6.6电介质中的静电场6

合集下载

第6章 静电场中导体和电介质 重点与知识点

第6章 静电场中导体和电介质 重点与知识点

理学院物理系 王 强
第六章 静电场中的导体和电介质
大学物理
第六章 重点与知识点
一、静电场中的导体
2、空腔导体(带电荷 、空腔导体 带电荷 带电荷Q)
1)、腔内无电荷,导体的净电荷只能分布在外表面。 腔内无电荷,导体的净电荷只能分布在外表面。 净电荷只能分布在外表面 Q
在静电平衡状态下,导体 在静电平衡状态下, 空腔内各点的场强等于零, 空腔内各点的场强等于零, 空腔的内表面上处处没有 空腔的内表面上处处没有 净电荷分布。 净电荷分布。
C2 U
Cn
2、电容器的并联
C = C1 + C2 + ⋅ ⋅ ⋅ + Cn
= ∑ Ci
i =1
nq1C1来自q2C2qn U
Cn
2012年3月23日星期五
理学院物理系 王 强
第六章 静电场中的导体和电介质
大学物理
第六章 重点与知识点
四、 电场的能量
(一)、静电场的能量
电场能量密度: 电场能量密度
We 1 2 1 we = = εE = ED V 2 2
ε
电容率, : 电容率,决定于电介质种类的常数
2)、电介质中的高斯定理 )
v r D ⋅ dS = ∑ Q0i ∫
S i (自由电荷)
2012年3月23日星期五
电介质中通过任 一闭合曲面的电位 一闭合曲面的电位 移通量等于该曲面 移通量等于该曲面 所包围的自由电荷 所包围的自由电荷 的代数和
第六章 静电场中的导体和电介质
一般电场所存储的能量: 一般电场所存储的能量
dWe = wedV
1 2 We = ∫ dWe = ∫ ε E dV V V 2
适用于所有电场) (适用于所有电场)

第六章静电场中的导体与电介质

第六章静电场中的导体与电介质
(任何介质) (各向同性线性介质)
第六章 静电场中的导体和电介质
33
物理学
第五版
6 静电场中的导体与电介质
电位移线
方向: 切线 大小:
电位移线起始于正自由电荷终止于负自由电荷, 与束缚电荷无关。
电场线起始于正电荷终止于负电荷,包括自由 电荷和与束缚电荷。
第六章 静电场中的导体和电介质
34
物理学
第五版
SD dS
有介质时的高斯定理
n
D dS S
Q0i
i 1
第六章 静电场中的导体和电介质
28
物理学
第五版
6 静电场中的导体与电介质
第三节 电介质中的高斯定理 电位移矢量
电介质中的高斯定理 电介质中高斯定理的应用
第六章 静电场中的导体和电介质
29
物理学
第五版
6 静电场中的导体与电介质
一、电位移矢量 电介质中的高斯定理
电介质 有极分子:(水、有机玻璃等) 正电荷的
等效中心
定义:分子电矩——由分子(或
原子)中的正负电荷中心决定的
电偶极子的电偶极矩,用 表
示:
电子云的
第六章 静电场中的导体和电介质 负电中心
5
物理学
第五版
6 静电场中的导体与电介质
1)无极分子(非极性分子)
分子内正负电荷中心重合
甲烷分子 CH4
+H 正负电荷
真空中:
自由电荷
电介质中:
极化电荷如何求?
极化电荷 自由电荷
向外,'>0,正极化电荷在外,闭合曲
面内留下负极化电荷;
+
向内,'<0,负极化电荷在外,闭合曲 -

静电场中的导体和电介质

静电场中的导体和电介质
-
-
目录
静电场中的导体 和电介质
0
静电场中的导体和电介质
静电场中的导体和电介质
静电场是指在没有电流流动的情况下,电荷分布所产生的电场。在静电场中,导体和电介质 是两种不同的物质,它们的特性和作用也不同,本文将探讨导体和电介质在静电场中的性质 和应用 首先,我们需要了解导体和电介质的基本概念。导体是一种具有良好导电性能的物质,常见 的导体包括金属等。导体内的自由电子可以在外加电场的作用下移动,形成电流。而电介质 则是一种不良导电的物质,它的电导率远远低于导体。电介质在外加电场下无法形成连续的 电流,而是通过极化现象来响应电场的作用 在静电场中,导体和电介质的行为有很大的不同。对于导体来说,其特点是在静电平衡状态 下,内部电场为零。这是因为导体内的自由电子能够自由移动,它们会在外加电场的作用下 重新分布,直到达到平衡状态。这种现象被称为电荷运动的屏蔽效应。导体的另一个重要性 质是表面上的电荷分布是均匀的,这也是导体可以用来储存电荷的
与导体不同,电介质在静电场中的响应更加复杂。当外加电场作用于电介质时,电介 质分子会发生极化现象,即分子内部正、负电荷的分离。这种分离会导致电介质内部 产生电位移场,从而相应地改变电场分布。电介质的极化程度可以用极化强度来衡量 ,极化强度与外加电场的强度成正比。除了极化现象,电介质还可能发生击穿现象, 即在电场强度过高时,电介质内部的绝缘失效,导致电流的突然增加
0
静电场中的导体和电介质
导体在静电场中的一个重要应用 是电路中的导线。电路中的导线 由导体制成,它们能够有效地传 导电流。在电力系统中,导体连 接电源和电器设备,将电能传输 到目标地点。此外,在电子设备 制造中,导体用于制作电路板, 连接不同的电子元件,实现电信 号的传输和处理

第6章静电场中的导体和电介质习题讲解

第6章静电场中的导体和电介质习题讲解

第6章静电场中的导体和电介质习题讲解第6章静电场中的导体和电介质⼀、选择题1. ⼀个不带电的导体球壳半径为r , 球⼼处放⼀点电荷, 可测得球壳内外的电场.此后将该点电荷移⾄距球⼼r/2处, 重新测量电场.试问电荷的移动对电场的影响为下列哪⼀种情况?[ ] (A) 对球壳内外电场⽆影响(B) 球壳内外电场均改变 (C) 球壳内电场改变, 球壳外电场不变 T6-1-1图(D) 球壳内电场不变, 球壳外电场改变2. 当⼀个导体带电时, 下列陈述中正确的是[ ] (A) 表⾯上电荷密度较⼤处电势较⾼ (B) 表⾯上曲率较⼤处电势较⾼ (C) 表⾯上每点的电势均相等 (D) 导体内有电⼒线穿过3. 关于带电导体球中的场强和电势, 下列叙述中正确的是 [ ] (A) 导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零(C) 导体内的电势与导体表⾯的电势相等(D) 导体内的场强⼤⼩和电势均是不为零的常数4. 当⼀个带电导体达到静电平衡时[ ] (A) 导体内任⼀点与其表⾯上任⼀点的电势差为零 (B) 表⾯曲率较⼤处电势较⾼(C) 导体内部的电势⽐导体表⾯的电势⾼ (D) 表⾯上电荷密度较⼤处电势较⾼T6-1-5图5. ⼀点电荷q放在⼀⽆限⼤导体平⾯附近, 相距d, 若⽆限⼤导体平⾯与地相连, 则导体平⾯上的总电量是 [ ] (A)qq(B) - (C) q (D) -q 226. 在⼀个绝缘的导体球壳的中⼼放⼀点电荷q, 则球壳内、外表⾯上电荷均匀分布.若使q偏离球⼼, 则表⾯电荷分布情况为[ ] (A) 内、外表⾯仍均匀分布 (B) 内表⾯均匀分布, 外表⾯不均匀分布 (C) 内、外表⾯都不均匀分布 (D) 内表⾯不均匀分布, 外表⾯均匀分布7. 带电量不相等的两个球形导体相隔很远, 现⽤⼀根细导线将它们连接起来.若⼤球半径为m, ⼩球半径为n, 当静电平衡后, 两球表⾯的电荷密度之⽐σ m/σ n 为mnm2n2[ ] (A) (B) (C) 2 (D) 2nmnm8. 真空中有两块⾯积相同的⾦属板, 甲板带电q, ⼄板带电Q.现将两板相距很近地平⾏放置, 并使⼄板接地, 则⼄板所带的电量为 [ ] (A) 0 (B) -q (C) -q+Qq+Q(D) 22T6-1-8图9. 在带电量为+q的⾦属球的电场中, 为测量某点的电场强度E, 现在该点放⼀带电量为(+q/3)的试验电荷, 电荷受⼒为F, 则该点的电场强度满⾜ 6F 3F[ ] (A) E> (B) E> qq 3F 3FT6-1-9图 (C) E< (D) E= qq测得它所受⼒为F.若考虑到q不是⾜够⼩, 则此时F/q⽐P点未放q时的场强[ ] (A) ⼩ (B) ⼤(C) 相等 (D) ⼤⼩不能确定10. 在⼀个带电量为Q的⼤导体附近的P点, 置⼀试验电荷q, 实验T6-1-10图 q11. 有⼀负电荷靠近⼀个不带电的孤⽴导体, 则导体内场强⼤⼩将[ ] (A) 不变 (B) 增⼤ (C) 减⼩ (D) 其变化不能确定12. ⼀个带正电的⼩球放⼊⼀个带等量异号电荷、半径为R的球壳中.在距球⼼为r(r(B) 放⼊⼩球后场强增加 (C) 因两者电荷异号, 故场强减⼩ T6-1-12图 (D) ⽆法判定13. 真空中有⼀组带电导体, 其中某⼀导体表⾯处电荷⾯密度为σ, 该表⾯附近的场强⼤⼩E=σ/ε0, 其中E是[ ] (A) 该处⽆穷⼩⾯元上电荷产⽣的场(B) 该导体上全部电荷在该处产⽣的场(C) 这⼀组导体的所有电荷在该处产⽣的场(D) 以上说法都不对14. 设⽆穷远处电势为零, 半径为R的导体球带电后其电势为U, 则球外离球⼼距离为r处的电场强度⼤⼩为UURUR2U[ ] (A) (B) (C) (D) rRr2r3其场强为E0, 电位移为D0; ⽽当两极间充满相对介电常数为εr的各向同性均匀电介质时, 其间场强为E, 电位移为D, 则有关系[ ] (A) E=E0/εr,D=D0 (B) E=E0,D=D0 (C) E=E0/εr,D=D0/εr T6-1-15图(D) E=E0,D=εrD015. ⼀平⾏板电容器始终与⼀端电压恒定的电源相连.当此电容器两极间为真空时,16. ⼀空⽓平⾏板电容器接上电源后, 在不断开电源的情况下浸⼊媒油中, 则极板间的电场强度⼤⼩E和电位移⼤⼩D的变化情况为[ ] (A) E和D均减⼩ (B) E和D均增⼤ (C) E不变, D减⼩ (D) E不变, D增⼤17. 把⼀个带正电的导体B靠近⼀个不带电的绝缘导体A时, 导体A的电势将[ ] (A) 升⾼ (B) 降低 (C) 不变 (D) 变化与否不能确定18. 有两个⼤⼩不等的⾦属球, 其⼤球半径是⼩球半径的两倍, ⼩球带有正电荷.当⽤⾦属细线连接两⾦属球后[ ] (A) ⼤球电势是⼩球电势的两倍 (B) ⼤球电势是⼩球电势的⼀半 (C) 所有电荷流向⼤球 (D) 两球电势相等19. 在⽆穷⼤的平板A上均匀分布正电荷, ⾯电荷密度为σ,不带净电荷的⼤导体平板B, 则A板与B板间的电势差是σd[] (A)(B)2ε0σd(C)(D)3ε0σdε0ε0dσT6-1-19图20. 导体壳内有点电荷q, 壳外有点电荷Q, 导体壳不接地.当Q值改变时, 下列关于壳内任意⼀点的电势和任意两点的电势差的说法中正确的是[ ] (A) 电势改变, 电势差不变(B) 电势不变, 电势差改变(C) 电势和电势差都不变 (D) 电势和电势差都改变 T6-1-20图21. 两绝缘导体A、B带等量异号电荷.现将第三个不带电的导体C插⼊A、B之间, 但不与A、B接触, 则A、B间的电势差将[ ] (A) 增⼤ (B) 减⼩(C) 不变 (D) 如何变化不能确定T6-1-21图22. 两个薄⾦属同⼼球壳, 半径分别为R和r (R>r), 若分别带上电量为Q和q的电荷, 此时⼆者的电势分别为U和V.现⽤导线将⼆球壳连起来, 则它们的电势为[ ] (A) U (B) V (C) U+V (D)1(U+V) 2T6-1-22图23. 就有极分⼦电介质和⽆极分⼦电介质的极化现象⽽论 [ ] (A) 两类电介质极化的微观过程不同, 宏观结果也不同 (B) 两类电介质极化的微观过程相同, 宏观结果也相同 (C) 两类电介质极化的微观过程相同, 宏观结果不同 (D) 两类电介质极化的微观过程不同, 宏观结果相同24. ⼀平⾏板电容器中充满相对电容率为εr的各向同性均匀电介质.已知电介质表⾯极化电荷⾯密度为±σ', 则极化电荷在电容器中产⽣的电场强度⼤⼩为T6-1-24图σ'[ ] (A)ε0σ'(B)2ε0σ'(C)ε0εrσ'(D)εr25. ⼀导体球外充满相对电容率为εr的均匀电介质, 若测得导体表⾯附近场强为E, 则导体球⾯上的⾃由电荷⾯密度σ为[ ] (A) ε0E (B) ε0εrE (C) εrE (D) (ε0εr-εr)E27. 在⼀点电荷产⽣的电场中, 以点电荷处为球⼼作⼀球形封闭⾼斯⾯, 电场中有⼀块对球⼼不对称的电介质, 则 [ ] (A) ⾼斯定理成⽴,并可⽤其求出封闭⾯上各点的场强(B) 即使电介质对称分布, ⾼斯定理也不成⽴ (C) ⾼斯定理成⽴, 但不能⽤其求出封闭⾯上各点的电场强度 (D) ⾼斯定理不成⽴ T6-1-26图28. 在某静电场中作⼀封闭曲⾯S.若有D?dS=0, 则S⾯内必定s[ ] (A) 没有⾃由电荷 (B) 既⽆⾃由电荷, 也⽆束缚电荷(C) ⾃由电荷的代数和为零 (D) ⾃由电荷和束缚电荷的代数和为零29. 关于介质中的⾼斯定理[ ] (A) ⾼斯⾯的D通量仅与⾯内的⾃由电荷的代数和有关(B) ⾼斯⾯上处处D为零, 则⾼斯⾯内必不存在⾃由电荷(C) ⾼斯⾯的D通量由⾯内的⾃由电荷和束缚电荷共同决定(D) ⾼斯⾯内不包围⾃由电荷时, ⾼斯⾯上各点电位移⽮量D为零sD?dS=∑q0, 下列说法中正确的是30. 关于静电场中的电位移线, 下列说法中正确的是 [ ] (A) 起⾃正电荷, ⽌于负电荷, 不形成闭合线, 不中断 (B) 任何两条电位移线互相平⾏ (C) 电位移线只出现在有电介质的空间(D) 起⾃正⾃由电荷, ⽌于负⾃由电荷, 任何两条电位移线不相交31. 两个半径相同的⾦属球, ⼀个为空⼼, 另⼀个为实⼼.把两者各⾃孤⽴时的电容值加以⽐较, 有[ ] (A) 空⼼球电容值⼤ (B) 实⼼球电容值⼤ (C) 两球容值相等 (D) ⼤⼩关系⽆法确定32. 有⼀空⽓球形电容器, 当使其内球半径增⼤到两球⾯间的距离为原来的⼀半时, 此电容器的电容为[ ] (A) 原来的两倍 (B) 原来的⼀半 (C) 与原来的相同 (D) 以上答案都不对33. n只具有相同电容的电容器, 并联后接在电压为?U的电源上充电.去掉电源后通过开关使之接法改为串联.则串联后电容器组两端的电压V和系统的电场能W [ ] (A) V=n?U,W增⼤(B) V=n?U,W不变(C) V=n?U,W 减⼩ (D) V=1?U,W不变 n34. 把⼀充电的电容器与⼀未充电的电容器并联.如果两电容器的电容⼀样, 则总电能将[ ] (A) 增加 (B) 不变 (C) 减⼩ (D) 如何变化不能确定35. 平⾏板电容器的极板⾯积为S, 两极板间的间距为d, 极板间介质电容率为ε.现对极板充电Q, 则两极间的电势差为[ ] (A) 0 (B)QdQdQd (C) (D) εS2εS4εS36. ⼀平⾏板电容器充电后与电源断开, 再将两极板拉开, 则电容器上的[ ] (A) 电荷增加 (B) 电荷减少 (C) 电容增加 (D) 电压增加37. 将接在电源上的平⾏板电容器的极板间距拉⼤, 将会发⽣什么样的变化? [ ] (A) 极板上的电荷增加 (B) 电容器的电容增⼤(C) 两极间的场强减⼩ (D) 电容器储存的能量不变38. 真空中带电的导体球⾯和带电的导体球体, 若它们的半径和所带的电量都相等, 则球⾯的静电能W1与球体的静电能W2之间的关系为[ ] (A) W1>W2 (B) W1=W2 (C) W1<W2 (D) 不能确定39. 如果某带电体电荷分布的体密度ρ增⼤为原来的两倍, 则其电场的能量变为原来的[ ] (A) 2倍 (B) 11倍 (C) 4倍 (D) 倍 2240. ⼀空⽓平板电容器, 充电后把电源断开, 这时电容器中储存的能量为W0.然后在两极板间充满相对电容率为εr的各向同性均匀电介质, 则该电容器中储存的能量W为W[ ] (A) W=εrW0 (B) W=0εr(C) W=(εr+1)W0 (D) W=W041. ⼀平⾏板电容器, 两板间距为d, 与⼀电池联接时, 相互作⽤⼒为F.若将电池断T6-1-40图开, 极间距离增⼤到3d, 则其相互作⽤⼒变为 FF[ ] (A) (B)3F (C) (D) 不变 3942. ⾦属圆锥体带正电时, 其圆锥表⾯[ ] (A) 顶点处电势最⾼(B) 顶点处场强最⼤(C) 顶点处电势最低(D) 表⾯附近场强处处相等T6-1-42图43. 平板电容器与电源相连, 现把两板间距拉⼤, 则[ ] (A) 电容量增⼤(B) 电场强度增⼤(C) 带电量增⼤(D) 电容量、带电量及两板间场强都减⼩T6-1-43图⼊电容器的两极板之间.则插⼊前后, 电容C、场强E和极板上的电荷⾯密度σ的变化情况为 44. 空⽓平⾏板电容器接通电源后, 将电容率为ε的厚度与极板间距相等的介质板插σ不变 (B) C增⼤, E不变, σ增⼤ (C) C 不变, E增⼤, σ不变 (D) C增⼤, E 增⼤, σ增⼤ [ ] (A) C不变, E不变,T6-1-44图45. 空⽓平板电容器与电源相连接.现将极板间充满油液, ⽐较充油前后电容器的电容C、电压U和电场能量W的变化为[ ] (A) C增⼤, U减⼩, W减⼩(B) C增⼤, U不变, W增⼤(C) C减⼩, U不变, W减⼩(D) C减⼩, U减⼩, W减⼩46. ⼀空⽓平⾏板电容器充电后与电源断开, 然后在两极间充满某种各向同性均匀电介质.⽐较充⼊电介质前后的情形, 以下四个物理量的变化情况为[ ] (A)(B)(C)(D)E增⼤, C增⼤, ?U增⼤, W增⼤ E减⼩, C增⼤, ?U 减⼩, W减⼩ E减⼩, C增⼤, ?U 增⼤, W减⼩ E增⼤, C减⼩, ?U 减⼩, W增⼤47. 平⾏板电容器两极板(可看作⽆限⼤平板)间的相互作⽤⼒F与两极板间电压?U的关系是:1 ?U12 (C) F∝?U (D) F∝ ?U2[ ] (A) F∝?U (B) F∝48. 在中性导体球壳内、外分别放置点电荷q和Q, 当q在壳内空间任意移动时, Q 所受合⼒的⼤⼩[ ] (A) 不变 (B) 减⼩(C) 增⼤ (D) 与q、Q距离有关49. 在⽔平⼲燥的玻璃板上, 放两个⼤⼩不同的⼩钢球, 且⼩球上带的电量⽐⼤球上电量多.发现两球被静电作⽤⼒排开时, ⼩球跑得较快, 这是由于[ ] (A) ⼩球受到的斥⼒较⼤(B) ⼤球受到的斥⼒较⼤(C) 两球受到的斥⼒⼤⼩相等, 但⼤球惯性⼤ T6-1-49图 (D) 以上说法都不对50. ⼀带电导体球壳, 内部没有其它电荷, 则 [ ] (A) 球内、内球⾯、外球⾯电势相等(B) 球内、内球⾯、外球⾯电场强度⼤⼩相等 (C) 球壳内电场强度为零,球⼼处场强不为零 (D) 球壳为等势体, 球⼼处电势为零51. 如果在平⾏板电容器的两极板间平⾏地插⼊⼀块与极板⾯积相等的电介质板, 则由于电介质的插⼊及其相对于极板所放置的不同, 对电容器电容的影响为 [ ] (A) 使电容减⼩, 但与电介质板的位置⽆关 (B) 使电容减⼩, 且与电介质板的位置有关(C) 使电容增⼤, 但与电介质板的位置⽆关(D) 使电容增⼤, 且与电介质板的位置有关 T6-1-51图52. ⼀均匀带电Q的球体外, 罩⼀个内、外半径分别为r和R的同⼼⾦属球壳. 若以⽆限远处为电势零点, 则在⾦属球壳r<R'<R 的区域内[ ] (A) E=0, U=0 (B) E=0, U≠0(C) E≠0, U≠0(D)E≠0, U=053. 把A、B两块不带电的导体放在⼀带正电导体的电场中,如T6-1-52图T6-1-53图所⽰,设⽆限远处为电势零点,A的电势为UA,B的电势为UB,则[ ] (A) UB > UA≠0 (B) UB > UA = 0(C) UB = UA⼆、填空题(D) UB < UAT6-1-53图1. 两⾦属球壳A和B中⼼相距l,原来都不带电.现在两球壳中分别放置点电荷q和Q,则电荷Q作⽤在q上的电⼒⼤⼩为F = A,此时,电荷Q作⽤在q上的电⼒⼤⼩是.ACBT6-2-1图 T6-2-2图2. 在T6-2-2图所⽰的导体腔C中,放置两个导体A和B,最初它们均不带电.现设法使导体A带上正电,则这三个导体电势的⼤⼩关系为.3. 半径为r的导体球原来不带电.在离球⼼为R (R>r)的地⽅放⼀个点电荷q, 则该导体球的电势等于.4. ⾦属球壳的内外半径分别r和R, 其中⼼置⼀点电荷q, 则⾦属球壳的电势为.T6-2-4图d处 (d < R) 固定⼀电量为+q的点电荷,⽤导线把球壳接地后,再把地线撤去,选⽆穷远处为电势零点,则球⼼O处的电势为.T6-2-5图5. ⼀个未带电的空腔导体球壳内半径为R.在腔内离球⼼的距离为6. T6-2-6图所⽰的11张⾦属箔⽚平⾏排列,奇数箔联在⼀起作为电容器的⼀极,偶数箔联在⼀起作为电容器的另⼀极.如果每张箔⽚的⾯积都是S,相邻两箔⽚间的距离为d,箔⽚间都是空⽓.忽略边缘效应,此电容器的电容为C = .T6-2-6图 T6-2-7图7. T6-2-7图中所⽰电容器的电容C1、C2、C3已知,C4的值可调.当C4的值调节到A、B两点的电势相等时,C4=.8. 位于边长为l的正三⾓形三个顶点上的点电荷电荷量分别为q、2q和-4q,这个系统的静电能为.9. 有⼀半径为R的均匀带电球体, 若球体内、外电介质的电容率相等, 此时球内的静电能与球外的静电能之⽐为.10. 电荷q均匀分布在内外半径分别为R1和R2的球壳体内,这个电荷体系的电势能为,电场能为.11. ⼀平⾏板空⽓电容器, 极板⾯积为S, 间距为d, 接在电源上并保持电压恒定为U.若将极板距离拉开⼀倍, 则电容器中的静电能改变量为. 12. 有⼀半径为R的均匀带电球体, 若球体内、外电介质的电容率相等, 此时球内的静电能与球外的静电能之⽐为.三、计算题1. 真空中⼀导体球A原来不带电.现将⼀点电荷q 移到距导体球A的中⼼距离为r处,此时,导体球的电势是多少?2. 真空中⼀带电的导体球A半径为R.现将⼀点电荷q 移到距导体球A的中⼼距离为r处,测得此时导体球的电势为零.求此导体球所带的电荷量.qT6-3-1图3. ⼀盖⾰-⽶勒计数管,由半径为0.1mm的长直⾦属丝和套在它外⾯的同轴⾦属圆筒构成,圆筒的半径为10mm.⾦属丝与圆筒之间充以氩⽓和⼄醇蒸汽,其电场强度最⼤值为4.3?10V?m-1. 忽略边缘效应,试问⾦属丝与圆筒间的电压最⼤不能超过多少?64. 设有⼀电荷⾯密度为σ0(>0)放置⼀块原来不带电,有⼀定厚度的⾦属板,不计边缘效应, (1)板两⾯的电荷分布;(2) 把⾦属板接地,⾦属板两⾯的电荷⼜将如何分布T6-3-4图6. ⼀平⾏板电容器两极板的⾯积都是S,其间充有N它们的电容率分别为ε1、ε2、ε3、εN,厚度分别为d1、d2、d3、 dN.忽略边缘效应,求此电容器的电容.7. 如T6-3-7图所⽰,⼀球形电容器由半径为R1的导体球和与它同⼼的半径为R2的导体球壳组成.导体球与球壳之间⼀半是空⽓,另⼀半充有电容率为ε的均匀介质.求此电容器的电容.T6-3-6图 T6-3-8图8. 静电天平的原理如T6-3-8图所⽰:⾯积为S、相距x的空⽓平⾏板电容器下板固定,上板接到天平的⼀端.电容器不充电时,天平恰好处于平衡.欲称某物体的质量,可将待称物放⼊天平另⼀端,再在电容器极板上加上电压,使天平再次达到平衡.如果某次测量测得其极板上的电压值为U, 问此物的质量是多少?9. 两块⾯积相同的⼤⾦属平板A、B, 平⾏放置,板⾯积为S,相距d, d远⼩于平板的线度.今在A,B板之间插⼊另外⼀⾯积相同,厚度为l的⾦属板,三板平⾏.求 A、B之间的电容.10. 真空中两个同⼼的⾦属薄球壳,内外球壳的半径分别为R1和R2,(1) 试求它们所构成的电容器的电容;(2) 如果令内球壳接地,它们之间的电容⼜是多⼤? 11. 已知⼀均匀带电球体(⾮导体)的半径为R,带电量为q.如果球体内外介质的电容率均近似为ε,在半径为多⼤的球⾯空间内的电场能量为其总能量的⼀半? 12. 半径为R的⾬点带有电量q.现将其打破,在保持总体积不变的情况下分成完全相同的两点,并拉开到“⽆限远”.此系统的电能改变量是多少? 解释出现这个结果的原因.13. ⼀⾯积为S、间隔为d的平板电容器,最初极板间为空⽓,在对其充电±q以后与电源断开,再充以电容率为ε的电介质; 求此过程中该电容器的静电能减少量.试问减少的能量到哪⼉去了?14. ⼀种利⽤电容器控制绝缘油液⾯的装置⽰意如T6-3-14图,平⾏板电容器的极板插⼊油中,极板与电源以及测量⽤电⼦仪器相连.当液⾯⾼度变化时,电容器的电容值发⽣改变,使电容器产⽣充放电,从⽽控制电路⼯作.已知极板的⾼度为a,油的相对电容率为εr,试求此电容器等效相对电容率与液⾯⾼度h的关系.15. 如T6-3-15⼊⼀电矩为图所⽰,在场强为E的均匀电场中,静⽌地放p、转动惯量为J的电偶极⼦.若电矩 p与场强E 之间的夹⾓θ很⼩,试分析电偶极⼦将作什么运动,并计算电偶极⼦从静⽌出发运动到 p与E ⽅向⼀致时所经历的最短时间.T6-3-14图T6-3-15图 10。

6 大学物理 第06章 静电场中的导体和电介质

6 大学物理 第06章 静电场中的导体和电介质
第六章 静电场中的导体和电介质 加上外电场后
E外
16
物理学
第五版
+ + + + + + + + + +
第六章 静电场中的导体和电介质 加上外电场后
E外
17
物理学
第五版
+ + + + + + + + + +
E外
加上外电场后 第六章 静电场中的导体和电介质
18
物理学
第五版
导体达到静平衡
+ + + + + + + + + +
介质电容率 ε ε0 εr
41
- - - - - - - σ
相对电容率 εr 1
第六章 静电场中的导体和电介质
物理学
第五版
+++++++
- - - - - - - σ
σ E0 ε0
ε0
σ
+++++++
- - - - - - - σ
σ E ε
ε
σ
第六章 静电场中的导体和电介质
②用导线连接A、B,再作计算
连接A、B,
Q q
q
( q )
中和
B
q q
A R1 O
R2
球壳外表面带电 Q q
R3
r R3
R3
E0

Qq uo Edr Edr 4 0 R3 0 R3

第六章静电场中的导体和电介质jianhua讲解

第六章静电场中的导体和电介质jianhua讲解
1. 根据介质中的高斯定理计算出电位移矢量。
D dS qi
S
2. 根据电场强度与电位移矢量的关系计算场强。
E
D

注意: (1)D的分布应具有一定的对称性
(2)要选取合适的高斯面
[例 1]已知: 一导体球半径为R1,带电 q0(>0)
外面包有一层均匀各向同性电介质球壳,
r R1 R2 在带电面两侧的场强都发生突变,这是面电荷 分布的电场的一个共同特点(有普遍性)。 普遍结论: 当电介质充满两个等势面之间的空间时, 该空间的场强等于真空时场强的 1/ r 倍。
0
6-3 电容和电容器
孤立导体的电容
导体具有储存电荷的本领 电容:孤立导体所带电量q与 其电势V 的比值。
+ +++
-
-+
+q +
-+
-+
-
有导体存在时静电场的分布与计算
基本依据: (1)利用静电平衡条件 E内 0 或 V c (2)利用电荷守恒 Qi const .
i
qi (3)利用高斯定律 E d s i S
0
(4)利用环路定理(电势、电力线的概念)
L E d l 0
电阻率很大,导电能力很差的物质,即绝缘体。
(常温下电阻率大于107欧·米) 电介质的特点: 分子中的正负电荷束缚的很紧,介质内部几 乎没有自由电荷。 置入电场中会受电场作用;反之,介质会对 电场产生影响。
有介质时的高斯定理
定义电位移矢量: D
介质中的高斯定理: 在静电场中,通过任意封闭曲 面的电位移通量等于该曲面所包围的自由电荷的代 数和。 注意:

6静电场中的导体和电介质

6静电场中的导体和电介质


二、第二类导体空腔— [腔内有带电体]
(1)腔内电场不受外电场影响。 (可用高斯定理证明)
QQ q
q

q









(2)空腔导体腔外电场不受导体腔内电场影响。
与腔内电荷分布无关,但与腔内 放置的带电体电量有 关。
QQ q
q

q




- - --q +
+Qq+++++=+0 -
--
+
-+
+ +
2、空腔导体带电荷Q
腔内无电荷:导体的电荷只能分布在外表面。
腔内有电荷q: 导体的内表面电荷-q,外表 面电荷Q+q
二、导体处于静电平衡状态时的场强分布
导体上的电荷分布
3. 火花放电
当高压带电体与导体靠得很近时, 强大的电场会使它们 之间的空气瞬间电离,电荷通过电离的空气形成电流. 由于 电流特别大, 产生大量的热, 使空气发声发光,产生电火花. 这种放电现象叫火花放电.
火花放电在生活中常会遇到. 干燥的冬天,身穿毛衣和化纤 衣服,长时间走路之后,由于摩擦,身体上会积累静电荷. 这时如 果手指靠近金属物品, 你会感到手上有针刺般的疼痛感。这就 是火花放电引起的. 如果事先拿一把钥匙, 让钥匙的尖端靠近其 他金属体, 就会避免疼痛. 在光线较暗的地方试一试,在钥匙尖 端靠近金属体的时候, 不但会听到响声, 还会看到火花.
若 A,B 处出现等量异号电荷(如图),则必有电场线由 A 到 B,则 UA≠UB ,这违背等势体性质。
总结:空腔内无带电体的情况

库伦定律--静电力叠加原理 ppt课件

库伦定律--静电力叠加原理  ppt课件

2019年10月25日星期五源自第6章 静电场17
库仑定律
6.1 库伦定律 静电力叠加原理 万有引力定律
电荷之间相互作用力
F

1
4 0
q1q2 r2
er
万有引力
F

G
mM r2
er
系数: k 1 9.0 109 Nm2C 2
4 0
方向:
同性电荷相斥, 异性电荷相吸。
引力常量: G 6.67261011 N m2 kg-2
物体能够产生电磁现象归因于物体所带的电荷 以及电荷的运动。
当物质处于电中性时,质子数=电子数,当物 质的电子过多或过少时,物质就带有电。物体带电 的本质是两种物体间发生了电子的转移。即一物体 失去电子带正电,另一物体得到电子带负电。
定义:物体所带电荷的多少叫作电量。 单位:库仑(C)——注意不是国际单位制的 基本单位
6.1.2 库仑定律
库仑 (C.A.Coulomb 1736 1806)
法国物理学家,1785 年通过扭秤实验创立库 仑定律, 使电磁学的研 究从定性进入定量阶段. 电荷的单位库仑以他的 姓氏命名.
第6章 静电场
11
6.1 库伦定律 静电力叠加原理
6.1.2 库仑定律
1、点电荷
点电荷是一个理想化的物理模型,当两 个带电体本身的线度比它们之间的距离小 得很多时,带电体可近似地当作点电荷, 即不考虑其大小和形状。
Fe

4
1
π 0
e2 r2
8.2 108 N
Fg
G memp r2
3.6 10-47 N
Fe 2.27 10 39 Fg
第6章 静电场

6-静电场中的电介质

6-静电场中的电介质

v v 1 q E⋅ dS = ∑ = 1 ( ∫
S
ε0
S内
ε0
∑q +∑q′)
0 S内 S内
式中的 ∑q 为闭合曲面内一切正、负电荷的代数和 为闭合曲面内一切正、 即自由电荷q 极化电荷q (即自由电荷q0、极化电荷q’)
v v 1 ∫ E⋅dS = (∑q0 +∑q′)
S
ε0
------ 有源场
分析电场所具有的对称性质 巧作高斯面, 巧作高斯面,即选择适当形状的闭合曲面为高斯面 计算通过高斯面的电位移通量
v v dS ΦD = ∫ D⋅ dS = ∫ D
S
计算高斯面内所包围的自由电荷的代数和 由电介质中的高斯定理求出电位移 D
∑q0
D∫dS = ∑q0
D=
∑q0
∫dS
由电位移 D 求出场强 E
4 0εr1r2 πε r r Br r ∞r r ∞ UA = ∫ E⋅ dl = ∫ E⋅ dl +∫ E⋅ dl Q A B A A r r E3 = ∞ 2 4 0εr2r πε =UAB +∫ E4 ⋅ dr
S内
S内
v v 1 Q∫ E0 ⋅ dS = ∑q0
S
v v ∴∫ ε0E0 ⋅ dS = ∑ 0 q
S S内
ε0 S内
v v ∴∫ ε0εr E⋅ dS = ∑ 0 q
S S内
v v v 令 D=ε ε E =εE ----电位移矢量 ----电位移矢量 0 r v v 自由电荷 电位移通量 ∴ D⋅ d = ∑ 0 S q ∫
§2
静电场中的电介质
H+ H C−+ H −
电介质:内部几乎没有可以自由运动电荷的物体, 电介质:内部几乎没有可以自由运动电荷的物体,又称为 绝缘体 电偶极子模型 正负电荷

大学物理作业-静电场中的电介质一解答

大学物理作业-静电场中的电介质一解答

02
圆柱形电容器储能计 算
对于圆柱形电容器,其储能$W = frac{1}{2} pi R^2 L varepsilon_0 E^2$,其中$R$为圆柱底面半径,$L$ 为圆柱高,$varepsilon_0$为真空介电 常数,$E$为电场强度。
03
实例分析
通过具体数值代入公式进行计算,可 得电容器储存的能量。
电介质在生物医学中的应用
近年来,电介质在生物医学领域的应用逐渐受到关注。例 如,利用电介质的生物相容性和导电性,可以开发出用于 生物组织工程、神经刺激和生物传感等方面的新型生物医 学器件和系统。
THANKS
感谢您的观看
绝缘体
绝缘体在静电场中不导电,其内部和 表面均可存在电荷分布。绝缘体的电 导率极低,因此可以保持电荷长时间 不变。
Part
02
电介质在静电场中表现
电介质极化现象
电介质极化定义
电介质在静电场作用下,内部正 负电荷中心发生相对位移,导致 电介质两端出现等量异号电荷的 现象。
极化方式
电介质极化方式包括电子极化、 原子极化和取向极化等。
不同类型电介质特性比较
绝缘体电介质 电阻率高,导电性能差, 1
极化率较低,主要用于电 气绝缘。
分子晶体电介质 4
由分子通过分子间作用力 结合而成,极化率和介电 常数均较低。
半导体电介质
2
电阻率介于导体和绝缘体之间
,具有一些特殊的电学性质,
如压电效应、热电效应等。
离子晶体电介质 3 由正负离子通过离子键结
相关领域前沿动态介绍
01 02 03
电介质材料的研究与应用
随着科技的发展,人们对于电介质材料的研究和应用不断 深入。新型的电介质材料不断涌现,如高介电常数材料、 压电材料、铁电材料等,它们在电子器件、传感器、能源 转换等领域具有广泛的应用前景。

6静电场中的导体和电介质

6静电场中的导体和电介质

V表面 常量

2. 导体上电荷分布 1)静电平衡时,导体内无净电荷,电荷只分布在导体 外表面上。 证明: (1)导体内无空腔 .p
E内 ds 0 q内 0
(2)导体内有空腔,腔内无其它带电体
可以看成已经达到静电平衡的实心导体,从中 挖出空腔,由于没有挖去净电荷,不会影响电 荷分布,也不影响电场分布。内表面无净电荷。
r
D1 E1 R1 2 r1 2 1r1 r R1 r1 r : E1 21r1 E1 2 r2 E 2 1r1 同理:r r2 R2 : E2 22 r2
R2

r R2 V d r1 dr2 ln ln 21r1 22 r2 21 R1 22 r R r

q
§6—7 静电场中的电介质 电介质 绝缘体(不导电) 1.电介质的电结构 带负电的电子→束缚电子 每个分子 带正电的原子核 正负重心不重合 两类电介质: 正负重心重合 E 2.电极化现象 E外 0 1)有极分子 2)无极分子
所有负电荷负重心 所有正电荷正重心
有极分子 p p 0 无极分子
q q A B
(3)内球与地相接,设内球带电q’:
R1
q q VA dr dr 2 2 R 4 r R2 4 r o o q 1 1 q q 1 ( ) 0 可解出 q 4o R R1 4o R2 q q 1 VB 4o R2
R
o
R
q
q
4 R 4
o
dq
q
o
2R
0
q q R 2R
q 4o R

大学物理 第6章 静电场中的导体和电介质(小结)

大学物理 第6章 静电场中的导体和电介质(小结)
Q 解:看成是带电球,电量为Q, 电势: V 以无限远为电势零点。 4 0 R
Q Q
静电能:
We A
Vdq
0

4
0
qdq
0
R
Q
2
8 0 R
当Q不变时,使R增大到R’=2R时,We’=We / 2 ;可见, 当R增大时,静电能减小,说明电场力对外作正功, 即帮助汽泡增大;从受力情况看,肥皂泡上每个电荷 元都受到其他电荷的电场力作用,力的方向沿半径向 外,半径增大时,电场力作正功,电场能减小。
4 0 r 4 0 r r 为该点到球心的距离. (2)球内(无论是空心与实心)的场强E=0, (内无电荷);电势不为零,等于球面上的电势。 (3)求E和V时,要将形成场的所有电荷都考虑 到,然后求矢量(E)和或代数和(V)。
2
E

V
例题5 有一带正电的肥皂泡,吹大到使它的半径为原 来的2 倍,问静电能有什么变化?电荷的存在对吹泡 有帮助还是有妨碍?
解(1)设q2 、 q3为外球壳内、外 层所带电荷。 由高斯定理可得:
R2 R1 D C B A 0
R3
q 2 q1
2 3
10
8
C
q2 q3 q
q3 4 3 10
8
q1
C
q2
q3
(2)各点的场强和电势 B点: q1 由高斯定理得: E B 2 4 0 rB
VB
q1 4 0 rB
q1 4 0 rB


q2 4 0 rB
q2 4 0 R 2


q3 4 0 rB
q3 4 0 R 3

第六章 电介质导体与电场 电学

第六章 电介质导体与电场 电学

1 E dS
S
0
(q
S
0
q )
'
北京建筑大学 理学院
1.电位移矢量 (电位移是一个辅助量 )
定义:
D r 0 E E
单位:cm-2
其中 r 0
F 电容率或介电常量 的 单 位 : m
2.电位移线: (线的性质:切线方向,疏密) D线起始于正自由电荷,终止于负自由电荷,与 束缚电荷无关。而电力线起始于正电荷终止于负电荷, 包括自由电荷和束缚电荷。
北京建筑大学 理学院
2.有极分子(Polar molecule) 分子的正电荷中心同负电荷中心不重合,(等效 电偶极子)在无外场作用下存在固有电矩。例如, H2O NH3,CO SO2等.
O H+
-
H+
+
H+
+
H2O
+
+
+ +
+
N
H+
+
+ H NH3(氨)
因无序排列对外不呈现电性。 Pi 0
如图
E ds 0
s
q
i
i
0
2. 导体表面电荷面密度与表面邻近处的场强成正比。
E ds ES1 S1 / 0
s
E 0
北京建筑大学 理学院
3. 孤立导体处于静电平衡时,它的表面各处的面电荷 密度与各处表面的曲率(曲率圆半径的倒数)有关。
E0
电介质的击穿:电介质的绝缘性能遭到破坏,变为导体。
北京建筑大学 理学院
三.电介质对电场的影响
在外电场 E0中,介质极化产生的束缚 电荷,产生附加电场 E '

6.6电介质中的静电场

6.6电介质中的静电场
3
r :
电介质的相对介电常数
第 11静电场 章 静电场 第6 章
r 1
库仑定律 6-6 11-2 电介质中的静电场
平行板电容器,求电容。 极板间为真空:
+ + + +
-
Q
- - - -Q
Q Q 0S E0 U 0 E0d C0 S 0 U0 d
极板间充满介质:
E
Q S 0 r
Q 0 r S U Ed C U d
r
第 11静电场 章 静电场 第6 章
相对电容率
库仑定律 6-6 11-2 电介质中的静电场
有电介质时的高斯定理为

S
D d S q0
第 11静电场 章 静电场 第6 章
库仑定律 6-6 11-2 电介质中的静电场
各向同性的均匀电介质中:
E
E0
r
引入电位移矢量:
D 0 r E
有电介质时的高斯定理
D dS q0
SHale Waihona Puke 令 0 r D E
称为:介质的介电常数
第 11静电场 章 静电场 第6 章
库仑定律 6-6 11-2 电介质中的静电场
E E0 E
q0 源电荷
-
+ - + -+
E E0
q 极化电荷
第 11静电场 章 静电场 第6 章
库仑定律 6-6 11-2 电介质中的静电场
qr 真空中点电荷之电场: E 3 4π 0 r
充满无限大均匀各向同性电介质:
E
qr 4π 0 r r
库仑定律 6-6 11-2 电介质中的静电场

第6章课堂讨论(静电场中的导体和电介质)

第6章课堂讨论(静电场中的导体和电介质)

7
接地导体球半径为R,距离球心为l 例1. 接地导体球半径为 ,距离球心为 处附近有一点 电荷q,如图所示 如图所示.求 导体上感应电荷的电量 导体上感应电荷的电量. 电荷 如图所示 求:导体上感应电荷的电量 解: 接地 即
V = 0
R
o
感应电量为Q 设:感应电量为 , 感应电量为 由导体是个等势体知, 由导体是个等势体知,
注意:导体接地仅仅意味着电势为零, 注意:导体接地仅仅意味着电势为零,而不一定是 3 导体上的电荷为零。 导体上的电荷为零。
静电场中有电介质存在时有关问题计算. 二、静电场中有电介质存在时有关问题计算 1、根据场的叠加原理,首先理解自由电荷和极化(束 、根据场的叠加原理,首先理解自由电荷和极化( 电荷在场中某点的总场强; 缚)电荷在场中某点的总场强; 2、当电场具有适当对称性时,应用有介质时的高斯定 、当电场具有适当对称性时, 理求场强,方法与上一章相同,关系式为: 理求场强,方法与上一章相同,关系式为:
9
由高斯定理,空间的电场: 由高斯定理,空间的电场:
空腔与小球之间
空腔金属内
E1 =
q 4πε 0 r 2
Q+q
q
−q
R2 R1 r
E2 = 0 q+Q E3 = 4πε 0 r 2
空腔外部
小球的电势
r r R1 r r R2 r r ∞ r r R1 Vr = ∫ E ⋅ dl = ∫ E1 ⋅ dl + ∫ E2 ⋅ dl + ∫ E3 ⋅ dl = ∫
1 ε E2 = 1 DE we = 2 2
W = ∫ wedV = ∫
ε0εr E
2
2
dV
6
注意:基本步骤为: 注意:基本步骤为: 1)根据电荷分布,求出电场分布; )根据电荷分布,求出电场分布; 2)选取合适的体积微元 在dV中各点的场强值相 )选取合适的体积微元dV,在 中各点的场强值相 通常在球对称电场中, 等.通常在球对称电场中,取薄球壳为体积微元 通常在球对称电场中 );在轴对称的电场中 (dV=4πr2dr);在轴对称的电场中,取薄圆柱壳为 );在轴对称的电场中, 体积微元( 体积微元(dV=2 πrldr ); 3)按能量公式,正确确定积分上下限,计算出结果 按能量公式,正确确定积分上下限,计算出结果. 按能量公式

6 静电场中的电介质.

6 静电场中的电介质.

E

E0

E
'

E0
r
E

E0

E
'

E0
r
r :电介质的相对电容率(相对介电常数)
真空(空气) r 1 其它电介质: r 1
0 :真空电容率(真空介电常数)
0 r :电介质的(绝对)电容率(绝对介电常数)
3. 电极化强度
定义:
P


p
V
p :每个分子的电偶

E
'

εr 1 εr
E0

'
+-+
+-+
+-+
+

-+
+
+-
+
0
E0

0
ε0
同理
代入①式,有
E' '
ε0
'
r E E' E -+- -+- -+- - +- - +- - 0
σ
'

εr εr
1
σ0

(1
1 εr
)σ0
'
+-+
+-+
+-+
+

-+
+
-+Q+0
0
r E E' E
' -+- -+- -+- - +- - +-Q-' 0

第6章 静电场中的导体与介质

第6章 静电场中的导体与介质

第6章 静电场中的导体与电介质一、基本要求1.掌握导体静电平衡的条件和静电平衡条件下导体的性质,并能利用静电平衡条件解决有关问题。

2.理解电容的定义,掌握典型电容器电容的计算方法。

3.了解电介质极化的微观机制,理解电介质对静电场的影响。

掌握介质中静电场的基本规律,掌握应用介质中的高斯定理求解介质中静电场的电位移矢量和电场强度的计算方法。

4.理解静电场能量的概念,能计算一些对称情况下的电场能量。

二、知识框架三、知识要点 1.重点 (2)电介质中的高斯定理及其应用。

1C ++n C ++d 0L =⎰E l 保守场Sd q ⋅=∑⎰⎰D S 静电场能量密度:1四、基本概念及规律1.导体的静电平衡条件及其性质(1)导体的静电平衡条件 导体内部电场强度处处为零,即 0=内E (2)导体处于静电平衡时的性质 ① 导体是等势体,导体表面是等势面。

② 导体表面的场强处处与导体表面垂直,导体表面附近的场强大小与该处导体表面的面密度σ成正比,即0 E e nσε=表面 ③ 电荷只分布在导体外表面。

(3)静电屏蔽 在静电平衡条件下,空腔导体内部电场不受外部电场的影响,接地空腔导体内部与外部电场互不影响,这种现象称为静电屏蔽。

2.电容C(1)孤立导体的电容 Vq C =电容的物理意义:使导体每升高单位电势所需的电量。

(2)电容器的电容 BA V V qC -=(3)电容器两极板间充满电介质后的电容 0C C r ε= 其中C 0是两极板间为真空时的电容,r ε是电介质的相对介电常数。

(4)几种常见电容器的电容① 平行板电容器 dSC r εε0=② 同心球形电容器 AB BA rR R R R C -=επε04 (R B >R A )③ 同轴圆柱形电容器 AB rR R lC ln 20επε= (R B >R A ) (5)电容器的串并联① 电容器串联后的总电容3211111C C C C ++=+…+nC 1② 电容器并联后的总电容 C = C 1+ C 2 + C 3+ … + C n 3.电介质中的静电场(1)电极化强度 电介质中任一点的电极化强度等于单位体积中所有分子的电偶极矩的矢量和,即 iV∆∑P P =① 对于各向同性的电介质 00(1)r e εεχε-=P =E E 其中1-=r e εχ称为电介质的极化率。

介质中的静电场

介质中的静电场


2


' e
0
例:求轴均匀极化的电介质园棒的极化电荷分布,已知P
右端:


0


' e

P
左端:




' e Pn--n NhomakorabeaP
+ +n
侧面:


- /
2


' e
0
例:求均匀极化的电介质球的极化电荷在球心处的电场。
球面元: ds R2 sin d d z Rdθ
ds极化电荷:
P分子 ql n是单位体积分子数 P nP分子 nql V lds cos
穿过ds的极化电荷:
nq l ds cos nqdsl n P ds
极化电荷
因极化穿过ds的束缚电荷
n
ds θ
l
取一闭合曲面S:
PdS - q '
s
s内
P通过整个闭合曲面的通量等于因极化而穿过此面的束缚电荷总量。
d1

0S
d2
C C0
两导体球A,B相距很远(可看成孤 立的),A带电,B不带电,现用导 线联接两球,电荷如何分配在两球上?
串联? 并联? 乱联?
两导体球A,B相距很远(可看成孤 立的),求两导体球间的电容?
CA
CB
电介质
电介质:绝缘介质,不导电
电介质与电场相互作用 插入:角度小
E‘
+ + + +
位移极化 高频电场:仅位移极化
+ + +
E0

思考与回答电介质中的静电场

思考与回答电介质中的静电场

第三章 电介质中的静电场3-1 (1)将平行板电容器两极板接在电源上以维持其间电压不变,用介质常数为0εεr 的均匀电介质将它充满,极板上的电量为原来的几倍?电场为原来的几倍?(2)若充电后撤掉电源,然后再加入电介质,情况如何?答:(1)极板间的电压U 。

保持不变,充以电介质后,电容器的电容为0εεr ,C o 为未充以电介质以前电容器的电容。

电容器极板上的电荷 电荷增加为原来的电荷的r ε倍,电容器内的电场强度保持不变。

(2)极板上的电荷o Q 保持不变,加入电介质后,电容器的电容为0c r ε,极板间的电压较原来的电压小,电场强度较原来的电场小。

3-2 如图3-2图所示,平行板电容器的极板面积为S ,间距为d 。

试问:(1)将电容器接在电源上,插入厚度为d/2的均匀电介质板(图a )介质内外电场之比为多少?它们与插入电介质之前电场之比为多少?(2)在问题(1)中,若充电后撤去电源,再插入电介质板,情况如何?(3)将电容器接在电源上,插入面积为S/2的均匀电介质板(图b ),介质内外电场之比为多少?它们与未插入电介质之前电场之比为多少?(4)在问题(3)中,若充电后撤去电源,再插入电介质板,情况如何?(5)图(a )(b )中电容器的电容各为真空时的几倍?以上各问题中都设电介质的介电常数为0εεr 。

答:(1)电容器的电压o U 保持不变。

设充入电介质后电介质内的电场强度为1E ,介质外的电场强度为2E ,则(2)电容器极板上的电荷保持不变,D 保持不变,设介质中的电场强度为E 1,介质外的电场强度为E 2,(3)插入电介质后,电容器极板间的电压保持不变,与电介质相对的那一部分极板的自由电荷增加。

设介质内外的电场强度为E 1、E 2,充入电介质以前的电场强度为E 0,则题3-2图(4)电容器极板上的总电荷保持不变。

充入介质以后,极板上的电荷分布发生变化,有介质的部份极板上的电荷密度增大。

无介质部份电荷密度减小,结果电容器极板间的电压降低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
r :
电介质的相对介电常数
第 11静电场 章 静电场 第6 章
r 1
库仑定律 6-6 11-2 电介质中的静电场
平行板电容器,求电容。 极板间为真空:
+ + (S E0 U 0 E0d C0 S 0 U0 d
极板间充满介质:
E
Q S 0 r
库仑定律 6-6 11-2 电介质中的静电场
E E0 E
q0 源电荷
-
+ - + -+
E E0
q 极化电荷
第 11静电场 章 静电场 第6 章
库仑定律 6-6 11-2 电介质中的静电场
qr 真空中点电荷之电场: E 3 4π 0 r
充满无限大均匀各向同性电介质:
E
qr 4π 0 r r
库仑定律 6-6 11-2 电介质中的静电场
电介质: 除导体外的所有物质。 具有高电阻率的电介质——绝缘体。 电介质的特点: 原子中的电子被原子核束缚的很紧,不能自 由移动。介质内部没有可以自由移动的电荷。
在外电场中,物质分子中的正负电荷可以在 分子线度范围内移动——产生极化现象。
第 11静电场 章 静电场 第6 章
Q 0 r S U Ed C U d
r
第 11静电场 章 静电场 第6 章
相对电容率
库仑定律 6-6 11-2 电介质中的静电场
有电介质时的高斯定理为

S
D d S q0
第 11静电场 章 静电场 第6 章
库仑定律 6-6 11-2 电介质中的静电场
各向同性的均匀电介质中:
E
E0
r
引入电位移矢量:
D 0 r E
有电介质时的高斯定理
D dS q0
S
令 0 r
D E
称为:介质的介电常数
第 11静电场 章 静电场 第6 章
相关文档
最新文档