数学必修2直线与方程单元测试题库

合集下载

高中数学必修2第三章《直线与方程》单元检测卷含解析

高中数学必修2第三章《直线与方程》单元检测卷含解析

高中数学必修2第三章《直线与方程》单元检测卷含解析必修2第三章《直线与方程》单元检测卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是()A。

30° B。

45° C。

60° D。

90°2.如果直线ax+2y+2=与直线3x-y-2=平行,则系数a为()A。

-3 B。

-6 C。

-2/3 D。

2/33.下列叙述中不正确的是()A。

若直线的斜率存在,则必有倾斜角与之对应。

B。

每一条直线都有唯一对应的倾斜角。

C。

与坐标轴垂直的直线的倾斜角为0°或90°。

D。

若直线的倾斜角为α,则直线的斜率为tanα。

4.在同一直角坐标系中,表示直线y=ax与直线y=x+a的图象(如图所示)正确的是(选项不清晰,无法判断)5.若三点A(3,1),B(-2,b),C(8,11)在同一直线上,则实数b等于()A。

2 B。

3 C。

9 D。

-96.过点(3,-4)且在两坐标轴上的截距相等的直线的方程是()A。

x+y+1=0 B。

4x-3y=0 C。

4x+3y=0 D。

4x+3y=0或x+y+1=07.已知点A(x,5)关于点(1,y)的对称点为(-2,-3),则点P(x,y)到原点的距离是()A。

4 B。

13 C。

15 D。

178.设点A(2,-3),B(-3,-2),直线过P(1,1)且与线段AB 相交,则l的斜率k的取值范围是()A。

k≥3/4或k≤-4/3 B。

-4/3≤k≤3/4 C。

-3≤k≤4 D。

以上都不对9.已知直线l1:ax+4y-2=与直线l2:2x-5y+b=互相垂直,垂足为(1,c),则a+b+c的值为()A。

-4 B。

20 C。

必修2第三章 直线与方程单元测试卷

必修2第三章   直线与方程单元测试卷

必修2第三章 《直线与方程》过关检测时间:100分钟 满分:100分制卷:王小凤 学生姓名一.选择题(本题共10个小题,每小题5分,共50分) 1.直线()为常数a a y x 03=+-的倾斜角为( ) A .3π B .6π C .32π D .65π2.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A . 0≠m B . 23-≠mC . 1≠mD . 1≠m ,23-≠m ,0≠m3.若两条直线x +(1 + m )y + m -2 = 0与mx + 2y + 8 = 0平行,则( ) A .m = 1或-2 B .m = 1 C .m =-2 D .32=m 4.以()1,3A ,()5,1B -为端点的线段的垂直平分线方程是( ) A .380x y --= B .340x y ++= C .360x y -+= D .320x y ++=5.若点()1,1+-m m A ,()m m B ,关于直线l 对称,则直线l 的方程是( ) A .01=-+y x B .01=+-y x C .01=++y x D .01=--y x6.在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )x y O x y O x y O xyO7.若直线0=++c by ax 在第一、二、三象限,则( )A .0,0>>bc abB .0,0<>bc abC .0,0><bc abD .0,0<<bc ab8.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( ) A . 4B .C .D .9.设A ,B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( ).A .x +y -5=0B .2x -y -1=0C .2y -x -4=0D .2x +y -7=010.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的斜率k 的取值范围是( )A . 34k ≥ B . 324k ≤≤C . 324k k ≥≤或 D . 2k ≤ 二、填空题:(本题共4小题,每小题5分,共20分)11.若三点A (-2,3),B (3,-2),C (21,m )共线,则m 的值为 .12.两直线230x y k +-=和120x ky -+=的交点在y 轴上,则k 的值是 .13.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是_______________.14.已知直线l 与直线3470x y +-=平行,并且与两坐标轴围成的三角形的面积为24,则直线l 的方程为________________ (用一般式表示)三、解答题:(本题共3小题,每小题10分,共30分)15.设直线l的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6(m∈R,m≠-1),根据下列条件分别求m的值:①l在x轴上的截距是-3;②斜率为1.16.求经过点(1,2)P,且使点(2,3)A,(0,5)B-到它的距离相等的直线方程。

最新高中数学必修2直线与方程单元测试试题及答案

最新高中数学必修2直线与方程单元测试试题及答案

精品文档 2第三章《直线与方程》单元测试题必修姓名班别 50分)小题,每小题5分,共一、选择题(本大题共10(4,2+),则此直线的倾斜角是()1.若直线过点(1,2),3A30°B45°C60°D90°2. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a=23、、 DA、 -3 B、-6 C?323.点P(-1,2)到直线8x-6y+15=0的距离为()17)(D (C)2 (A)(B)1 224. 点M(4,m)关于点N(n, - 3)的对称点为P(6,-9),则()A m=-3,n=10B m=3,n=10C m=-3,n=5D m=3,n=55.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是()A 3x-y-8=0 B 3x+y+4=0 C 3x-y+6=0 D 3x+y+2=06.过点M(2,1)的直线与X轴,Y轴分别交于P,Q两点,且|MP|=|MQ|,则L的方程是()A x-2y+3=0 B 2x-y-3=0 C 2x+y-5=0 D x+2y-4=07. 直线mx-y+2m+1=0经过一定点,则该点的坐标是A(-2,1) B (2,1) C (1,-2) D (1,2)8. 直线的位置关系是0?n?x?0和?2y2x?y?m(A)平行(B)垂直(C)相交但不垂直(D)不能确定x?y?2≤0,?y?y,x则的取值范围是(满足约束条件9. 已知变量)x≥1,?x?,07≤x?y??9??9????????,??6,??3,6,[36]...DC B.A6??,??,????55????10.已知A (1,2)、B(-1,4)、C(5,2),则ΔABC的边AB上的中线所在的直线方程为()(A)x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=0选择题答题表精品文档.精品文档分)4分,共20二、填空题(本大题共5小题,每小题 . 的距离相等的直线方程为和则过点且与11.已知点B,A)1,B(3,2),2C(?,A(?54). .过点P(1,2)且在X轴,Y轴上截距相等的直线方程是12 . 的距离是与直线10x+24y+5=013.直线5x+12y+3=0 . ,则直线L的方程为14.原点O在直线L上的射影为点H(-2,1)03??x?y??0y?x?________yx,y满足约束条件的最小值为,则2x+15.已设变量??3x??2??分)10分,共30(本大题共三、解答题3小题,每小题2x+3my+2m=0)(m-2直线17.x+my+6=0与直线16. ①求平行于直线3x+4y-12=0,且与它的.的值;没有公共点,求实数m距离是7的直线的方程P(-1,0)且与点②求垂直于直线x+3y-5=0,3的直线的方程.的距离是105l0??6?3xy03??yx和3?,且直3被两平行直线*18.已知直线所截得的线段长为精品文档.精品文档l的方程.),求直线线过点(1,0参考答案:1.A;2.B;3.B;4.D;5.B;6.D;7.A;8.C;9. ;10.A.1;14.2x-y+5=0; 或2x-y=0;13.11.x+4y-7=0或x=-1;12.x+y-3=02615. (1)3x+4y+23=0或3x+4y-47=0;(2)3x-y+9=0或3x-y-3=0.16.m=0或m=-1;17.x=1或3x-4y-3=0.精品文档.。

人教版数学必修2直线与方程单元测试题(最新整理)

人教版数学必修2直线与方程单元测试题(最新整理)

⎥ 第三章《直线与方程》单元测试题一、选择题1. 直线l 经过原点和点(-1,1) ,则它的倾斜角是( )A.3π B. 5 π π 5 C. 或 π D. - π 4 4 4 4 42. 斜率为2 的直线过(3,5),( a ,7),(-1, b )三点,则a , b 的值是( )A. a = 4 , b = 0 C. a = 4 , b = -3 B. a = -4 , b = -3 D. a = -4 , b = 33. 设点 A (2,- 3) , B (-3,- 2) ,直线过 P (1,1) 且与线段 AB 相交,则l 的斜率 k 的取值范围是 ()A. k ≥ 3 4 或k ≤ -4 B. -4 ≤ k ≤ 3 4 C. - 3 ≤ k ≤ 4 4 D.以上都不对4. 直线(a + 2)x + (1- a ) y - 3 = 0 与直线(a -1)x + (2a + 3) y + 2 = 0 互相垂直,则a = ( )A. -1B.1C. ±1D. - 325. 直线l 过点 A (1,2) ,且不过第四象限,那么直线l 的斜率的取值范围是()A. [0,2] B. [0,1] C. ⎡0 1 ⎤D. ⎛ 0 1 ⎫, ⎣ 2 ⎦, ⎪ ⎝ 2 ⎭6. 到两条直线3x - 4 y + 5 = 0 与5x -12 y +13 = 0 的距离相等的点 P (x ,y ) 必定满足方程()A. x - 4 y + 4 = 0B. 7x + 4 y = 0C. x - 4 y + 4 = 0 或4x - 8 y + 9 = 0D. 7x + 4 y = 0 或32x - 56 y + 65 = 07. 已知直线3x + 2 y - 3 = 0 和6x + my +1 = 0 互相平行,则它们之间的距离是()A. 4B.2 1313C. 5 1326 D. 7 13268.已知等腰直角三角形 ABC 的斜边所在的直线是3x - y + 2 = 0 ,直角顶点是C (3,- 2) ,则两条直角边 AC , BC 的方程是( )A. 3x - y + 5 = 0 , x + 2 y - 7 = 0B. 2x + y - 4 = 0 , x - 2 y - 7 = 0C. 2x - y + 4 = 0 , 2x + y - 7 = 0D. 3x - 2 y - 2 = 0 , 2x - y + 2 = 09. 入射光线线在直线l 1 : 2x - y - 3 = 0 上,经过 x 轴反射到直线l 2 上,再经过 y 轴反射到直线l 3 上,则直线l 3 的方程为( )⎢3⎨ ⎩ ⎨ ⎩ A. x - 2 y + 3 = 0 B. 2x - y + 3 = 0 C. 2x + y - 3 = 0 D. 2x - y + 6 = 0⎧x - y + 5 ≥ 0 10. 已知 x ,y 满足⎪x ≤ 3 ⎪x + y + k ≥ 0,且 z =2x +4y 的最小值为-6,则常数 k =()A.2B.9C. D.0二、填空题 11. 已知三点(2,- 3) , (4,3) 及(5 k ) 在同一条直线上,则k 的值是., 2 12. 在 y 轴上有一点 m , 它与点 (- 为.3,1) 连成的直线的倾斜角为 120þ , 则点 m 的坐标13. 设点 P 在直线 x + 3y = 0 上,且 P 到原点的距离与 P 到直线 x + 3y - 2 = 0 的距离相等,则点 P 坐标是 .14. 直线l 过直线2x - y + 4 = 0 与 x - 3y + 5 = 0 的交点,且垂直于直线 y = 1x ,则直线l 的方程2是 . ⎧x + y - 3 ≥ 0 15. 若 x ,y 满足⎪x - y + 1 ≥ 0 ⎪3x - y - 5 ≤ 0,设 y = kx ,则 k 的取值范围是 .三、解答题16. 已知 ∆ABC 中, 点 A(1,2), AB 边和 AC 边上的中线方程分别是 5x - 3y - 3 = 0 和7x - 3y - 5 = 0 ,求 BC 所在的直线方程的一般式。

完整版高中数学必修2直线与方程单元测试题

完整版高中数学必修2直线与方程单元测试题

必修2第3章《直线的方程》单元测试题一、选择题(?11),l,则它的倾斜角是()1. 直线经过原点和点3?5?5????A.或D.B.C.44444aa bb2,)(,-1,的值是()2. 斜率为三点,则的直线过(3,5),( ,7)4??b?0aa?43??bA.B.,,3b?a??4a?43??bD.,C.,A(2,?3)B(?3,?2)P(11),kABl的取值范围是(,设点的斜率且与线段)相交,则,直线过3.333?≤k≤4≥k≤k?4≤4?k≤D.以上都不对B.C.或A.444a?0?2??(2a?3)ya)y?3?0(a?1)x(1(a?2)x??(与直线)4. 直线互相垂直,则3?111??A.C.B.D.2??2A,1ll的斜率的取值范围是( 5. 直线)过点,????,0,0,010,2A.D.C.B.????且不过第四象限,那么直线11????22????3x?4y?5?05x?12y?13?0P(x,y)必定满足方程(到两条直线6. 与的距离相等的点)x?4y?4?07x?4y?0B.A.x?4y?4?04x?8y?9?07x?4y?032x?56y?65?0D.C.或或3x?2y?3?06x?my?1?0互相平行,则它们之间的距离是(和) 7. 已知直线2135713134B.A.C.D.1326263x?y?2?0C(3,?2)ABC,则两条直角边,直角顶点是的斜边所在的直线是8. 已知等腰直角三角形ACBC的方程是(,)3x?y?5?0x?2y?7?02x?y?4?0x?2y?7?0A.,B.,2x?y?4?02x?y?7?03x?2y?2?02x?y?2?0,C.,D.lll y x0??2xy?3上,则上,经过入射光线线在直线9. :轴反射到直线轴反射到直线上,再经过132l)直线的方程为(3.06??y?y?3?02x3?02x?y?3?02x?yx?2?D.A.B.C.05??y?x??3x?kxyxyz)=10.已知(,+4满足的最小值为-6,且,则常数=2??0?y?kx??3D.C.0 A.2 B.9二、填空题k),(53),(2,?3)(4k.,的值是及 11. 已知三点在同一条直线上,则2(?,31)mm y t120的坐标为在轴上有一点,它与点.连成的直线的倾斜角为,则点12.x?3y?0x?3y?2?0PPPP坐标13. 设点的距离相等,则点在直线到原点的距离与上,且到直线是.1xy?0??5?y?40x?3y2x?ll的方程的交点,且垂直于直线,则直线14. 直线与过直线2.是x?y?3?0??x?y?1?0y?kx kyx的取值范围是若,满足,则.,设 15.??3x?y?5?0?三、解答题5x?3y?3?07x?3y?5?0ABC?,求边上的中线方程分别是16. 已知和A(1,2)中,点,AB边和ACBC所在的直线方程的一般式。

《直线与方程》单元测试题

《直线与方程》单元测试题

人教A 必修2第三章《直线与方程》单元测试题(时间:60分钟,满分:100分) 班别 座号 姓名 成绩一、选择题(本大题共10小题,每小题5分,共50分)1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是( )A 30° B 45° C 60° D 90°2. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a=A 、 -3B 、-6C 、23-D 、323.点P (-1,2)到直线8x-6y+15=0的距离为( )(A )2 (B )21 (C )1 (D )27 4. 点M(4,m )关于点N(n, - 3)的对称点为P(6,-9),则( ) A m =-3,n =10 B m =3,n =10C m =-3,n =5 D m =3,n =55.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( ) A 3x-y-8=0 B 3x+y+4=0C 3x-y+6=0D 3x+y+2=06.过点M(2,1)的直线与X轴,Y轴分别交于P,Q两点,且|MP|=|MQ|, 则L的方程是( )A x-2y+3=0 B 2x-y-3=0C 2x+y-5=0D x+2y-4=07. 直线mx-y+2m+1=0经过一定点,则该点的坐标是A (-2,1)B (2,1)C (1,-2)D (1,2)8. 直线0202=++=++n y x m y x 和的位置关系是(A )平行 (B )垂直 (C )相交但不垂直 (D )不能确定9. 如图1,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有A. k 1<k 3<k 2B. k 3<k 1<k 2C. k 1<k 2<k 3D. k 3<k 2<k 110.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在的直线方程为( )(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=011点(3,9)关于直线x +3y -10=0对称的点的坐标是( )A (-1,-3)B (17,-9)C (-1,3)D (-17,9)12方程(a -1)x -y +2a +1=0(a ∈R )所表示的直线( ) A 恒过定点(-2,3) B 恒过定点(2,3) C 恒过点(-2,3)和点(2,3) D 都是平行直线13直线x tan 3π+y =0的倾斜角是( ) A -3π B 3π C 3π2 D 3π2- 二、填空题(本大题共4小题,每小题5分,共20分)1.已知点)4,5(-A 和),2,3(B 则过点)2,1(-C 且与B A ,的距离相等的直线方程为 .2.过点P(1,2)且在X轴,Y轴上截距相等的直线方程是 .3.直线5x+12y+3=0与直线10x+24y+5=0的距离是 .4.原点O在直线L上的射影为点H(-2,1),则直线L的方程为 .三、解答题(本大题共3小题,每小题10分,共30分)1. ①求平行于直线3x+4y-12=0,且与它的2.直线x+m 2y+6=0与直线(m-2)x+3my+2m=0距离是7的直线的方程; 没有公共点,求实数m 的值.②求垂直于直线x+3y-5=0, 且与点P(-1,0)的距离是1053的直线的方程.*3.已知直线l 被两平行直线063=-+y x 033=++y x 和所截得的线段长为3,且直线过点(1,0),求直线l 的方程.参考答案:;;;;;;;;; A 12 A 13 C+4y-7=0或x=-1; +y-3=0或2x-y=0; 3.261; +5=0; 15. (1)3x+4y+23=0或3x+4y-47=0;(2)3x-y+9=0或3x-y-3=0. =0或m=-1;=1或3x-4y-3=0.。

《必修2》第三章“直线与方程”测试题(含答案)

《必修2》第三章“直线与方程”测试题(含答案)

《必修2》第三章“直线与方程”测试题(含答案)《必修2》第三章“直线与方程”测试题一.选择题:1. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )x y O x y O x y O xyOA B C D2.若直线20x ay ++=和2310x y ++=互相垂直,则a =( )A .32-B .32C .23- D .23 3.过11(,)x y 和22(,)x y 两点的直线的方程是( )111121212112211211211211...()()()()0.()()()()0y y x x y y x x A B y y x x y y x x C y y x x x x y y D x x x x y y y y ----==---------=-----=4.直线2350x y +-=关于直线y x =对称的直线方程为( ) A 、3x+2y-5=0 B 、2x-3y-5=0C 、3x+2y+5=0D 、3x-2y-5=05 如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )23-二.填空题:11. 过点(1,2)且在两坐标轴上的截距相等的直线的方程方程1=+y x 表示的图形所围成的封闭区域的面积为_________13 点(,)P x y 在直线40x y +-=上,则22xy +的最小值是________14 直线10x y -+=上一点P 的横坐标是3,若该直线绕点P 逆时针旋转090得直线l ,则直线l 的方程是15 已知直线,32:1+=x y l若2l 与1l 关于y 轴对称,则2l 的方程为__________;23y x =-+三、解答题16.求过点(5,4)A --的直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为517. 一直线被两直线0653:,064:21=--=++y x l y x l 截得线段的中点是P 点,当P 点为(0,0)时,求此直线方程18.直线313y x =-+和x 轴,y 轴分别交于点,A B ,在线段AB为边在第一象限内作等边△ABC ,如果在第一象限内有一点1(,)2P m 使得△ABP 和△ABC 的面积相等, 求m 的值19.已知三角形ABC的顶点坐标为A(-1,5)、B (-2,-1)、C(4,3),M是BC边上的中点。

(完整版)必修二《直线与方程》单元测试题(含详细答案)

(完整版)必修二《直线与方程》单元测试题(含详细答案)

第三章《直线与方程》单元检测试题 时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题 5分,共60分,在每小题给出的四个选项中 只有一个是符合题目要求的 )1 .已知点A (1 ,邓),B (-1, 3>/3),则直线AB 的倾斜角是()A. 60°B. 30°C. 120°D. 150°[答案]C2 .直线l 过点P ( —1,2),倾斜角为45° ,则直线l 的方程为()A. x —y+1=0B. x-y- 1 = 0C. x-y-3= 0D. x-y+3=0[答案]D3 .如果直线 ax+ 2y+2=0与直线3x —y —2=0平行,则a 的值为(A. - 3 C. [答案]B4 .直线二—1在y 轴上的截距为()a b2A. | b |B. — bC. b 2D. ± b[答案]B5 .已知点A (3,2) , B ( -2, a ), C (8,12)在同一条直线上,则 a 的值是( )A. 0B. - 4C. — 8D. 4[答案]C6 .如果 AB :0, B «0,那么直线 Ax+ By+ C= 0不经过( )A.第一象限B.第二象限C.第三象限D.第四象限[答案]D7 .已知点A (1 , —2), B ( m,2),且线段 AB 的垂直平分线的方程是 x+2y-2=0,则实数m 的值是()B. - 6 D.A. - 2 D. 1[答案]C8.经过直线l i : x —3y+4=0和l 2: 2x + y=5= 0的交点,并且经过原点的直线方程是 ()A. 19x-9y= 0B. 9x+19y=0C. 3x+ 19y =0D. 19x-3y=0[答案]C9.已知直线(3k-1)x+(k+2)y-k=0,则当k 变化时,所有直线都通过定点 ( )_ 1 2 A. (0,0) B. (7,-) 2 1 1 1 c (7,7) D (7, ―)[答案]C10 .直线x-2y+ 1 = 0关于直线x=1对称的直线方程是( )A. x + 2y-1 = 0B. 2x+y-1 = 0C. 2x+ y —3=0D. x+2y-3=0[答案]D11 .已知直线l 的倾斜角为135° ,直线11经过点A (3,2) , B(a, —1),且11与l 垂直, 直线 g 2x + by+1 = 0与直线l 1平行,则a+ b 等于()A. - 4B. - 2C. 0D. 2[答案]B12 .等腰直角三角形 ABC\ / C= 90。

新课标高一数学必修2直线与方程同步单元测试题_(1)

新课标高一数学必修2直线与方程同步单元测试题_(1)

新课标数学必修2第三章直线与方程测试题一、选择题(每题5分,共50分)1.直线x+6y+2=0在x 轴和y 轴上的截距分别是( ) A.213, B.--213, C.--123, D.-2,-3 2.直线3x+y+1=0和直线6x+2y+1=0的位置关系是( )A.重合B.平行C.垂直D.相交但不垂直3.直线过点 (-3,-2)且在两坐标轴上的截距相等,则这直线方程为( )(A )2x -3y =0; (B )x +y +5=0;(C )2x -3y =0或x +y +5=0 (D )x +y +5或x -y +5=04.直线x=3的倾斜角是( ) A.0 B.2π C.π D.不存在 5.点(-1,2)关于直线y = x -1的对称点的坐标是 (A )(3,2) (B )(-3,-2) (C )(-3,2)(D )(3,-2) 6.点(2,1)到直线3x -4y + 2 = 0的距离是(A )54 (B )45 (C )254 (D )425 7.直线x - y + 3 = 0的倾斜角是( )(A )30° (B )45° (C )60° (D )90°8.与直线l :3x -4y +5=0关于x 轴对称的直线的方程为(A )3x +4y -5=0 (B )3x +4y +5=0(C )-3x +4y -5=0 D )-3x +4y +5=09.设a 、b 、c 分别为 ABC 中∠A 、∠B 、∠C 对边的边长,则直线x sin A +ay +c =0与直线bx -y sin B +sin C =0的位置关系( )(A )平行; (B )重合; (C )垂直;(D )相交但不垂直10.直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平1个单位后,又回到原来位置,那么l 的斜率为( )(A )-;31B )-3; (C );31 (D )3 一、填空题(每题4分,共16分)11.直线,31k y kx =+-当k 变动时,所有直线都通过定点12.直线过原点且倾角的正弦值是54,则直线方程为 13.直线mx +ny =1(mn ≠0)与两坐标轴围成的三角形面积为14.如果三条直线mx +y +3=0,x -y -2=0,2x -y +2=0不能成为一个三角形三边所在的直线,那么m 的值是15.已知两条直线l 1:y =x ;l 2:ax -y =0(a ∈R ), 当l 2是l 1绕l 1与l 2交点旋转θ得到的直线,⎪⎭⎫ ⎝⎛∈120πθ,时,则a 的取值范围为三、解答题C ABP 16.若N a ∈,又三点A(a ,0),B (0,4+a ),C (1,3)共线,求a 的值17. 菱形的两条对角线长分别等于8和6,并且分别位于轴和轴上,求菱形各边所在的直线的方程。

高中数学必修二第三章《直线与方程》单元测试卷及答案

高中数学必修二第三章《直线与方程》单元测试卷及答案

高中数学必修二第三章《直线与方程》单元测试卷及答案((2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,直线l1、l2、l3的斜率分别为k1、k2、k3,则必有()A.k1<k3<k2 B.k3<k1<k2 C.k1<k2<k3 D.k3<k2<k12.直线x+2y-5=0与2x+4y+a=0之间的距离为5,则a等于()A.0 B.-20 C.0或-20 D.0或-103.若直线l1:ax+3y+1=0与l2:2x+(a+1)y+1=0互相平行,则a的值是()A.-3 B.2 C.-3或2 D.3或-24.下列说法正确的是()A.经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示B.经过定点A(0,b)的直线都可以用方程y=kx+b表示C.不经过原点的直线都可以用方程xa+yb=1表示D.经过任意两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示5.点M(4,m)关于点N(n,-3)的对称点为P(6,-9),则()A.m=-3,n=10 B.m=3,n=10C.m=-3,n=5 D.m=3,n=56.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是()A.3x-y-8=0 B.3x+y+4=0C.3x-y+6=0 D.3x+y+2=07.过点M(2,1)的直线与x轴,y轴分别交于P,Q两点,且|MP|=|MQ|,则l的方程是()A.x-2y+3=0 B.2x-y-3=0C .2x +y -5=0D .x +2y -4=08.直线mx -y +2m +1=0经过一定点,则该点的坐标是( ) A .(-2,1)B .(2,1)C .(1,-2)D .(1,2)9.如果AC <0且BC <0,那么直线Ax +By +C =0不通过( ) A .第一象限B .第二象限C .第三象限D .第四象限10.直线2x +3y -6=0关于点(1,-1)对称的直线方程是( ) A .3x -2y +2=0 B .2x +3y +7=0 C .3x -2y -12=0D .2x +3y +8=011.已知点P (a ,b )和Q (b -1,a +1)是关于直线l 对称的两点,则直线l 的方程是( ) A .x +y =0 B .x -y =0C .x +y -1=0D .x -y +1=012.设x +2y =1,x ≥0,y ≥0,则x 2+y 2的最小值和最大值分别为( ) A .15,1B .0,1C .0,15D .15,2二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.不论a 为何实数,直线(a +3)x +(2a -1)y +7=0恒过第________象限. 14.原点O 在直线l 上的射影为点H (-2,1),则直线l 的方程为______________. 15.经过点(-5,2)且横、纵截距相等的直线方程是____________________. 16.与直线3x +4y +1=0平行且在两坐标轴上截距之和为73的直线l 的方程为______________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知直线2x +(t -2)y +3-2t =0,分别根据下列条件,求t 的值: (1)过点(1,1);(2)直线在y 轴上的截距为-3.18.(12分)直线l 过点(1,4),且在两坐标轴上的截距的积是18,求此直线的方程.19.(12分)光线从A(-3,4)点出发,到x轴上的点B后,被x轴反射到y轴上的C点,又被y轴反射,这时反射光线恰好过D(-1,6)点,求直线BC的方程.20.(12分)如图所示,某县相邻两镇在一平面直角坐标系下的坐标为A(1,2),B(4,0),一条河所在的直线方程为l:x+2y-10=0,若在河边l上建一座供水站P,使之到A,B两镇的管道最省,那么供水站P应建在什么地方?21.(12分)已知△ABC的顶点A为(3,-1),AB边上的中线所在直线方程为6x+10y-59=0,∠B的平分线所在直线方程为x-4y+10=0,求BC边所在直线的方程.22.(12分)已知直线l过点P(3,1),且被两平行直线l1:x+y+1=0和l2:x+y+6=0截得的线段长度为5,求直线l的方程.答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】A【解析】由于直线1l 向左倾斜,故10k <,直线2l 与直线3l 均向右倾斜,且2l 更接近y 轴,所以:1320k k k <<<,故选A . 2.【答案】C 3.【答案】A 4.【答案】D【解析】斜率有可能不存在,截距也有可能不存在.故选D . 5.【答案】D【解析】由对称关系462n =+,239m -=-,可得m =3,n =5.故选D . 6.【答案】B【解析】所求直线过线段AB 的中点(-2,2),且斜率k =-3, 可得直线方程为3x +y +4=0.故选B . 7.【答案】D【解析】由题意可知M 为线段PQ 的中点,Q (0,2),P (4,0), 可求得直线l 的方程x +2y -4=0.故选D . 8.【答案】A【解析】将原直线化为点斜式方程为y -1=m (x +2), 可知不论m 取何值直线必过定点(-2,1).故选A . 9.【答案】C【解析】将原直线方程化为斜截式为A Cy x B B=--,由AC <0且BC <0,可知AB >0,直线斜率为负,截距为正,故不过第三象限.故选C . 10.【答案】D【解析】所求直线与已知直线平行,且和点(1,-1)等距, 不难求得直线为2x +3y +8=0.故选D . 11.【答案】D 【解析】∵k PQ =11a bb a+---=-1,∴k l =1.显然x -y =0错误,故选D .12.【答案】A【解析】x 2+y 2为线段AB 上的点与原点的距离的平方,由数形结合知, O 到线段AB 的距离的平方为最小值,即d 2=15,|OB |2=1为最大值.故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】二【解析】直线方程可变形为:(3x -y +7)+a (x +2y )=0.由⎩⎪⎨⎪⎧ 3x -y +7=0x +2y =0得,⎩⎪⎨⎪⎧x =-2y =1. ∴直线过定点(-2,1).因此直线必定过第二象限. 14.【答案】2x -y +5=0【解析】所求直线应过点(-2,1)且斜率为2,故可求直线为2x -y +5=0. 15.【答案】y =-25x 或x +y +3=0【解析】不能忽略直线过原点的情况. 16.【答案】3x +4y -4=0【解析】所求直线可设为3x +4y +m =0,再由-3m -4m =73,可得m =-4.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)3;(2)95.【解析】(1)代入点(1,1),得2+(t -2)+3-2t =0,则t =3.(2)令x =0,得y =232t t --=-3,解得t =95.18.【答案】2x +y -6=0或8x +y -12=0. 【解析】设直线l 的方程为x a +yb =1,则18141ab a b=⎧⎪⎨+=⎪⎩,解得36a b =⎧⎨=⎩或3212a b ⎧=⎪⎨⎪=⎩ 则直线l 的方程2x +y -6=0或8x +y -12=0. 19.【答案】5x -2y +7=0. 【解析】如图所示,由题设,点B 在原点O 的左侧,根据物理学知识,直线BC 一定过(-1,6)关于y 轴的对称点(1,6),直线AB 一定过(1,6)关于x 轴的对称点(1,-6)且k AB =k CD , ∴k AB =k CD =4631+--=-52.∴AB 方程为y -4=-52(x +3). 令y =0,得x =-75,∴B 7,05⎛⎫- ⎪⎝⎭.CD 方程为y -6=-52(x +1). 令x =0,得y =72,∴C 70,2⎛⎫ ⎪⎝⎭. ∴BC 的方程为75x -+72y=1,即5x -2y +7=0.20.【答案】见解析. 【解析】如图所示,过A 作直线l 的对称点A ′,连接A ′B 交l 于P , 若P ′(异于P )在直线上,则|AP ′|+|BP ′|=|A ′P ′|+|BP ′|>|A ′B |. 因此,供水站只有在P 点处,才能取得最小值,设A ′(a ,b ), 则AA ′的中点在l 上,且AA ′⊥l ,即1221002221112a b a a ++⎧+⨯-=⎪⎪⎨-⎛⎫⎪⋅-=- ⎪⎪-⎝⎭⎩解得36a b =⎧⎨=⎩即A ′(3,6).所以直线A ′B 的方程为6x +y -24=0,解方程组⎩⎪⎨⎪⎧6x +y -24=0,x +2y -10=0,得38113611x y ⎧=⎪⎪⎨⎪=⎪⎩所以P 点的坐标为⎝⎛⎭⎫3811,3611.故供水站应建在点P ⎝⎛⎭⎫3811,3611处. 21.【答案】2x +9y -65=0. 【解析】设B (4y 1-10,y 1),由AB 中点在6x +10y -59=0上,可得:114716+1059=22y y --⋅⋅-0,y 1=5, 所以B (10,5).设A 点关于x -4y +10=0的对称点为A ′(x ′,y ′),则有3141002211134x y y x ''''⎧+--⋅+=⎪⎪⎨+⎪⋅=-⎪-⎩⇒A ′(1,7),∵点A ′(1,7),B (10,5)在直线BC 上,∴51075110y x --=--,故BC :2x +9y -65=0. 22.【答案】x =3或y =1.【解析】若直线l 的斜率不存在,则直线l 的方程为x =3,此时与直线l 1,l 2的交点分别为A (3,-4),B (3,-9).截得的线段AB 的长为|AB |=|-4+9|=5,符合题意. 若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1.解方程组()311y k x x y ⎧=-+⎪⎨++=0⎪⎩得321411k x k k y k -⎧=⎪⎪+⎨-⎪=-⎪+⎩所以点A 的坐标为3241,11k k k k --⎛⎫- ⎪++⎝⎭.解方程组()316y k x x y ⎧=-+⎪⎨++=0⎪⎩得371911k x k k y k -⎧=⎪⎪+⎨-⎪=-⎪+⎩,所以点B 的坐标为3791,11k k k k --⎛⎫- ⎪++⎝⎭.因为|AB |=5,所以2232374191=251111k k k k k k k k --⎡--⎤⎛⎫⎛⎫⎛⎫-+--- ⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎣⎦. 解得k =0,即所求直线为y =1.综上所述,所求直线方程为x =3或y =1.单元测试二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l 经过两点()()1,2,2,1P Q -,那么直线l 的斜率为( )A .3-B .13-C .13D .32.直线l 过点P (-1,2),倾斜角为45°,则直线l 的方程为( ) A .x -y +1=0 B .x -y -1=0 C .x -y -3=0D .x -y +3=03.如果直线ax +2y +2=0与直线3x -y -2=0平行,则a 的值为( ) A .-3 B .-6C .32D .234.直线2x a -2y b =1在y 轴上的截距为( ) A .|b |B .-b 2C .b 2D .±b5.已知点A (3,2),B (-2,a ),C (8,12)在同一条直线上,则a 的值是( ) A .0B .-4C .-8D .46.如果AB <0,BC <0,那么直线Ax +By +C =0不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限7.已知点A (1,-2),B (m,2),且线段AB 的垂直平分线的方程是x +2y -2=0, 则实数m 的值是( )A .-2B .-7C .3D .18.经过直线l 1:x -3y +4=0和l 2:2x +y =5=0的交点,并且经过原点的直线方程是( ) A .19x -9y =0 B .9x +19y =0 C .3x +19y =0D .19x -3y =09.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点( ) A .(0,0)B .(17,27) C .(27,17) D .(17,114) 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0D .x +2y -3=011.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( ) A .-4B .-2C .0D .212.等腰直角三角形ABC 中,∠C =90°,若点A ,C 的坐标分别为(0,4),(3,3), 则点B 的坐标可能是( ) A .(2,0)或(4,6)B .(2,0)或(6,4)C .(4,6)D .(0,2)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.直线l 与直线y =1,x -y -7=0分别交于A ,B 两点,线段AB 的中点为 M (1,-1),则直线l 的斜率为_________.14.点A (3,-4)与点B (5,8)关于直线l 对称,则直线l 的方程为_________.15.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为_________.16.若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是①15°;②30°;③45°;④60°;⑤75°,其中正确答案的序号是_________.(写出所有正确答案的序号)三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知直线l 经过点P (-2,5)且斜率为-34,(1)求直线l 的方程;(2)若直线m 平行于直线l ,且点P 到直线m 的距离为3,求直线m 的方程.18.(12分)求经过两直线3x -2y +1=0和x +3y +4=0的交点,且垂直于直线 x +3y +4=0的直线方程.19.(12分)已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,求一点P , 使|P A |=|PB |,且点P 到直线l 的距离等于2.20.(12分)△ABC 中,A (0,1),AB 边上的高CD 所在直线的方程为x +2y -4=0,AC 边上的中线BE 所在直线的方程为2x +y -3=0. (1)求直线AB 的方程; (2)求直线BC 的方程; (3)求△BDE 的面积.21.(12分)直线过点P (43,2)且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在这样的直线同时满足下列条件: (1)△AOB 的周长为12; (2)△AOB 的面积为6.若存在,求直线的方程;若不存在,请说明理由.22.(12分)在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB ,AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合,如图,将矩形折叠,使A 点落在线段DC 上.(1)若折痕所在直线的斜率为k,试求折痕所在直线的方程;(2)当-2+3≤k≤0时,求折痕长的最大值.答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】C【解析】根据斜率公式可得,直线l的斜率121213k-==--,故选C.2.【答案】D【解析】由题意k=tan45°=1,∴直线l的方程为y-2=1·(x+1),即x-y+3=0,故选D.3.【答案】B【解析】由题意得a·(-1)-2×3=0,∴a=-6,故选B.4.【答案】B【解析】令x=0,则y=-b2,故选B.5.【答案】C【解析】根据题意可知k AC=k AB,即12283--=223a---,解得a=-8,故选C.6.【答案】D【解析】Ax+By+C=0可化为y=-ABx-CB,由AB<0,BC<0,得-AB>0,-CB>0,故直线Ax+By+C=0经过第一、二、三象限,不经过第四象限.故选D.7.【答案】C【解析】由已知条件可知线段AB 的中点(12m+,0)在直线x +2y -2=0上, 把中点坐标代入直线方程,解得m =3,故选C . 8.【答案】C【解析】解340250x y x y -+=⎧⎨-+=⎩得19737x y ⎧=-⎪⎪⎨⎪=⎪⎩,即直线l 1,l 2的交点是(-197,37),由两点式可得所求直线的方程是3x +19y =0,故选C . 9.【答案】C【解析】直线方程变形为k (3x +y -1)+(2y -x )=0,则直线通过定点(27,17). 故选C . 10.【答案】D【解析】将“关于直线对称的两条直线”转化为“关于直线对称的两点”:在直线x -2y +1=0上取一点P (3,2),点P 关于直线x =1的对称点P ′(-1,2)必在所求直线上,故选D . 11.【答案】B【解析】因为l 的斜率为tan135°=-1,所以l 1的斜率为1,所以k AB =()213a---=1,解得a=0.又l 1∥l 2,所以-2b=1,解得b =-2,所以a +b =-2,故选B . 12.【答案】A【解析】设B (x ,y ),根据题意可得1AC BC k k BC AC ⋅=-⎧⎪⎨=⎪⎩,即3431303y x --⎧⋅=-⎪--=⎩⎪⎨⎪⎧ x =2y =0或⎩⎪⎨⎪⎧x =4y =6, 所以B (2,0)或B (4,6).故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】-23【解析】设A (x 1,y 1),B (x 2,y 2),则y 1+y 22=-1,又y 1=1,∴y 2=-3,代入方程x -y -7=0,得x 2=4,即B (4,-3),又x 1+x 22=1,∴x 1=-2,即A (-2,1),∴k AB =()3142----=-23.14.【答案】x +6y -16=0【解析】直线l 就是线段AB 的垂直平分线,AB 的中点为(4,2),k AB =6, 所以k l =-16,所以直线l 的方程为y -2=-16(x -4),即x +6y -16=0.15.【答案】3 2【解析】依题意,知l 1∥l 2,故点M 所在直线平行于l 1和l 2,可设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式,得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=32.16.【答案】①⑤【解析】两平行线间的距离为d =|3-1|1+1=2,由图知直线m 与l 1的夹角为30°,l 1的倾斜角为45°, 所以直线m 的倾斜角等于30°+45°=75°或45°-30°=15°.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)3x +4y -14=0;(2)3x +4y +1=0或3x +4y -29=0. 【解析】(1)直线l 的方程为:y -5=-34(x +2)整理得3x +4y -14=0.(2)设直线m 的方程为3x +4y +n =0, d|3245|n ⨯-+⨯+=3,解得n =1或-29.∴直线m 的方程为3x +4y +1=0或3x +4y -29=0. 18.【答案】3x -y +2=0.【解析】解法一:设所求直线方程为3x -2y +1+λ(x +3y +4)=0, 即(3+λ)x +(3λ-2)y +(1+4λ)=0,由所求直线垂直于直线x +3y +4=0, 得-13·(-3+λ3λ-2)=-1,解得λ=310,故所求直线方程是3x -y +2=0.解法二:设所求直线方程为3x -y +m =0.由⎩⎪⎨⎪⎧ 3x -2y +1=0,x +3y +4=0,解得⎩⎪⎨⎪⎧x =-1,y =-1,即两已知直线的交点为(-1,-1). 又3x -y +m =0过点(-1,-1),故-3+1+m =0,m =2. 故所求直线方程为3x -y +2=0.19.【答案】P (1,-4)或P (277,-87).【解析】解法1:设点P (x ,y ).因为|P A |=|PB |,① 又点P 到直线l 的距离等于2,所以|4x +3y -2|5=2.②由①②联立方程组,解得P (1,-4)或P (277,-87).解法2:设点P (x ,y ).因为|P A |=|PB |,所以点P 在线段AB 的垂直平分线上.由题意知k AB =-1,线段AB 的中点为(3,-2),所以线段AB 的垂直平分线的方程是y =x -5,所以设点P (x ,x -5). 因为点P 到直线l 的距离等于2,所以()|4352|5x x +--=2,解得x =1或x =277,所以P (1,-4)或P (277,-87).20.【答案】(1)2x -y +1=0;(2)2x -y +1=0;(3)110.【解析】(1)由已知得直线AB 的斜率为2,∴AB 边所在的直线方程为y -1=2(x -0),即2x -y +1=0.(2)由⎩⎪⎨⎪⎧2x -y +1=0,2x +y -3=0得⎩⎪⎨⎪⎧x =12,y =2.即直线AB 与直线BE 的交点为B (12,2).设C (m ,n ),则由已知条件得⎩⎪⎨⎪⎧m +2n -4=0,2·m 2+n +12-3=0,解得⎩⎪⎨⎪⎧m =2,n =1,∴C (2,1).∴BC 边所在直线的方程为y -12-1=x -212-2,即2x +3y -7=0.(3)∵E 是线段AC 的中点,∴E (1,1).∴|BE |=52,由⎩⎪⎨⎪⎧2x -y +1=0,x +2y -4=0得⎩⎨⎧x =25,y =95,∴D (25,95),∴D 到BE 的距离为d =|2×25+95-3|22+12=255,∴S △BDE =12·d ·|BE |=110. 21.【答案】)存在,3x +4y -12=0.【解析】设直线方程为x a +yb =1(a >0,b >0),若满足条件(1),则a +b +a 2+b 2=12 ① 又∵直线过点P (43,2),∵43a +2b=1.②由①②可得5a 2-32a +48=0,解得⎩⎪⎨⎪⎧a =4,b =3,或⎩⎨⎧a =125,b =92,∴所求直线的方程为x 4+y 3=1或5x 12+2y9=1,即3x +4y -12=0或15x +8y -36=0,若满足条件(2),则ab =12,③ 由题意得,43a +2b=1,④由③④整理得a 2-6a +8=0,解得⎩⎪⎨⎪⎧ a =4,b =3或⎩⎪⎨⎪⎧a =2,b =6,∴所求直线的方程为x 4+y 3=1或x 2+y6=1,即3x +4y -12=0或3x +y -6=0.综上所述:存在同时满足(1)(2)两个条件的直线方程,为3x +4y -12=0. 22.【答案】(1)y =kx +k 22+12;(2)2(6-2).【解析】(1)①当k =0时,A 点与D 点重合,折痕所在的直线方程为y =12.②当k ≠0时,将矩形折叠后A 点落在线段DC 上的点记为G (a,1), ∴A 与G 关于折痕所在的直线对称,有k OG ·k =-1⇒1a·k =-1⇒a =-k ,故G 点坐标为(-k,1),从而折痕所在直线与OG 的交点坐标(即线段OG 的中点)为M (-k 2,12).故折痕所在的直线方程为y -12=k (x +k 2),即y =kx +k 22+12.由①②得折痕所在的直线方程为y =kx +k 22+12.(2)当k =0时,折痕的长为2.当-2+3≤k <0时,折痕所在直线交直线BC 于点E (2,2k +k 22+12),交y 轴于点N (0,k 2+12).则|NE |2=22+[k 2+12-(2k +k 22+12)]2=4+4k 2≤4+4(7-43)=32-163.此时,折痕长度的最大值为32-163=2(6-2).而2(6-2)>2,故折痕长度的最大值为2(6-2).。

高中数学必修二直线与方程单元练习题(精选.)

高中数学必修二直线与方程单元练习题(精选.)

直线与方程练习一、填空题(5分*18=90分)1.若直线过点(、后,一3)且倾斜角为30。

,则该直线的方程为;2.如果4(3,1)、8(-2,k)、H8, 11),在同一直线上,那么A的值是;3.两条直线3x + 2y + /〃 = 0和+ l)x - 3y + 2 - =0的位置关系是;4.直线X-2),+。

=。

与两坐标轴所围成的三角形的面积不大于1 ,那么〃的取值范围是5.经过点(-2,—3),在x轴、y轴上截距相等的直线方程是;6.已知直线至互相平行,则它们之间的距离是: 7、过点A (1,2)且与原点距离最大的直线方程是:8.三直线aw+2y+8=0, 4x+3y=10, 2x—y=10相交于一点,则a的值是:9.已知点A(—1,2), B(2-2), C(0,3),若点M(a,b) (a # 0)是线段AB上的一点,则直线CM的斜率的取值范围是:10.若动点4匹,y )、5(巧,当)分别在直线11: 1 + 又-7 =0和-:x+y-5 = 0上移动,则中点M 到原点距离的最小值为:11.与点A(l,2)距离为1,且与点B(3,l)距离为2的直线有条.12.直线/过原点,且平分68CD的面积,若8(1, 4)、D(5,0),则直线/的方程是.13.当Ovkv;时,两条直线&X—丁 =攵-1、ky —工=2攵的交点在象限.14.过点(1, 2)且在两坐标轴上的截距相等的直线的方程;15.直线y=1x关于直线x=l对称的直线方程是;16.已知43,1)、5(-1,2),若NAC5的平分线在_y=x+l上,则AC所在直线方程是.”.光线从点A(2,3)射出在直线/: x + y +1 = 0上,反射光线经过点8(11),则反射光线所在直线的方程18.点A (1, 3), B(5, -2),点P在x轴上使|AP|-18Pl最大,则P的坐标为:二懈答题(1。

分*4+15分*2=70分)19.已知直线/: Ax-y+l+M=O伏WR).(1)证明:直线/过定点;(2)若直线/不经过第四象限,求上的取值范围;(3)若直线,交x轴负半轴于点A,交y轴正半轴于点B, O为坐标原点,设ZvlOB的面积为4,求直线,的方程.20. (1)要使直线Zi: (2〃/+机- 3)x + (〃J 一机)y = 2〃?与直线A: x-y=l平行,求m的值.(2)直线Z” ax+(l-a)y=3与直线心:(a-l)x+(2a+3)y=2互相垂直,求a的值.21.已知“fits中,41,3),48、加边上的中线所在直线方程分别为八^^+4=€和y—1=0,求"ec 各边所在直线方程.22.Z\48C中,A (3, -1), 48边上的中线CM所在直线方程为:6x+10y-59=0, N8的平分线方程BT为:x-4y+10=0,求直线8c的方程.f(x) = x + -,、/(2) = 2 + —23.已知函数X的定义域为(仇+8),且 2 .设点P是函数图象上的任意一点, 过点P分别作直线>'=工和>轴的垂线,垂足分别为M、N.(1)求〃的值;(2)问:是否为定值?若是,则求出该定值,若不是,则说明理由;(3)设。

第06讲:必修2第三章《直线与方程》单元检测题-高中数学单元检测题及详细解析.doc

第06讲:必修2第三章《直线与方程》单元检测题-高中数学单元检测题及详细解析.doc

必修2第三章《直线与方程》单元检测题本试卷分第I卷(选择题)和第II卷(非选择题)两部分.满分150分.考试时间120分钟.第I卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共6()分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,2), (4,2+萌),则此直线的倾斜角是()A.30°B. 45。

C. 60°D. 90°2.如果直线处+2y+2=0与直线3匕一丿一2=0平行,则系数。

为()3 2A.—3B. —6C. —2D.亍3.下列叙述屮不正确的是()A.若直线的斜率存在,则必有倾斜角与之对应B.每一条直线都有唯一对应的倾斜角C.与坐标轴垂直的直线的倾斜角为0。

或90。

D.若直线的倾斜角为u,则直线的斜率为怡z4.在同一直角坐标系中,表示直线),=做与直线>,=兀+。

的图象(如图所示)正确的是()5.若三点A(3,l), B(—2, b), C(&11)在同一直线上,则实数b等于()A. 2B. 3C. 9D. -96.过点(3, —4)且在两坐标轴上的截距相等的直线的方程是()A.卄),+1=0B.4兀一3)=0C.4x+3y=0D.4兀+3y=0 或x+y+l=07.已知点4(兀,5)关于点(1, y)的对称点为(一2, 一3),则点P(x, y)到原点的距离是()A. 4 B・竝C・飒 D. 08.设点4(2, -3), 3( — 3, -2),直线过P(l,l)且与线段43相交,则/的斜率殳的取值范围是()3 3A. &玄或 4B. —3C. 一3才WRW4 D・以上都不对9.已知直线1\: ov+4y—2=0与直线2x—5y-\~b=0互相垂直,垂足为(1, c),则a + b+c的值为( )A. -4B. 20C. 0D. 2410.如果4(1,3)关于直线/的对称点为B(—5,1),则直线I的方程是()A. 3兀+y+4=0B. x—3y+8 = 0C. x+3y—4=QD. 3x~y+S=011.直线mx+ny+3=0在y轴上截距为一3,而且它的倾斜角是直线伍一y=3也倾斜角的2倍,则( )A. m = _甫,n= 1B. 〃?=—羽,n=~3C. » n =—3D. ~*^3, ~ 112.过点A(0,彳)与B(7,0)的直线厶与过点(2,1),⑶R+1)的直线人和两坐标轴围成的四边形内接于一个圆,则实数£等于()A. —3B. 3C. —6D. 6第II卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知厶:2x+my+1 = 0与人:y=3兀一1,若两直线平行,则加的值为____________ .14.若直线加被两平行线厶:x-y+\=0与念x-y+3=0所截得的线段的长为2迈,则加的倾斜角可以是________ •(写出所有正确答案的序号)① 15。

必修2第三章直线与方程测试题

必修2第三章直线与方程测试题

第三章 直线与方程测试题(一)一 •选择题(每小题5分,共12小题,共60分)1 •若直线过点C.3,3)且倾斜角为300,则该直线的方程为()B.y=—^x 4 C.y=—^x —4 D. y333. 如果直线x by ^0经过直线5x -6y -17二0与直线4x • 3y • 2 = 0的交点,那么b 等于 (). A. 2B. 3C. 4D. 52 2 04. 直线(2m -5m - 2)x 「(m -4)y - 5m = 0的倾斜角是45,则m 的值为()。

A.2B. 3C. - 3D. - 225.两条直线3x 2y ^0和(m • 1)x-3y • 2 -3m = 0的位置关系是()A.平行B.相交C.重合D.与m 有关 7直线x -2y • b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是()A. [-2,2]E. (-::,一2] [2,::)C . [ -2,0) (0,2]D.(-::,::)A.2.如果 A(3,1)、 B (-2,k )、C (8,11),在同一直线上,那k 的值是(A. -6B. —7C. -8D. -9*6•到直线2x y ^0的距离为—的点的集合是(5A.直线 2x y -2 = 0B. 直线2x y = 0C.直线 2x ■ y = 0 或直线 2x ■ y - 2 = 0 D. 直线2x y = 0或直线2x y 2 = 0*8 •若直线I 与两直线y , x - y -7 =0分别交于M , N 两点,且MN 的中点是P (1,-1),则直线1的斜率是()22厂3 3A .B .—C .D.—3 32210•直线x -2y ・1 = 0关于直线x =1对称的直线方程是( )A . x 2y -1 = 0B . 2x y -1 = 0C . 2x y -3=0D . x 2y -3=0共有 ( )A . 1个B . 2个*12 .若y =a|x|的图象与直线y =x ,a (a 0),有两个不同交点,则 a 的取值范围是 ()A . 0 :: a :: 10B . a 1C . a 0 且 a =1D . a =1二.填空题(每小题5分,共4小题,共20分)13.经过点(-2, -3),在x 轴、y 轴上截距相等的直线方程是 _____________________ ; 或 ______________________ 。

数学必修2直线与方程单元测试题库

数学必修2直线与方程单元测试题库

直线与方程单元测试题姓名-------------- 班级-------------一. 选择题1. 过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A 012=-+y xB 052=-+y xC 052=-+y xD 072=+-y x2.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A 0B 8-C 2D 103. 直线13kx y k -+=,当k 变动时,所有直线都通过定点( ) A (0,0)B (0,1)C (3,1)D (2,1)4.与直线2x+3y-6=0关于点(1,-1)对称的直线是( )A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=05.下列命题正确的有①每条直线都有唯一一个倾斜角与之对应,也有唯一一个斜率与之对应; ②倾斜角的范围是:0°≤α<180°,且当倾斜角增大时,斜率也增大; ③过两点A(1,2),B(m,-5)的直线可以用两点式表示; ④过点(1,1),且斜率为1的直线的方程为111y x -=-; ⑤直线Ax+By+C=0(A,B 不同时为零),当A,B,C 中有一个为零时,这个方程不能化为截距式. ⑥若两直线平行,则它们的斜率必相等;⑦若两直线垂直,则它们的斜率相乘必等于-1.二.填空题6.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________7.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________8.已知直线l 与直线3x+4y -7=0平行,并且与两坐标轴围成的三角形的面积为24,则直线l 的方程为________________三.解答题9.已知△ABC的两个顶点A(-10,2),B(6,4),垂心是H(5,2),求顶点C的坐标.10.把函数()y f x=在x a=及x b=之间的一段图象近似地看作直线,设a c b≤≤,证明:()f c的近似值是:()f c=()()()[]f ac ab af b f a+---C(c,y c)B(b,f(b))(c,f(c))A(a,f(a))oyx 11.已知直线012:=+-yxl和点A(-1,2)、B(0,3),试在l上找一点P,使得PBPA+的值最小,并求出这个最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与方程单元测试题
姓名-------------- 班级-------------
一. 选择题
1. 过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )
A 012=-+y x
B 052=-+y x
C 052=-+y x
D 072=+-y x
2.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )
A 0
B 8-
C 2
D 10
3. 直线13kx y k -+=,当k 变动时,所有直线都通过定点( ) A (0,0)
B (0,1)
C (3,1)
D (2,1)
4.与直线2x+3y-6=0关于点(1,-1)对称的直线是( )
A.3x-2y-6=0
B.2x+3y+7=0
C. 3x-2y-12=0
D. 2x+3y+8=0
5.下列命题正确的有
①每条直线都有唯一一个倾斜角与之对应,也有唯一一个斜率与之对应; ②倾斜角的范围是:0°≤α<180°,且当倾斜角增大时,斜率也增大; ③过两点A(1,2),B(m,-5)的直线可以用两点式表示; ④过点(1,1),且斜率为1的直线的方程为
1
11
y x -=-; ⑤直线Ax+By+C=0(A,B 不同时为零),当A,B,C 中有一个为零时,这个方程不能化为截距式. ⑥若两直线平行,则它们的斜率必相等;
⑦若两直线垂直,则它们的斜率相乘必等于-1.
二.填空题
6.点(,)P x y 在直线40x y +-=上,则22
x y +的最小值是________________
7.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________
8.已知直线l 与直线3x+4y -7=0平行,并且与两坐标轴围成的三角形的面积为24,则直线l 的方程为________________
三.解答题
9.已知△ABC 的两个顶点A(-10,2),B(6,4),垂心是H(5,2),求顶点C 的坐标.
10.把函数()y f x =在x a =及x b =之间的一段图象近似地看作直线,设a c b ≤≤,
证明:()f c 的近似值是:()f c =()()()[]f a c a
b a
f b f a +
---
11.已知直线012:=+-y x l 和点A (-1,2)、B (0,3),试在l 上找一点P ,使得
PB PA +的值最小,并求出这个最小值。

答案与解析 一.选择题
1. A 设20,x y c ++=又过点(1,3)P -,则230,1c c -++==-,即210x y +-= 2. B 42,82
m
k m m -=
=-=-+ 3. C 由13kx y k -+=得(3)1k x y -=-对于任何k R ∈都成立,则30
10x y -=⎧⎨-=⎩
4. D 把线关于点的对称转化为点与点的对称
5. ⑤ 二.填空题
6.8 2
2
x y +可看成原点到直线上的点的距离的平方,垂直时最短:d ==
7.2
3
y x =
平分平行四边形ABCD 的面积,则直线过BD 的中点(3,2) 8.设l :3x 4y m 0++= 则当y=0得m x 3=-
; 则当x=0得m y 4
=- ∵直线l 与两坐标轴围成的三角形面积为24 ∴
1m m
||||24234
⋅-⋅-= ∴m 24=± ∴直线l 的方程为3x 4y 240+±= 三.解答题 9.解: ∵BH 24k 256-=
=- ∴AC 1
k 2
=- ∴直线AC 的方程为1
y 2(x 10)2
-=-
+ 即x+2y+6=0 (1) 又∵AH k 0= ∴BC 所直线与x 轴垂直 故直线BC 的方程为x=6 (2) 解(1)(2)得点C 的坐标为C(6,-6) 10.证明:,,A B C 三点共线,AC AB k k ∴=

()()()
c y f a f b f a c a b a
--=--
()[()()]c c a
y f a f b f a b a -∴-=
-- 即()[()()]c c a
y f a f b f a b a
-=+
--
()f c ∴的近似值是:()()()[]f a c a
b a
f b f a +
---. 11.解:过点B (0,3)且与直线l 垂直的直线方程为x y l 2
1
3:'
-
=-, 由⎪⎩⎪⎨⎧+-==+-321
012x y y x 得:⎪⎪⎩
⎪⎪⎨⎧==51354y x ,即直线l 与直线'
l 相交于点)513,54(Q , 点B (0,3)关于点)513,
54(Q 的对称点为)5
11
,58('B , 连'
AB ,则依平面几何知识知,'
AB 与直线l 的交点P 即为所求。

直线'
AB 的方程为)1(1312+=-x y ,由⎪⎩
⎪⎨⎧+==+-1327131012x y y x 得⎪⎪⎩
⎪⎪⎨⎧
==
25532514y x ,即:)2553,2514(P , 相应的最小值为5
170
)5112()581(22=
-+--=‘
AB .。

相关文档
最新文档