量子力学第二章
量子力学-第二章-一维势阱
3
时间依赖薛定谔方程
根据能量守恒和时间演化,推导出薛定谔方程。
薛定谔方程的解析解
无限深势阱
假设粒子被限制在一个 无限深的势阱中,无法 逃逸。
波函数的边界条件
在势阱的边界处,波函 数必须满足特定的边界 条件。
波函数的对称性
在势阱中,波函数可能 具有对称或反对称的性 质。
薛定谔方程的数值解
有限差分法
含时薛定谔方程的一维势阱模型
含时薛定谔方程是一维势阱模型中描述粒子动态行为的方 程。该方程包含了时间依赖的势能项,可以描述粒子在时 间演化过程中受到的外部作用力。
含时薛定谔方程的解可以用来研究粒子在一维势阱中的动 态行为,例如粒子在受到激光脉冲作用时的运动轨迹和能 量变化。通过求解含时薛定谔方程,可以深入了解粒子在 一维势阱中的动力学性质。
01
将薛定谔方程转化为差分方程,通过迭代求解。
网格化方法
02
将连续的空间离散化为有限个网格点,对每个网格点上的波函
数进行求解。
量子隧穿效应
03
当势阱深度较小时,粒子有一定的概率隧穿势垒,从势阱中逃
逸。
03
一维势阱中的粒子行为
BIG DATA EMPOWERS TO CREATE A NEW
ERA
粒子在无限深势阱中的行为
时间依赖的一维势阱模型
时间依赖的一维势阱模型描述了粒子在一维空间中受到随时 间变化的势能作用的情况。这种模型可以用来研究粒子在时 间依赖的外部场中的动态行为,例如粒子在激光场中的运动 。
时间依赖的一维势阱模型需要求解含时薛定谔方程,该方程 描述了粒子在时间演化过程中的波函数变化。通过求解含时 薛定谔方程,可以了解粒子在时间依赖的势阱中的动态行为 。
量子力学第二章总结
第二章1.波函数/平面波:(1)频率和波长都不随时间变化的波叫平面波。
(2)如果,粒子受到随时间或位置变化的力场作用,他的动量和能量不再是常量,这时的粒子就不能用平面波来描写。
在一般情况下,我们用一个复函数表示描写粒子的波,并称这个函数为波函数2.自由粒子/粒子的状态:不被位势束缚的粒子叫做自由粒子.3.波函数的几率解释/波恩解释: (1)粒子衍射试验中,如果入射电子流的强度很大,则照片上很快就会出现衍射图样;如果入射电子流强度很小,电子一个一个的从晶体表面上反射,开始它们看起来是毫无规则的散布着,随时间变化在照片上同样出现了衍射图样。
由此可见,实验所显示的电子的波动性是许多电子在同一实验的统计结果,或者是一个电子在许多次相同试验中的统计结果。
(2)波恩提出了统计解释,即:波函数在空间中某一点的强度(振幅绝对值的平方)和该点找到粒子的概率成比例,按照这种解释,描写粒子的波乃是概率波。
4.几率密度: 在t 时刻r 点,单位体积内找到粒子的几率是: ω(r,t) ={dW(r,t)/d τ}= C|Ψ(r,t)|25.平方可积: 由于粒子在空间总要出现(不讨论粒子产生和湮灭情况), 所以在全空间找到粒子的几率应为一,即: C ∫∞|Ψ(r,t)|2d τ= 1 而得常数C 之值为: C = 1/∫∞|Ψ(r,t)|2d τ 若 ∫∞|Ψ(r , t)|2d τ→∞,则 C → 0, 这是没有意义的。
故要求描写粒子量子状态的波函数Ψ必须是绝对值平方可积的函数。
7.归一化: C ∫∞|Φ(x,y,z,t)|2d τ= 1 (波函数乘以一个常数以后,并不改变空间各点找到粒子的概率,不改变波函数的状态) C = 1/∫∞|Φ(x,y,z,t)|2d τ 现把上式所确定的C 开平方后乘以Φ,并以Ψ表示所得函数: Ψ(x,y,z,t)=C ½Φ(x,y,z,t) 在t 时刻 在(x,y,z )点附近单位体积内找到粒子的概率密度是: ω( x,y,z,t) = C|Φ(x,y,z,t)|2故把(1)式改写成 ∫∞|Ψ(r , t)|2d τ=1 把Φ换成Ψ的步骤称为归一化。
量子力学_第二章_粒子流密度
(9)
2 0
sin n xdx
=
cos n xdx
( n 1)!! n!! 2
n为正偶数 n为正奇数
2 0
(10)
(n 1)!! n!! a0 2 sin ax 0 x dx a0 2
量子力学常用积分公式
(11)
0
e ax x n dx
(4)
x sin axdx
1 1 sin ax x cos ax a a2
2x 2 x sin ax ( 2 ) cos ax a a2 a
2
(5)
x
2
sin axdx
量子力学常用积分公式 (6)
x cos axdx
2
1 x cos ax sin ax a a2
同理可得量子力学 的电荷守恒定律:
量子力学的质量 J 0 守恒定律 t | ( r , t ) |2 i e Je 0 J J ( ) t 2
在空间闭区域τ 中将上式积分,则有:
2 i ( )d [ ]d t 2 i ( )d [ ]d t 2
t
闭区域τ 上找到粒 子的总几 率在单位 时间内的 增量 其微分形式与 流体力学中连 续性方程的形 式相同
表明电荷总量 不随时间改变 质量密度 和 质量流密度矢 量
e e e | (r , t ) | 2 i J e eJ e ( ) 2
电荷密度 和 电流密度矢量
(二)再论波函数的性质
量子力学概论第2章 定态薛定谔方程
子的基态),从而我们可以反复应用升阶算 符生成激发态,20 每升一步增加能量ћω ψn(x)=An(a+)nψ0(x),和En=n+12ћω, (2.61)
例题2.4 求出谐振子的第一激发态。 解:利用式2.61
ψ1(x)=A1a+ψ0=A12ћmω-ћddx+mωxmωπћ1/4emω2ћx2=A1mωπћ1/42mωћxe-mω2ћx2.(2.62)
我们可以直接用“手算”对它进行归一化:
∫ψ12dx=A12mωπћ2mωћ∫+∞-∞x2e-mωћx2dx=A12, 恰好,A1=1。 我们不想用这种方法去计算ψ50(那需要应用升阶算符
(式2.5)称为定态(time-independent)薛定谔方程; 如果不指定V(x)我们将无法继续求它的解。
Ψ(x,t)=∑∞n=1cnψn(x)e-iEnt/ћ=∑∞n=1cnΨn(x, t).(2.17)
尽管分离解自身是定态解,
Ψn(x,t)=ψn(x)e-iEnt/ћ,(2.18)
即,概率和期望值都不依赖时间,但是需要强调的 是,一般解(式2.17)并不具备这个性质;因为不同 的定态具有不同的能量,在计算Ψ2的时候,含时指 数因子不能相互抵消
f(x)=∑∞n=1cnψn(x)=2a∑∞n=1cnsinnπax.(2.32)
例题2.2 在一维无限深方势阱中运动的粒子,其初始波函数 是Ψ(x,0)=Ax(a-x), (0≤x≤a),A是常数(如图2.3)。设在势阱外 Ψ=0。求Ψ(x,t)。
解:首先需要归一化波函数Ψ(x,0)求出A 1=∫a0Ψ(x,0)2dx=A2∫a0x2(a-x)2dx=A2a530, 所以A=30a5. 第n项的系数(式2.37)是 cn=2a∫a0sinnπax30a5x(a-x)dx
量子力学 第二章 算符理论
第二章(一维)算符理论本章提要:本章从线性变换和微分算子出发,建立算符理论统一它们来处理「观测行为」,引入观测公设。
接着,从观测值=本征值为实数的要求出发,找到了符合条件的厄米矩阵来描述力学量,引入算符公设。
之后介绍了运算法则、基本的位置和动量算符、复合算符的对易子、哈密顿算符等。
最后,作为对上述内容的综合应用,讨论了不确定性原理。
1.算符:每一个可观测量,在态空间中被抽象成算符。
在态空间中,观测行为被抽象为,某可测量对应的算符「作用」在态矢量上①线性变换:线性代数告诉我们,一个线性变换「作用」到n 维向量上会获得一个新的n 维向量,这等价于一个n 阶方阵「作用」在n 行1列矩阵上得到新的n 行1列矩阵,用数学语言可表示为()Ta b T =⇔=αβ。
总之,方阵与线性变换一一对应。
由于方阵性质比矩阵更丰富,我们将只研究方阵。
②微分算子:在微积分中2222,,,ii x f x f dx f d dx df ∂∂∂∂ 也可简写成f f f D Df 22,,,∇∇。
前两种在解欧拉方程和高阶方程式时常用,后两种则经常出现在矢量分析中。
简写法可看作是微分算子「作用」在函数上,我们知道它遵守加法和数乘法则,是一种线性运算③本征值和本征矢:在矩阵方程x Ax λ=中,把λ称为矩阵本征值,x 称为矩阵的本征矢 ④本征值和本征函数:在微分方程f f Dmixμ=中,把μ称为问题本征值,f 称为本征函数⑤线性算符:现在把上述概念统一为线性算符理论。
考虑一个可测量Q ,定义它的对应算符为Q ˆ,它的本征方程是ψ=ψλQˆ或λψψ=Q ˆ,把λ称为算符的「本征值」,λ的取值集合称为算符的「谱」, ψ称为算符的「本征态」(或本征矢),ψ称为算符的「本征函数」 (注意:有时也把ψ记作本征值的对应本征态λ,如后面将遇到的坐标算符本征态x 、动量算符本征态p )⑥第三公设——观测公设:对于量子系统测量某个量Q ,这过程可以抽象为对应的算符Q ˆ作用于系统粒子的态矢量ψ,测量值只能为算符Q ˆ的本征值iλ。
量子力学第二章
ν , λ 一定
Ψ(x, t) = Ψ e 0
i − ( Et− px ⋅x) ℏ
推广 :三维自由粒子波函数
二、波函数的物理意义 波函数的物理意义
Ψ(r , t ) = Ψ0e
i − ( Et− p⋅r ) ℏ
如何理解波函数和粒子之间的关系? 如何理解波函数和粒子之间的关系? 1 物质波就是粒子的实际结构?即三维空间连续分 物质波就是粒子的实际结构? 布的物质波包,那就会扩散,粒子将会越来越胖。 布的物质波包,那就会扩散,粒子将会越来越胖。再 衍射时,电子就会被分开。夸大了波动性, 者,衍射时,电子就会被分开。夸大了波动性,抹煞 了粒子性。 了粒子性。 2 大量粒子空间形成的疏密波?电子衍射实验, 大量粒子空间形成的疏密波?电子衍射实验, 电子流很弱时,时间足够长,仍会出现干涉图样。 电子流很弱时,时间足够长,仍会出现干涉图样。单 个电子就具有波动性。 个电子就具有波动性。 3 波函数的统计解释(Born 1926):波函数在空间 波函数的统计解释( ) 波函数在空间 某点的强度(振幅绝对值的二次方) 某点的强度(振幅绝对值的二次方)和该点找到粒子 的几( 率成比例。即物质波是几率波。 的几(概)率成比例。即物质波是几率波。
2 2 x 2
2 2
i ( p⋅r − Et ) ℏ
2 px = − 2Ψ ℏ
pz2 ∂ 2Ψ = − 2Ψ 2 ∂z ℏ
2
p ∂Ψ ∂Ψ ∂Ψ 2 + 2 + 2 = ∇ ψ = − 2Ψ 2 ℏ ∂x ∂y ∂z
由
p2 E= 2µ
(2.3-3)
得
i i p2 i − ℏ2 2 ∂Ψ Ψ =− = − EΨ = − ∇Ψ ℏ ℏ 2µ ℏ 2µ ∂t
量子力学 第二章 波函数和薛定谔方程
x px
t E J
二.量子力学中的测量过程 1.海森伯观察实验 2.测量过程 被测对象和仪器,测量过程即相互作用过程,其影响 不可控制和预测。
三.一对共轭量不可能同时具有确定的值是微观粒 子具有波动性的必然结果。
并不是测量方法或测量技术的缺陷。而是在本质上 它们就不可能同时具有确定的值
i p
p2 2
对自由粒子:
2 E p
2
∴
2 i 2 t 2
3.力场中运动粒子的波动方程 能量关系:
E p2 U (r , t ) 2
2 i 2 U (r , t ) t 2
4.三个算符
2 H 2 U 2
1。与宏观粒子运动不同。
2。电子位置不确定。
3。几率正比于强度,即 ( r , t )
2
结论:
波函数的统计解释:波函数在空间某一点的 强度(振幅绝对值的平方)和在该点找到粒 子的几率成正比。
2 数学表达: (r , t ) | (r , t ) |
归一化:
2 (r , t )d | (r , t ) | d 1
3 2 i ( pr Et )
e
(r ) p
1 (2)
3 2
e
i pr
(r , t )
( r ) dp dp dp x y z c( p, t ) p
其中:
而:
i Et c( p, t ) c( p) e
而在晶体表面反射后的晶电子状态
状态的迭加。
p
为各种值的
量子力学第二章 波函数和薛定谔方程
2. 入射电子流强度大,很快显示衍射 图样.
电子源
P
P
O
感
Q光QBiblioteka 屏在电子衍射实验中,照相底片上
r 点附近衍射花样的强度 正比于该点附近感光点的数目, 正比于该点附近出现的电子数目, 正比于电子出现在 r 点附近的几率。
波动观点
明纹处:电子波强|ψ(x,y,z,t)|2大
粒子观点
电子出现的概率大
暗纹处:电子波强|ψ(x,y,z,t)|2小
平方成比例。
(三)波函数的性质
(1)几率和几率密度
根据波函数的几率解释,波函数有如下重要性质: 在 t 时刻,r 点,dτ=dxdydz体积内,找到由波函数Ψ(r,t)描 写的粒子的几率是:
dW (x, y, z, t) C 2 (x, y, z, t) 2 d 其中C是比例系数。
在 t 时刻 r 点,单位体积内找到粒子的几率是:
是因为平面波振幅与位置无关。如果粒子由波组成,那 么自由粒子将充满整个空间,这是没有意义的,与实验 事实相矛盾。 实验上观测到的电子,总是处于一个小区域内。例如在 一个原子内,其广延不会超过原子大小≈1 Å 。
电子究竟是什么东西呢?是粒子?还是波?
“ 电子既不是粒子也不是波 ”,既不是经典的粒子也 不是经典的波, 但是我们也可以说,“ 电子既是粒子也 是波,它是粒子和波动二重性矛盾的统一。” 这个波不再 是经典概念的波,粒子也不是经典概念中的粒子。
(x, y, z,t)
dW(x, y, z,t)
d
C2 (x, y, z,t) 2
几率密度 probability density
在体积 V 内,t 时刻找到粒子的几率为:
W (t) dW (x, y,z,t)d C2 (x, y, z,t) 2 d
量子力学概论第2章 定态薛定谔方程
图2.3 例题2.2中的初始波函数
所有这些概率的之和一定为1, ∑∞n=1cn2=1.(2.38)
能量的期望值一定是 〈H〉=∑∞n=1cn2En.(2.39)
例题2.3 在例题2.2中的初始波函数(图2.3)与基态 ψ1(图2.2)很相似,这意味着 c12将是主要的,事实 上c12=815π32=0.998555….其余的系数之和为与1 的差额
2.3.1 代数法 2.3.2 解析法
2.3 谐振子
图2.4 对任意势能极小值点附近的抛物线形近似(虚线)
图2.5 谐振子的能态“梯子”
2.3.1 代数法
ψ0(x)=mωπћ1/4e-mω2ћx2。(2.59) 我们把它代入薛定谔方程以确定相应的能量
(以式2.57的形式),ћω(a+a-+1/2)ψ0=E0ψ0, 利用a-ψ0=0,有:
解:第一问很简单: Ψ(x,t)=c1ψ1(x)e-iE1t/ћ+c2ψ2(x)e-iE2t/ћ, 这里的E1,E2是ψ1,ψ2相应的能量,由此 Ψ(x,t)2=(c1ψ1eiE1t/ћ+c2ψ2eiE2/ћ)(c1ψ1e-
iE1t/ћ+c2ψ2eiE2/ћ)=c21ψ21+c22ψ22+2c1c2ψ1ψ2cos[(E2E1)t/ћ]. (这里用了欧拉公式expiθ=cos θ+isin θ来化简。)很显 然,概率密度以正弦形式振动,角频率是(E2E1)t/ћ;这当然不是一个定态。但是注意它是(具有 不同能量的)定态的线性组合,并且这种组合会产生 运动
2.1 定态
1.它们是定态(stationary states)。 2.它们是具有确定总能量的态。 3.一般解是分离变量解的线性组合。
量子力学chapter2-薛定谔方程解析
12
§2 态叠加原理
(一)态叠加原理
微观粒子具有波动性,会产生衍射图样。而干 涉和衍射的本质在于波的叠加性,即可相加性, 两个相加波的干涉的结果产生衍射。因此,同 光学中波的叠加原理一样,量子力学中也存在 波叠加原理。因为量子力学中的波,即波函数 决定体系的状态,称波函数为状态波函数,所 以量子力学的波叠加原理称为态叠加原理。
|Ψ(r,t)|2 的意义是代表电子在 t 时刻出现在 r 点附近几率的大小, 确切的说,|Ψ(r,t)|2 Δx Δy Δz 表示在 t 时刻,在 r 点处,体 积元ΔxΔyΔz中找到粒子的概率。波函数在空间某点的强度(振幅绝 对值的平方)和在这点找到粒子的概率成比例,
Ψ(r,t)
概率波
8
(三)波函数的性质
= |C1 Ψ1|2+ |C2Ψ2|2 + [C1*C2Ψ1*Ψ2 + C1C2*Ψ1Ψ2*]
电子穿过狭缝 1出现在P点
题,以后再予以讨论。
10
(3)归一化波函数
Ψ(r,t )和CΨ(r,t )所描写状态的相对概率是相同的,这
里的 C 是常数。因为在 t 时刻,空间任意两点 r1 和 r2 处找到粒子的相对概率之比是:
2
2
C(r1 , t ) (r1 , t )
C(r2 , t )
(r2 , t )
可见,Ψ(r,t) 和 CΨ(r,t )描述的是同一概率波,所以波函 数有一常数因子不定性。
C = 1/∫∞|Ψ(r,t)|2dτ
这即是要求描写粒子量子 状态的波函数Ψ必须是
绝对值平方可积的函数。
若 ∫∞|Ψ(r,t)|2dτ∞, 则 C0, 这是没有意义的。
除了个别孤立奇点外,波函数单值,有界,连续
周世勋量子力学教程第二版课件量子力学第二章
RETURN
16
三、 波函数的统计解释
1.粒子和波关系
两种错误观点: ①电子波是电子的某种实际结构,即电子是三
维空间连续分布的某种物质的波包。 ②波是由其所描写的粒子分布于空间而形成的
疏密波。
电子所呈现出来的粒子性只是经典粒子概念 中的“颗粒性”,电子呈现的波动性也只是波 动性中最本质的东西——波的“叠加性”。电 子是具有波粒二象性的物质客体。
13
电子的双缝衍射实验
P
s1
dq
q
S
电子源 s2 Q
D
B
以E1和E2分别表示穿过狭缝S1和S2到达P点的 电子波振幅
E1 E0 cost,
E2
E0
cos(t
2πd
sinq )
上图中光程差S2 Q=d sinq ,在P 点电子波振幅为
E
E1
E2
2E0
cos( πd
sinq ) cos(t
所以,粒子能量可能值为
En
1 2
mv 2
(n
1) 2
q Bh mc
(n 0,1, 2,L )
10
V(x) 3.德布罗意假设的实验V(验x)证
(1)德布罗意—革末(Davison—Germer)
电子衍射实验: (德布罗意假说验证,1927年)
电子枪
探测器
q
q
↕d
2d sinq k
11
玻恩(M.Born):在某一时刻, 空间 x 处粒子出现 的概率正比于该处波函数的模方。粒子在空间出 现的概率具有波动性的分布,它是一种概率波。
19
量子力学第二章波函数和薛定谔方程PPT课件
③波函数一般满足连续性、有限性、单值性。
10
3.波函数的归一化条件
令
(r,t)C (r,t)
t 时刻,在空间任意两点 r 和1
对几率是:
处r 2 找到粒子的相
((rr1 2,,tt))2 2C C((rr1 2,,tt))2 2((rr1 2,,tt))2 2
r , t 和 r ,所t 描写状态的相对几率是相同的,
这里的 是常数C 。
11
非相对论量子力学仅研究低能粒子,实物粒子不会产 生与湮灭。这样,对一个粒子而言,它在全空间出现的 几率等于一,所以粒子在空间各点出现的几率具有相对 性,只取决于波函数在空间各点强度的相对比例,而不 取决于强度的绝对大小,因而,将波函数乘上一个常数 后,所描写的粒子状态不变,即:
➢ 2.3 薛定谔方程
The Schrödinger equation
➢ 2.4 粒子流密度和粒子数守恒定律
The current density of particles and conservation
laws
➢ 2.5 定态薛定谔方程
Time independent Schrödinger equation
8
设粒子状态由波函数 (r ,描t)述,波的强度是
(r,t)2*(r,t)(r,t)
按Born提出的波函数的统计解释,粒子在空间中
某一点 r 处出现的概率与粒子的波函数在该点模的
平方成比例
则微观粒子在t 时刻出现在 r 处体积元dτ内的几
量子力学第二章波函数及薛定谔方程 ppt课件
例.1 已知一维粒子状态波函数为
(rv,t)Aexp 1 2a2x22 it
求归一化的波函数,粒子的几率分布,粒子在何处 出现的几率最大。
解:
(1).求归一化的波函数
(r ,t)2d xA2 e d a2x2 x A 2
归一化常数 Aa/ 1/2
1
a2
归一化的波函数
(rv,t)a/
则微观粒子在t 时刻出现在 rv 处体积元dτ内的
几率
d W (r v ,t) C (r v ,t)2d
观客这体表运明动描的写一粒种子统的计波规是律几性率,波波(函概数率波 )rr,,反t 有映时微
也称为几率幅。
某一点按Brov r处n提出出现的的波概函率数与的粒统子计的解波释函,数粒在子该在点空模间的中
3 3 e i(2 x h )/h , 6 (4 2 i)e i2 x /h .
2.已知下列两个波函数
1(x)
Asin
n
2a
(xa)
0
| x|a | x|a
n1,2,3,L
2(x)
Asin
n
2a
(xa)
| x|a
n1,2,3,L
0
| x|a
试判断: (1)波函数 1 ( x ) 和 2 ( x ) 是否描述同一状态?
440 Hz + 439 Hz + 438 Hz + 437 Hz + 436 Hz
实验上观测到的电子,总是处于一个小区域内。 例如一个原子内的电子,其广延不会超过原子大小 ≈1A0 。
电子究竟是什么东西呢?是粒子?还是波?
“ 电子既不是粒子也不是波 ”,既不是经典的粒 子也不是经典的波,但是我们也可以说,“ 电子既 是粒子也是波,它是粒子和波动二重性矛盾的统一。”
量子力学第二章
i ( r , t ) A exp ( p r Et )
•不满足这一要求。关于自由粒子波函数如何归一化问 题,以后再予以讨论。
(3)归一化波函数
Ψ(r,t )和CΨ(r,t)所描写状态的相对几率是 相同的,这里的C是常数。因为在 t 时刻,空 间任意两点 r1 和 r2 处找到粒子的相对几率之 2 2 比是: C ( r1 , t ) ( r1 , t )
波包形状随时间的改变:设(k)是一个很窄的波包,波 数集中在k0附近一个不大范围中.在k0附近对(k) 作泰 勒级数展开 1 d 2 d 2 k k0 k k0 2 k k0 dk k 2 dk k
电子衍射实验
1、戴维逊-革末实验 戴维逊和革末的实验是用电子束垂直投射到镍单晶,电子 束被散射。其强度分布可用德布罗意关系和衍射理论给以解释, 从而验证了物质波的存在。1937年他们与G. P.汤姆孙一起获 得Nobel物理学奖。
实验装置:
入射电子注
θ
法拉第园 筒
镍单晶
实验现象:实验发现,单
( r , t )
描写粒子状态的 波函数,它通常 是一个复函数。
• 3个问题?
(1) (2) 是怎样描述粒子的状态呢? 如何体现波粒二象性的?
(3)
描写的是什么样的波呢?
经典概念中
1.有一定质量、电荷等“颗粒性”的属性;
粒子意味着
2.有确定的运动轨道,每一时刻有一定 位置和速度。
1.实在的物理量的空间分布作周期性的变化; 2.干涉、衍射现象,即相干叠加性。
经典概念中 波意味着
我们再看一下电子的衍射实验
量子力学第2章
第二章:函数与波动方程P69 当势能)(r V 改变一常量C 时,即c r V r V +→)()(,粒子的波函数与时间无关部分变否?能量本征值变否?(解)设原来的薛定谔方程式是0)]([2222=-+ψψx V E m dxd将方程式左边加减相等的量ψC 得:0]})([]{[2222=+-++ψψC x V C E m dxd这两个方程式从数学形式上来说完全相同,因此它们有相同的解)(x ψ, 从能量本征值来说,后者比前者增加了C 。
设粒子势能的极小值是V min 证明>E n Vmin(证)先求粒子在某一状态中的平均值能量Ex d r V mE 322*)](2[⎰⎰⎰+∇-=υψψ其中动能平均值一定为正:x d mT 322*)2(⎰⎰⎰∇-=ψψ=⎰⎰⎰∇∇-∇∇-τψψψψd m }][{2**2=⎰⎰⎰⎰⎰⎰∇∇+∇⋅∇-τψψτψψd md m*2*22)(2用高斯定理:τψψψψd ms d mT B∇∇+⋅∇-=⎰⎰⎰⎰⎰*2*22)(2=⎰⎰⎰∇⋅∇ττψψd m*22中间一式的第一项是零,因为ψ假定满足平方可积条件,因而0>T 因此 V V T E >+=,能让能量平均值 VV min>因此VE min>令ψψn=(本征态)则EnE =而VE n min>得证2.1设一维自由粒子的初态()/00,x ip ex =ψ, 求()t x ,ψ。
解: () /2200,⎪⎪⎭⎫⎝⎛-=t m p x p i et x ψ2.2对于一维自由运动粒子,设)()0,(x x δψ=求2),(t x ψ。
(解)题给条件太简单,可以假设一些合理的条件,既然是自由运动,可设粒子动量是p ,能量是E ,为了能代表一种最普遍的一维自由运动,可以认为粒子的波函数是个波包(许多平面波的叠加),其波函数: p d e p t x i E px ip )()(21),(-∞-∞=⎰=φπψ (1)这是一维波包的通用表示法,是一种福里哀变换,上式若令0=t 应有 p d e p x pxip⎰∞-∞==)(21)0,(φπψ (2)但按题意,此式等于)(x δ。
量子力学薛定谔方程及理论(2)
在量子力学中,不可能同时用粒子坐标和动量的 确定值来描述粒子的量子状态,因为粒子具有波 粒二象性,粒子的坐标和动量不可能具有确定值。
波函数描述粒子的状态,波函数的模的平方表示粒 子在空间一点出现的概率。 并且粒子在空间中个点出现的概率总和等于1,另外 要注意要是把波函数乘上一个常数后,所描写的粒 子的状态并不改变
分理出变量后,我们很容易给出两个方程解的形式,大大简化 了方程的求解
f (t)满足i
df
(t )
=cf
(t ),则f
(t )可写为f
-
(t )=Ae
i
ct,
dt
与自由粒子波函数
Ae
i
(
pr
Et
)
i
=A e
pr
+A
-
e
i
Et
比较
我们可以知道c=E
所以有
i df (t) =Ef (t) dt
量子力学第二章
• 波函数的统计解释 • 态叠加原理 • 薛定谔方程 • 粒子流密度和粒子守恒定律 • 定态薛定谔方程 • 一维无限深势阱 • 线性谐振子 • 势垒贯穿
1、波函数的统计解释
自由粒子的波函数
指数形式:E =E0e-it-k r
正余弦形式:E=E0 cos t-k r
k= 2 ,r=k n
ak+2
k
所以方程可写为 n 2n+1 an+2 n -2 n 1 an1 n+1+ -1 an n
n0
n0
n0
各项合并
2a2 1 a0 2 6a3 2a1 1 a0 ... n 2n+1 an+2 2nan 1 an n
量子力学-第二章-定态薛定谔方程
m nm
n
m
cn*cn En
cn
E 2 n
n
n
我们在来看(x,t) 的归一化
1 * ( x, t )( x, t )dx
e e iEnt / iE mt /
cn*cm
* n
(
x
)
m ( x)dx
n
m
e e iEnt / iE mt /
cn*cm
* n
(
x
)
m ( x)dx
* m
(r)
n
(r)dr
mn
正交归一性
薛定鄂方程的通解可以用定态波函数的叠加表示为
(x,t)
cnn (x,t)
c eiEnt / n
n (x)
其中展开系数由初n始条件定
n
(x,0) cnn (x,0) cn n (x)
n
n
由定态波函数的正交归一性
cn *(x)(x,0)dx
我们来求处在 (x,t) 能量 (t)
[
2
2 V ] (r) E (r)
2
f (t ) ~ eiEt /
于是:
(r ,
t
)
(r )e
i Et
(r,
t
)
(
r)e
i
Et
此波函数与时间t的关系是正弦型的,其角频率ω=2πE/h。 由de Broglie关系可知: E 就是体系处于波函数Ψ(r,t)所描写 的状态时的能量。也就是说,此时体系能量有确定的值,所以这 种状态称为定态,波函数Ψ(r,t)称为定态波函数。
/
)
n
e
xp(iEnt
/
)]
量子力学_第二章_线性谐振子
其中 2
2E
此式是变系数 二阶常微分方程
(2)求解
d 2 [ 2 ] ( x ) 0 2 d
1. 渐近解
为求解方程,我们先看一下它的渐 近解,即当 ξ→±∞ 时波函数 ψ的行为。在此情况下,λ<< ξ2, 于是方程变为:
d 2 0 2 d
为此考察相邻 两项之比:
2
bk 2 k 2 2k 1 2 (k 1)(k 2) bk k
k
2 2 k
exp[ 2 ] 1
1 !
4
2!
k 2
k
( )!
k 2
k 2
( 1)!
考察幂级数exp[ξ 2}的 展开式的收敛性
§2.7 线性谐振子
(一)引言
l
(1)何谓谐振子 (2)为什么研究线性谐振子
l
l
l
(二)线性谐振子
(1)方程的建立 (2)求解 (3)应用标准条件 (4)厄密多项式
l
l
l
(一)引言
(1)何谓谐振子
d2x 2 kx dt
其解为 x = 简谐振动,
在经典力学中,当质量为 的粒 子,受弹性力F = - kx作用,由牛 顿第二定律可以写出运动方程为:
2
欲验证解的正确性, 可将其代回方程,
2 d d 2 / 2 e / 2 e d d
其解为:ψ∞ =exp[±ξ2/2]
ξ2 >> ± 1
d d 2 d [ 2 1] 2 [ ] 2 d d d
高等量子力学_第二章_算符
条件(1) :在值域中取一任意 ,证明在定义域有 存在:
1 AB AB
可见对于任意 ,确有 存在,这个 就是 B 。
条件(2) :若 A 1 A 2 ,用 C 作用在此式两边:
CA 1 CA 2
但此式就是 1 2 ,条件(2)也得到满足,因此 A1 存在。
§2-2 算符的代数运算
在量子力学中,经常出现不可对易线性算符的代数运算, 在这一小节里,我们举几个较复杂的运算例子;并且用代数方 法证明两个常用的算符等式(2.9)和(2.14)两式。
设 A 和 B 为两个线性算符,互不对易。首先我们定义多重对 易式 [ Ai , B]和[ B, Ai ] :
A A A A a A a
(2.1)
满足下列二条件的,称为反线性算符:
A A A A a A a
*
(2.2)
其中a是任意常数。在量子力学中出现的算符,绝大多数都是线 性算符,下面我们只讨论线性算符。 算符对其定义域中每一个右矢作用,都应有确定的结果。 定义一个具体的算符应当规定其定义域,并指出它对其定义域 中每一个矢量作用的结果。而确定一个具体的线性算符,只须 规定它对其定义域中的一组线性无关的右矢(例如一组基矢) 中每个右矢的作用结果即可。
A B
若两个算符 A和B 满足
[ A, B] AB BA
AB BA
则说这两个算符是可对易的,或称为两个算符对易。 定义: (2.2)
经常使用的几个对易关系:
ˆ ˆ ˆ ˆ [ F , G ] [G , F ]
ˆ ˆ ˆ ˆ ˆ ˆ ˆ [F , G M ] [F , G ] [F , M ]
量子力学第二章波函数
第二章波函数和薛定谔方程2.1 波函数的统计解释与态叠加原理1、波函数的统计解释上一章已说到,为了表示粒子的波粒二象性,可以用复数形式的平面波束描写自由粒子。
自由粒子是不受力场作用的,它的能量与动量都是常量。
如果粒子受到随时间及位置等变化的力场的作用,它的能量和动量就不再是常量,或者不再都是常量。
这时,粒子就不能用平面波来描写,设这时描写粒子的波是某一个函数,这个函数就称为波函数。
它描写粒子所处的状态,所以也称为态函数,它通常是一个复数。
究竟怎样理解波函数和它所描写的粒子之间的关系呢?对于这个问题,曾经有过各种不同的看法。
例如,将波看作是由它所描写的粒子构成的,这种看法是不对的。
我们知道,衍射现象是由波的干涉而产生的,如果波果真是由它所描写的粒子构成,则粒子流的衍射现象应当是由于构成波的这些粒子相互作用而形成的。
但事实证明,在粒子流的衍射实验中,照片上所显示出来的衍射图形与入射粒子流的强度无关,如果减少入射粒子流强度,即使粒子是一个一个地被衍射,虽然一开始照片上的点子看起来是毫无规则的,但当足够长的时间后,如果落在照片上的粒子数基本上保持不变,则所得到的衍射图形是相同的。
这说明每一个粒子被衍射的现象与其他粒子无关,衍射图形不是由粒子之间的相互作用而产生的。
除了上面的看法外,还有其他一些企图解释波函数的尝试,但都因与实验事实不符而被否定。
为人们所普遍接受的对波函数的解释,是由玻恩(Born)首先提出的统计解释:波函数在空间某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成比例。
按照这种解释,描写粒子的波及是几率波。
按照波函数的几率解释,很容易理解衍射实验:每一个粒子都具有波性,所以每一个粒子都被衍射。
但如果粒子数很少,则统计性质显示不出来,所以在照片上的点子看起来好象是毫无规则的;如果粒子数目足够大,则在波的强度最大的地方,粒子投射在这里的几率也最大,便出现衍射极大,在波的强度最小的地方,粒子投射在这里的几率也最小,便出现衍射极小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.1 波函数的统计解释
Chapter 2 The wave function and Schrödinger Equation
dw(x, y, z,t) C (x, y, z,t) 2
(x, y, z,t) C(x, y, z,t) dW(x, y, z,t) C (x, y, z,t) 2 d
相速度
Ev
vp k p 2
相速度粒子运动速度
群速度
vg
d
dk
d (h)
d (hk)
dE dp
v
群速度= 粒子运动速度
§2.1 波函数的统计解释
Chapter 2
ω k 2 2The wave function and Schrödinger Equation 2m
§2.1 波函数的统计解释
3.波函数的性质
Chapter 2 The wave function and Schrödinger Equation
a.几率和几率密度
设粒子状态由波函数(x, y, z,t) 描述,在时刻t,(x, y, z)
处,波的强度是
2 * *是 的共轭复数
则粒子在t时刻出现在坐标x到x+dx、y到y+dy、z 到z+dz的无限小区域内找到粒子的概率为
The current density of particles and conservation laws
➢ 2.5 定态薛定谔方程
Time independent Schrödinger equation
➢ 2.6 一维无限深势阱
The infinite potential well
➢ 2.7 线性谐振子
C
1
2
(x, y, z,t) d
粒子在空间各点出现的概率只决定于波函数在空
间各点的相对强度,而不决定于强度的绝对大小,
即波函数乘上一个常数后,所描写的粒子的状态
并不改变。
(x, y, z,t) C (x, y, z,t)
粒子在t时刻出现在坐标x到x+dx、y到y+dy、z 到z+dz的无限小区域内找到粒子的概率也可以 表示为
波由粒子组成的看法夸大了粒子性的一面,而抹杀了粒 子的波动性的一面,具有片面性。
§2.1 波函数的统计解释
b. 粒子是某种物质波包
Chapter 2 The wave function and Schrödinger Equation
认为描述粒子的波是由波长不同的平 面波叠加而成的波包
假如微观粒子是de Broglie波的某种波包,则
Chapter 2 The wave function and Schrödinger Equation
Ex.1 已知一维粒子状态波函数为
(rv, t )
A exp
1 2
a2x2
i 2
t
求归一化的波函数,粒子的几率分布,粒子在何处
出现的几率最大。
解: (1).求归一化的波函数
E和p为常量
de Broglie关系
与自由粒子联系的频率
和波矢k也为常量
单色平面波
Ae i(krt )
§2.1 波函数的统计解释
Ae i(krt )
de Broglie关系
i ( pr Et )
Ae
Chapter 2 The wave function and Schrödinger Equation
§2.1 波函数的统计解释
电子的双缝干涉
Ψ
S1
Chapter 2 The wave function and Schrödinger Equation
粒子源
S2
感 光
屏
粒子一个一个的通过小孔,但只要时间足够长, 底片上逐渐呈现出干涉图案。
这说明粒子的波动性(干涉)并不是许多粒子在空间叠 加在一起时才出现的现象。单个电子就具有波动性。
E h h
v P
h
nv
v hk
描述自由粒子的波函数
§2.1 波函数的统计解释
非自由粒子
Chapter 2 The wave function and Schrödinger Equation
粒子在随时间和位置变化的力场中运动
动量P 和能量E 不再是
常量
粒 用较子复的杂状的态波就函不数能,用一平般面记波为描:述,(r,而t)必须采
问题: (r,t) 与它所描写的粒子之间的
关系?
§2.1 波函数的统计解释
两种典型的错误看法 a. 波由粒子组成
Chapter 2 The wave function and Schrödinger Equation
认为描述粒子的波是它所描写的粒子组 成的。
这种看法与实验相矛盾!
因为如果波是由它所描写的粒子组成,则粒 子流的干涉现象应当是由于组成波的这些粒 子的相互作用而形成的。
★ 例如 平面波的归一化问题
已知平面波 px
Ae , i (
px
xEt
)
求归一化常数
A
解:
dx dx 2
px
*
A e dx
px
2
px
(x
i(
p
x
px
)
x
x0 )
1
2
e d i(xx0 )
A 2 2 ( px px )
dx
x0
故 x 0 处,粒子出现几率最大。
§2.1 波函数的统计解释
Chapter 2 The wave function and Schrödinger Equation
注意
(1)归一化后的波函数(x, y, z,t) 仍有一个模为一的
因子 ei 不定性( δ为实函数)。
若 (x, y, z,t) 是归一化波函数,(x, y, z,t)ei也是归 一化波函数,与前者描述同一几率波。
(2)只有当几率密度 dw(x, y, z,t) C (x, y, z,t) 对2 空间
绝对可积时,才能按归一化条件 (r,t) 2 d 1进行归
一化。
若 dw(x, y, z,t) 对空间非绝对可积时,需用δ函
数归一化方法进行归一化。
§2.1 波函数的统计解释
Chapter 2 The wave function and Schrödinger Equation
微观粒子因具有波粒二象性,其运动状态的描述 必有别于经典力学对粒子运动状态的描述,即微观 粒子的运动状态不能用坐标、速度、加速度等物理 量为??
§2.1 波函数的统计解释
自由粒子
Chapter 2 The wave function and Schrödinger Equation
1924年Born提出了波函数的统计解释
量子力学基本原理(统计解释):
波函数在空间某一点的强度(振幅模 方)和在该点找到粒子的概率成正比。
知道了微观体系的波函数后,就可以得到粒子在 空间任意一点出现的概率,由波函数还可以得出 体系的各种性质,因此我们说波函数(也称概率 幅)描写量子状态(简称状态或者态)。
The linear harmonic oscillator
➢ 2.8 势垒贯穿
The transmission of potential barrier
§2.1 波函数的统计解释
Chapter 2 The wave function and Schrödinger Equation
1.微观粒子状态的描述
(r,t) 2dx A 2 ea2x2 dx A 2
归一化常数
1/ 2
A a/
1
a2
归一化的波函数
(rv,t) a /
1/ 2 1a2x2 i t
e2 2
19
§2.1 波函数的统计解释
(rv,t) a /
群加速度 d g d 2 0 dt dk 2 m
意味着de Broglie波会扩散,或形象地 说,经过足够长时间后,粒子会扩散出 去!
实验上观测到的粒子,总是处于一个小区 域内。例如在一个原子内,其广延不会超 过原子大小≈1 Å 。
§2.1 波函数的统计解释
2.波函数统计解释
Chapter 2 The wave function and Schrödinger Equation
➢ 2.1 波函数的统计解释 The Wave function and its statistic explanation
➢ 2.2 态叠加原理
The principle of superposition
➢ 2.3 薛定谔方程
The Schrödinger equation
➢ 2.4 粒子流密度和粒子数守恒定律
暗纹处: 电子波强 |(x, y小,z,t)|2电子出现的概率小
可见,波函数模的平方 (x, y, z,t) 2与粒子在t时刻 在 (x, y, z) 处附近出现的概率成正比。
§2.1 波函数的统计解释
Chapter 2 The wave function and Schrödinger Equation
如果取 A 1/ 2 h
px 归一化为 函数
归一化的平面波: px
1
ei(
p
x
x
Et
)
2
Chapter 2 The wave function and Schrödinger Equation