为药物研发提供了高通量和高效率的蛋白质分离手段,有助于发现潜在的药物靶点和筛 选候选药物。
详细描述
在药物研发过程中,双向电泳技术可用于分析药物对蛋白质表达谱的影响,从而发现药物作用的靶点 。此外,通过比较不同物种或组织的蛋白质表达谱,可以发现潜在的药物靶点,为新药研发提供思路 和候选药物。
应用领域的拓展
疾病诊断与治疗
利用双向电泳技术分析疾病相关蛋白质,为疾病诊断 和治疗提供依据。
药物研发
通过双向电泳技术筛选药物作用靶点,加速新药研发 进程。
生物工程与农业
在生物工程和农业领域中应用双向电泳技术,优化生 物过程和育种。
未来发展方向与挑战
标准化与规范化
建立双向电泳技术的标准化操作流程和质量控制体系,提高实验 结果的可靠性和可比性。
CHAPTER 02
双向电泳技术的实验流程
样本制备
01
02
03
样本选择与处理
选择适当的组织或细胞样 本,进行适当的处理以提 取蛋白质。
蛋白提取
使用适当的缓冲液和试剂 ,从样本中提取蛋白质。
蛋白定量
使用蛋白质定量方法,确 定蛋白质的浓度。
蛋白质提取
溶解蛋白质
蛋白质双向电泳的基本原理(一)
蛋白质双向电泳的基本原理(一)蛋白质双向电泳的基本原理蛋白质双向电泳是一种常用的分离和分析蛋白质的技术方法。
它通过利用蛋白质在电场中移动的特性,结合两个方向的电场,实现对复杂蛋白质混合物的分离和鉴定。
下面将从浅入深地解释蛋白质双向电泳的基本原理。
1. 电泳的基本原理电泳是一种基于物质在电场中迁移的原理,将带电粒子或分子分离开的技术。
在电泳过程中,带电的蛋白质分子会受到电场的作用力而移动,移动的速度与其电荷大小和分子质量有关。
2. 单向电泳的局限性在传统的单向电泳中,蛋白质样品被施加一个方向的电场,使得蛋白质分子按一维的方向进行迁移。
然而,由于蛋白质复杂性和电泳条件的限制,单向电泳难以有效地分离复杂的蛋白质混合物。
3. 双向电泳的优势双向电泳是为了克服单向电泳的局限性,实现更好的分离效果而发展起来的一种电泳技术。
它利用两个方向的电场交替施加,使得蛋白质分子在水平和垂直方向上均发生迁移,从而实现更高分辨率的蛋白质分离。
4. 蛋白质双向电泳的操作步骤•第一维电泳:将蛋白质样品在一个细长的电泳槽中垂直施加电场,使得蛋白质在水平方向上移动。
一般使用等电聚焦(IEF)技术,根据蛋白质的等电点来完成分离。
•电泳缓冲:在第一维电泳过程中,需要使用特定的电泳缓冲液,以确保蛋白质在移动过程中维持稳定的电荷状态。
•Gel转移:第一维电泳后,将蛋白质分离到一根细长的凝胶条上,凝胶条上有各种不同pH值的缓冲液。
•第二维电泳:将凝胶条垂直放置在另一个电泳槽中,施加另一个方向的电场。
凝胶条上的蛋白质会在垂直方向上继续移动,最终得到更高分辨率的蛋白质分离结果。
5. 蛋白质双向电泳的应用蛋白质双向电泳在生物医学和生命科学研究中得到广泛应用。
它被用于分离和鉴定复杂蛋白质混合物,寻找新的蛋白质标记物或生物标志物,研究蛋白质的功能和相互作用等。
6. 结论蛋白质双向电泳是一种重要的分离和鉴定蛋白质的技术方法,通过结合两个方向的电场,实现对复杂蛋白质混合物的高效分离。
双向电泳详细操作过程
蛋白质的双向电泳一、实验原理:2-DE的第一向电泳等电聚焦是基于等电点不同而将蛋白粗步分离,第二向SDS-PAGE 是基于蛋白质分子量不同,而将一向分离后的蛋白进一步分离。
这样就可以得到蛋白质等电点和分子量的信息。
二、实验步骤:1. 芽孢杆菌蛋白质的提取2. 蛋白质样品的纯化将经过硫酸铵沉淀的蛋白质冷冻干燥,放在-80度冰箱里备用,取出蛋白质干粉300mg 加水化液(尿素水化储备溶液)400ul,加丙酮酸(加DTT)1.6ml,放置-20度冰箱2h,离心,吸除丙酮酸,用超纯水中(加DTT),清洗两次,离心,加水化液溶解。
水化液配置:用dd H20定容水化液浓度100ml 20ml尿素(60.06)7M/L 42.0g 8.4g硫脲(76.12)2M/L 15.2g 3.04gCHAPS 4% 4g 0.8gDTT(154.2) 1% 1g 0.2g(注:DTT现用现加)3. Bradford法测蛋白含量取0.001g BSA(牛血清白蛋白)用1ml超纯水溶解,测定BSA标准曲线及样品蛋白含量。
取7个10ml的离心管,首先在5个离心管中按次序加入0ul, 20ul, 40ul, 60ul, 80ul , 100ul的BSA溶解液,在分别加入100ul,80ul,60ul ,40ul,20ul,0ul, 分别加入4ml的Bradfor。
另取2管中分别加入2 ul的待测样品溶液,各管中分别加入4ml的Bradfor,摇匀,2min在595nm下,按由低到高的浓度顺序测定各浓度BSA的OD值,再测样品OD值。
(测量过程要在一个小时内完成)。
例如:标准曲线方程式:Y= aX+b.其中Y为OD值,X为蛋白含量。
a、b通过作图输入数据可知G250的配置:称取G250 固体0.1g加水定容至1L。
使用前滤纸过滤。
比色皿用70%的乙醇保存,待用时用双蒸水冲洗,再用无水乙醇冲洗,双蒸水冲洗,再加入待测样品溶液润洗,然后,加入样品,测定OD值。
蛋白质双向电泳(two-dimensional electrophoresis)过程与体会-3
蛋白质双向电泳(two-dimensional electrophoresis)过程与体会-3 二、一向电泳(13cm的holder)(1)取大约70-100ng的蛋白与溶胀液混合总体积达到250vl(2)将上述溶液加到holder 的两个电极之间。
(3)去掉胶条的保护膜,胶面朝下,先将胶条尖端朝胶条槽的尖端方向放入胶条槽中,慢慢下压胶条,并前后移动,避免生成气泡,最后放下胶条平端,使溶液浸湿整个胶条。
(4)在胶条上覆盖适量的覆盖油,盖上盖子。
(5)将胶条槽平放于一向仪器上,与水平方向垂直。
(6)设置仪器的运行参数:三、胶条的平衡(由一向到二向)(1)将胶条放入10ml 平衡缓冲液中(加入10mgDTT)封口,在振荡仪上振荡15 分钟。
(2)将胶条取出放入10ml 新的平衡缓冲液中(加入250mg 的碘乙酰胺)封口,在振荡仪上振荡15 分钟。
(3)用去离子水润洗胶条一秒钟,将胶条的边缘置于滤纸上几分钟,以去除多余的平衡缓冲液。
四、二向电泳(1)将平衡好的胶条直接转移到第二向制好的SDS胶上,然后用琼脂糖封顶,准备第二向电泳.(2)设置仪器的运行参数:五、平板胶的染色硝酸银染色:(整个操作在摇床上进行)(1)固定:25ml的冰醋酸,100ml甲醇,125ml 去离子水,60 分钟。
(2)敏化:75ml甲醇,0.5g硫代硫酸钠(使用之前加入),17g醋酸钠,165ml去离子水,30分钟。
(3)清洗:用250ml 的去离子水清洗3 次每次5 分钟。
(4)银染:0.625g硝酸银,250去离子水,(使用之前配制)20 分钟。
(5)显色:6.25g碳酸钠,100vl 的甲醛(使用之前加入),250ml去离子水。
(6)终止:5%的醋酸。
(7)照相分析。
(8)保存制作干胶。
药品:提取液:含10%TCA 和0.07%的β-巯基乙醇的丙酮裂解液:2.7g 尿素0. 2gCHAPS 溶于3ml 灭菌的去离子水中(终体积为5ml),使用前再加入1M 的DTT65μl/ml。
双向电泳
双向电泳的应用及研究进展摘要:双向电泳是蛋白质组学研究中最常用的技术,具有简便、快速、高分辨率和重复性等优点。
本文重点介绍了双向电泳的基本原理及其应用。
同时对当前双向电泳技术面临的挑战和发展前景进行了讨论。
关键词: 双向电泳,应用,前景1.1双向电泳技术概述双向电泳(two-dimensional gel electrophoresis, 2-DE)是蛋白分离的黄金标准,由此可以分析生物样品的显著差别,产生的结果用于诊断疾病、发现新的药物靶标和分析潜在的环境和药物的毒性。
双向电泳分离技术利用复杂蛋白混合物中单个组分的电泳迁移,第一向通过电荷的不同分离,另一向通过质量的不同分离。
双向电泳协同质谱技术是正在出现的蛋白组学领域的中心技术。
双向电泳是一种分析从细胞、组织或其他生物样本中提取的蛋白质混合物的有力手段,是目前唯一能将数千种蛋白质同时分离与展示的分离技术,其高分辨率、高重复性和兼具微量制备的性能是其他分离方法所无与伦比的。
双向电泳技术、计算机图像分析与大规模数据处理技术以及质谱技术被称为蛋白质组研究的三大基本支撑技术。
可见双向电泳在蛋白质组学研究中的重要性。
就像Fey和Larsen在他们的综述中提到:“尽管人们都想有新技术取代它,可是如果希望对细胞活动有全面的认识,其他技术无法在分辨率和灵敏度上与双向电泳相媲美”。
1.2双向电泳基本原理1975年,意大利生化学家O’Farrell发明了双向电泳技术[1],双向电泳是指利用蛋白质的带电性和分子量大小的差异,通过两次凝胶电泳达到分离蛋白质群的技术。
双向电泳技术依据两个不同的物理化学原理分离蛋白质。
第一向电泳依据蛋白质的等电点不同,通过等电聚焦将带不同净电荷的蛋白质进行分离。
在此基础上进行第二向的SDS聚丙烯酰胺凝胶电泳,它依据蛋白质分子量的不同将之分离。
双向电泳所得结果的斑点序列都对应着样品中的单一蛋白。
因此,上千种蛋白质均能被分离开来,并且各种蛋白质的等电点,分子量和含量的信息都能得到。
简述双向电泳的原理
简述双向电泳的原理
双向电泳是一种在凝胶电泳中使用的技术,用于分离和分析DNA、RNA、蛋白质等生物分子。
其原理是利用两个方向的电场来推动待分离的生物分子,以便在凝胶中获得更好的分离效果。
在双向电泳中,首先在一个方向上施加电场,使待分离的生物分子向一个方向移动。
然后,改变电场的方向,使其在另一个方向上移动。
这样,生物分子会在两个方向上进行移动,从而实现更好的分离效果。
双向电泳的原理涉及到凝胶电泳和电泳技术。
在凝胶电泳中,待分离的生物分子会在凝胶矩阵中随着电场的作用而移动,根据其大小和电荷的不同而被分离开来。
而双向电泳则是在凝胶电泳的基础上,通过改变电场的方向,使生物分子在两个方向上移动,以获得更好的分离效果。
双向电泳在生物分子分离和分析中具有重要的应用,尤其在蛋白质分离和分析中,可以帮助科研人员更准确地分离和鉴定不同的蛋白质。
通过掌握双向电泳的原理和技术,科研人员可以更好地开展生物分子研究,为生命科学领域的发展做出贡献。
总之,双向电泳的原理是利用两个方向的电场来推动待分离的生物分子,在凝胶中实现更好的分离效果,具有重要的生物分子分离和分析应用。
蛋白质组学研究介绍结合双向电泳
蛋白质组学研究的主要内容和方法
蛋白质表达分析
研究不同生理或病理条件下蛋白质的表 达水平变化,揭示蛋白质的表达模式和
规律。
蛋白质相互作用研究
利用酵母双杂交、免疫共沉淀等技术 手段,研究蛋白质之的相互作用和
复合物的形成。
蛋白质功能研究
通过基因敲除、基因敲减、定点突变 等技术手段,研究蛋白质的功能和作 用机制。
智能化
结合人工智能和机器学习技术,实现双向电 泳的智能化分析,自动识别和鉴定蛋白质, 提高数据分析的准确性和可靠性。
拓展双向电泳技术的应用领域
临床诊断
01
将双向电泳技术应用于临床诊断,通过对生物标志物的检测和
分析,辅助医生进行疾病诊断和治疗方案的制定。
药物研发
02
利用双向电泳技术筛选和鉴定药物作用靶点,为新药研发提供
蛋白质芯片技术
高通量、快速、简便,但灵敏度和分辨率相对较低,且覆盖的蛋白质数量有限。
双向电泳与蛋白质免疫印迹技术的比较
双向电泳
可以对全蛋白质组进行分离和定性,分 辨率高。
VS
蛋白质免疫印迹技术
可以对特定蛋白质进行检测和定量,灵敏 度高,但只能针对已知的蛋白质进行检测 。
05
双向电泳技术的发展前景 和展望
蛋白质的纯化
通过双向电泳,可以去除样品中的杂 质,提高蛋白质的纯度,从而获得更 准确的鉴定结果。
蛋白质的表达和鉴定
蛋白质表达分析
通过比较不同生理状态或不同组织中 蛋白质的表达模式,可以研究蛋白质 的表达水平,进而了解其在生命活动 中的作用。
蛋白质鉴定
通过与已知蛋白质的数据库进行比对, 可以鉴定出双向电泳图谱中的蛋白质, 为后续的功能研究提供依据。
对角线电泳法
对角线电泳是一种双向电泳的方法。
在双向电泳中,蛋白质样品点在凝胶的一个端点,走过电泳以后进行某种特殊处理,转过90°再进行第二次电泳。
若两次电泳的缓冲液、电压等条件都一致,则此双向电泳即为对角线电泳。
其主要作用是分离鉴定膜蛋白,确定二硫键,研究蛋白质复合物。
对角线电泳最经典的用途当属二硫键的确定:样品蛋白质经硫氧还蛋白处理后,利用荧光巯基探针标记巯基,目标蛋白会带上荧光探针。
再进行对角线电泳时,如果发现目标蛋白存在分子内二硫键,则经处理后所得的点位于对角线的上方;如果目标蛋白存在分子间二硫键,则经处理后得到的点位于对角线的下方。
请注意,对角线电泳有一定的缺点,例如检测低丰度蛋白的敏感性不够高,以及一些分子量过大的蛋白质无法被检测。
Western-Blot-蛋白质双向电泳
蛋白质双向电泳
*双向电泳技术在蛋白质组学中发挥着重 要的作用,可用于研究样品总蛋白、不同 样品蛋白质表达差异、蛋白质间相互作 用、蛋白质修饰等。 *在人类恶性肿瘤的研究中,人们可以通 过双向电泳技术分离正常组织细胞和肿 瘤细胞之间的差异蛋白质组分,在寻找 肿瘤特异型标志物,解释肿瘤发病机制 及治疗方面有极大作用。 *双向电泳的出现,为动态、高通量的研 究药物作用机制提供了强有力的支持。
操作步骤
Western blot
Westernblot法应用分子生物学、生物化学和免疫遗传学 中时常会用到的一种实验方法,蛋白质分析中应用的W estern杂交法是把电流分离的组分从凝胶转移至一种固相 支持体,并以针对特定氨基酸所制备的特异性样品作为 探针检测其相同或相似序列。 Western Blot采用的是聚丙烯酰胺凝胶电泳,被检测物是 蛋白质,“探针”是抗体,“显色”用标记的二抗它与 附着于固相支持体的靶蛋白所呈现的抗原表位发生特异 性反应。它能够从生物组织的粗提物或部分纯化的粗提 物中检测和识别几种特异的蛋白质。 这一技术的灵敏度能达到标准的固相放射免疫分析的水 平而又无需免疫沉淀法那样必须对靶蛋白进行放射性标 记。因此要对非放射性标记蛋白组成的复杂混合物中的 某些特定蛋白进行鉴别和定量时,Westernblot法极为有 用
应用
谢谢观看
Step-n- 1 hr
hold
hold
200
Step-n- 1 hr
8000
Gradient 3 hr
hold
500
Step-n- 1 hr
hold
(4)IPG 胶条的平衡
• 将胶条放入平衡缓冲液Ⅰ中,封口,在摇床上振荡15 min。
• 将胶条取出放入平衡缓冲液Ⅱ中,封口,在摇床上振荡 15 min。
蛋白质的分离纯化及双向电泳
离 解 和
不同。在等电点偏酸性溶液中,蛋白质 粒子带负电荷,在电场中向正极移动;
电 泳
在等电点偏碱性溶液中,蛋白质粒子带
现 正电荷,在电场中向负极移动。这种现
象 象称为蛋白质电泳(Electrophoresis)。
电泳
蛋白质在等 电点pH条件 下,不发生 电泳现象。 利用蛋白质 的电泳现象, 可以将蛋白 质进行分离 纯化。
用 如加热沉淀、强酸碱沉淀、重金属盐沉
淀和生物碱沉淀等都属于不可逆沉淀。
蛋白质的性质与它们的结构密切相关。
4 某些物理或化学因素,能够破坏蛋白质
蛋 的结构状态,引起蛋白质理化性质改变
白 质 的
并导致其生理活性丧失。这种现象称为 蛋白质的变性(denaturation)。
变
性
蛋白质的变性
变性蛋白质通常都是固体状态物质,不溶于水 和其它溶剂,也不可能恢复原有蛋白质所具有 的性质。所以,蛋白质的变性通常都伴随着不 可逆沉淀。引起变性的主要因素是热、紫外光、 激烈的搅拌以及强酸和强碱等。
超过滤法
超过滤技术是在一定的密封容器,施
2 . 蛋
加一定压力使一定分子量的物质透过 超滤膜。
白 其中包括有:中空纤维超滤器、圆筒
质 的 纯
式超滤器、板式超滤器。 超滤膜的截止分子量有100万、50万、
化 30万、10万、5万、1万、5千和1千
方法ຫໍສະໝຸດ 超过滤法2 . 蛋 白 质 的 纯 化 方 法
2 半透膜,而使它与其它小分子化合物,如
. 无机盐、单糖、双糖、氨基酸、小肽以及
蛋 表面活性剂等分离。
白 质 的
常用的半透膜有玻璃纸或高分子合成材料, 截止分子量一般为一万。
纯
双向电泳步骤
以下是双向电泳的步骤:
1.从小管中取出400ml水化上样缓冲液,加入100ml样品充分混匀。
2.从冰箱中取-20°c冷冻保存的ipg预制胶条(17cm ph4-7),室温
中放置10分钟。
3.沿着聚焦盘或水化盘中槽的边缘至左而右线性加入样品,在槽两
端各1cm左右不要加样,中间的样品液一定要连贯。
注意:不要产生气泡,否则影响到胶条中蛋白质的分布。
4.当所有的蛋白质样品都已经加入到聚焦盘或水化盘中后,用镊子
轻轻的去除预制ipg胶条上的保护层。
5.分清胶条的正负极,轻轻地将ipg胶条胶面朝下置于聚焦盘或水
化盘中样品溶液上,使得胶条的正极(标有+)对应于聚焦盘的正极,确保胶条与电极紧密接触。
6.在每根胶条上覆盖2-3ml矿物油,防止胶条水化过程中液体的蒸
发。
7.对好正、负极,盖上盖子。
设置等电聚焦程序,聚焦结束的胶条
应立即进行平衡、第二向sds-page电泳,否则将胶条置于样品水化盘中,-20°c冰箱保存。
双向电泳法
双向电泳法双向电泳法(Bidimensional Electrophoresis,2-DE)是一种常用的蛋白质分离技术,可以同时分析样品中上千种蛋白质。
本文将详细介绍双向电泳法的原理、步骤和应用。
原理双向电泳法结合了等电聚焦(IEF)和SDS-PAGE两种技术,通过两个维度的分离将复杂的蛋白质混合物分解为一系列单独的斑点。
在第一维度中,根据蛋白质的等电点(pI)进行分离;在第二维度中,根据蛋白质的分子量进行分离。
通过将这两个维度的分离结果叠加,可以获得高分辨率的蛋白质图谱。
双向电泳法的关键步骤如下:1.等电聚焦(IEF):在第一维度中,使用等电聚焦技术将样品中的蛋白质按照其等电点进行分离。
等电聚焦是一种基于蛋白质在电场中向氧化物离子(OH-)或氢离子(H+)方向移动的分离方法。
在等电聚焦过程中,蛋白质会在pH梯度中向其等电点迁移,直到净电荷为零。
通过控制pH梯度和应用的电压,可以将蛋白质在等电聚焦过程中分离开。
2.SDS-PAGE分离:在第二维度中,将第一维度的等电聚焦凝胶与SDS-PAGE凝胶垂直叠加。
在SDS-PAGE凝胶中,蛋白质通过聚丙烯酰胺凝胶的孔隙随着电场的作用向阳极迁移。
由于SDS(十二烷基硫酸钠)的存在,蛋白质在SDS-PAGE凝胶中的迁移速度与其分子量成反比。
因此,蛋白质在SDS-PAGE 凝胶中会根据其分子量进行分离。
3.染色和分析:经过双向电泳分离后,凝胶可以通过染色方法显示出一系列斑点,每个斑点代表一个蛋白质。
常用的染色方法包括银染法、荧光染色、贵金属染色等。
对于银染法,它在灵敏度和线性范围上具有优势。
染色后可以使用成像设备捕捉图像并进行定量分析。
通过对斑点的比较和定量,可以识别不同样品之间的差异和变化。
步骤双向电泳法的步骤如下:1.样品制备:将待分析的生物样品(如细胞提取物)进行蛋白质提取,并使得蛋白质在石蜡中可溶解。
常用的方法包括总蛋白提取、亲和层析、激光捕获等。
2.等电聚焦(IEF):将蛋白质样品与具有连续pH梯度的凝胶进行接触。
蛋白质双向电泳
模块五蛋白质双向电泳1. 实验目的掌握双向电泳能根据等电点和分子量分离蛋白质的原理,第一向等电聚焦电泳(IEF)和第二向聚丙烯酰胺凝胶电泳(SDS-PAGE)操作步骤,掌握凝胶染色方法,掌握凝胶分析软件的使用,了解对分离出的特异蛋白质的进一步分析方法,了解利用电泳技术分析生物大分子的方法。
2. 实验原理从广义上讲,双向电泳是将样品电泳后为了不同的目的在垂直方向再进行一次电泳的方法。
目前蛋白质双向电泳常用的组合第一向为等电聚焦(载体两性电解质pH梯度或固相pH梯度),根据蛋白质等电点进行分离,第二向为SDS-PAGE,根据相对分子质量分离蛋白质。
这样经过两次分离后,在凝胶上显示出的蛋白点可以获得蛋白质等电点和相对分子质量信息。
双向电泳技术作为分离蛋白质的经典方法,目前得到了相当广泛的应用。
在植物研究中,成功建立了拟南芥、水稻、玉米等植物种类的双向电泳图谱数据库,对推动植物蛋白质组研究起到重要作用。
第一向等电聚焦:等电聚焦(isoelectrofocusing,IEF)是在凝胶柱中加入一种称为两性电解质载体(ampholyte)的物质,从而使凝胶柱在电场中形成稳定、连续和线性pH梯度。
以电泳观点看,蛋白质最主要的特点是它的带电行为,它们在不同的pH值环境中带不同数量的正电荷或负电荷,只有在某一pH时,蛋白质的净电荷为零,此pH即为该蛋白质的等电点(isoeletric point,PI)。
在电场中,蛋白质分子在大于其等电点的pH环境中以阴离子形式向正极移动,在小于其等电点的pH 环境中以阳离子形式向负极移动。
如果在pH梯度环境中将含有各种不同等电点的蛋白质混合样品进行电泳,不管混合蛋白质分子的原始分布如何,都将按照它们各自的等电点大小在pH梯度某一位置进行聚集,聚焦部位的蛋白质质点的净电荷为零,测定聚焦部位的pH即可知道该蛋白质的等电点。
第二向SDS聚丙烯酰胺凝胶电泳:SDS是一种阴离子表面活性剂,当向蛋白质溶液中加入足够量的SDS时,形成了蛋白质-SDS复合物,这使得蛋白质从电荷和构象上都发生了改变。
双向电泳实验蛋白质样品制备要点
双向电泳实验蛋白质样品制备要点双向电泳是一种分析从细胞、组织或其他生物样本中提取的蛋白质混合物的有力手段,是蛋白质组学研究中的一种常用技术。
这项技术利用蛋白质的两种特性,即等电点与相对分子量,通过等电聚焦(IEF)与十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)这两项技术,将上千种不同的蛋白质分离,同时得到每种蛋白质的等电点、相对分子量和含量等信息。
这里将蛋白质样本分为两种,一种是血清样本,另一种是组织和细胞样本,分别介绍样本的制备方法。
一、血清样本的制备血清和其他生物液体中的蛋白质存在有大量的白蛋白和IgG而很难用双向电泳分离,因为这些蛋白质会掩盖凝胶上的其他蛋白,从而难以分辨血清蛋白量。
而且这些蛋白质的等电点和分子量分布范围广,会掩盖一些低分度的蛋白质,因此需要使用白蛋白和IgG清除试剂盒(使用IgG结合树脂作为清除试剂),具体步骤如下:①用移液管移取15μL人血清,放入带盖样本管中(为保证良好的树脂与样本的混合,推荐采用一次性15mL离心管)。
②在含有样本的管中加入750μL悬浮匀浆,取液前必须保证树脂匀浆为均匀的悬浮液。
③室温下在振荡混合器上混合匀浆/样本混合液3分钟,混合转速应确保混合液处于悬浮液状态。
④将微离心柱的底端折去,置于试剂盒中所配的离心管中。
⑤孵育完成时,确保树脂处于悬浮状态,然后小心地将树脂/样本混合物移入微离心柱的上层槽中。
⑥以大约6500×g离心5分钟。
⑦将含有树脂凝胶的上层槽弃去,收集滤出液。
⑧样品即可用于下一步的处理和储存备用。
二、组织和细胞样本的制备裂解不同种类的蛋白质样本应采取不同的处理和条件,裂解的效果取决于细胞破碎的方法、蛋白质浓缩和裂解的方法,去污剂的选择以及样本溶液的组成等。
1. 破碎细胞的方法细胞破碎过程中蛋白酶可能被释放出来,并引起蛋白质的分解,使双向电泳的最后结果复杂化。
因此,应直接将样本在强变性液裂解(8mol/L尿素、10%TCA或2%SDS)来抑制蛋白酶,并且在低温下制备样品。
蛋白质双向电泳
起载体作用的两性电解质:即便在变性剂和表 面活性剂存在的情况下,某些蛋白质也需要在 盐离子的作用下才能保持其处于溶解状态,否 则这些蛋白质在其处于PI点时会发生沉淀。
双向电泳分析中的样品制备
制备原则:
• 应使所有待分析的蛋白样品全部处于溶解状态(包括 多数疏水性蛋白),且制备方法应具有可重现性。
• 防止样品在聚焦时发生蛋白的聚集和沉淀。 • 防止在样品制备过程中发生样品的抽提后化学修饰
(如酶性或化学性降解等)。 • 完全去除样品中的核酸和某些干扰蛋白。 • 尽量去除起干扰作用的高丰度或无关蛋白,从而保证
100~300 g/300 1~3mg/300 l l
IPG IEF 中pH梯度的选择
• 常用方法:先宽后窄,先线性后非线性, 先短后长,预试验确定。
预分步 收集
细胞浆
细胞核 细胞膜
核糖体及其他 特定细胞成份
细胞分 泌成份
第一步
pH4-12
pH3-10
3倍
第二步 pH3-6
3倍
第 pH3 pH4
IPG胶条的重泡胀
• 泡胀的实质:是让样品能完全以可溶性的形 式进入IPG内,从而能进行接下来的IEF。
• 不同的加样方法和加样量会导致最终结果的 差异:
• Protean IEF cell、IPGphor等集成设备的使 用:
• 20mmol/L DTT 垫片的使用: • 温度的选择:
蛋白载样量
三
-4 -5
步
pH4-7
pH5 pH6 -6 -7
蛋白质双向电泳实验流程
蛋白质双向电泳实验流程一.样品制备1.研磨研磨时间要尽量短,并需及时补充液氮,研磨要充分,同时要保证损失少。
2.加入8mLTris饱和酚(pH8.8)和8mL抽提液,在通风橱内研磨30s。
先加8mLTris饱和酚,Tris饱和酚会变成固体,此时需用研磨碓将固体的Tris饱和酚研磨成小块。
接着加入8mL抽提液,也需将固体的抽提液研磨成小块。
等三者混匀后,将粉末转移至45 mL tube。
3.振荡30min。
室温静置,待tube中固体变成液体后,开始振荡。
振荡需持续30min,每振荡1min,置于冰上冷却1min。
4.10000g,4℃,10min。
将酚相(top phase)转移至45mL tube。
酚相(top phase)可置于冰上。
酚相应该是绿色的,水相应该是淡黄色的。
5.取6mL的抽提液和6mL饱和酚加入水相,蜗旋振荡30min。
振荡需持续30min,每振荡1min,置于冰上冷却1min。
6.10000g,4℃,10min。
将酚相(top phase)转移至45mL tube。
7.沉淀酚相。
取一定体积(是酚相的5倍)的0.1M乙酸铵/甲醇溶液(–20℃保存)于酚相(45mL tube)。
振荡30s,–20℃培育1h或过夜。
8.清洗沉淀①15 min,20,000 g,4℃。
弃上清。
②加10mL 0.1 M乙酸铵/甲醇溶液,用移液器吸打。
–20℃沉淀30min。
③15 min,20,000 g,4℃。
弃上清。
④加入10 mL乙酸铵/甲醇溶液,用移液器吸打。
–20℃沉淀30min。
⑤15 min,20,000 g,4℃。
弃上清。
⑥加10mL 80%丙酮(ice-cold),用移液器吸打。
–20℃沉淀30 min。
⑦15 min,20,000 g,4℃。
弃上清。
⑧加入10 mL 80%丙酮(ice-cold),用移液器吸打。
–20℃沉淀30 min。
⑨15 min,20,000 g,4℃。
弃上清。
实验八 蛋白质双向电泳
蛋白质双向电泳【实验目的】1、学习和掌握蛋白质双向电泳的基本原理和方法。
2、了解双向电泳技术在蛋白质组学研究中的应用。
【实验原理】蛋白质的双向电泳的第一向为等电聚焦(Isoelectrofocusing, IEF),根据蛋白质的等电点(pI,isoelectric point)不同进行分离;第二向为SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE),按蛋白质亚基分子量大小(Mr, relative molecule)进行分离。
经过电荷和分子量两次分离后,可以得到蛋白质分子的等电点和分子量信息。
等电聚焦(IEF, isoelectric focusing)是一种特殊的聚丙烯酰胺凝胶电泳,其特点是在凝胶中加入一种两性电解质载体,从而使凝胶在电场中形成连续的pH梯度。
蛋白质是典型的两性电解质分子,它在大于其等电点的pH环境中以阴离子形式向电场的正极移动,在小于其等电点的pH环境中以阳离子形式向负极移动。
这种泳动只有在等于等电点的pH环境中才停止。
如果在一种pH梯度的环境中将含有各种不同等电点的蛋白质混合样品进行电泳,那么在电场作用下,不管这一群混杂的蛋白质分子原始分布如何,各蛋白质分子将按照它们各自的等电点大小在pH梯度相对应的位置进行聚集经过一定时间后,不同的蛋白质组分便分割在不同的区域之中。
这个过程称作等电聚焦,蛋白质聚集的部位蛋白质所带电荷为零,测定此部位的pH值,即可知该蛋白质的等电点。
SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE),主要用于测定蛋白质亚基分子量,SDS是一种阴离子去污剂,作为变性剂和助溶剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白质分子的二级和三级结构。
强还原剂(DTT,二硫苏糖醇)则能使半光氨酸残基之间的二硫键段裂。
在样品和凝胶中加入SDS和还原剂后,分子被解聚成它们的多肽链。
解聚后的氨基酸侧链与SDS充分结合形成带负电荷的蛋白质-SDS胶束,所带的负电荷大大超过了蛋白质分子原有的电荷量,这就消除了不同分子之间原有电荷的差异。
蛋白质双向电泳简介
样品中核酸的去除
对电泳的影响:增加样品粘度、与蛋白质形成 复合物后会出现假象迁移和条纹。 解决方法:用适量纯的不含蛋白酶的核酸内切 酶进行降解,或是利用合成载体两性电解质 (SCA)同核酸结合形成复合物的能力,再通 过超速离心来去除复合物。
注意事项
双向电泳的最关键步骤之一
制备原则:尽可能多地提取出总蛋白质,尽 可能简单的操作步骤,注意防止样品提取过 程中的各种化学修饰,去除样品中核酸、盐 离子等干扰物质
蛋白质组学(proteomics)
概念:是从整体角度分析生物体蛋白质组动态变 化的一门科学
研究内容:蛋白质的识别、定量;蛋白质的定位、 修饰;蛋白质之间的相互作用并根据这些研究最 终确定它们的功能
仪器设备
原理
双向电泳是指利用蛋白质的带电性和分子量大 小的差异,通过两次凝胶电泳达到分离蛋白质 群的技术。双向电泳技术依据两个不同的物理 化学原理分离蛋白质。第一向电泳依据蛋白质 的等电点不同,通过等电聚焦将带不同净电荷 的蛋白质进行分离。在此基础上进行第二向的 SDS聚丙烯酰胺凝胶电泳,它依据蛋白质分子 量的不同将之分离。
通过细胞破碎方法从原材料中提取粗蛋白质, 然后用含变性剂(或离液剂)、去污剂和还原剂 的裂解液溶解蛋白并使其变性。提取的蛋白可 用裂解液稀释。裂解液也可结合IPG胶条上基 质以维持IEF期间的蛋白质的稳定性。变性剂 尿素和硫脲与IEF兼容。用高浓度的变性剂以 打断蛋白质样品中的氢键结构。使用非离子型 或两性去污剂以破坏疏水交互作用。
IPG 胶的水合及上样
2-DE 样品
水合溶液
IPG 胶条支或 CHAPS
2%
IPG缓冲液 (两亲性电解液)
0.28% DTT
微量 溴酚蓝
IPG 胶条 定位
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DIGE图谱
样品制备
双向电泳的最关键步骤之一
制备原则:尽可能多地提取出总蛋白质, 尽可能简单的操作步骤,注意防止样品 提取过程中的各种化学修饰,去除样品 中核酸、盐离子等干扰物质。
等电聚焦
通过10000V高压使得蛋白质按照其等电 点特性进行聚焦 步骤:胶条水化、低压除盐、高压聚焦、 低压维持 聚焦时间:聚焦时间太短,会导致水平 和垂直条纹,过长会造成蛋白图谱变性, 在胶条碱性端产生水平条纹以及蛋白丢 失。最佳时间的确定需要根据蛋白样品 类型、蛋白载样量、PH范围和胶条长度 来确定。
分子量 提取的总蛋 白溶液 小 通过双向电泳使得不同等电点和分子量的 蛋白质根据其自身特性分布到凝胶的不同 位置从而实现蛋白质的双向分离
2DE图谱
硝酸银染色图谱 考马斯亮蓝染色图谱
双向电泳(DIGE)示意图
样品1: Cy3标记 将标记的 样品混合 样品2: Cy5标记
双向电泳分离
荧光扫描仪扫描
图像重叠分析
差异蛋白点选取
蛋白酶解及质谱分析 差异蛋白点的成功鉴定
生物学问题的解释
双向电泳(2DE/DIGE)
目前进行蛋白质组学分析的最常规实验技术
能实现多达10000种不同蛋白质进行分离分 析
双向电泳(2DE)示意图
等电聚焦,实现蛋白质按等电点进行分离
大 SDS-PAGE 分离,使得 蛋白质按分 子量大小排 序
图像分析
常用软件: Image-Master (GE Healthcare) PDquest (Bio-Rad)
分析步骤:胶点检测和定量、凝胶匹配、 比较分析
胶条平衡
等电聚焦结束后进行SDS-PAGE电泳 之前需进行胶条平衡,以便于被分离 的蛋白质与SDS充分结合,保证SDSPAGE电泳的顺利进行 步骤:一般采用两步平衡法,用含 SDS、DTT、尿素和甘油等的缓冲液 先平衡一次,再用碘乙酰胺取代DTT 后再平衡一次
SDS-PAGE电泳
使得蛋白质按照分子量的大小不同而 分离,与普通SDS-PAGE相似 在双向电泳系统中无需浓缩胶,因为 第一向等电聚焦已经使得蛋白得到浓 缩
蛋白质双向电泳
蛋白质组学(proteomics)
概念:是从整体角度分析生物体蛋白质组动 态变化的一门科学 研究内容:蛋白质的识别、定量;蛋白质的 定位、修饰;蛋白质之间的相互作用并根据 这些研究最终确定它们的功能
技术流程
提出 生物学问题 实验组和对照组 样品制备 凝胶图像分析
双向电泳(2DE/DIGE)