2020-2021上海求真中学初一数学上期末第一次模拟试题(及答案)
2020-2021初一数学上期末一模试题(及答案)
2020-2021初一数学上期末一模试题(及答案)一、选择题1.下列各式的值一定为正数的是()A.(a+2)2B.|a﹣1|C.a+1000D.a2+12.8×(1+40%)x﹣x=15故选:B.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,掌握利润、进价、售价之间的关系.3.下列关于多项式5ab2-2a2bc-1的说法中,正确的是()A.它是三次三项式B.它是四次两项式C.它的最高次项是22a bc-D.它的常数项是14.用四舍五入按要求对0.06019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.06(精确到千分位)C.0.06(精确到百分位)D.0.0602(精确到0.0001)5.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此类推,则a2018的值为()A.﹣1007B.﹣1008C.﹣1009D.﹣20186.下列各数:(-3)2,0,212⎛⎫--⎪⎝⎭,227,(-1)2009,-22,-(-8),3|-|4-中,负数有()A.2个B.3个C.4个D.5个7.用一个平面去截一个正方体,截面不可能是()A.梯形B.五边形C.六边形D.七边形8.在下列变形中,错误的是()A.(﹣2)﹣3+(﹣5)=﹣2﹣3﹣5B.(37﹣3)﹣(37﹣5)=37﹣3﹣37﹣5C.a+(b﹣c)=a+b﹣cD.a﹣(b+c)=a﹣b﹣c9.中国海洋面积是2897000平方公里,2897000用科学记数法表示为()A.2.897×106B.28.94×105C.2.897×108D.0.2897×107 10.下列比较两个有理数的大小正确的是()A.﹣3>﹣1 B.1143>C.510611-<-D.7697->-11.如图,已知线段AB的长度为a,CD的长度为b,则图中所有线段的长度和为( )A.3a+b B.3a-b C.a+3b D.2a+2b12.下列说法中:①一个有理数不是正数就是负数;②射线AB和射线BA是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有()A.1个B.2个C.3个D.4个二、填空题13.如图,都是由同样大小的黑棋子按一定规律摆出的图案,第1个图有2颗黑棋子,第2个图有7颗黑棋子,第3个图有14颗黑棋子…依此规律,第5个图有____颗黑棋子,第n个图有____颗棋子(用含n的代数式示).14.已知∠AOB=72°,若从点O引一条射线OC,使∠BOC=36°,则∠AOC的度数为_____.15.如果你想将一根细木条固定在墙上,至少需要钉2个钉子,这一事实说明了:_______.16.某商品的价格标签已丢失,售货员只知道“它的进价为90元,打七折出售后,仍可获利5%,你认为售货员应标在标签上的价格为________元.,则输出的结果为____________.17.如图,若输入的值为318.轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了_______小时.19.如图是用正三角形、正方形、正六边形设计的一组图案,按照规律,第n个图案中正三角形的个数是__________.20.若2x﹣1的值与3﹣4x的值互为相反数,那么x的值为_____.三、解答题21.已知直线AB和CD相交于O点,CO⊥OE,OF平分∠AOE,∠COF=34°,求∠BOD 的度数.22.如图,已知∠AOC=90°,∠COD比∠DOA大28°,OB是∠AOC的平分线,求∠BOD 的度数.23.已知方程3(x﹣1)=4x﹣5与关于x的方程232x a x a---=x﹣1有相同的解,求a的值.24.化简求值:求代数式7a2b+2(2a2b﹣3ab2)﹣3(4a2b-ab2)的值,其中a,b满足|a+2|+(b﹣12)2=0.25.解方程:32x-﹣415x+=1.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用偶次方以及绝对值的性质分别分析得出答案.【详解】A.(a+2)2≥0,不合题意;B.|a﹣1|≥0,不合题意;C.a+1000,无法确定符号,不合题意;D .a 2+1一定为正数,符合题意.故选:D .【点睛】此题主要考查了正数和负数,熟练掌握非负数的性质是解题关键.2.无3.C解析:C【解析】根据多项式的次数和项数,可知这个多项式是四次的,含有三项,因此它是四次三项式,最高次项为22a bc ,常数项为-1.故选C.4.B解析:B【解析】A.0.06019≈0.1(精确到0.1),所以A 选项的说法正确;B.0.06019≈0.060(精确到千分位),所以B 选项的说法错误;C.0.06019≈0.06(精确到百分),所以C 选项的说法正确;D.0.06019≈0.0602(精确到0.0001),所以D 选项的说法正确。
2020-2021上海市七年级数学上期末第一次模拟试题(含答案)
2020-2021上海市七年级数学上期末第一次模拟试题(含答案)一、选择题1.将7760000用科学记数法表示为()A.5⨯D.777.6107.7610⨯7.76107.7610⨯B.6⨯C.62.下列说法:(1)两点之间线段最短;(2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90°;(4)A、B两点间的距离是指A、B两点间的线段;其中正确的有()A.一个B.两个C.三个D.四个3.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A.9⨯个B.91.2101.210⨯个⨯个D.11⨯个C.1012101.2104.爷爷快到八十大寿了,小莉想在日历上把这一天圈起来,但不知道是哪一天,于是便去问爸爸,爸爸笑笑说:“在日历上,那一天的上下左右4个日期的和正好等于那天爷爷的年龄”.那么小莉的爷爷的生日是在()A.16号B.18号C.20号D.22号5.观察如图所示图形,则第n个图形中三角形的个数是( )A.2n+2B.4n+4C.4n D.4n-46.若|a|=1,|b|=4,且ab<0,则a+b的值为()A.3±B.3-C.3D.5±7.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此类推,则a2018的值为()A.﹣1007B.﹣1008C.﹣1009D.﹣20188.两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm9.用一个平面去截一个正方体,截面不可能是()A.梯形B.五边形C.六边形D.七边形10.观察下列算式,用你所发现的规律得出22015的末位数字是()21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A.2B.4C.6D.811.中国海洋面积是2897000平方公里,2897000用科学记数法表示为()A.2.897×106B.28.94×105C.2.897×108D.0.2897×10712.一副三角板不能拼出的角的度数是()(拼接要求:既不重叠又不留空隙)A.75︒B.105︒C.120︒D.125︒二、填空题13.已知﹣5a2m b和3a4b3﹣n是同类项,则12m﹣n的值是_____.14.一个角的余角比这个角的12多30°,则这个角的补角度数是__________.15.-3的倒数是___________16.6年前,甲的年龄是乙的3倍,现在甲的年龄是乙的2倍,甲现在_________岁,乙现在________岁.17.已知A,B,C三点在同一条直线上,AB=8,BC=6,M、N分别是AB、BC的中点,则线段MN的长是_______.18.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.19.点A、B、C在同一条数轴上,且点A表示的数为﹣18,点B表示的数为﹣2.若BC=14AB,则点C表示的数为_____.20.正方体切去一块,可得到如图几何体,这个几何体有______条棱.三、解答题21.一果农在市场上卖15箱苹果,以每箱20千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值(单位:千克)-1-0.500.51 1.5箱数134322(1)这15箱苹果中,最重的一箱比最轻的一箱重多少千克?(2)若苹果每千克售价4元,则这15箱苹果可卖多少元?22.在一条笔直的公路上,A、B两地相距300千米.甲乙两车分别从A、B两地同时出发,已知甲车速度为100千米/小时,乙车速度为60千米/小时.经过一段时间后,两车相距100千米,求两车的行驶时间?23.已知在数轴上A,B两点对应数分别为-3,20.(1)若P点为线段AB的中点,求P点对应的数.(2)若点A以每秒3个单位,点B以每秒2个单位的速度同时出发向右运动多长时间后A,B两点相距2个单位长度?(3)若点A,B同时分别以2个单位长度秒的速度相向运动,点M(M点在原点)同时以4个单位长度/秒的速度向右运动.①经过t秒后A与M之间的距离AM(用含t的式子表示)②几秒后点M到点A、点B的距离相等?求此时M对应的数.24.解方程:(1)141 23x x-=+(2)3(21)2(21)143x x+--=25.某超市计划购进甲、乙两种型号的台灯1000台,这两种型号台灯的进价、售价如下表:(1)如果超市的进货款为54000元,那么可计划购进甲、乙两种型号的台灯各多少台?(2)为确保乙种型号的台灯销售更快,超市决定对乙种型号的台灯打折销售,且保证乙种型号台灯的利润率为20%,问乙种型号台灯需打几折?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.7760000的小数点向左移动6位得到7.76,所以7760000用科学记数法表示为7.76×106, 故选B . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.C解析:C 【解析】 【分析】(1)根据线段的性质即可求解; (2)根据直线的性质即可求解;(3)余角和补角一定指的是两个角之间的关系,同角的补角比余角大90°; (4)根据两点间的距离的定义即可求解. 【详解】(1)两点之间线段最短是正确的; (2)两点确定一条直线是正确的;(3)同一个锐角的补角一定比它的余角大90°是正确的;(4)A 、B 两点间的距离是指A 、B 两点间的线段的长度,原来的说法是错误的. 故选C . 【点睛】本题考查了补角和余角、线段、直线和两点间的距离的定义及性质,是基础知识要熟练掌握.3.C解析:C 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】120亿个用科学记数法可表示为:101.210⨯个. 故选C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值. 4.C【解析】【分析】要求小莉的爷爷的生日,就要明确日历上“上下左右4个日期”的排布方法.依此列方程求解.【详解】设那一天是x,则左日期=x﹣1,右日期=x+1,上日期=x﹣7,下日期=x+7,依题意得x﹣1+x+1+x﹣7+x+7=80解得:x=20故选:C.【点睛】此题关键是弄准日历的规律,知道左右上下的规律,然后依此列方程.5.C解析:C【解析】【分析】由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.【详解】解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选C.【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.6.A解析:A【解析】【分析】通过ab<0可得a、b异号,再由|a|=1,|b|=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a+b的值【详解】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴a+b=1-4=-3或a+b=-1+4=3,【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.7.C解析:C【解析】【分析】根据前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2018=﹣=﹣1009,从而得到答案.【详解】解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,a7=﹣|a6+6|=﹣|﹣3+6|=﹣3,…以此类推,经过前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2018=﹣=﹣1009,故选:C.【点睛】本题考查规律型:数字的变化类,根据前几个数字找出最后数值与顺序数之间的规律是解决本题的关键.8.C解析:C【解析】分两种情况:①如图所示,∵木条AB=20cm,CD=24cm,E、F分别是AB、BD的中点,∴BE=12AB=12×20=10cm,CF=12CD=12×24=12cm,∴EF=EB+CF=10+12=22cm.故两根木条中点间距离是22cm.②如图所示,∵木条AB=20cm,CD=24cm,E、F分别是AB、BD的中点,∴BE=12AB=12×20=10cm,CF=12CD=12×24=12cm,∴EF=CF-EB=12-10=2cm.故两根木条中点间距离是2cm.故选C.点睛:根据题意画出图形,由于将木条的一端重合,顺次放在同一条直线上,有两种情况,根据线段中点的定义分别求出两根木条中点间距离.9.D解析:D【解析】【分析】正方体总共六个面,截面最多为六边形。
2020-2021初一数学上期末第一次模拟试卷(带答案) (3)
2020-2021初一数学上期末第一次模拟试卷(带答案) (3)一、选择题1.下列计算正确的是()A.2a+3b=5ab B.2a2+3a2=5a4C.2a2b+3a2b=5a2b D.2a2﹣3a2=﹣a2.下列方程变形中,正确的是()A.由3x=﹣4,系数化为1得x=3 4 -B.由5=2﹣x,移项得x=5﹣2C.由123168-+-=x x,去分母得4(x﹣1)﹣3(2x+3)=1D.由 3x﹣(2﹣4x)=5,去括号得3x+4x﹣2=53.如图所示运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为()A.3B.6C.4D.24.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)5.如图,点A、B、C在数轴上表示的数分别为a、b、c,且OA+OB=OC,则下列结论中:①abc<0;②a(b+c)>0;③a﹣c=b;④|||c|1||a ba b c++=.其中正确的个数有()A.1个B.2个C.3个D.4个6.把四张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为m厘米,宽为n厘米)的盒子底部(如图2所示),盒子里面未被卡片覆盖的部分用阴影部分表示,则图2中两块阴影部分周长和是()A .4m 厘米B .4n 厘米C .2()m n +厘米D .4()m n -厘米7.若单项式2x 3y 2m 与﹣3x n y 2的差仍是单项式,则m+n 的值是( ) A .2 B .3 C .4 D .58.观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…. 按照上述规律,第2015个单项式是( ) A .2015x 2015B .4029x 2014C .4029x 2015D .4031x 20159.运用等式性质进行的变形,正确的是( ) A .如果a =b ,那么a +2=b +3 B .如果a =b ,那么a -2=b -3 C .如果,那么a =bD .如果a 2=3a ,那么a =310.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2B .4C .6D .811.已知x =y ,则下面变形错误的是( ) A .x +a =y +aB .x -a =y -aC .2x =2yD .x y a a= 12.观察下列各式:133=,239=,3327=,4381=,53243=,63729=,732187=,836561=……根据上述算式中的规律,猜想20193的末位数字是( )A .3B .9C .7D .1二、填空题13.把58°18′化成度的形式,则58°18′=______度.14.如图,两个正方形边长分别为a 、b ,且满足a+b =10,ab =12,图中阴影部分的面积为_____.15.如图所示,O 是直线AB 与CD 的交点,∠BOM :∠DOM =1:2,∠CON =90°,∠NOM =68°,则∠BOD =_____°.16.我国的《洛书》中记载着世界最古老的一个幻方:将1~9这九个数字填入33⨯的方格中,使三行、三列、两对角线上的三个数之和都相等,如图的幻方中,字母m 所表示的数是______.17.某种商品的标价为220元,为了吸引顾客,按九折出售,这时仍要盈利10%,则这种商品的进价是________元.18.已知2x+4与3x ﹣2互为相反数,则x=_____. 19.已知2a ﹣b =﹣2,则6+(4b ﹣8a )的值是_____.20.点A 、B 、C 在同一条数轴上,且点A 表示的数为﹣18,点B 表示的数为﹣2.若BC =14AB ,则点C 表示的数为_____. 三、解答题21.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b -c 0,a +b 0,c -a 0. (2)化简:| b -c|+|a +b|-|c -a|22.某班10名男同学参加100米达标测验,成绩小于或等于15秒的达标,这10名男同学成绩记录如下(其中超过15秒记为“+”,不足15秒记为“﹣”) 序号 1 2 3 4 5 6 7 8 9 10 成绩+1.2﹣0.6﹣0.8+1﹣1.4﹣0.5﹣0.4﹣0.3+0.8(1)有 名男同学成绩达标,跑得最快的同学序号是 号;跑得最快的同学比跑得最慢的同学快了 秒;(2)这10名男同学的平均成绩是多少? 23.计算:(1)223(3)3(2)|4|-÷-+⨯-+-(2)1515158124292929⎛⎫⎛⎫⎛⎫-⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭24.解方程:32x-﹣415x+=1.25.如图,直线SN为南北方向,OB的方向是南偏东60°,∠SOB与∠NOC互余,OA 平分∠BON.(1)射线OC的方向是.(2)求∠AOC的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据合并同类项法则逐一判断即可.【详解】A.2a与3b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.2a2b+3a2b=5a2b,正确;D.2a2﹣3a2=﹣a2,故本选项不合题意.故选:C.【点睛】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.2.D解析:D【解析】【分析】根据解方程的方法判断各个选项是否正确,从而解答本题.【详解】解:3x=﹣4,系数化为1,得x=﹣43,故选项A错误;5=2﹣x,移项,得x=2﹣5,故选项B错误;由123168-+-=x x,去分母得4(x﹣1)﹣3(2x+3)=24,故选项C错误;由 3x﹣(2﹣4x)=5,去括号得,3x﹣2+4x=5,故选项D正确,故选:D.【点睛】本题考查解一元一次方程、等式的性质,解答本题的关键是明确解方程的方法.3.D解析:D【解析】【分析】根据题意可以写出前几次输出的结果,从而可以发现输出结果的变化规律,进而得到第2019次输出的结果.【详解】解:根据题意得:可发现第1次输出的结果是24;第2次输出的结果是24×12=12;第3次输出的结果是12×12=6;第4次输出的结果为6×12=3;第5次输出的结果为3+5=8;第6次输出的结果为812⨯=4;第7次输出的结果为412⨯=2;第8次输出的结果为212⨯=1;第9次输出的结果为1+5=6;归纳总结得到输出的结果从第3次开始以6,3,8,4,2,1循环,∵(2017-2)÷6=335.....5,则第2017次输出的结果为2.故选:D.【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中输出结果的变化规律.4.D解析:D【解析】设分配x 名工人生产螺栓,则(27-x )人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x ),故选D.5.B解析:B 【解析】 【分析】根据图示,可得c <a <0,b >0,|a |+|b |=|c |,据此逐项判定即可. 【详解】 ∵c <a <0,b >0, ∴abc >0,∴选项①不符合题意. ∵c <a <0,b >0,|a |+|b |=|c |, ∴b +c <0, ∴a (b +c )>0, ∴选项②符合题意. ∵c <a <0,b >0,|a |+|b |=|c |, ∴-a +b =-c , ∴a -c =b ,∴选项③符合题意. ∵a cb ab c++=-1+1-1=-1, ∴选项④不符合题意, ∴正确的个数有2个:②、③. 故选B . 【点睛】此题主要考查了数轴的特征和应用,有理数的运算法则以及绝对值的含义和求法,要熟练掌握.6.B解析:B 【解析】 【分析】设小长方形的宽为a 厘米,则其长为(m-2a )厘米,根据长方形的周长公式列式计算即可. 【详解】设小长方形的宽为a 厘米,则其长为(m-2a )厘米, 所以图2中两块阴影部分周长和为:()()()2222224m a n an m a a n 轾轾-+-+-++=臌臌(厘米)故选:B本题考查的是列代数式及整式的化简,能根据图形列出代数式是关键.7.C解析:C 【解析】 【分析】根据合并同类项法则得出n=3,2m=2,求出即可. 【详解】∵单项式2x 3y 2m 与-3x n y 2的差仍是单项式, ∴n=3,2m=2, 解得:m=1, ∴m+n=1+3=4, 故选C . 【点睛】本题考查了合并同类项和单项式,能根据题意得出n=3、2m=2是解此题的关键.8.C解析:C 【解析】试题分析:根据这组数的系数可知它们都是连续奇数,即系数为(2n-1),而后面因式x 的指数是连续自然数,因此关于x 的单项式是2n 1n x (),所以第2015个单项式的系数为2×2015-1=4029,因此这个单项式为20154029x . 故选C 考点:探索规律9.C解析:C 【解析】 【分析】利用等式的性质对每个等式进行变形即可找出答案. 【详解】解:A 、等式的左边加2,右边加3,故A 错误; B 、等式的左边减2,右边减3,故B 错误; C 、等式的两边都乘c ,故C 正确; D 、当a=0时,a≠3,故D 错误; 故选C . 【点睛】本题主要考查了等式的基本性质,等式性质:10.D解析:D【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D.【点睛】本题考查数字类的规律探索.11.D解析:D【解析】解:A.B、C的变形均符合等式的基本性质,D项a不能为0,不一定成立.故选D.12.C解析:C【解析】【分析】3的末位数字即可.根据已知的等式找到末位数字的规律,再求出2019【详解】=,末位数字为3,∵1332=,末位数字为9,393=,末位数字为7,3274=,末位数字为1,3815=,末位数字为3,32436=,末位数字为9,37297=,末位数字为7,32187836561=,末位数字为1,故每4次一循环,∵2019÷4=504 (3)3的末位数字为7∴2019故选C【点睛】此题主要考查规律探索,解题的关键是根据已知条件找到规律进行求解.二、填空题13.3【解析】【分析】【详解】解:58°18′=58°+(18÷60)°=583°故答案为583【解析】【分析】【详解】解:58°18′=58°+(18÷60)°=58.3°.故答案为58.3.14.32【解析】【分析】阴影部分面积=两个正方形的面积之和-两个直角三角形面积求出即可【详解】∵a+b=10ab=12∴S阴影=a2+b2-a2-b(a+b)=(a2+b2-ab)=(a+b)2-3ab解析:32【解析】【分析】阴影部分面积=两个正方形的面积之和-两个直角三角形面积,求出即可.【详解】∵a+b=10,ab=12,∴S阴影=a2+b2-12a2-12b(a+b)=12(a2+b2-ab)=12[(a+b)2-3ab]=32,故答案为:32.【点睛】此题考查了整式混合运算的应用,弄清图形中的关系是解本题的关键.15.【解析】【分析】根据角的和差关系可得∠DOM=∠DON﹣∠NOM=22°再根据∠BOM:∠DOM=1:2可得∠BOM=∠DOM=11°据此即可得出∠BOD的度数【详解】∵∠CON=90°∴∠DON=解析:【解析】【分析】根据角的和差关系可得∠DOM=∠DON﹣∠NOM=22°,再根据∠BOM:∠DOM=1:2可得∠BOM=12∠DOM=11°,据此即可得出∠BOD的度数.【详解】∵∠CON=90°,∴∠DON=∠CON=90°,∴∠DOM=∠DON﹣∠NOM=90°﹣68°=22°,∵∠BOM:∠DOM=1:2,∴∠BOM=12∠DOM=11°,∴∠BOD=3∠BOM=33°.故答案为:33.【点睛】本题考查了余角的定义,角的和差的关系,掌握角的和差的关系是解题的关键.16.4【解析】【分析】根据每行每列每条对角线上的三个数之和相等解答即可【详解】根据每行每列每条对角线上的三个数之和相等可知三行三列两对角线上的三个数之和都等于15∴第一列第三个数为:15-2-5=8∴m解析:4【解析】【分析】根据“每行、每列、每条对角线上的三个数之和相等”解答即可.【详解】根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的三个数之和都等于15,∴第一列第三个数为:15-2-5=8,∴m=15-8-3=4.故答案为:4【点睛】本题考查数的特点,抓住每行、每列、每条对角线上的三个数之和相等,数的对称性是解题的关键.17.180【解析】【分析】设这种商品的进价是x元根据题意列出方程即可求出结论【详解】解:设这种商品的进价是x元根据题意可得220×90=x(1+10)解得:x=180故答案为:180【点睛】此题考查的是解析:180【解析】【分析】设这种商品的进价是x元,根据题意列出方程即可求出结论.【详解】解:设这种商品的进价是x元根据题意可得220×90%=x(1+10%)解得:x=180故答案为:180.【点睛】此题考查的是一元一次方程的应用,找到实际问题中的等量关系是解决此题的关键.18.【解析】试题解析:∵2x+4与3x-2互为相反数∴2x+4=-(3x-2)解得x=-故答案为-解析:2 5【解析】试题解析:∵2x+4与3x-2互为相反数,∴2x+4=-(3x-2),解得x=-25.故答案为-25.19.【解析】【分析】根据去括号和添括号法则把原式变形整体代入计算得到答案【详解】解:6+(4b﹣8a)=﹣8a+4b+6=﹣4(2a﹣b)+6当2a﹣b=﹣2原式=﹣4×(﹣2)+6=14故答案为:14解析:【解析】【分析】根据去括号和添括号法则把原式变形,整体代入计算,得到答案.【详解】解:6+(4b﹣8a)=﹣8a+4b+6=﹣4(2a﹣b)+6,当2a﹣b=﹣2,原式=﹣4×(﹣2)+6=14,故答案为:14.【点睛】本题考查的是整式的化简求值,掌握整式的加减混合运算法则和整体代入是解题的关键.20.﹣6或2【解析】【分析】先利用AB点表示的数得到AB=16则BC=4然后把B点向左或向右平移4个单位即可得到点C表示的数【详解】解:∵点A表示的数为﹣18点B表示的数为﹣2∴AB=﹣2﹣(﹣18)=解析:﹣6或2.【解析】【分析】先利用A、B点表示的数得到AB=16,则BC=4,然后把B点向左或向右平移4个单位即可得到点C表示的数.【详解】解:∵点A表示的数为﹣18,点B表示的数为﹣2.∴AB=﹣2﹣(﹣18)=16,∵BC=14 AB,∴BC=4,当C点在B点右侧时,C点表示的数为﹣2+4=2;当C点在B点左侧时,C点表示的数为﹣2﹣4=﹣6,综上所述,点C表示的数为﹣6或2.故答案为﹣6或2.【点睛】本题考查了数轴及两点间的距离;本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.三、解答题21.(1)<,<, >;(2)-2b【解析】【分析】(1)根据数轴得出a<0<b<c ,|b|<|a|<|c|,即可求出答案;(2)去掉绝对值符号,合并同类项即可.【详解】(1)∵从数轴可知:a<0<b<c ,|b|<|a|<|c|,∴b−c<0,a+b<0,c−a>0,(2)∵b−c<0,a+b<0,c−a>0,∴|b−c|+|a+b|−|c−a|=c−b+(−a−b)−(c−a)=c−b−a−b−c+a=−2b.【点睛】此题考查数轴、绝对值、整式的加减,解题关键在于结合数轴判断绝对值的大小.22.(1) 7,6,2.6;(2) 这10名男同学的平均成绩是14.9秒【解析】【分析】(1)成绩小于或等于15秒的达标,不足15秒记为“﹣”,15秒的记为0,共有7人达标,跑得最快的同学所用时间最少,是序号为6的同学;跑得最快的同学所用时间为:(15﹣1.4)秒,跑得最慢的同学所用时间为:(15+1.2)秒,相减即可;(2)先计算10个记录 的平均数,再加15即可.【详解】(1)有7名男同学成绩达标,跑得最快的同学序号是6号;跑得最快的同学比跑得最慢的同学快了(15+1.2)﹣(15﹣1.4)=2.6秒.故答案为7,6,2.6;(2)(+1.2﹣0.6﹣0.8+1+0﹣1.4﹣0.5﹣0.4﹣0.3+0.8)÷10=﹣0.1, 15﹣0.1=14.9(秒).答:这10名男同学的平均成绩是14.9秒.【点睛】此题考查了正数和负数,有理数的计算,解题关键是要明确用时越短速度越快.23.(1)-3(2)0【解析】【分析】(1)先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)逆运用乘法分配律进行计算即可得解.【详解】解:(1)原式=()99324-÷+⨯-+-=164--+=-3.(2)原式= ()15812429⎛⎫-⨯-+- ⎪⎝⎭, = 15029⎛⎫-⨯ ⎪⎝⎭=0.【点睛】题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.x =-9.【解析】【分析】按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可得.【详解】5(x-3)-2(4x+1)=10,5x-15-8x-2=10,5x-8x=10+2+15,-3x=27x=-9.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题的关键.25.(1)北偏东30°;(2)∠AOC =30°.【解析】【分析】(1)先根据余角的定义计算出∠NOC ,然后得到OC 的方向;(2)由OB 的方向是南偏东60°得到∠BOE=30°,则∠NOB=120°,根据OA 平分∠NOB 得到∠NOA=60°,再根据角的和差计算即可.【详解】解:(1)由OB 的方向是南偏东60°,可得∠SOB =60°,∵∠SOB 与∠NOC 互余,∴∠NOC =90°﹣∠SOB =30°,∴OC 的方向是北偏东30°;故答案为:北偏东30°;(2)∵OB 的方向是南偏东60°,∴∠BOE =30°,∴∠NOB =30°+90°=120°,∵OA 平分∠BON ,∴∠NOA =12∠NOB =60°,∵∠NOC=30°,∴∠AOC=∠NOA﹣∠NOC=60°﹣30°=30°.【点睛】本题考查了方向角:方向角是从正北或正南方向到目标方向所形成的小于九十度的角.方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)××度,若正好为45度,则表示为正西(东)南(北).。
沪教版2020-2021学年度第一学期七年级数学期末模拟测试卷(附答案)
沪教版2020-2021学年度第一学期七年级数学期末模拟测试卷(附答案)一、单选题1.如图,边长为1的正方形ABCD 绕点A 逆时针旋转得到正方形111AB C D ,使边1AB 恰好落在对角线AC 上,边11B C 与CD 交于点O ,则四边形1AB OD 的面积是( )A .34B .716C .21-D .212- 2.华光服装厂今年完成利税2400万元,比去年增加20%,求去年完成利税多少万元,正确列式的是( )A .2400×(1-20%)B .2400÷(1-20%)C .2400×(1+20%)D .2400÷(1+20%) 3.下列各式正确的是( )A .(1)()1a b c a b c +--+=+++B .222()2a a b c a a b c --+=--+C .27(27)a b c a b c -+=--D .()()a b c d a d b c -+-=--+4.当x 5=时,()()22x x x 2x 1---+等于( )A .-14B .4C .-4D .1 5.下列各式成立的是( )A .235x y xy +=B .()a b c a b c -+=-+C .2233225a b ab a b +=D .2xy xy xy -+=-6.如图,阴影部分的面积是( )A .112xyB .92xyC .4xyD .2xy7.如图,将边长为3的正方形绕点B 逆时针旋转30,那么图中阴影部分的面积为()A .3B .3C .33-D .332- 8.如图,Rt △ABC 中,∠ACB =90°,∠B =30°,S △ABC =23,将△ABC 绕点C 逆时针旋转至△A ′B ′C ,使得点A '恰好落在AB 上,A 'B ′与BC 交于点D ,则S △A ′CD 为( )A .3+1B .334C .32D .231- 9.如图,在△ABC 中,∠ACB=90°,AC=BC ,点D 、E 均在边AB 上,且∠DCE=45°,若AD=1,BE=3,则DE 的长为( )A .3B .4C .D .10.下列计算正确的是( )A .2x+x=3x 2B .2x 2•3x 2=6x 4C .x 6÷x 2=x 3D .2x ﹣x=211.下列等式成立的是( ) A .123a b a b+=+ B .212a b a b =++ C .2ab a ab b a b =-- D .a a a b a b =--++ 12.如图,边长为a 的大正方形剪去一个边长为b 的小正方形后,将剩余部分通过割补拼成新的图形.根据图形能验证的等式为( )A .()222a b a b -=-B .()()22a b a b a b -=+-C .()2222a b a ab b -=-+D .()2222a b a ab b +=++二、填空题13.已知22m a =,4m b =,则2()m a b =__________.14.如图,在平行四边形ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F 处,若△FDE 的周长为12,△FCB 的周长为28,则FC 的长为_____.15.要使分式有意义,的取值应满足 .16.某社区组织老年人参加太极拳比赛,由于比赛场地的原因,要把每边x 人的方队一边增加2人,另一边减少2人,实际参加比赛的人比原来____人17.若102·10m =102003,则m=________.18.小程做一道题“已知两个多项式 A 、B ,计算 A ﹣B”小程误将 A ﹣B 看 作 A+B ,求得结果是 9x²﹣2x+7.若 B=x²+3x ﹣2,则 A ﹣B= ________________. 19.当n 取正整数时,(1+x )n 的展开式中每一项的系数可以表示成如下形式:(1)观察上面数表的规律,若(1+x )6=1+6x +15x 2+ax 3+15x 4+6x 5+x 6,则a =_____; (2)(1+x )7的展开式中每一项的系数和为_____.20.若3x m+5y 2与﹣2x 3y n 是同类项,则m n =_______.三、解答题21.若a 、b 满足|a+1|+(b-3)2=0,求5a 2+3b 2+2(a 2﹣b 2)﹣(5a 2﹣b 2)的值.22.如图,两个半圆分别以P 、Q 为圆心,它们的半径相等,A 1、P 、B 1、B 2、Q 、A 2在同一条直线上.这个图形中的两个半圆是否成中心对称?如果是,请找出对称中心O .23.33(2x)(7)xy ⋅-24.如图所示,在所给正方形网格图中完成下列各题:(保留画图痕迹)(1)画出格点ΔABC 关于直线DE 对称的111ΔA B C ;(2)在DE 上取一点Q ,使ΔQAB 的周长最小.25.计算:(1)﹣12020+(π﹣5)0﹣(12)﹣2﹣|﹣2|; (2)3(x 2)3•x 3﹣(x 3)3+(﹣2x )2•x 9÷x 2; (3)先化简,再求值[(2x ﹣y )(2x ﹣y )+(2x+y )(2x ﹣y )+4xy]÷2x ,其中x =﹣4,y =14.26.如图所示,有理数a 、b 、c 在数轴上的位置大致如图:(1)去绝对值符号:①a =______;②b a -=______;③ab ab =______;④c =______. (2)根据题意,化简a b b a b c a c ++-+---.27.已知a 、b 互为相反数,c 、d 互为倒数,求的值.28.化简 a 2-2[a 2-(2a 2-b)]29.如图,在平面直角坐标系中,已知点A (-3,4),B (-4,2),C (-2,0),且点P (a ,b )是三角形ABC 边上的任意一点,三角形ABC 经过平移后得到三角形A 1B 1C 1,点P (a ,b )的对应点P 1(a+6,b-3).(1)直接写出A 1的坐标 ;(2)在图中画出三角形A 1B 1C 1;(3)求出三角形ABC 的面积.30.(8分)如果A=2x 2+3kx ﹣2x ﹣1,B=﹣x 2+kx ﹣1,且3A+6B 的值与x 的取值无关,求1111111131223344556677889k +++++++-⨯⨯⨯⨯⨯⨯⨯⨯的值.参考答案1.C【分析】由正方形求出AC 的长,再求出B 1C=AC-AB 11,△OCB 1是等腰直角三角形,代入面积公式即可求出四边形1AB OD 的面积.【详解】∵四边形ABCD 是正方形,∴∠B=90︒,AB=BC=CD=AD=1,∠ACD=45︒,∴=,由旋转得AB 1=AB=1,∠AB 1C 1=90︒,则△OCB 1是等腰直角三角形,∴B 1C=AC-AB 11,11221111)122ACD OCB OD S SS =⨯-⨯=-=四边形AB . 故选:C.【点睛】 此题考查图形的旋转的性质,图形旋转前后的对应边、对应角相等,由此求得需要的边B 1C 的长度,△OCB 1是等腰直角三角形,利用面积相减法求出不规则四边形的面积.2.D【解析】由题意得,今年的完成利税=(1+20% )⨯去年的完成利税 ,则去年的完成利税=今年的完成利税÷ (1+20% ).故选D.3.C【解析】试题分析:A .(1)()1a b c a b c +--+=++-,故本选项错误;B .222()222a a b c a a b c --+=-+-,故本选项错误;C .27(27)a b c a b c -+=--,故本选项正确;D .()()a b c d a d b c -+-=---,故本选项错误.故选C .考点:去括号与添括号.4.B【分析】原式去括号合并得到最简结果,把x 的值代入计算即可求出值.【详解】(x 2-x )-(x 2-2x+1)=x 2-x-x 2+2x-1=x-1.当x=5时,原式=5-1=4.故选B .【点睛】本题考查了整式的加减—化简求值,熟练掌握运算法则是解本题的关键.5.D【分析】根据合并同类项和去括号的法则逐个计算,进行判断即可.【详解】解:A. 2,3x y 不是同类项,不能合并计算,故此选项不符合题意;B. ()a b c a b c -+=--,故此选项不符合题意;C. 222,2a b ab 不是同类项,不能合并计算,故此选项不符合题意;D. 2xy xy xy -+=-,正确故选:D .【点睛】本题考查合并同类项和去括号的计算,掌握同类项的概念和合并同类项及去括号的计算法则,正确计算是解题关键.6.A【分析】可以用割补法求其面积.扩充成大长方形,让大长方形的面积-小长方形的面积.【详解】3x •2y ﹣0.5x •y =112xy .故选A .【点睛】掌握分割法求一个图形的面积,注意代数式前边的分数不能写成带分数,必须写成假分数. 7.C【解析】【分析】连接BM ,根据旋转的性质和四边形的性质,证明△ABM ≌△C′BM ,得到∠2=∠3=30°,利用三角函数和三角形面积公式求出△ABM 的面积,再利用阴影部分面积=正方形面积−2△ABM 的面积即可得到答案.【详解】连接BM ,在△ABM 和△C′BM 中,BM BM AB C BBAM BC M ⎧⎪'⎨⎪∠∠'⎩=== ∴△ABM ≌△C′BM ,∠2=∠3=9042︒-∠=30°, 在△ABM 中,AMtan30°=1, S △ABM =12×AM×AB正方形的面积为:)2=3,阴影部分的面积为:故选:C .【点睛】本题考查旋转的性质和正方形的性质,利用旋转的性质和正方形的性质证明两三角形全等是解决本题的关键.8.C【分析】先求出2AC =,根据旋转的性质得2CA CA ='=,60CA B A ∠''=∠=︒,证明CAA ∆'为等边三角形,得60ACA ∠'=︒,则可计算出30BCA ∠'=︒,90A DC ∠'=°,然后在Rt △A DC'中利用含30度的直角三角形三边的关系得112A D CA '='=,CD D ='=利用三角形面积公式求解即可.【详解】解:过C 作CH AB ⊥于H ,90ACB ∠=︒,30B ∠=︒,60A ∴∠=︒,30ACH ∴∠=︒,12AC AB ∴=,CH AB ∴=,ABC S ∆= ∴1132322AB CH AB AB == 4AB ∴=,2AC ∴=,ABC ∆绕点C 逆时针旋转至△A B C '',使得点A '恰好落在AB 上,2CA CA ∴='=,60CA B A ∠''=∠=︒,CAA ∴∆'为等边三角形,60ACA ∴∠'=︒,30BCA ∴∠'=︒,90A DC ∴∠'=︒, 在Rt △A DC '中,30ACD∠'=︒, 112A D CA ∴'='=,CD D ='=∴△A CD '的面积112=⨯=. 故选:C .【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前后的图形全等.也考查了含30度的直角三角形三边的关系.9.C【解析】【分析】以点C为旋转中心,将△ADC顺时针旋转90°,连结EF,如图,先根据等腰直角三角形的性质得∠A=∠ABC=45°,再根据旋转的性质得CD=CF,BF=AD=2,∠DCF=90°,∠CBF=∠A=45°,则可根据“SAS”判断△DCE≌△FCE,得到DE=FE,设ED=x,则BE=4-x,由(2)的证明得到EF=DE=x,BF=AD=1,然后在Rt△BEF中利用勾股定理得到12+(4-x)2=x2,再解方程即可.【详解】以点C为旋转中心,将△ADC顺时针旋转90°,连结EF,如图,∵∠ACB=90°,AC=BC,∴∠A=∠ABC=45°,∵△ADC顺时针旋转90°得到△BCF,∴CD=CF,BF=AD=1,∠DCF=90°,∠CBF=∠A=45°,∵∠DCE=45°,∴∠FCE=45°,在△DCE和△FCE中,∴△DCE≌△FCE,∴DE=FE,在△BEF中,∵∠EBC=45°,∠CBF=45°,∴∠EBF=90°,∴EF=,∴DE=.故选C.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.本题的关键是把AD、DE、BE利用旋转组成一个直角三角形.10.B【解析】试题分析:根据合并同类项,可判断A、D,根据单项式乘单项式,可判断B,根据同底数幂的除法底数不变指数相减,可判断C.解:A、不是同类项不能合并,故A错误;B、系数乘系数,同底数的乘同底数的,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、系数相加字母部分不变,故D错误;故选:B.点评:本题考查了单项式乘单项式,系数乘系数,同底数的幂乘同底数的幂.11.C【分析】根据分式的运算,分别对各选项进行运算得到结果,即可做出判断.【详解】A、221bbaaba+=+,故A错误;B 、22a b+,分子分母具有相同的因式才可以约分,故B 错误; C 、2()ab ab a ab b b a b a b ==---,故C 正确; D 、a a a b a b=--+-,故D 错误; 故选C .【点睛】本题主要考查了分式的运算,熟悉分式的通分以及约分的重要法则是解决本题的关键. 12.B【分析】边长为a 的大正方形剪去一个边长为b 的小正方形后的面积=a 2-b 2,新的图形面积等于(a+b )(a-b ),由于两图中阴影部分面积相等,即可得到结论.【详解】图中阴影部分的面积等于两个正方形的面积之差,即为a 2-b 2;通过割补拼成的平行四边形的面积为(a+b )(a-b ),∵前后两个图形中阴影部分的面积相等,∴a 2-b 2=(a+b )(a-b ).故选B .【点睛】考查了利用几何方法验证平方差公式,解决问题的关键是根据拼接前后的面积不变得到等量关系.13.64【分析】根据积的乘方和幂的乘方进行化简,然后把224m a ==,4m b =代入计算即可.【详解】解:∵224m a ==,4m b =,∴2()ma b=2m m a b •=2()m m a b •=244⨯=164⨯=64.故答案为:64.【点睛】本题考查了积的乘方和幂的乘方,解题的关键是熟练掌握运算法则进行运算.14.8【分析】根据折叠的性质可得,EF =AE 、BF =BA ,从而平行四边形的周长可以转化为△FDE 的周长+△FCB 的周长,求出AB +BC ,再由△FCB 的周长28,即可求出FC 的长.【详解】由折叠的性质可得EF =AE 、BF =AB ,∴平行四边形ABCD 的周长=DF +FC +CB +BA +AE +DE=△FDE 的周长+△FCB 的周长=12+28=40,∵四边形ABCD 为平行四边形∴AB +BC =20,∵△FCB 的周长=CF +BC +BF =CF +BC +AB =28即FC +20=28∴FC =8.故答案为:8【点睛】本题主要考查翻折变换(折叠问题)和平行四边形的性质,掌握折叠前后图形的形状和大小不变,且对应边和对应角相等;平行四边形对边平行且相等是解题的关键.15.x≠2【解析】试题分析:根据分式有意义的条件,分母不为0,可知x-2≠0,解得x≠2.故答案为:x≠2.考点:分式有意义的条件16.少4人【分析】列出原来的人数和实际的人数,用实际的人数减去原来的人数进行计算即可.【详解】解:依题意得:()()2-+-=x x2x24故实际参加比赛的人比原来少4人故答案为:少4人【点睛】本题考查了整式的运算,根据题意列出式子,以及准确计算整式乘法是解题的关键.17.2001【解析】因为102·10m=102+m,所以m+2=2003,则m=2001,故答案为2001.18.2-+.x x7811【解析】【分析】先根据A+B=9x2-2x+7且B=x2+3x-2求得A=8x2-5x+9,再代入A-B中去括号、合并同类项即可得.【详解】∵A=(9x2-2x+7)-(x2+3x-2),=9x2-2x+7-x2-3x+2,=8x2-5x+9,∴A-B=(8x2-5x+9)-(x2+3x-2),=8x2-5x+9-x2-3x+2,=7x2-8x+11,故答案为7x2-8x+11.【点睛】本题考查了整式的加减,整式的加减的实质就是去括号、合并同类项.解题的关键是先去括号,然后合并同类项.19.20 27【分析】(1)根据表中的规律,从而可以解答本题;(2)根据数学归纳法,写出前几项总结规律,从而可以解答本题.【详解】解:(1)由题意可得,(1+x)6=1+6x+15x2+ax3+15x4+6x5+x6,则a=20;(2)∵当n=1时,多项式(1+x)1展开式的各项系数之和为:1+1=2=21,当n=2时,多项式(1+x)2展开式的各项系数之和为:1+2+1=4=22,当n=3时,多项式(1+x)3展开式的各项系数之和为:1+3+3+1=8=23,当n=4时,多项式(1+x)4展开式的各项系数之和为:1+4+6+4+1=16=24,…∴多项式(1+x)7展开式的各项系数之和=27.故答案为:20,27.【点睛】本题考查整式的运算,数字的变化规律,解题的关键是明确题意,利用数学归纳法解答本题.20.4【分析】根据同类项的定义可求出m与n的值,然后代入即可求出结论.【详解】由题意可知:m+5=3,2=n,解得:m=-2,n=2,,∴m n=(-2)2=4.故答案为4.【点睛】本题考查了同类项的概念,属于基础题型.21.20【分析】先根据绝对值和完全平方的非负性得出,a b 的值,然后把式子先化简,最后代入,a b 的值求值即可.【详解】由题意可知:10,30a b +=-=∴1,3a b =-=原式222222222253222(1)2322205a b a b a b a b =++--+=+=⨯-+⨯=;【点睛】本题考查代数式的化简求值、绝对值和完全平方的非负性,根据绝对值和完全平方的非负性得出,a b 的值是关键. 22.【解析】 试题分析:由已知两个图形的位置,判断它们是否中心对称,可以把各对应点连线,看所有连线是否交于同一点.解:是中心对称图形,对称中心如图.点评:通过画图,寻找对称中心,判断是否中心对称,学生对中心对称就会有更进一步的了解.23.43-56x y【解析】试题分析:先计算乘方运算,再利用单项式乘以单项式的运算法则计算即可.试题解析:原式=()33438756x xy x y ⋅-=-. 24.(1)见解析,(2)见解析.【解析】【分析】(1)从三角形各顶点向DE 引垂线并延长相同的长度,找到对应点,顺次连接;(2)利用轴对称图形的性质可作点A 关于直线DE 的对称点A 1,连接BA 1,交直线DE 于点Q ,点Q 即为所求.【详解】(1)如图,从三角形各顶点向DE 引垂线并延长相同的长度,找到对应点,顺次连接;△A 1B 1C 1即为所求,(2)连接BA 1,交DE 于Q ,由(1)得A 1为A 直线关于DE 的对称点,∴AQ=A 1Q ,∴AB+BQ+AQ=AB+BQ+A 1Q ,∴点Q 即为所求.【点睛】此题主要考查了根据轴对称作图,要使△QAB 的周长最小,可使AQ+BQ 的值最小,用到的知识点为:两点之间,线段最短.找到图形的对应点是解题关键.25.(1)6-;(2)96x ;(3)4x ;16-【分析】(1)本题利用乘方的意义,零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出结果.(2)本题利用幂的乘方与积的乘方运算法则计算,再利用单项式乘除单项式法则计算,合并即可得到结果.(3)本题中括号中利用平方差公式,完全平方公式计算,合并后除以2x 化简,再代入计算即可求解.【详解】(1)原式11426=-+--=-.(2)原式639292999934346x x x x x x x x x x =-+÷=-+=.(3)原式22222(4444)2824x xy y x y xy x x x x =-++-+÷=÷=;当4x =-时,原式44(4)16x ==⨯-=-.【点睛】本题考查整式的混合运算,解题关键在于对幂的运算、平方差、完全平方等公式的运用,其次注意计算仔细即可.26.(1)a -;b a -;1-;c -;(2)3a b -+【分析】(1)由题意可得a <0<b <b−c ,利用绝对值定义可求解;(2)利用绝对值化简求解.【详解】解:(1)∵0a <,0b >,b c b ->, ∴a a =-,0b a ->,0ab <,0c <, ∴①a a =-;②b a b a -=-; ③1ab ab=-;④c c =-, 故填:a -;b a -;1-;c -.(2)∵0a <,0b >,0c <,a b >,∴0a b +<,0b a ->,0b c a -->,∴原式a b b a b c a c =--+-+--+3a b =-+.【点睛】本题考查了数轴,绝对值,利用绝对值的性质化简是本题的关键.27.2【解析】【分析】根据a、b互为相反数,可得:a+b=0,c、d互为倒数,可得:cd=1,据此求出的值是多少即可.【详解】∵a、b互为相反数,∴a+b=0,∵c、d互为倒数,∴cd=1,∴=(a+b)(a-b)+2cd=0+2=2.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.28.3-2b.【解析】试题分析:首先根据去括号的法则将括号去掉,然后进行合并同类项计算.试题解析:原式=-2+2(2-b)=-+4-2b=3-2b考点:(1)、去括号的法则;(2)、合并同类项29.(1)A1的坐标为(3,1);(2)如图所示,△A1B1C1即为所求;见解析;(3)△ABC的面积为3.【解析】【分析】(1)依据点P(a,b)的对应点为P1(a+6,b-3),可得平移的方向和距离为:向右平移6个单位,向下平移3个单位,进而得出结论;(2)依据平移的方向和距离,即可得到△A1B1C1;(3)作长方形CDEF,利用割补法进行计算即可得到三角形ABC的面积.【详解】(1)如图所示,点P(a,b)的对应点为P1(a+6,b-3),∴平移的方向和距离为:向右平移6个单位,向下平移3个单位,又∵A(-3,4),∴A1的坐标为(3,1).故答案为:(3,1).(2)如图所示,△A1B1C1即为所求;(3)如图所示,作长方形CDEF,则CF=2,CD=4,AE=1,BE=2,BF=2,AD=1,∴△ABC的面积为:CF•CD-AD•CD-AE•BE-BF•CF=2×4-×1×4-×1×2-×2×2=8-2-1-2=3.【点睛】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.30.14 -45【解析】试题分析:把A、B代入3A+6B,由3A+6B的值与x的取值无关可求出k的值;把k代入代数式进行计算即可.注意利用()11111n n n n =-++ 将式子化简. 解:3A +6B =3(2x 2+3kx ﹣2x ﹣1)+6(﹣x 2+kx ﹣1) =6x 2+9xk -6x -3-6x 2+6xk -6 =15xk -6x -9=(15k -6)x -9 ,∵3A +6B 的值与x 的取值无关,∴15k=6,即25k =. ∴原式=111111121...322334895-+-+---⨯ 16195=-- 1445=- .。
2020-2021七年级数学上期末第一次模拟试题(附答案) (3)
2020-2021七年级数学上期末第一次模拟试题(附答案) (3)一、选择题1.下列计算中:①325a b ab +=;②22330ab b a -=;③224246a a a +=;④33532a a -=;⑤若0,a ≤a a -=-,错误..的个数有 ( ) A .1个B .2个C .3个D .4个2.已知长方形的周长是45cm ,一边长是acm ,则这个长方形的面积是( ) A .(45)2a a -cm 2B .a (452a -)cm 2 C .452a cm 2D .(452a -)cm 2 3.若﹣x 3y a 与xb y 是同类项,则a+b 的值为( ) A .2B .3C .4D .54.如图,∠AOC 和∠BOD 都是直角,如果∠DOC =28°,那么∠AOB 的度数是( )A .118°B .152°C .28°D .62°5.点C 是线段AB 上的三等分点,D 是线段AC 的中点,E 是线段BC 的中点,若6CE =,则AB 的长为( ) A .18 B .36C .16或24D .18或36 6.整式23x x -的值是4,则2398x x -+的值是( )A .20B .4C .16D .-47.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( )A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +18.下面结论正确的有( )①两个有理数相加,和一定大于每一个加数. ②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和. ④两个正数相加,和为正数. ⑤两个负数相加,绝对值相减. ⑥正数加负数,其和一定等于0. A .0个 B .1个 C .2个 D .3个9.用一个平面去截一个正方体,截面不可能是( ) A .梯形B .五边形C .六边形D .七边形10.根据图中的程序,当输出数值为6时,输入数值x 为( )A .-2B .2C .-2或2D .不存在11.下列说法: ①若|a|=a ,则a=0;②若a ,b 互为相反数,且ab≠0,则ba=﹣1; ③若a 2=b 2,则a=b ;④若a <0,b <0,则|ab ﹣a|=ab ﹣a . 其中正确的个数有( ) A .1个B .2个C .3个D .4个12.下列说法中:①一个有理数不是正数就是负数;②射线AB 和射线BA 是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有( ) A .1个B .2个C .3个D .4个二、填空题13.让我们轻松一下,做一个数字游戏:第一步:取一个自然数15n =,计算211n +得1a ; 第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ;第三步:算出2a 的各位数字之和得3n ,再计算231n +得3a ;依此类推,则2019a =____________14.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.15.小强在解方程时,不小心把一个数字用墨水污染成了x=1﹣•5x -,他翻阅了答案知道这个方程的解为x=1,于是他判断●应该是_______.16.如图,数轴上A 、B 两点之间的距离AB =24,有一根木棒MN ,MN 在数轴上移动,当N 移动到与A 、B 其中一个端点重合时,点M 所对应的数为9,当N 移动到线段AB 的中点时,点M 所对应的数为_____.17.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.18.若关于x 的方程(a ﹣3)x |a |﹣2+8=0是一元一次方程,则a =_____19.轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了_______小时.20.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.三、解答题21.先化简再求值:已知a ,b 满足2(2)|1|0a b b -++=,求()22223232a b ab ab a b ⎡⎤-++-⎣⎦的值.22.先化简,再求值:2(x 2y +xy )﹣3(x 2y ﹣xy )﹣4x 2y ,其中x =﹣1,y =1. 23.某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费. (1)该中学库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:a 、由甲单独修理;b 、由乙单独修理;c 、甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么? 24.解方程:(1)3x ﹣2(x ﹣1)=2﹣3(5﹣2x ). (2)33136x x x --=-. 25.计算:(1)﹣14﹣5×[2﹣(﹣3)2](2)﹣2+(﹣65)×(﹣23)+(﹣65)×173【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】【详解】解:①3a+2b无法计算,故此选项符合题意;②3ab²−3b²a=0,正确,不合题意;③∵2a²+4a²=6a²,∴原式计算错误,故此选项符合题意;④∵53a−33a=23a,∴原式计算错误,故此选项符合题意;⑤∵a⩽0,−|a|=a,∴原式计算错误,故此选项符合题意;故选D2.B解析:B【解析】【分析】【详解】解:设长边形的另一边长度为x cm,根据周长是45cm,可得:2(a+x)=45,解得:x=452﹣a,所以长方形的面积为:ax=a(452a)cm2.故选B.考点:列代数式.3.C解析:C【解析】试题分析:已知﹣x3y a与x b y是同类项,根据同类项的定义可得a=1,b=3,则a+b=1+3=4.故答案选C.考点:同类项.4.B解析:B【分析】从图形中可看出∠AOC和∠DOB相加,再减去∠DOC即为所求.【详解】∵∠AOC=∠DOB=90°,∠DOC=28°,∴∠AOB=∠AOC+∠DOB﹣∠DOC=90°+90°﹣28°=152°.故选:B.【点睛】此题主要考查学生对角的计算的理解和掌握,此题的解法不唯一,只要合理即可.5.D解析:D【解析】【分析】分两种情况分析:点C在AB的13处和点C在AB的23处,再根据中点和三等分点的定义得到线段之间的关系求解即可.【详解】①当点C在AB的13处时,如图所示:因为6CE=,E是线段BC的中点,所以BC=12,又因为点C是线段AB上的三等分点,所以AB=18;②当点C在AB的23处时,如图所示:因为6CE=,E是线段BC的中点,所以BC=12,又因为点C是线段AB上的三等分点,所以AB=36.综合上述可得AB=18或AB=36.故选:D.【点睛】考查了线段有关计算,解题关键根据题意分两种情况分析,并画出图形,从而得到线段之6.A解析:A 【解析】 【分析】分析所给多项式与所求多项式二次项、一次项系数的关系即可得出答案. 【详解】解:因为x 2-3x =4, 所以3x 2-9x =12, 所以3x 2-9x +8=12+8=20. 故选A . 【点睛】本题考查了代数式的求值,分析发现所求多项式与已知多项式之间的关系是解决此题的关键.7.C解析:C 【解析】 【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得. 【详解】观察可知,奇数项系数为正,偶数项系数为负, ∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n ,∴第n 个单项式是 (-1)n -1x 2n +1 ,故选C. 【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.8.C解析:C【解析】试题解析:∵①3+(-1)=2,和2不大于加数3, ∴①是错误的;从上式还可看出一个正数与一个负数相加不一定得0, ∴②是错误的.由加法法则:同号两数相加,取原来的符号,并把绝对值相加, 可以得到③、④都是正确的.⑤两个负数相加取相同的符号,然后把绝对值相加,故错误. ⑥-1+2=1,故正数加负数,其和一定等于0错误.正确的有2个,故选C.9.D解析:D【解析】【分析】正方体总共六个面,截面最多为六边形。
上海求真中学人教版七年级上册数学期末综合测试题
上海求真中学人教版七年级上册数学期末综合测试题一、选择题1.如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A.点M B.点N C.点P D.点Q2.如图,已知线段AB的长度为a,CD的长度为b,则图中所有线段的长度和为( )A.3a+b B.3a-b C.a+3b D.2a+2b3.如图,数轴的单位长度为1,点A、B表示的数互为相反数,若数轴上有一点C到点B 的距离为2个单位,则点C表示的数是()A.-1或2 B.-1或5 C.1或2 D.1或54.如图,OA⊥OC,OB⊥OD,①∠AOB=∠COD;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个()A.1个B.2个C.3个D.4个5.互不相等的三个有理数a,b,c在数轴上对应的点分别为A,B,C。
若:-+-=-,则点B()||||||a b b c a cA.在点 A, C 右边B.在点 A, C 左边C.在点 A, C 之间D.以上都有可能6.已知a=b,则下列等式不成立的是()A.a+1=b+1 B.1﹣a=1﹣b C.3a=3b D.2﹣3a=3b﹣2 7.下列各数中,有理数是( )A.2B.πC.3.14 D.378.如图,已知AB∥CD,点E、F分别在直线AB、CD上,∠EPF=90°,∠BEP=∠GEP,则∠1与∠2的数量关系为( )A.∠1=∠2 B.∠1=2∠2 C.∠1=3∠2 D.∠1=4∠29.如果代数式﹣3a2m b与ab是同类项,那么m的值是( )A .0B .1C .12D .310.3的倒数是( ) A .3B .3-C .13D .13-11.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2或2.5 B .2或10C .2.5D .212.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( ) A .①②④B .①②③C .②③④D .①③④二、填空题13.若|x |=3,|y |=2,则|x +y |=_____. 14.把53°30′用度表示为_____.15.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____.16. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.17.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.18.因式分解:32x xy -= ▲ . 19.16的算术平方根是 . 20.52.42°=_____°___′___″.21.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)22.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________.23.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.24.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.三、解答题25.某市某公交车从起点到终点共有六个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如表: 站次 人数 二三四五六下车(人) 3 6 10 7 19上车(人)12 10 9 4 0(1)求本趟公交车在起点站上车的人数;(2)若公交车的收费标准是上车每人2元,计算此趟公交车从起点到终点的总收入? 26.如图所示,OE 和OD 分别是∠AOB 和∠BOC 的平分线,且∠AOB =90°,∠EOD =67.5°的度数.(1)求∠BOD 的度数;(2)∠AOE 与∠BOC 互余吗?请说明理由. 27.数学问题:计算231111n m m mm++++(其中m ,n 都是正整数,且m ≥2,n ≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究. 探究一:计算2311112222n ++++. 第1次分割,把正方形的面积二等分,其中阴影部分的面积为12; 第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为12+212; 第3次分割,把上次分割图中空白部分的面积继续二等分,…; …第n 次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为12+212+312+…+12n ,最后空白部分的面积是12n . 根据第n 次分割图可得等式:12 +212+312+…+12n =1﹣12n .探究二:计算13+213+313+…+13n .第1次分割,把正方形的面积三等分,其中阴影部分的面积为23;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为2 3+223;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为2 3+223+323+…+23n,最后空白部分的面积是13n.根据第n次分割图可得等式:23+223+323+…+23n=1﹣13n,两边同除以2,得13+213+313+…+13n=12﹣123n⨯.探究三:计算14+214+314+…+14n.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算1m+21m+31m+…+1nm.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:_________,所以,1m+21m+31m+…+1nm=________.拓广应用:计算515-+22515-+33515-+…+515nn-.28.如图,已知数轴上点A 表示的数为6,点B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为11,动点P 从点A 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)数轴上点B 表示的数是 ,当点P 运动到AB 中点时,它所表示的数是 ; (2)动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若P ,Q 两点同时出发,求点P 与Q 运动多少秒时重合?(3)动点Q 从点B 出发,以每秒2个单拉长度的速度沿数轴向左匀速运动,若P ,Q 两点同时出发,求:①当点P 运动多少秒时,点P 追上点Q ?②当点P 与点Q 之间的距离为8个单位长度时,求此时点P 在数轴上所表示的数.29.计算: (1)﹣7﹣2÷(﹣12)+3; (2)(﹣34)×49+(﹣16) 30.东莞市出租车收费标准如下表所示,根据此收费标准,解决下列问题: 行驶路程 收费标准 不超出2km 的部分 起步价8元 超出2km 的部分2.6元/km(1)若行驶路程为5km ,则打车费用为______元;(2)若行驶路程为()km 6x x >,则打车费用为______元(用含x 的代数式表示); (3)某同学周末放学回家,已知打车费用为34元,则他家离学校多少千米?四、压轴题31.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 满足6a ++|2b+12|+(c ﹣4)2=0.(1)求B 、C 两点的坐标;(2)动点P 从点O 出发,沿O→B→C 的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t 秒,DC 上有一点M (4,﹣3),用含t 的式子表示三角形OPM 的面积;(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的13?直接写出此时点P的坐标.32.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A,B在数轴上分别对应的数为a,b(a<b),则AB的长度可以表示为AB=b-a.请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.(1)请你在图②的数轴上表示出A,B,C三点的位置.(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.①当t=2时,求AB和AC的长度;②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.33.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点P与N之间,∴这四个数中绝对值最小的数对应的点是点N.故选B.2.A解析:A【解析】【分析】依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A.【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.3.D解析:D【解析】【分析】如图,根据点A、B表示的数互为相反数可确定原点,即可得出点B表示的数,根据两点间的距离公式即可得答案.【详解】如图,设点C表示的数为m,∵点A、B表示的数互为相反数,∴AB的中点O为原点,∴点B表示的数为3,∵点C到点B的距离为2个单位,=2,∴3m∴3-m=±2, 解得:m=1或m=5, ∴m 的值为1或5,故选:D. 【点睛】本题考查了数轴,熟练掌握数轴上两点间的距离公式是解题关键.4.C解析:C 【解析】 【分析】根据垂直的定义和同角的余角相等分别计算后对各小题进行判断,由此即可求解. 【详解】∵OA ⊥OC ,OB ⊥OD , ∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°, ∴∠AOB=∠COD ,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确; ∠AOB+∠COD 不一定等于90°,故③错误;图中小于平角的角有∠AOB ,∠AOC ,∠AOD ,∠BOC ,∠BOD ,∠COD 一共6个,故④正确;综上所述,说法正确的是①②④. 故选C . 【点睛】本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.5.C解析:C 【解析】 【分析】根据a b b c -+-表示数b 的点到a 与c 两点的距离的和,a c -表示数a 与c 两点的距离即可求解. 【详解】∵绝对值表示数轴上两点的距离a b -表示a 到b 的距离 b c -表示b 到c 的距离 a c -表示a 到c 的距离∵a b b c a c -+-=-丨丨丨丨丨丨 ∴B 在A 和C 之间 故选:C 【点睛】本题考查的是数轴的特点,熟知数轴上两点之间的距离公式是解答此题的关键.6.D解析:D 【解析】 【分析】根据等式的基本性质对各选项进行逐一分析即可. 【详解】A 、∵a =b ,∴a+1=b+1,故本选项正确;B 、∵a =b ,∴﹣a =﹣b ,∴1﹣a =1﹣b ,故本选项正确;C 、∵a =b ,∴3a =3b ,故本选项正确;D 、∵a =b ,∴﹣a =﹣b ,∴﹣3a =﹣3b ,∴2﹣3a =2﹣3b ,故本选项错误. 故选:D . 【点睛】本题考查了等式的性质,掌握等式的基本性质是解答此题的关键.7.C解析:C 【解析】 【分析】根据有理数及无理数的概念逐一进行分析即可得. 【详解】B. π是无理数,故不符合题意;C. 3.14是有理数,故符合题意;D. 故选C. 【点睛】本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键.8.B解析:B 【解析】 【分析】延长EP 交CD 于点M ,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP ,继而根据平角定义以及∠BEP=∠GEP 即可求得答案. 【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.9.C解析:C【解析】【分析】根据同类项的定义得出2m=1,求出即可.【详解】解:∵单项式-3a2m b与ab是同类项,∴2m=1,∴m=12,故选C.【点睛】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项,叫同类项.10.C解析:C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.11.A解析:A【解析】【分析】分相遇前相距50千米和相遇后相距50千米两种情况,根据路程=速度×时间列方程即可求出t值,可得答案.【详解】①当甲,乙两车相遇前相距50千米时,根据题意得:120t+80t=450-50,解得:t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.综上,t的值为2或2.5,故选A.【点睛】本题考查一元一次方程的应用,能够理解有两种情况、能够根据题意找出题目中的相等关系是解题关键.12.B解析:B【解析】【分析】根据圆锥、圆柱、球、五棱柱的形状特点判断即可.【详解】圆锥,如果截面与底面平行,那么截面就是圆;圆柱,如果截面与上下面平行,那么截面是圆;球,截面一定是圆;五棱柱,无论怎么去截,截面都不可能有弧度.故选B.二、填空题13.1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3解析:1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3,y=2时,|x+y|=|3+2|=5(2)x=3,y=﹣2时,|x+y|=|3+(﹣2)|=1(3)x=﹣3,y=2时,|x+y|=|﹣3+2|=1(4)x=﹣3,y=﹣2时,|x+y|=|(﹣3)+(﹣2)|=5故答案为:1或5.【点睛】此题主要考查了有理数的加法的运算方法,以及绝对值的含义和求法,要熟练掌握.14.5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:5330’用度表示为53.5,故答案为:53.5.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以解析:5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53︒30’用度表示为53.5︒,故答案为:53.5︒.此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.15.【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13解析:【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13,第二次输出的结果为:40,第三次输出的结果为:5,第四次输出的结果为:16,第五次输出的结果为:1,第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C运算”的结果是1,故答案为:1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.16.2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8-6=2cm;当点C在线段AB的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.17.2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解析:2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解:∵第1次输出的结果为7+3=10,第2次输出的结果为12×10=5,第3次输出结果为5+3=8,第4次输出结果为12×8=4,第5次输出结果为12×4=2,第6次输出结果为12×2=1,第7次输出结果为1+3=4,第8次输出结果为12×4=2,……∴输出结果除去前3个数后,每3个数为一个周期循环,∵(2018﹣3)÷3=671…2,∴第2018次输出的数是2,如图,若x=14x,则x=0;若x=12x+3,则x=6;若x=12(x+3),则x=3;故答案为:2、0或3或6.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x 3﹣xy 2=x (x 2﹣y 2)=x (x ﹣y )(x+y ),故答案为x (x ﹣y )(x+y ).19.【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为4解析:【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为4 20.52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即解析:52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.【详解】52.42°=52°25′12″.故答案为52、25、12.【点睛】此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.21.270°-3α【解析】【分析】设∠DOE=x ,根据OC 平分∠AOD ,∠COE =α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程解析:270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程式,求解即可.【详解】设∠DOE=x,根据OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,∴∠BOD=4x,∠AOC=∠COD=α-x,由∠BOD+∠AOD=180°,∴4x+2(α-x )=180°解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.22.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的解析:24 2525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-= 9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 23.4【解析】【分析】由题意可得,求解即可.【详解】解:解得故答案为:4【点睛】本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.解析:4【解析】【分析】由题意可得{}[]1,x x x x =+=,求解即可.【详解】解:{}[]323(1)25323x x x x x +=++=+=解得4x =故答案为:4【点睛】本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键. 24.2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4yn是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n解析:2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4y n是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n=-1+3=2.故答案为:2.【点睛】本题考查同类项的定义. 所含字母相同,并且相同字母的指数相等的项叫做同类项.三、解答题25.(1)本趟公交车在起点站上车的人数是10人;(2)此趟公交车从起点到终点的总收入是90元.【解析】【分析】(1)根据下车的总人数减去上车的总人数得到起点站上车的人数即可;(2)从起点开始,把所有上车的人数相加,计算出和以后再乘以2即可求解.【详解】(1)(3+6+10+7+19)-(12+10+9+4+0)=45﹣35=10(人)答:本趟公交车在起点站上车的人数是10人.(2)由(1)知起点上车10人(10+12+10+9+4)×2=45×2=90(元)答:此趟公交车从起点到终点的总收入是90元.【点睛】本题考查了有理数加减运算的应用,读懂题意,正确列出算式是解决问题的关键.26.(1)∠BOD =22.5°;(2)∠AOE 与∠BOC 互余.理由见解析.【解析】【分析】(1)根据角平分线的定义可求∠AOE 与∠BOE ,再根据角的和差关系可求∠BOD 的度数;(2)根据角平分线的定义可求∠BOC ,再根据角的和差关系可求∠AOE 与∠BOC 是否互余.【详解】解:(1)∵OE 是∠AOB 的平分线,∠AOB =90°,∴∠AOE =∠BOE =45°,∴∠BOD =∠EOD ﹣∠BOE =22.5°;(2)∵OD 是∠BOC 的平分线,∴∠BOC =45°,∴∠AOE +∠BOC =45°+45°=90°,∴∠AOE 与∠BOC 互余.【点睛】本题考查了余角和补角,角平分线的定义,首先确定各角之间的关系,利用角平分线的定义来求.27.【答题空1】2333331144444n n ++++=- 【答题空2】111(1)nm m m ---⨯ 【解析】【分析】探究三:根据探究二的分割方法依次进行分割,然后表示出阴影部分的面积,再除以3即可;解决问题:按照探究二的分割方法依次分割,然后表示出阴影部分的面积及,再除以(m-1)即可得解;拓广应用:先把每一个分数分成1减去一个分数,然后应用公式进行计算即可得解.【详解】探究三:第1次分割,把正方形的面积四等分,其中阴影部分的面积为34; 第2次分割,把上次分割图中空白部分的面积继续四等分, 阴影部分的面积之和为23344+; 第3次分割,把上次分割图中空白部分的面积继续四等分, …, 第n 次分割,把上次分割图中空白部分的面积最后四等分, 所有阴影部分的面积之和为:2333334444n ++++, 最后的空白部分的面积是14n, 根据第n 次分割图可得等式:2333334444n ++++=1﹣14n , 两边同除以3,得2311114444n ++++=11334n -⨯; 解决问题:231111n m m m m m m m m ----++++=1﹣1n m, 231111n m m m m++++=()1111n m m m ---⨯; 故答案为2333334444n ++++=1﹣14n ,()1111n m m m ---⨯;拓广应用:2323515151515555n n ----++++, =1﹣15+1﹣215+1﹣315+…+1﹣15n , =n ﹣(15+215+315+…+15n ), =n ﹣(14﹣145n ⨯),=n ﹣14+145n⨯. 【点睛】 本题考查了应用与设计作图,图形的变化规律,读懂题目信息,理解分割的方法以及求和的方法是解题的关键.28.(1)-5,0.5;(2)点P 与Q 运动2.2秒时重合;(3)①当点P 运动11秒时,点P 追上点Q ;②当点P 与点Q 之间的距离为8个单位长度时,此时点P 在数轴上所表示的数为﹣3或﹣51.【解析】【分析】(1)由题意得出数轴上点B 表示的数是5-,由点P 运动到AB 中点得出点P 对应的数是1(56)0.52⨯-+=即可; (2)设点P 与Q 运动t 秒时重合,点P 对应的数为63t -,点Q 对应的数为52t -+,得出方程6352t t -=-+,解方程即可;(3)①运动t 秒时,点P 对应的数为63t -,点Q 对应的数为52t --,由题意得出方程6352t t -=--,解方程即可;②由题意得出|63(52)|8t t ----=,解得3t =或19t =,进而得出答案.【详解】解:(1)数轴上点A 表示的数为6,点B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为11,∴数轴上点B 表示的数是6115-=-,点P 运动到AB 中点,∴点P 对应的数是:1(56)0.52⨯-+=,故答案为:5-,0.5;(2)设点P 与Q 运动t 秒时重合,点P 对应的数为:63t -,点Q 对应的数为:52t -+, 6352t t ∴-=-+,解得: 2.2t =,∴点P 与Q 运动2.2秒时重合;(3)①运动t 秒时,点P 对应的数为:63t -,点Q 对应的数为:52t --,点P 追上点Q ,6352t t ∴-=--,解得:11t =,∴当点P 运动11秒时,点P 追上点Q ; ②点P 与点Q 之间的距离为8个单位长度,|63(52)|8t t ∴----=,解得:3t =或19t =,当3t =时,点P 对应的数为:63693t -=-=-,当19t =时,点P 对应的数为:6365751t -=-=-,∴当点P 与点Q 之间的距离为8个单位长度时,此时点P 在数轴上所表示的数为3-或51-.【点睛】此题考查的知识点是一元一次方程的应用与两点间的距离及数轴,根据已知得出各线段之间的等量关系是解题关键.29.(1)0;(2)﹣52【解析】【分析】(1)原式先计算除法运算,再计算加减运算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】(1)原式=﹣7+4+3=0;(2)原式=﹣8149⨯-16=﹣36﹣16=﹣52. 【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.30.(1)15.8;(2)()2.6 2.8x +;(3)他家离学校12千米.【解析】【分析】(1)根据题意,分为不超过2km 的部分和超出2km 的部分,列式计算即可;(2)根据题意,分为不超过2km 的部分和超出2km 的部分,列式即可;(3)由(2)中的代数式列出方程,求解即可.【详解】(1)由题意,得8+2.6×(5-2)=15.8元;故答案为15.8;(2)由题意,得()8 2.628 2.6 5.2 2.6 2.8x x x +⨯-=+-=+故答案为()2.6 2.8x +;(3)设他家离学校x 千米由题意得:2.6 2.834x +=,解得:12x =,答:他家离学校12千米【点睛】此题主要考查一元一次方程的实际应用,解题关键是理解题意,列出等式. 四、压轴题31.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6)【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.【详解】(1)∵6a ++|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.32.(1)详见解析;(2)①16;②在移动过程中,3AC ﹣4AB 的值不变【解析】【分析】(1)根据点的移动规律在数轴上作出对应的点即可;(2)①当t =2时,先求出A 、B 、C 点表示的数,然后利用定义求出AB 、AC 的长即可; ②先求出A 、B 、C 点表示的数,然后利用定义求出AB 、AC 的长,代入3AC -4AB 即可得到结论.【详解】(1)A ,B ,C 三点的位置如图所示:.(2)①当t =2时,A 点表示的数为-4,B 点表示的数为5,C 点表示的数为12,∴AB =5-(-4)=9,AC =12-(-4)=16.②3AC -4AB 的值不变.当移动时间为t 秒时,A 点表示的数为-t -2,B 点表示的数为2t +1,C 点表示的数为3t +6,则:AC =(3t +6)-(-t -2)=4t +8,AB =(2t +1)-(-t -2)=3t +3,∴3AC -4AB =3(4t +8)-4(3t +3)=12t +24-12t -12=12.即3AC ﹣4AB 的值为定值12,∴在移动过程中,3AC ﹣4AB 的值不变.【点睛】本题考查了数轴上的动点问题.表示出对应点所表示的数是解答本题的关键.33.(1)DE=6;(2) DE=2a ,理由见解析;(3)∠DOE=12∠AOB ,理由见解析 【解析】试题分析:(1)由AC=4cm ,AB=12cm ,即可推出BC=8cm ,然后根据点D 、E 分别是AC 和BC 的中点,即可推出AD=DC=2cm ,BE=EC=4cm ,即可推出DE 的长度,(2)设AC=acm ,然后通过点D 、E 分别是AC 和BC 的中点,即可推出DE=12(AC+BC )=12AB=2a cm ,即可推出结论, (3)分两种情况,OC 在∠AOB 内部和外部结果都是∠DOE=12∠AOB 试题解析:(1))∵AB=12cm ,∴AC=4cm ,∴BC=8cm ,∵点D 、E 分别是AC 和BC 的中点,∴CD=2cm ,CE=4cm ,。
上海求真中学人教版七年级上册数学期末综合测试题
上海求真中学人教版七年级上册数学期末综合测试题一、选择题1.如图,将线段AB延长至点C,使12BC AB=,D为线段AC的中点,若BD=2,则线段AB的长为()A.4 B.6 C.8 D.122.如图,点A,B在数轴上,点O为原点,OA OB=.按如图所示方法用圆规在数轴上截取BC AB=,若点A表示的数是a,则点C表示的数是( )A.2a B.3a-C.3a D.2a-3.计算32a a⋅的结果是()A.5a;B.4a;C.6a;D.8a.4.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为()4a b c﹣23…A.4 B.3 C.0 D.﹣25.观察下列算式,用你所发现的规律得出22015的末位数字是()21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A.2 B.4 C.6 D.86.如图是由下列哪个立体图形展开得到的?()A.圆柱B.三棱锥C.三棱柱D.四棱柱7.﹣3的相反数是()A .13-B .13C .3-D .38.下列各数中,绝对值最大的是( ) A .2 B .﹣1C .0D .﹣39.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOC B .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB10.下列调查中,最适合采用全面调查(普查)的是( ) A .对广州市某校七(1)班同学的视力情况的调查 B .对广州市市民知晓“礼让行人”交通新规情况的调查 C .对广州市中学生观看电影《厉害了,我的国》情况的调查 D .对广州市中学生每周课外阅读时间情况的调查11.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )A .棱柱B .圆锥C .圆柱D .棱锥 12.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒二、填空题13.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.14.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………15.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.16.已知单项式245225n m xy x y ++与是同类项,则m n =______.17.当a=_____时,分式13a a --的值为0. 18.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.19.因式分解:32x xy -= ▲ .20.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____. 21.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________. 22.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.23.已知7635a ∠=︒',则a ∠的补角为______°______′. 24.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).三、压轴题25.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。
七年级上册上海求真中学数学期末试卷同步检测(Word版 含答案)
七年级上册上海求真中学数学期末试卷同步检测(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【答案】(1)解:∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段(2)解:,理由:设线段上有m个点,该线段上共有线段x条,则x=(m-1)+(m-2)+(m-3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m-3)+(m-2)+(m-1),∴2x= =m(m-1),∴x=(3)解:把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数,因此一共要进行场比赛【解析】【分析】(1)线段AB上共有4个点A、B、C、D,得到线段共有4×(4-1)÷2条;(2)根据规律得到该线段上共有m(m-1)÷2条线段;(3)由每两位同学之间进行一场比赛,得到要进行8×(8-1)÷2场比赛.2.【探索新知】如图1,射线OC在∠AOB内部,图中共有3个角:∠AOB、∠AOC和∠BOC,若其中一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“二倍线”.(1)一个角的角平分线________这个角的“二倍线”.(填是或不是)(2)【运用新知】如图2,若∠AOB=120°,射线OM绕从射线OB的位置开始,绕点O按逆时针方向以每秒10°的速度向射线OA旋转,当射线OM到达射线OA的位置时停止旋转,设射线OM旋转的时间为t(s),若射线OM是∠AOB的“二倍线”,求t的值. (3)【深入研究】在(2)的条件下.同时射线ON从射线OA的位置开始,绕点O按顺时针方向以每秒5°的速度向射线OB旋转,当射线OM停止旋转时,射线ON也停止旋转.请直接写出当射线OM是∠AON的“二倍线”时t的值.【答案】(1)是(2)解:若∠AOM=2∠BOM时,且∠AOM+∠BOM=120°∴∠BOM=40°∴t= =4,若∠BOM=2∠AOM,且∠AOM+∠BOM=120°∴∠BOM=80°∴t= =8若∠AOB=2∠AOM,或∠AOB=2∠BOM,∴OM平分∠AOB,∴∠BOM=60°∴t= =6综上所述:当t=4或8或6时,射线OM是∠AOB的“二倍线”.(3)解:若∠AON=2∠MON,则5t=2×(5t+10t-120)∴t=9.6若∠MON=2∠AOM,则5t+10t-120=2×(120-10t)∴t=若∠AOM=2∠MON,则120-10t=2×(5t+10t-120)∴t=9综上所述:t=9.6或或9.【解析】【解答】(1)解:∵一个角的平分线平分这个角,且这个角是所分两个角的两倍,∴一个角的角平分线是这个角的“二倍线”,故答案为:是【分析】(1)由角平分线的定义可得;(2)分三种情况讨论,由“二倍线”的定义,列出方程可求t的值;(3)分三种情况讨论,由“二倍线”的定义,列出方程可求t的值.3.如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)如果∠AOB=40°,∠DOE=30°,那么∠BOD是多少度?(2)如果∠AOE=160°,∠COD=30°,∠AOB那么是多少度?【答案】(1)解:因为OB是∠AOC的平分线,OD是∠COE的平分线.所以∠AOB=∠BOC=40°,∠COD=∠DOE=30°.∠BOD=∠BOC+∠COD=40°+30°=70°(2)解:因为∠AOB=∠BOC,∠COD=∠DOE=30°,∠AOE=160°∠AOE=∠AOB+∠BOC+∠COD+∠DOE160°=2∠AOB+30°+30°,所以∠AOB=50°【解析】【分析】(1)根据角平分线定义和已知条件可得∠AOB=∠BOC=40°,∠COD=∠DOE=30°,由∠BOD=∠BOC+∠COD即可求得答案.(2)根据角平分线定义和已知条件可得∠AOB=∠BOC,∠COD=∠DOE=30°,再由∠AOE=∠AOB+∠BOC+∠COD+∠DOE即求得答案.4.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE 分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.【答案】(1)解:∠AEB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴,,∴ °,∴∠AEB=135°(2)解:∠CED的大小不变.如图2,延长AD、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴ °,∴ °,∴ °,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴,,∴ °, °,∴ °,∴ °,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴ °,∴ °;(3)解:∵∠BAO与∠BOQ的角平分线相交于E,∴ , ,∴,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴ °.在△AEF中,∵有一个角是另一个角的3倍,故有:① , °, °;② , °, °;③ , °, °;④ , °, °.∴∠ABO为60°或45°.【解析】【分析】(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AE、BE分别是∠BAO和∠ABO的角平分线得出,,由三角形内角和定理即可得出结论;(2)延长AD、BC交于点F,根据直线MN与直线PQ垂直相交于O可得出∠AOB=90°,进而得出,故,再由AD、BC分别是∠BAP和∠ABM的角平分线,可知,,由三角形内角和定理可知∠F=45°,再根据DE、CE 分别是∠ADC和∠BCD的角平分线可知,进而得出结论;(3))由∠BAO与∠BOQ的角平分线相交于E可知 , ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的3倍分四种情况进行分类讨论.5.已知点O在直线MN上,过点O作射线OP,使∠MOP=130°,将一块直角三角板的直角顶点始终放在点O处.(1)如图①,当三角板的一边OA在射线OM上,另一边OB在直线MN的上方时,求∠POB的度数;(2)若将三角板绕点O旋转至图②所示的位置,此时OB恰好平分∠PON,求∠BOP和∠AOM 的度数;(3)若将三角板绕点O旋转至图③所示位置,此时OA在∠PON 的内部,若OP所在的直线平分∠MOB,求∠POA 的度数;【答案】(1)解:∠POB=∠MOP-∠AOB=130°-90°=40°.(2)解:∵∠MON是平角,∠MOP=130°,∴∠PON=∠MON-∠MOP=180°-130°=50°∵OB 平分∠PON,∴∠BOP= ∠PON=25°∵∠AOB=90゜,∴∠AOP=∠AOB-∠BOP=90°-25°=65°∴∠MOA=∠MOP-∠AOP=130°-65°=65°;(3)解:如图,OE是PO的延长线,∵∠MOP=130°∴∠MOE=50°∵OE是∠MOB的平分线,∴∠MOB=100°,∴∠BON=80°∵∠AOB=90°∴∠AON=∠AOB-∠BON=90°-80°=10°∴∠POA=∠PON-∠AON=50°-10°=40°【解析】【分析】(1)根据题意,∠POB=∠POA-∠AOB代入数据即可求出结论;(2)根据题意,∠PON=180°-∠POM,又根据角平分线的定义可得∠POB=∠NOB= ,代入已知即可求解;再根据余角定义求出∠POA的度数;(3)从已知条件可得,∠MOE=180°-∠MOP,再根据角平分线的定义得∠MOB=2∠MOE, ∠NOA=180°-∠MOB, ∠AON=90°-∠BON, ∠POB=∠PON-∠AON,代入求值即可.6.如图为一台灯示意图,其中灯头连接杆DE始终和桌面FG平行,灯脚AB始终和桌面FG垂直,(1)当∠EDC=∠DCB=120°时,求∠CBA;(2)连杆BC、CD可以绕着B、C和D进行旋转,灯头E始终在D左侧,设∠EDC,∠DCB,∠CBA的度数分别为α,β,γ,请画出示意图,并直接写出示意图中α,β,γ之间的数量关系.【答案】(1)解:如图,过C作CP∥DE,延长CB交FG于H,∵DE∥FG,∴PC∥FG,∴∠PCD=180°﹣∠D=60°,∠PCH=120°﹣∠PCD=60°,∴∠CHA=∠PCH=60°,又∵∠CBA是△ABH的外角,AB⊥FG,∴∠CBA=60°+90°=150°,(2)解:如图,过C作CP∥DE,延长CB交FG于H,∵DE∥FG,∴PC∥FG,∴∠D+∠PCD=180°,∠FHC+∠PCH=180°,∴∠D+∠DCH+∠FHC=360°,又∵∠CBA是△ABH的外角,AB⊥FG,∴∠AHB=∠ABC﹣90°,∴∠FHC=180°﹣(∠ABC﹣90°)=270°﹣∠ABC,∴∠D+∠DCH+270°﹣∠ABC=360°,即∠D+∠DCB﹣∠ABC=90°.即α+β﹣γ=90°.【解析】【分析】(1)过C作CP∥DE,延长CB交FG于H,可证得ED∥PC∥FG,利用平行线的性质求出∠DCP,从而可求出∠PCH的度数;再利用两直线平行,内错角相等,可证得∠PCH=∠CHG,就可求出∠CHG的度数,然后利用垂直的定义及三角形的外角的性质,就可求出∠CBA的度数。
2020-2021上海市初一数学上期末模拟试题(附答案)
2020-2021上海市初一数学上期末模拟试题(附答案)一、选择题1.下列说法:(1)两点之间线段最短; (2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90°;(4)A 、B 两点间的距离是指A 、B 两点间的线段;其中正确的有( ) A .一个 B .两个 C .三个 D .四个 2.方程834x ax -=-的解是3x =,则a 的值是( ).A .1B .1-C .3-D .33.爷爷快到八十大寿了,小莉想在日历上把这一天圈起来,但不知道是哪一天,于是便去问爸爸,爸爸笑笑说:“在日历上,那一天的上下左右4个日期的和正好等于那天爷爷的年龄”.那么小莉的爷爷的生日是在( ) A .16号B .18号C .20号D .22号4.下面的说法正确的是( ) A .有理数的绝对值一定比0大 B .有理数的相反数一定比0小C .如果两个数的绝对值相等,那么这两个数相等D .互为相反数的两个数的绝对值相等 5.下列去括号正确的是( ) A .()2525x x -+=-+ B .()142222x x --=-+ C .()122333m n m n -=+ D .222233m x m x ⎛⎫--=-+⎪⎝⎭6.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是( )A .点A 和点CB .点B 和点DC .点A 和点DD .点B 和点C7.下面结论正确的有( )①两个有理数相加,和一定大于每一个加数. ②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和. ④两个正数相加,和为正数. ⑤两个负数相加,绝对值相减. ⑥正数加负数,其和一定等于0. A .0个 B .1个 C .2个 D .3个8.已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,……以此类推,则a 2018的值为( )A .﹣1007B .﹣1008C .﹣1009D .﹣20189.根据图中的程序,当输出数值为6时,输入数值x 为( )A .-2B .2C .-2或2D .不存在10.两根同样长的蜡烛,粗烛可燃4小时,细烛可燃3小时,一次停电,同时点燃两根蜡烛,来电后同时熄灭,发现粗烛的长是细烛的2倍,则停电的时间为( ) A .2小时B .2小时20分C .2小时24分D .2小时40分11.4h =2小时24分. 答:停电的时间为2小时24分. 故选:C . 【点睛】本题考查了一元一次方程的应用,把蜡烛长度看成1,得到两支蜡烛剩余长度的等量关系是解题的关键.12.一副三角板不能拼出的角的度数是( )(拼接要求:既不重叠又不留空隙) A .75︒B .105︒C .120︒D .125︒二、填空题13.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高 ________.14.某商品的价格标签已丢失,售货员只知道“它的进价为90元,打七折出售后,仍可获利5%,你认为售货员应标在标签上的价格为________元.15.明明每天下午5:40放学,此时钟面上时针和分针的夹角是_____. 16.若代数式45x -与36x -的值互为相反数,则x 的值为____________. 17.用科学记数法表示24万____________.18.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数1234…n正三角形个数471013…a n19.轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了_______小时.20.已知2a﹣b=﹣2,则6+(4b﹣8a)的值是_____.三、解答题21.在一条笔直的公路上,A、B两地相距300千米.甲乙两车分别从A、B两地同时出发,已知甲车速度为100千米/小时,乙车速度为60千米/小时.经过一段时间后,两车相距100千米,求两车的行驶时间?22.如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤60,单位:秒).(1)当t=3时,求∠AOB的度数;(2)在运动过程中,当∠AOB第二次达到72°时,求t的值;(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请求出t 的值;如果不存在,请说明理由.23.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水8m3,则应收水费:元2×6+4×(8-6)=20(1)若该户居民2月份用水12.5m3,则应收水费元;(2)若该户居民3、4月份共用水20m3(4月份用水量超过3月份),共交水费64元,则该户居民3,4月份各用水多少立方米?24.化简求值:(5a2+2a﹣1)﹣4(3﹣8a+2a2),其中a=1.25.某超市计划购进甲、乙两种型号的台灯1000台,这两种型号台灯的进价、售价如下表:进价(元/台)售价(元/台)甲种4555乙种6080(1)如果超市的进货款为54000元,那么可计划购进甲、乙两种型号的台灯各多少台?(2)为确保乙种型号的台灯销售更快,超市决定对乙种型号的台灯打折销售,且保证乙种型号台灯的利润率为20%,问乙种型号台灯需打几折?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】(1)根据线段的性质即可求解;(2)根据直线的性质即可求解;(3)余角和补角一定指的是两个角之间的关系,同角的补角比余角大90°;(4)根据两点间的距离的定义即可求解.【详解】(1)两点之间线段最短是正确的;(2)两点确定一条直线是正确的;(3)同一个锐角的补角一定比它的余角大90°是正确的;(4)A、B两点间的距离是指A、B两点间的线段的长度,原来的说法是错误的.故选C . 【点睛】本题考查了补角和余角、线段、直线和两点间的距离的定义及性质,是基础知识要熟练掌握.2.A解析:A 【解析】 【分析】把3x =代入方程834x ax -=-,得出一个关于a 的方程,求出方程的解即可. 【详解】把3x =代入方程834x ax -=-得: 8-9=3a-4 解得:a=1 故选:A . 【点睛】本题考查了解一元一次方程和一元二次方程的解,能够得出关于a 的一元一次方程是解此题的关键.3.C解析:C 【解析】 【分析】要求小莉的爷爷的生日,就要明确日历上“上下左右4个日期”的排布方法.依此列方程求解. 【详解】设那一天是x ,则左日期=x ﹣1,右日期=x+1,上日期=x ﹣7,下日期=x+7, 依题意得x ﹣1+x+1+x ﹣7+x+7=80 解得:x =20 故选:C . 【点睛】此题关键是弄准日历的规律,知道左右上下的规律,然后依此列方程.4.D解析:D 【解析】 【分析】直接利用绝对值的性质以及相反数的定义分别分析得出答案. 【详解】A .有理数的绝对值一定大于等于0,故此选项错误;B .正有理数的相反数一定比0小,故原说法错误;C .如果两个数的绝对值相等,那么这两个数互为相反数或相等,故此选项错误;D .互为相反数的两个数的绝对值相等,正确. 故选:D . 【点睛】此题主要考查了绝对值和相反数,正确掌握相关定义是解题关键.5.D解析:D 【解析】试题分析:去括号时括号前是正号,括号里的每一项都不变号;括号前是负号,括号里的每一项都变号.A 项()2525,x x -+=--故不正确;B 项()14221,2x x --=-+故不正确;C 项()1223,33m n m n -=-故不正确;D 项222233m x m x ⎛⎫--=-+ ⎪⎝⎭,故正确.故选D .考点:去括号法则.6.C解析:C 【解析】 【分析】根据相反数的定义进行解答即可. 【详解】解:由A 表示-2,B 表示-1,C 表示0.75,D 表示2.根据相反数和为0的特点,可确定点A 和点D 表示互为相反数的点. 故答案为C. 【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.7.C解析:C【解析】试题解析:∵①3+(-1)=2,和2不大于加数3, ∴①是错误的;从上式还可看出一个正数与一个负数相加不一定得0, ∴②是错误的.由加法法则:同号两数相加,取原来的符号,并把绝对值相加, 可以得到③、④都是正确的.⑤两个负数相加取相同的符号,然后把绝对值相加,故错误. ⑥-1+2=1,故正数加负数,其和一定等于0错误. 正确的有2个, 故选C .8.C解析:C【分析】根据前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2018=﹣=﹣1009,从而得到答案.【详解】解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,a7=﹣|a6+6|=﹣|﹣3+6|=﹣3,…以此类推,经过前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2018=﹣=﹣1009,故选:C.【点睛】本题考查规律型:数字的变化类,根据前几个数字找出最后数值与顺序数之间的规律是解决本题的关键.9.C解析:C【解析】【分析】根据流程图,输出的值为6时列出两个一元一次方程然后再进行代数式求值即可求解.【详解】解:当输出的值为6时,根据流程图,得1 2x+5=6或12x+5=6解得x=2或-2.故选:C.【点睛】本题考查了列一元一次方程求解和代数式求值问题,解决本题的关键是根据流程图列方程.10.C解析:C【分析】设停电x小时.等量关系为:1-粗蜡烛x小时的工作量=2×(1-细蜡烛x小时的工作量),把相关数值代入即可求解.【详解】解:设停电x小时.由题意得:1﹣14x=2×(1﹣13x),解得:x=2.4.11.无12.D解析:D【解析】【分析】【详解】解:一副三角板的度数分别为:30°、60°、45°、45°、90°,因此可以拼出75°、105°和120°,不能拼出125°的角.故选D.【点睛】本题考查角的计算.二、填空题13.10℃【解析】【分析】用最高温度减去最低温度然后根据减去一个数等于加上这个数的相反数进行计算即可得解【详解】2-(-8)=2+8=10(℃)故答案为10℃【点睛】本题考查了有理数的减法掌握减去一个数解析:10℃【解析】【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】2-(-8),=2+8,=10(℃).故答案为10℃.【点睛】本题考查了有理数的减法,掌握减去一个数等于加上这个数的相反数是解题的关键.14.元【解析】【分析】依据题意建立方程求解即可【详解】解:设售货员应标在标签上的价格为x元依据题意70x=90×(1+5)可求得:x=135故价格应为135元考点:一元一次方程的应用解析:元【解析】【分析】依据题意建立方程求解即可.【详解】解:设售货员应标在标签上的价格为x元,依据题意70%x=90×(1+5%)可求得:x=135,故价格应为135元.考点:一元一次方程的应用.15.70°【解析】【分析】因为钟表上的刻度是把一个圆平均分成了12等份每一份是30°借助图形找出5时40分时针和分针之间相差的大格数用大格数乘30°即可【详解】钟表两个数字之间的夹角为:度5点40分时针解析:70°【解析】【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出5时40分时针和分针之间相差的大格数,用大格数乘30°即可.【详解】钟表两个数字之间的夹角为:36030 12=度5点40分,时针到6的夹角为:40 30301060-⨯=度分针到6的夹角为:23060⨯=度时针和分针的夹角:60+10=70度故答案为:70°.【点睛】本题考查了钟表分针所转过的角度计算.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动112︒⎛⎫⎪⎝⎭,并且利用起点时间时针和分针的位置关系建立角的图形.16.【解析】【分析】利用相反数的性质列出方程求出方程的解即可得到x的值【详解】解:根据题意得:移项合并得:解得故答案为:【点睛】此题考查了解一元一次方程和相反数的概念解题的关键在于根据相反数的概念列出方解析:117【解析】 【分析】利用相反数的性质列出方程,求出方程的解即可得到x 的值. 【详解】解:根据题意得:45+360--=x x , 移项合并得:711x = ,解得117x =, 故答案为:117.【点睛】此题考查了解一元一次方程和相反数的概念,解题的关键在于根据相反数的概念列出方程.17.【解析】【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n 是正数;当原数 解析:52.410⨯【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】24万5240000 2.410==⨯ 故答案为:52.410⨯ 【点睛】此题考查的知识点是科学记数法-原数及科学记数法-表示较小的数,关键要明确用科学记数法表示的数还原成原数时,n <0时,|n|是几,小数点就向左移几位.用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.18.3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n 次时共有4+3(n-1)=3n+1试题解析:故剪n 次时共有4+3(n-1)=3n+1考点:规律型:图形的变化类解析:3n+1. 【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.试题解析:故剪n次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.19.10【解析】∵轮船在顺水中的速度为28千米/小时在逆水中的速度为24千米/小时∴水流的速度为:(千米/时)∴水面上的漂浮物顺水漂流20千米所需的时间为:(小时)故答案为10点睛:本题解题的关键是要清解析:10【解析】∵轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,∴水流的速度为:(2824)22-÷=(千米/时),∴水面上的漂浮物顺水漂流20千米所需的时间为:20210÷=(小时).故答案为10.点睛:本题解题的关键是要清楚:在航行问题中,①顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;②水面上漂浮物顺水漂流的速度等于水流速度.20.【解析】【分析】根据去括号和添括号法则把原式变形整体代入计算得到答案【详解】解:6+(4b﹣8a)=﹣8a+4b+6=﹣4(2a﹣b)+6当2a﹣b=﹣2原式=﹣4×(﹣2)+6=14故答案为:14解析:【解析】【分析】根据去括号和添括号法则把原式变形,整体代入计算,得到答案.【详解】解:6+(4b﹣8a)=﹣8a+4b+6=﹣4(2a﹣b)+6,当2a﹣b=﹣2,原式=﹣4×(﹣2)+6=14,故答案为:14.【点睛】本题考查的是整式的化简求值,掌握整式的加减混合运算法则和整体代入是解题的关键.三、解答题21.54小时或52小时或5小时或10小时.【解析】【分析】设当两车相距100千米时,两车行驶的时间为x小时,根据路程=速度×时间结合两车相距100千米即可得出关于x的一元一次方程,解之即可得出结论,注意分类讨论.【详解】解:设当两车相距100千米时,两车行驶的时间为x小时,根据题意得:若两车相向而行且甲车离A地更近,则(100+60)x=300-100,解得:x=54;若两车相向而行且甲车离B地更近,则(100+60)x=300+100,解得:x=52;若两车同向而行且甲车未追上乙车时,则(100-60)x=300-100,解得:x=5;若两车同向而行且甲车超过乙车时,则(100-60)x=300+100,解得:x=10;∴两车的行驶时间为54小时或52小时或5小时或10小时.【点睛】本题考查了一元一次方程的应用,根据数量关系路程=速度×时间,列出一元一次方程是解题的关键.22.(1)150°;(2)t的值为1265;(3)t的值为9、27或45.【解析】【分析】(1)将t=3代入求解即可.(2)根据题意列出方程求解即可.(3)分两种情况:①当0≤t≤18时,②当18≤t≤60时,分别列出方程求解即可.【详解】(1)当t=3时,∠AOB=180°﹣4°×3﹣6°×3=150°.(2)依题意,得:4t+6t=180+72,解得:t1265 .答:当∠AOB第二次达到72°时,t的值为1265.(3)当0≤t≤18时,180﹣4t﹣6t=90,解得:t=9;当18≤t≤60时,4t+6t=180+90或4t+6t=180+270,解得:t=27或t=45.答:在旋转过程中存在这样的t,使得射线OB与射线OA垂直,t的值为9、27或45.【点睛】本题考查了一元一次方程的问题,掌握解一元一次方程的方法是解题的关键.23.(1) 48;(2) 3月份用水8m3,4月份用水量为12m3【解析】【分析】(1)根据价目表列出式子,计算有理数运算即可得;(2)根据价目表,对3月份的用水量分情况讨论,再根据水费分别建立方程求解即可得.【详解】(1)应收水费()()264106812.51048⨯+⨯-+⨯-=元故答案为:48;(2)设3月份用水3xm ,则4月份用水()320x m - 依题意,分以下三种情况:①当3月份用水不超过36m 时则()226448201064x x +⨯+⨯+--= 解得:2263x =>(不符题意,舍去) ②当3月份用水超过36m ,但不超过310m 时则()()264626448201064x x ⨯+-+⨯+⨯+⨯--=解得:810x =<(符合题意)此时,32020812()x m -=-=③当3月份用水超过310m 时由4月份用水量超过3月份用水量可知,不合题意综上,3月份用水38m ,4月份用水量为312m .【点睛】本题考查了一元一次方程的实际应用,读懂题意,正确建立方程是解题关键.24.﹣3a 2+34a ﹣13,18.【解析】【分析】整式的混合运算,先去括号,然后合并同类项,最后代入求值.【详解】解:(5a 2+2a ﹣1)﹣4(3﹣8a +2a 2)=5a 2+2a ﹣1﹣12+32a ﹣8a 2=﹣3a 2+34a ﹣13,当a =1时,原式=﹣3×12+34×1﹣13=18.【点睛】本题考查整式的加减混合运算,掌握去括号法则,正确计算是解题关键.25.(1)计划购进甲、乙两种型号的台灯分别为400台和600台;(2)乙种型号台灯需打9折.【解析】【分析】(1)设超市计划购进甲种型号的台灯为x 台,则购进乙种型号的台灯为()1000x -台,根据总价=单价×数量列出一元一次方程即可;(2)设乙种型号台灯需打a 折,根据利润率为20%列出方程即可.【详解】(1)设超市计划购进甲种型号的台灯为x 台,则购进乙种型号的台灯为()1000x -台. 根据题意,列方程得()45x 601000x 54000+-=解得x 400=,所以,应购进乙种型号的台灯为1000400600-=(台).答:计划购进甲、乙两种型号的台灯分别为400台和600台.(2)设乙种型号台灯需打a 折.根据题意,列方程得0.180a 606020%⨯-=⨯解得a 9=.答:乙种型号台灯需打9折.【点睛】本题考查一元一次方程的应用,找出题中各量的等量关系列出方程是解题关键.。
2020-2021初一数学上期末第一次模拟试题带答案
2020-2021初一数学上期末第一次模拟试题带答案一、选择题1.下列四个角中,最有可能与70°角互补的角是( ) A .B .C .D .2.方程834x ax -=-的解是3x =,则a 的值是( ). A .1B .1-C .3-D .33.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x 元,则根据题意列出方程正确的是( ) A .0.8×(1+40%)x =15 B .0.8×(1+40%)x ﹣x =15 C .0.8×40%x =15D .0.8×40%x ﹣x =154.观察如图所示图形,则第n 个图形中三角形的个数是( )A .2n +2B .4n +4C .4nD .4n -45.若单项式2x 3y 2m 与﹣3x n y 2的差仍是单项式,则m+n 的值是( ) A .2 B .3 C .4 D .56.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米. 设A 港和B 港相距x 千米. 根据题意,可列出的方程是( ). A .32824x x=- B .32824x x=+ C .2232626x x +-=+ D .2232626x x +-=- 7.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3 B .﹣3 C .1 D .﹣1 8.中国海洋面积是2897000平方公里,2897000用科学记数法表示为( )A .2.897×106B .28.94×105C .2.897×108D .0.2897×1079.两根同样长的蜡烛,粗烛可燃4小时,细烛可燃3小时,一次停电,同时点燃两根蜡烛,来电后同时熄灭,发现粗烛的长是细烛的2倍,则停电的时间为( ) A .2小时B .2小时20分C .2小时24分D .2小时40分10.下列解方程去分母正确的是( )A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2y-15=3yD.由,得3(y+1)=2y+611.下列说法中:①一个有理数不是正数就是负数;②射线AB和射线BA是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有()A.1个B.2个C.3个D.4个12.已知:式子x﹣2的值为6,则式子3x﹣6的值为()A.9B.12C.18D.24二、填空题13.已知﹣5a2m b和3a4b3﹣n是同类项,则12m﹣n的值是_____.14.如图所示,O是直线AB与CD的交点,∠BOM:∠DOM=1:2,∠CON=90°,∠NOM=68°,则∠BOD=_____°.15.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.16.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n个图形中有白色正方形__________个 (用含n 的代数式表示).17.如图,将正整数按如图方式进行有规律的排列,第2行最后一个数是4,第3行最后个数是7,第4行最后一个数是10,…依此类推,第20行第2个数是_____,第_____行最后一个数是2020.18.用一个平面去截正方体(如图),下列关于截面(截出的面)形状的结论:①可能是锐角三角形;②可能是钝角三角形;③可能是长方形;④可能是梯形.其中正确结论的是______(填序号).19.某种商品的标价为220元,为了吸引顾客,按九折出售,这时仍要盈利10%,则这种商品的进价是________元.20.如图,在∠AOB的内部有3条射线OC、OD、OE,若∠AOC=60°,∠BOE=1 n ∠BOC,∠BOD=1n∠AOB,则∠DOE=_____°.(用含n的代数式表示)三、解答题21.如图,公共汽车行驶在笔直的公路上,这条路上有,,,A B C D四个站点,每相邻两站之间的距离为5千米,从A站开往D站的车称为上行车,从D站开往A站的车称为下行车.第一班上行车、下行车分别从A站、D站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在,A D站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.()1第一班上行车到B站、第一班下行车到C站分别用时多少?()2第一班上行车与第一班下行车发车后多少小时相距9千米?()3一乘客在,B C两站之间的P处,刚好遇到上行车,BP x=千米,他从P处以5千米/小时的速度步行到B站乘下行车前往A站办事.①若0.5x =千米,乘客从P 处到达A 站的时间最少要几分钟? ②若1x =千米,乘客从P 处到达A 站的时间最少要几分钟? 22.(1)解方程: 8753x x +=-(2)先化简,再求值:2222(32)2(2)a b ab ab a b ---,其中2a =,1b =- 23.解方程:(1)()43203x x --= (2)23211510x x -+-= 24.如图所示,已知线段m ,n ,求作线段AB ,使它等于m +2n .(用尺规作图,不写做法,保留作图痕迹.)25.某班去商场为书法比赛买奖品,书包每个定价40元,文具盒每个定价8元,商场实行两种优惠方案:①买一个书包送一个文具盒:②按总价的9折付款.若该班需购买书包10个,购买文具盒若干个(不少于10个).(1)当买文具盒40个时,分别计算两种方案应付的费用; (2)当购买文具盒多少个时,两种方案所付的费用相同;(3)如何根据购买文具盒的个数,选择哪种优惠方案的费用比较合算?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据互补的性质,与70°角互补的角等于180°-70°=110°,是个钝角;看下4个答案,哪个符合即可. 【详解】解:根据互补的性质得,70°角的补角为:180°-70°=110°,是个钝角; ∵答案A 、B 、C 都是锐角,答案D 是钝角; ∴答案D 正确. 故选D .2.A解析:A 【解析】把3x =代入方程834x ax -=-,得出一个关于a 的方程,求出方程的解即可. 【详解】把3x =代入方程834x ax -=-得: 8-9=3a-4 解得:a=1 故选:A . 【点睛】本题考查了解一元一次方程和一元二次方程的解,能够得出关于a 的一元一次方程是解此题的关键.3.B解析:B 【解析】 【分析】首先设这种服装每件的成本价是x 元,根据题意可得等量关系:进价×(1+40%)×8折-进价=利润15元,根据等量关系列出方程即可. 【详解】设这种服装每件的成本价是x 元,由题意得:4.C解析:C 【解析】 【分析】由已知的三个图可得到一般的规律,即第n 个图形中三角形的个数是4n ,根据一般规律解题即可. 【详解】解:根据给出的3个图形可以知道: 第1个图形中三角形的个数是4, 第2个图形中三角形的个数是8, 第3个图形中三角形的个数是12,从而得出一般的规律,第n 个图形中三角形的个数是4n . 故选C . 【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.5.C解析:C 【解析】 【分析】根据合并同类项法则得出n=3,2m=2,求出即可.∵单项式2x 3y 2m 与-3x n y 2的差仍是单项式, ∴n=3,2m=2, 解得:m=1, ∴m+n=1+3=4, 故选C . 【点睛】本题考查了合并同类项和单项式,能根据题意得出n=3、2m=2是解此题的关键.6.A解析:A 【解析】 【分析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时.根据“轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时”,得出等量关系,据此列出方程即可. 【详解】解:设A 港和B 港相距x 千米,可得方程:32824x x =- 故选:A . 【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度.7.D解析:D 【解析】 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:Q 单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m,n的值是解题的关键.8.A解析:A【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将2897000用科学记数法表示为:2.897×106.故选A.考点:科学记数法—表示较大的数.9.C解析:C【解析】【分析】设停电x小时.等量关系为:1-粗蜡烛x小时的工作量=2×(1-细蜡烛x小时的工作量),把相关数值代入即可求解.【详解】解:设停电x小时.由题意得:1﹣14x=2×(1﹣13x),解得:x=2.4.10.D解析:D【解析】【分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D.由,得:3(y+1)=2y+6,此选项正确.故选D.【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.11.B解析:B【解析】【分析】根据有理数的分类可得A的正误;根据射线的表示方法可得B的正误;根据相反数的定义可得C的正误;根据线段的性质可得D的正误.【详解】①一个有理数不是正数就是负数,说法错误,0既不是正数也不是负数;②射线AB与射线BA是同一条射线,说法错误,端点不同;③0的相反数是它本身,说法正确;④两点之间,线段最短,说法正确。
2020-2021初一数学上期末第一次模拟试卷及答案 (3)
2020-2021初一数学上期末第一次模拟试卷及答案 (3)一、选择题1.下列图形中,能用ABC ∠,B Ð,α∠表示同一个角的是( )A .B .C .D .2.下列说法:(1)两点之间线段最短; (2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90°;(4)A 、B 两点间的距离是指A 、B 两点间的线段;其中正确的有( ) A .一个B .两个C .三个D .四个3.下列四个角中,最有可能与70°角互补的角是( ) A .B .C .D .4.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )A .B .C .D .5.已知长方形的周长是45cm ,一边长是acm ,则这个长方形的面积是( ) A .(45)2a a -cm 2B .a (452a -)cm 2 C .452a cm 2D .(452a -)cm 2 6.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( ) A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个7.如图,∠AOC 和∠BOD 都是直角,如果∠DOC =28°,那么∠AOB 的度数是( )A .118°B .152°C .28°D .62°8.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是( ) A .B .C .D .9.用四舍五入按要求对0.06019分别取近似值,其中错误的是( ) A .0.1(精确到0.1) B .0.06(精确到千分位) C .0.06(精确到百分位)D .0.0602(精确到0.0001)10.把四张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为m 厘米,宽为n 厘米)的盒子底部(如图2所示),盒子里面未被卡片覆盖的部分用阴影部分表示,则图2中两块阴影部分周长和是( )A .4m 厘米B .4n 厘米C .2()m n +厘米D .4()m n -厘米11.如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm ,宽为6cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .16cmB .24cmC .28cmD .32cm12.如图,每个图案均由边长相等的黑、白两色正力形按规律拼接面成,照此规律,第n 个图案中白色正方形比黑色正方形( )个.A .nB .(5n+3)C .(5n+2)D .(4n+3)二、填空题13.对于正数x ,规定()1f x x x =+,例如:()221223f ==+,()333134f ==+,111212312f ⎛⎫== ⎪⎝⎭+,111313413f ⎛⎫== ⎪⎝⎭+……利用以上规律计算: 1111120192018201732f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()()122019f f f +++⋅⋅⋅⋅⋅⋅+的值为:______.14.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.15.一个角的补角是这个角余角的3倍,则这个角是_____度.16.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为0.25+,1-,0.5+,0.75-,小红快速准确地算出了4筐白菜的总质量为__________千克.17.若#表示最小的正整数,■表示最大的负整数,•表示绝对值最小的有理数,则=+•⨯(▲)■__________.18.元旦期间,某超市某商品按标价打八折销售.小田购了一件该商品,付款64元.则该项商品的标价为_____19.已知一个角的补角是它余角的3倍,则这个角的度数为_____.20.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是_____元.三、解答题21.先化简,再求值:()()22222322a b ab a b ab a b -+---,其中1a =,2b =-. 22.2020年元旦,某商场将甲种商品降价40%,乙种商品降价20%,开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙各一件,共付1000元.(1)求甲、乙两种商品原销售单价各是多少元?(2)若商场在这一次促销活动中,甲种商品亏损25%,乙种商品盈利25%.那么,商场在这次促销活动中,是盈利还是亏损了?如果是盈利件盈利了多少元?如果是亏损,亏损了多少元?23.先化简,再求值:x2﹣(5x2﹣4y)+3(x2﹣y),其中x=﹣1,y=2.24.化简或化简求值:(1)化简:(2ab+a2b)+3(2a2b﹣5ab);(2)先化简,再求值:(﹣x2+3xy﹣2y)﹣2(12-x2+4xy32-y2),其中x=3,y=﹣2.25.某水果店用1000元购进甲、乙两种新出产的水果共140kg,这两种水果的进价、售价如表所示:(1)这两种水果各购进多少千克?(2)若该水果店按售价售完这批水果,获得的利润是多少元?(3)如果这批水果是在一天之内按照售价销售完成的,除了进货成本,水果店每天的其它销售费用是0.1元/kg,那么水果店销售这批水果获得的利润是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】A、因为顶点B处有2个角,所以这2个角均不能用∠B表示,故本选项错误;B、因为顶点B处只有1个角,所以这个角能用∠ABC,∠B,α∠表示,故本选项正确;C、因为顶点B处有3个角,所以这3个角均不能用∠B表示,故本选项错误;D、因为顶点B处有4个角,所以这4个角均不能用∠B表示,故本选项错误.故选:B.【点睛】本题考查的是角的表示方法,熟知角的三种表示方法是解答此题的关键.2.C解析:C【解析】【分析】(1)根据线段的性质即可求解;(2)根据直线的性质即可求解;(3)余角和补角一定指的是两个角之间的关系,同角的补角比余角大90°;(4)根据两点间的距离的定义即可求解.【详解】(1)两点之间线段最短是正确的;(2)两点确定一条直线是正确的;(3)同一个锐角的补角一定比它的余角大90°是正确的;(4)A、B两点间的距离是指A、B两点间的线段的长度,原来的说法是错误的.故选C.【点睛】本题考查了补角和余角、线段、直线和两点间的距离的定义及性质,是基础知识要熟练掌握.3.D解析:D【解析】【分析】根据互补的性质,与70°角互补的角等于180°-70°=110°,是个钝角;看下4个答案,哪个符合即可.【详解】解:根据互补的性质得,70°角的补角为:180°-70°=110°,是个钝角;∵答案A、B、C都是锐角,答案D是钝角;∴答案D正确.故选D.4.C解析:C【解析】【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得.【详解】由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有:故选C . 【点睛】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.5.B解析:B 【解析】 【分析】 【详解】解:设长边形的另一边长度为x cm ,根据周长是45cm ,可得:2(a +x )=45, 解得:x=452﹣a ,所以长方形的面积为:ax=a (452a -)cm 2. 故选B . 考点:列代数式.6.C解析:C 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】120亿个用科学记数法可表示为:101.210⨯个. 故选C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值. 7.B解析:B 【解析】 【分析】从图形中可看出∠AOC 和∠DOB 相加,再减去∠DOC 即为所求. 【详解】∵∠AOC =∠DOB =90°,∠DOC =28°,∴∠AOB =∠AOC +∠DOB ﹣∠DOC =90°+90°﹣28°=152°. 故选:B .此题主要考查学生对角的计算的理解和掌握,此题的解法不唯一,只要合理即可.8.D解析:D 【解析】 【分析】由题意一项工程甲单独做要40天完成,乙单独做需要50天完成,可以得出甲每天做整个工程的,乙每天做整个工程的,根据文字表述得到题目中的相等关系是:甲完成的部分+两人共同完成的部分=1. 【详解】设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:++=1.故答案选:D. 【点睛】本题考查了一元一次方程,解题的关键是根据实际问题抽象出一元一次方程.9.B解析:B 【解析】A.0.06019≈0.1(精确到0.1),所以A 选项的说法正确;B.0.06019≈0.060(精确到千分位),所以B 选项的说法错误;C.0.06019≈0.06(精确到百分),所以C 选项的说法正确;D.0.06019≈0.0602(精确到0.0001),所以D 选项的说法正确。
2020-2021初一数学上期末第一次模拟试题附答案 (6)
2020-2021初一数学上期末第一次模拟试题附答案 (6)一、选择题1.下列说法:(1)两点之间线段最短;(2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90°;(4)A、B两点间的距离是指A、B两点间的线段;其中正确的有()A.一个B.两个C.三个D.四个2.如图,将一副三角板的直角顶点重合,摆放在桌面上,∠AOD=125°,则∠BOC= ( )A.25︒B.65︒C.55︒D.35︒3.下列关于多项式5ab2-2a2bc-1的说法中,正确的是()A.它是三次三项式B.它是四次两项式C.它的最高次项是22a bc-D.它的常数项是14.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此类推,则a2018的值为()A.﹣1007B.﹣1008C.﹣1009D.﹣20185.下列各数:(-3)2,0,212⎛⎫--⎪⎝⎭,227,(-1)2009,-22,-(-8),3|-|4-中,负数有()A.2个B.3个C.4个D.5个6.用一个平面去截一个正方体,截面不可能是()A.梯形B.五边形C.六边形D.七边形7.在下列变形中,错误的是()A.(﹣2)﹣3+(﹣5)=﹣2﹣3﹣5B.(37﹣3)﹣(37﹣5)=37﹣3﹣37﹣5C.a+(b﹣c)=a+b﹣cD.a﹣(b+c)=a﹣b﹣c8.根据图中的程序,当输出数值为6时,输入数值x为()A.-2B.2C.-2或2D.不存在9.如图,每个图案均由边长相等的黑、白两色正力形按规律拼接面成,照此规律,第n个图案中白色正方形比黑色正方形( )个.A.n B.(5n+3)C.(5n+2)D.(4n+3)10.下列比较两个有理数的大小正确的是()A.﹣3>﹣1 B.1143>C.510611-<-D.7697->-11.如图,已知线段AB的长度为a,CD的长度为b,则图中所有线段的长度和为( )A.3a+b B.3a-b C.a+3b D.2a+2b12.a,b在数轴上的位置如图所示,则下列式子正确的是()A.a+b>0 B.ab<0 C.|a|>|b| D.a+b>a﹣b二、填空题13.一件商品的售价为107.9元,盈利30%,则该商品的进价为_____.14.如果方程2x+a=x﹣1的解是﹣4,那么a的值为_____.15.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x为_____.16.若代数式213k--的值是1,则k= _________.17.明明每天下午5:40放学,此时钟面上时针和分针的夹角是_____.18.若关于x 的方程(a ﹣3)x |a |﹣2+8=0是一元一次方程,则a =_____19.用一个平面去截正方体(如图),下列关于截面(截出的面)形状的结论: ①可能是锐角三角形;②可能是钝角三角形;③可能是长方形;④可能是梯形.其中正确结论的是______(填序号).20.如图是用正三角形、正方形、正六边形设计的一组图案,按照规律,第n 个图案中正三角形的个数是__________.三、解答题21.一个角的补角比它的余角的2倍大20゜,求这个角的度数.22.解方程(1)2(4)3(1)x x x --=-(2)1-314x -=32x + 23.如图,AB 与CD 相交于O ,OE 平分∠AOC ,OF ⊥AB 于O ,OG ⊥OE 于O ,若∠BOD=40°,求∠AOE 和∠FOG 的度数.24.某工厂原计划用26小时生产一批零件,后因每小时多生产5个,用24小时不但完成了任务,而且还比原计划多生产了60个,问原计划生产多少个零件.25.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,求这个多项式【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】(1)根据线段的性质即可求解;(2)根据直线的性质即可求解;(3)余角和补角一定指的是两个角之间的关系,同角的补角比余角大90°;(4)根据两点间的距离的定义即可求解.【详解】(1)两点之间线段最短是正确的;(2)两点确定一条直线是正确的;(3)同一个锐角的补角一定比它的余角大90°是正确的;(4)A 、B 两点间的距离是指A 、B 两点间的线段的长度,原来的说法是错误的. 故选C .【点睛】本题考查了补角和余角、线段、直线和两点间的距离的定义及性质,是基础知识要熟练掌握.2.C解析:C【解析】【分析】由△AOB 与△COD 为直角三角形得到∠AOB=∠COD=90°,则∠BOD=∠AOD-∠AOB=125°-90°=35°,然后利用互余即可得到∠BOC=∠COD-∠BOD=90°-35°. 【详解】解:∵∠AOB=∠COD=90°,∠AOD=125°,∴∠BOD=∠AOD-∠AOB=125°-90°=35°,∴∠BOC=∠COD-∠BOD=90°-35°=55°. 故答案为C.【点睛】本题考查了角的计算,属于基础题,关键是正确利用各个角之间的关系.3.C解析:C【解析】根据多项式的次数和项数,可知这个多项式是四次的,含有三项,因此它是四次三项式,最高次项为22a bc ,常数项为-1.故选C.4.C解析:C【解析】【分析】根据前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2018=﹣=﹣1009,从而得到答案.【详解】解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,a7=﹣|a6+6|=﹣|﹣3+6|=﹣3,…以此类推,经过前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2018=﹣=﹣1009,故选:C.【点睛】本题考查规律型:数字的变化类,根据前几个数字找出最后数值与顺序数之间的规律是解决本题的关键.5.C解析:C【解析】【分析】【详解】解:(−3) ²=9,212⎛⎫--⎪⎝⎭=−14,(-1)2009=−1,-22=−4,−(−8)=8,3|-|4-=34,则所给数据中负数有:212⎛⎫-- ⎪⎝⎭,(-1)2009,-22,3|-|4-,共4个故选C 6.D解析:D 【解析】【分析】正方体总共六个面,截面最多为六边形。
2020-2021初一数学上期末第一次模拟试题及答案 (6)
2020-2021初一数学上期末第一次模拟试题及答案 (6)一、选择题1.将7760000用科学记数法表示为( )A .57.7610⨯B .67.7610⨯C .677.610⨯D .77.7610⨯2.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有( )个.A .2B .3C .4D .53.下列方程变形中,正确的是( )A .由3x =﹣4,系数化为1得x =34-B .由5=2﹣x ,移项得x =5﹣2C .由123168-+-=x x ,去分母得4(x ﹣1)﹣3(2x+3)=1 D .由 3x ﹣(2﹣4x )=5,去括号得3x+4x ﹣2=5 4.如图的正方体盒子的外表面上画有3条黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是( )A .B .C .D .5.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x ) D .2×22x=16(27﹣x )6.商店将进价2400元的彩电标价3200元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为( )A .九折B .八五折C .八折D .七五折7.下列去括号正确的是( )A .()2525x x -+=-+B .()142222x x --=-+C .()122333m n m n -=+D .222233m x m x ⎛⎫--=-+⎪⎝⎭ 8.已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,……以此类推,则a 2018的值为( )A .﹣1007B .﹣1008C .﹣1009D .﹣20189.观察下列算式,用你所发现的规律得出22015的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A .2B .4C .6D .810.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t 小时两车相距50千米.则t 的值是( )A .2B .2或2.25C .2.5D .2或2.511.如图,C ,D ,E 是线段AB 的四等分点,下列等式不正确的是( )A .AB =4AC B .CE =12AB C .AE =34ABD .AD =12CB 12.a ,b 在数轴上的位置如图所示,则下列式子正确的是( )A .a +b >0B .ab <0C .|a |>|b |D .a +b >a ﹣b二、填空题13.把58°18′化成度的形式,则58°18′=______度.14.一个角的余角比这个角的12多30°,则这个角的补角度数是__________. 15.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.16.在时刻10:10时,时钟上的时针与分针间的夹角是 .17.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为0.25+,1-,0.5+,0.75-,小红快速准确地算出了4筐白菜的总质量为__________千克.18.若#表示最小的正整数,■表示最大的负整数,•表示绝对值最小的有理数,则=+•⨯(▲)■__________.19.若a -2b =-3,则代数式1-a +2b 的值为______.20.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中A 、B 、D 三点在同一直线上,BM 为∠CBE 的平分线,BN 为∠DBE 的平分线,则∠MBN 的度数为_____________.三、解答题21.在一条笔直的公路上,A 、B 两地相距300千米.甲乙两车分别从A 、B 两地同时出发,已知甲车速度为100千米/小时,乙车速度为60千米/小时.经过一段时间后,两车相距100千米,求两车的行驶时间?22.先化简,后求值:已知()21302x y -++= 求代数式()222642129xy x x xy ⎡⎤----+⎣⎦的值 23.如图,C 为线段AB 上一点,点D 为BC 的中点,且AB =18cm ,AC =4CD . (1)图中共有 条线段;(2)求AC 的长;(3)若点E 在直线AB 上,且EA =2cm ,求BE 的长.24.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b -c 0,a +b 0,c -a 0.(2)化简:| b -c|+|a +b|-|c -a|25.解方程:(1)()43203x x --= (2)23211510x x -+-=【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】7760000的小数点向左移动6位得到7.76,所以7760000用科学记数法表示为7.76×106,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.B解析:B【解析】解:﹣(﹣3)=3是正数,0既不是正数也不是负数,(﹣3)2=9是正数,|﹣9|=9是正数,﹣14=﹣1是负数,所以,正数有﹣(﹣3),(﹣3)2,|﹣9|共3个.故选B.3.D解析:D【解析】【分析】根据解方程的方法判断各个选项是否正确,从而解答本题.【详解】解:3x=﹣4,系数化为1,得x=﹣43,故选项A错误;5=2﹣x,移项,得x=2﹣5,故选项B错误;由123168-+-=x x,去分母得4(x﹣1)﹣3(2x+3)=24,故选项C错误;由 3x﹣(2﹣4x)=5,去括号得,3x﹣2+4x=5,故选项D正确,故选:D.【点睛】本题考查解一元一次方程、等式的性质,解答本题的关键是明确解方程的方法.4.D解析:D【解析】根据正方体的表面展开图可知,两条黑线在一行,且相邻两条成直角,故A、B选项错误;该正方体若按选项C展开,则第三行第一列处的黑线的位置应为小正方形的另一条对角线,所以C不符合题意.故选D.点睛:本题是一道关于几何体展开图的题目,主要考查了正方体展开图的相关知识.对于此类题目,一定要抓住图形的特殊性,从相对面,相邻的面入手,进行分析解答.本题中,抓住黑线之间位置关系是解题关键.5.D解析:D【解析】设分配x 名工人生产螺栓,则(27-x )人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x ),故选D.6.A解析:A【解析】【分析】设该商品的打x 折出售,根据销售价以及进价与利润和打折之间的关系,得出等式,然后解方程即可.【详解】设该商品的打x 折出售,根据题意得,32002400(120%)10x ⨯=+ 解得:x=9.答:该商品的打9折出售。
2020-2021上海市初一数学上期末模拟试题含答案
2020-2021上海市初一数学上期末模拟试题含答案一、选择题1.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( )A .x(x -1)=2070B .x(x +1)=2070C .2x(x +1)=2070D .(1)2x x -=2070 2.实数a 、b 、c 在数轴上的位置如图所示,且a 与c 互为相反数,则下列式子中一定成立的是( )A .a+b+c>0B .|a+b|<cC .|a-c|=|a|+cD .ab<0 3.方程834x ax -=-的解是3x =,则a 的值是( ).A .1B .1-C .3-D .3 4.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是( )A .350元B .400元C .450元D .500元5.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是( )A .点A 和点CB .点B 和点DC .点A 和点DD .点B 和点C 6.观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,….按照上述规律,第2015个单项式是( )A .2015x 2015B .4029x 2014C .4029x 2015D .4031x 20157.已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,……以此类推,则a 2018的值为( )A .﹣1007B .﹣1008C .﹣1009D .﹣20188.根据图中的程序,当输出数值为6时,输入数值x 为( )A .-2B .2C .-2或2D .不存在9.下列比较两个有理数的大小正确的是( )A .﹣3>﹣1B .1143>C .510611-<-D .7697->- 10.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t 小时两车相距50千米.则t 的值是( )A .2B .2或2.25C .2.5D .2或2.511.下列解方程去分母正确的是( )A .由,得2x ﹣1=3﹣3x B .由,得2x ﹣2﹣x =﹣4 C .由,得2y-15=3y D .由,得3(y+1)=2y+612.已知:式子x ﹣2的值为6,则式子3x ﹣6的值为( )A .9B .12C .18D .24二、填空题13.把58°18′化成度的形式,则58°18′=______度.14.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.15.已知一个长方形的周长为(86a b +)厘米(0,0a b >>),长为(32a b +)厘米,则它的宽为____________厘米.16.如图,若输入的值为3-,则输出的结果为____________.17.若312x a +与2415x a +-的和是单项式,则x 的值为____________. 18.已知多项式kx 2+4x ﹣x 2﹣5是关于x 的一次多项式,则k=_____.19.若代数式45x -与36x -的值互为相反数,则x 的值为____________. 20.若()2320m n -++=,则m+2n 的值是______。
2020-2021初一数学上期末第一次模拟试卷含答案 (3)
2020-2021初一数学上期末第一次模拟试卷含答案 (3)一、选择题1.实数a b ,在数轴上对应点的位置如图所示,则必有( )A .0a b +>B .0a b -<C .0ab >D .0ab< 2.爷爷快到八十大寿了,小莉想在日历上把这一天圈起来,但不知道是哪一天,于是便去问爸爸,爸爸笑笑说:“在日历上,那一天的上下左右4个日期的和正好等于那天爷爷的年龄”.那么小莉的爷爷的生日是在( ) A .16号B .18号C .20号D .22号3.点C 是线段AB 上的三等分点,D 是线段AC 的中点,E 是线段BC 的中点,若6CE =,则AB 的长为( ) A .18 B .36C .16或24D .18或36 4.整式23x x -的值是4,则2398x x -+的值是( )A .20B .4C .16D .-45.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是( ) A .B .C .D .6.下列计算结果正确的是( ) A .22321x x -=B .224325x x x +=C .22330x y yx -=D .44x y xy +=7.下列各数:(-3)2,0,212⎛⎫-- ⎪⎝⎭,227,(-1)2009,-22,-(-8),3|-|4-中,负数有( ) A .2个 B .3个 C .4个 D .5个 8.用一个平面去截一个正方体,截面不可能是( )A .梯形B .五边形C .六边形D .七边形 9.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3 B .﹣3 C .1 D .﹣1 10.中国海洋面积是2897000平方公里,2897000用科学记数法表示为( )A .2.897×106B .28.94×105C .2.897×108D .0.2897×10711.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论: ①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA''∠=∠,则射线PA'经过刻度45.其中正确的是()A.①②B.①③C.②③D.①②③12.如图,已知线段AB的长度为a,CD的长度为b,则图中所有线段的长度和为( )A.3a+b B.3a-b C.a+3b D.2a+2b二、填空题13.如图,数轴上点A、B、C所对应的数分别为a、b、c,化简|a|+|c﹣b|﹣|a+b﹣c|=__.14.-3的倒数是___________15.一个角的补角是这个角余角的3倍,则这个角是_____度.16.某同学做了一道数学题:“已知两个多项式为 A、B,B=3x﹣2y,求 A﹣B 的值.”他误将“A﹣B”看成了“A+B”,结果求出的答案是 x ﹣y,那么原来的 A﹣B的值应该是.17.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.18.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是_____元.19.点A、B、C在同一条数轴上,且点A表示的数为﹣18,点B表示的数为﹣2.若BC=14AB,则点C表示的数为_____.20.把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A、B、D三点在同一直线上,BM为∠CBE的平分线,BN为∠DBE的平分线,则∠MBN的度数为_____________.三、解答题21.小明乘坐家门口的公共汽车前往西安北站去乘高铁,在行驶了三分之一路程时,小明估计继续乘公共汽车到北站时高铁将正好开出,于是小明下车改乘出租车,车速提高了一倍,结果赶在高铁开车前半小时到达西安北站.已知公共汽车的平均速度是20千米/小时(假设公共汽车及出租车保持匀速行使,途中换乘、红绿灯等待等情况忽略不计),请回答以下两个问题:(1)出租车的速度为_____千米/小时; (2)小明家到西安北站有多少千米? 22.计算 (1)737848⎛⎫⎛⎫-÷- ⎪⎪⎝⎭⎝⎭;(2)43111|3|1(2)2⎛⎫⎡⎤---⨯-⨯-- ⎪⎣⎦⎝⎭23.2020年元旦,某商场将甲种商品降价40%,乙种商品降价20%,开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙各一件,共付1000元.(1)求甲、乙两种商品原销售单价各是多少元?(2)若商场在这一次促销活动中,甲种商品亏损25%,乙种商品盈利25%.那么,商场在这次促销活动中,是盈利还是亏损了?如果是盈利件盈利了多少元?如果是亏损,亏损了多少元?24.化简求值:2222222(2)3()(22)ab a b ab a b ab a b ---+-,其中 2,1a b ==. 25.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,求这个多项式【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】解:由数轴上a,b两点的位置可知0<a<1,a<﹣1.根据异号的两个数相加,取绝对值较大的加数的符号,知a+b<0,故选项A错;数轴上右边的数总比左边的数大,所以a﹣b>0,故选项B错误;因为a,b异号,所以ab<0,故选项C错误;因为a,b异号,所以ba<0,故选项D正确.故选:D.2.C解析:C【解析】【分析】要求小莉的爷爷的生日,就要明确日历上“上下左右4个日期”的排布方法.依此列方程求解.【详解】设那一天是x,则左日期=x﹣1,右日期=x+1,上日期=x﹣7,下日期=x+7,依题意得x﹣1+x+1+x﹣7+x+7=80解得:x=20故选:C.【点睛】此题关键是弄准日历的规律,知道左右上下的规律,然后依此列方程.3.D解析:D【解析】【分析】分两种情况分析:点C在AB的13处和点C在AB的23处,再根据中点和三等分点的定义得到线段之间的关系求解即可.【详解】①当点C在AB的13处时,如图所示:因为6CE ,E是线段BC的中点,所以BC=12,又因为点C是线段AB上的三等分点,所以AB=18;②当点C在AB的23处时,如图所示:CE ,E是线段BC的中点,因为6所以BC=12,又因为点C是线段AB上的三等分点,所以AB=36.综合上述可得AB=18或AB=36.故选:D.【点睛】考查了线段有关计算,解题关键根据题意分两种情况分析,并画出图形,从而得到线段之间的关系.4.A解析:A【解析】【分析】分析所给多项式与所求多项式二次项、一次项系数的关系即可得出答案.【详解】解:因为x2-3x=4,所以3x2-9x=12,所以3x2-9x+8=12+8=20.故选A.【点睛】本题考查了代数式的求值,分析发现所求多项式与已知多项式之间的关系是解决此题的关键.5.D解析:D【解析】【分析】由题意一项工程甲单独做要40天完成,乙单独做需要50天完成,可以得出甲每天做整个工程的,乙每天做整个工程的,根据文字表述得到题目中的相等关系是:甲完成的部分+两人共同完成的部分=1.【详解】设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:++ =1.故答案选:D.【点睛】本题考查了一元一次方程,解题的关键是根据实际问题抽象出一元一次方程.6.C解析:C 【解析】 【分析】根据合并同类项法则逐一进行计算即可得答案. 【详解】A. 22232x x x -=,故该选项错误;B. 222325x x x +=,故该选项错误;C. 22330x y yx -=,故该选项正确D. 4x y +,不能计算,故该选项错误 故选:C 【点睛】本题考查了合并同类项,掌握合并同类项法则是解题的关键.7.C解析:C 【解析】 【分析】 【详解】解:(−3) ²=9,212⎛⎫-- ⎪⎝⎭=−14,(-1)2009=−1,-22=−4,−(−8)=8,3|-|4-=34, 则所给数据中负数有:21 2⎛⎫-- ⎪⎝⎭,(-1)2009,-22,3|-|4-,共4个故选C 8.D解析:D 【解析】 【分析】正方体总共六个面,截面最多为六边形。
2020-2021初一数学上期末第一次模拟试题含答案 (2)
2020-2021初一数学上期末第一次模拟试题含答案 (2)一、选择题1.实数a 、b 、c 在数轴上的位置如图所示,且a 与c 互为相反数,则下列式子中一定成立的是( )A .a+b+c>0B .|a+b|<cC .|a-c|=|a|+cD .ab<02.下列方程变形中,正确的是( )A .方程3221x x -=+,移项,得3212x x -=-+B .方程()3251x x -=--,去括号,得3251x x -=--C .方程2332t =,系数化为1,得1t = D .方程110.20.5x x--=,整理得36x = 3.商店将进价2400元的彩电标价3200元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为( ) A .九折B .八五折C .八折D .七五折4.若单项式2x 3y 2m 与﹣3x n y 2的差仍是单项式,则m+n 的值是( ) A .2 B .3 C .4 D .55.已知线段AB=10cm ,点C 是直线AB 上一点,BC=4cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .7cm B .3cm C .7cm 或3cm D .5cm 6.用一个平面去截一个正方体,截面不可能是( )A .梯形B .五边形C .六边形D .七边形7.如图,每个图案均由边长相等的黑、白两色正力形按规律拼接面成,照此规律,第n 个图案中白色正方形比黑色正方形( )个.A .nB .(5n+3)C .(5n+2)D .(4n+3)8.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( )A .90°B .180°C .160°D .120°9.4h =2小时24分.答:停电的时间为2小时24分. 故选:C . 【点睛】本题考查了一元一次方程的应用,把蜡烛长度看成1,得到两支蜡烛剩余长度的等量关系是解题的关键.10.如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a-5,a 是方框①,②,③,④中的一个数,则数a 所在的方框是( )A .①B .②C .③D .④11.若a =2,|b |=5,则a +b =( ) A .-3 B .7 C .-7 D .-3或712.观察下列各式:133=,239=,3327=,4381=,53243=,63729=,732187=,836561=……根据上述算式中的规律,猜想20193的末位数字是( )A .3B .9C .7D .1二、填空题13.一件商品的售价为107.9元,盈利30%,则该商品的进价为_____. 14.-3的倒数是___________15.让我们轻松一下,做一个数字游戏:第一步:取一个自然数15n =,计算211n +得1a ; 第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ;第三步:算出2a 的各位数字之和得3n ,再计算231n +得3a ;依此类推,则2019a =____________16.一个正方体的表面展开图如图所示,这个正方体的每一个面上都填有一个数字,且各相对面上所填的数字互为倒数,则()xyz 的值为___.17.如图所示是一组有规律的图案,第l 个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中的基础图形个数为_______ (用含n 的式子表示).18.若#表示最小的正整数,■表示最大的负整数,•表示绝对值最小的有理数,则=+•⨯(▲)■__________.19.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 … n 正三角形个数471013…a n20.用一个平面去截正方体(如图),下列关于截面(截出的面)形状的结论: ①可能是锐角三角形;②可能是钝角三角形; ③可能是长方形;④可能是梯形. 其中正确结论的是______(填序号).三、解答题21.已知a b 、满足2|1|(2)0a a b -+++=,求代数式()221128422a ab ab a ab ⎡⎤-+--⎢⎥⎣⎦的值.22.如图,C 为线段AB 上一点,点D 为BC 的中点,且AB =18cm ,AC =4CD . (1)图中共有 条线段; (2)求AC 的长;(3)若点E 在直线AB 上,且EA =2cm ,求BE 的长.23.已知点O 为直线AB 上的一点,∠BOC =∠DOE =90°(1)如图1,当射线OC 、射线OD 在直线AB 的两侧时,请回答结论并说明理由; ①∠COD 和∠BOE 相等吗?②∠BOD 和∠COE 有什么关系?(2)如图2,当射线OC 、射线OD 在直线AB 的同侧时,请直接回答; ①∠COD 和∠BOE 相等吗?②第(1)题中的∠BOD 和∠COE 的关系还成立吗?24.化简求值:2222222(2)3()(22)ab a b ab a b ab a b ---+-,其中 2,1a b ==. 25.如图,直线SN 为南北方向,OB 的方向是南偏东60°,∠SOB 与∠NOC 互余,OA 平分∠BON .(1)射线OC 的方向是 . (2)求∠AOC 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】先根据数轴确定a .b ,c 的取值范围,再逐一对各选项判定,即可解答. 【详解】由数轴可得:a<b<0<c , ∴a+b+c<0,故A 错误; |a+b|>c ,故B 错误; |a−c|=|a|+c ,故C 正确; ab >0 ,故D 错误; 故答案选:C.【点睛】本题考查了数轴的知识点,解题的关键是熟练的掌握数轴的相关知识.2.D解析:D 【解析】 【分析】根据解方程的步骤逐一对选项进行分析即可. 【详解】A . 方程3221x x -=+,移项,得3212x x -=+,故A 选项错误;B . 方程()3251x x -=--,去括号,得325+5-=-x x ,故B 选项错误;C . 方程2332t =,系数化为1,得94t =,故C 选项错误;D . 方程110.20.5x x--=,去分母得()5121--=x x ,去括号,移项,合并同类项得:36x =,故D 选项正确. 故选:D 【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键. 3.A解析:A 【解析】 【分析】设该商品的打x 折出售,根据销售价以及进价与利润和打折之间的关系,得出等式,然后解方程即可. 【详解】设该商品的打x 折出售,根据题意得,32002400(120%)10x⨯=+ 解得:x=9.答:该商品的打9折出售。
上海求真中学七年级上册期末数学模拟试卷及答案
上海求真中学七年级上册期末数学模拟试卷及答案一、选择题1.-2的倒数是()A.-2 B.12-C.12D.22.在实数:3.14159,35-,π,25,﹣17,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是()A.1个B.2个C.3个D.4个3.已知线段 AB=10cm,直线 AB 上有一点 C,且 BC=4cm,M 是线段 AC 的中点,则 AM 的长()A.7cm B.3cm C.3cm 或 7cm D.7cm 或 9cm4.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是()A.2 B.8 C.6 D.05.方程3x+2=8的解是()A.3 B.103C.2 D.126.如图,∠AOD=84°,∠AOB=18°,OB平分∠AOC,则∠COD的度数是()A.48°B.42°C.36°D.33°7.已知一个多项式是三次二项式,则这个多项式可以是()A.221x x-+B.321x+C.22x x-D.3221x x-+8.若OC是∠AOB内部的一条射线,则下列式子中,不能表示“OC是∠AOB的平分线”的是( )A.∠AOC=∠BOC B.∠AOB=2∠BOCC.∠AOC=12∠AOB D.∠AOC+∠BOC=∠AOB9.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .10.下列各数中,比73-小的数是( ) A .3- B .2- C .0 D .1-二、填空题11.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____.12.在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠的大小为______.13.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2k n 为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____.14.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________15.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.16.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.17.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.18.化简:2x+1﹣(x+1)=_____.19.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.20.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、解答题21.某学校七年级举行“每天锻炼一小时,健康生活一辈子”为主题的一分钟跳绳大赛,校团委组织了全级1000名学生参加为了解本次大赛的成绩,校团委随机抽取了其中100名学生的成绩作为样本进行统计,制成如下不完整的统计图表根据所给信息,解答下列问题;(1)m=______,n=______.(2)补全频数分布直方图;(3)若成绩在80分以上(包括80分)为“优”,请你估计该校七年级参加本次比赛的1000名学生中成绩是“优”的有多少人.成绩x(分)频数(人) 频率 50≤x <605 5% 60≤x <7015 15% 70≤x <8020 20% 80≤x <90m 35% 90≤x≤100 25 n22.(1)化简:3x 2﹣22762x x +; (2)先化简,再求值:2(a 2﹣ab ﹣3.5)﹣(a 2﹣4ab ﹣9),其中a =﹣5,b =32. 23.计算:﹣6÷2+11()34-×12+(﹣3)2.24.如图,O 为直线AB 上一点,130BOC ∠=︒,OE 平分BOC ∠,DO OE ⊥.(1)求BOD ∠的度数.(2)试判断OD 是否平分AOC ∠,并说明理由.25.数学课上老师设计了一个数学游戏:若两个多项式相减的结果等于第三个多项式,则称这三个多项式为“友好多项式”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021上海求真中学初一数学上期末第一次模拟试题(及答案)一、选择题1.下列说法:(1)两点之间线段最短; (2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90°;(4)A 、B 两点间的距离是指A 、B 两点间的线段;其中正确的有( ) A .一个B .两个C .三个D .四个2.下列四个角中,最有可能与70°角互补的角是( ) A .B .C .D .3.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A .2.18×106 B .2.18×105 C .21.8×106 D .21.8×105 4.如图,∠AOC 和∠BOD 都是直角,如果∠DOC =28°,那么∠AOB 的度数是( )A .118°B .152°C .28°D .62°5.如图所示运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为( )A .3B .6C .4D .2 6.整式23x x -的值是4,则2398x x -+的值是( ) A .20B .4C .16D .-47.下列去括号正确的是( ) A .()2525x x -+=-+ B .()142222x x --=-+ C .()122333m n m n -=+ D .222233m x m x ⎛⎫--=-+⎪⎝⎭8.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .Φ44.98D .Φ45.019.下列计算结果正确的是( )A .22321x x -=B .224325x x x +=C .22330x y yx -=D .44x y xy +=10.已知线段AB=10cm ,点C 是直线AB 上一点,BC=4cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .7cmB .3cmC .7cm 或3cmD .5cm11.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t 小时两车相距50千米.则t 的值是( ) A .2B .2或2.25C .2.5D .2或2.512.若a =2,|b |=5,则a +b =( ) A .-3 B .7 C .-7 D .-3或7二、填空题13.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高 ________.14.一个正方体的表面展开图如图所示,这个正方体的每一个面上都填有一个数字,且各相对面上所填的数字互为倒数,则()xyz 的值为___.15.6年前,甲的年龄是乙的3倍,现在甲的年龄是乙的2倍,甲现在_________岁,乙现在________岁.16.元旦期间,某超市某商品按标价打八折销售.小田购了一件该商品,付款64元.则该项商品的标价为_____17.﹣225ab π是_____次单项式,系数是_____.18.已知2x+4与3x ﹣2互为相反数,则x=_____. 19.已知2a ﹣b =﹣2,则6+(4b ﹣8a )的值是_____.20.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中A 、B 、D 三点在同一直线上,BM 为∠CBE 的平分线,BN 为∠DBE 的平分线,则∠MBN 的度数为_____________.三、解答题21.窗户的形状如图所示(图中长度单位:cm),其中上部是半圆形,下部是边长相同的四个小正方形. 已知下部小正方形的边长是acm.(1)计算窗户的面积(计算结果保留π).(2)计算窗户的外框的总长(计算结果保留π).(3)安装一种普通合金材料的窗户单价是175元/平方米,当a=50cm时,请你帮助计算这个窗户安装这种材料的费用(π≈3.14,窗户面积精确到0.1).22.如图,AB与CD相交于O,OE平分∠AOC,OF⊥AB于O,OG⊥OE于O,若∠BOD=40°,求∠AOE和∠FOG的度数.23.已知点O为直线AB上的一点,∠BOC=∠DOE=90°(1)如图1,当射线OC、射线OD在直线AB的两侧时,请回答结论并说明理由;①∠COD和∠BOE相等吗?②∠BOD和∠COE有什么关系?(2)如图2,当射线OC、射线OD在直线AB的同侧时,请直接回答;①∠COD和∠BOE相等吗?②第(1)题中的∠BOD和∠COE的关系还成立吗?24.探索练习:某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,其中成人票是每张8元,学生票是每张5元,筹得票款6950元.问成人票与学生票各售出多少张?25.化简求值:求代数式7a2b+2(2a2b﹣3ab2)﹣3(4a2b-ab2)的值,其中a,b满足|a+2|+(b﹣12)2=0.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】(1)根据线段的性质即可求解;(2)根据直线的性质即可求解;(3)余角和补角一定指的是两个角之间的关系,同角的补角比余角大90°;(4)根据两点间的距离的定义即可求解.【详解】(1)两点之间线段最短是正确的;(2)两点确定一条直线是正确的;(3)同一个锐角的补角一定比它的余角大90°是正确的;(4)A、B两点间的距离是指A、B两点间的线段的长度,原来的说法是错误的.故选C.【点睛】本题考查了补角和余角、线段、直线和两点间的距离的定义及性质,是基础知识要熟练掌握.2.D解析:D【解析】【分析】根据互补的性质,与70°角互补的角等于180°-70°=110°,是个钝角;看下4个答案,哪个符合即可.【详解】解:根据互补的性质得,70°角的补角为:180°-70°=110°,是个钝角;∵答案A、B、C都是锐角,答案D是钝角;∴答案D正确.故选D.3.A解析:A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.B解析:B【解析】【分析】从图形中可看出∠AOC和∠DOB相加,再减去∠DOC即为所求.【详解】∵∠AOC=∠DOB=90°,∠DOC=28°,∴∠AOB=∠AOC+∠DOB﹣∠DOC=90°+90°﹣28°=152°.故选:B.【点睛】此题主要考查学生对角的计算的理解和掌握,此题的解法不唯一,只要合理即可.5.D解析:D【解析】【分析】根据题意可以写出前几次输出的结果,从而可以发现输出结果的变化规律,进而得到第2019次输出的结果.【详解】解:根据题意得:可发现第1次输出的结果是24;第2次输出的结果是24×12=12;第3次输出的结果是12×12=6;第4次输出的结果为6×12=3;第5次输出的结果为3+5=8;第6次输出的结果为812⨯=4;第7次输出的结果为412⨯=2;第8次输出的结果为212⨯=1;第9次输出的结果为1+5=6;归纳总结得到输出的结果从第3次开始以6,3,8,4,2,1循环,∵(2017-2)÷6=335.....5,则第2017次输出的结果为2.故选:D.【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中输出结果的变化规律.6.A解析:A【解析】【分析】分析所给多项式与所求多项式二次项、一次项系数的关系即可得出答案.【详解】解:因为x2-3x=4,所以3x2-9x=12,所以3x2-9x+8=12+8=20.故选A.【点睛】本题考查了代数式的求值,分析发现所求多项式与已知多项式之间的关系是解决此题的关键.7.D解析:D【解析】试题分析:去括号时括号前是正号,括号里的每一项都不变号;括号前是负号,括号里的每一项都变号.A 项()2525,x x -+=--故不正确;B 项()14221,2x x --=-+故不正确;C 项()1223,33m n m n -=-故不正确;D 项222233m x m x ⎛⎫--=-+ ⎪⎝⎭,故正确.故选D .考点:去括号法则.8.B解析:B 【解析】 【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可. 【详解】∵45+0.03=45.03,45-0.04=44.96,∴零件的直径的合格范围是:44.96≤零件的直径≤45.03. ∵44.9不在该范围之内, ∴不合格的是B . 故选B .9.C解析:C 【解析】 【分析】根据合并同类项法则逐一进行计算即可得答案. 【详解】A. 22232x x x -=,故该选项错误;B. 222325x x x +=,故该选项错误;C. 22330x y yx -=,故该选项正确D. 4x y +,不能计算,故该选项错误 故选:C 【点睛】本题考查了合并同类项,掌握合并同类项法则是解题的关键.10.D解析:D 【解析】 【分析】先根据题意画出图形,再利用线段的中点定义求解即可. 【详解】解:根据题意画图如下:∵10,4AB cm BC cm ==,M 是AC 的中点,N 是BC 的中点, ∴1115222MN MC CN AC BC AB cm =+=+==;∵10,4AB cm BC cm ==,M 是AC 的中点,N 是BC 的中点, ∴1115222MN MC CN AC BC AB cm =-=-==. 故选:D . 【点睛】本题考查的知识点是与线段中点有关的计算,根据题意画出正确的图形是解此题的关键.11.D解析:D 【解析】试题分析:应该有两种情况,第一次应该还没相遇时相距50千米,第二次应该是相遇后交错离开相距50千米,根据路程=速度×时间,可列方程求解. 解:设经过t 小时两车相距50千米,根据题意,得 120t+80t=450﹣50,或120t+80t=450+50, 解得t=2,或t=2.5.答:经过2小时或2.5小时相距50千米. 故选D .考点:一元一次方程的应用.12.D解析:D 【解析】 【分析】根据|b|=5,求出b=±5,再把a 与b 的值代入进行计算,即可得出答案. 【详解】 ∵|b|=5, ∴b=±5, ∴a+b=2+5=7或a+b=2-5=-3; 故选D . 【点睛】此题考查了有理数的加法运算和绝对值的意义,解题的关键是根据绝对值的意义求出b 的值.二、填空题13.10℃【解析】【分析】用最高温度减去最低温度然后根据减去一个数等于加上这个数的相反数进行计算即可得解【详解】2-(-8)=2+8=10(℃)故答案为10℃【点睛】本题考查了有理数的减法掌握减去一个数解析:10℃ 【解析】 【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解. 【详解】 2-(-8), =2+8, =10(℃). 故答案为10℃. 【点睛】本题考查了有理数的减法,掌握减去一个数等于加上这个数的相反数是解题的关键.14.【解析】【分析】正方体的表面展开图相对的面之间一定相隔一个正方形根据这一特点确定出相对面再根据相对面上的两个数字互为倒数解答【详解】正方体的表面展开图相对的面之间一定相隔一个正方形x 与是相对面y 与2解析:18-【解析】 【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再根据相对面上的两个数字互为倒数解答. 【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“13”是相对面, “y”与“2”是相对面, “z”与“-1”是相对面,∵各相对面上所填的数字互为倒数,∴()xyz =18-.【点睛】此题考查正方体相对两个面上的文字,解题关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.15.12【解析】【分析】设乙现在的年龄是x 岁则甲的现在的年龄是:2x 岁根据6年前甲的年龄是乙的3倍可列方程求解【详解】解:设乙现在的年龄是x 岁则甲的现在的年龄是:2x 岁依题意得:2x-6=3(x-6)解解析:12 【解析】 【分析】设乙现在的年龄是x 岁,则甲的现在的年龄是:2x 岁,根据6年前,甲的年龄是乙的3倍,可列方程求解. 【详解】解:设乙现在的年龄是x 岁,则甲的现在的年龄是:2x 岁,依题意得:2x-6=3(x-6) 解得:x=12 ∴2x=24故:甲现在24岁,乙现在12岁. 故答案为:24,12 【点睛】本题考查了一元一次方程的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.16.80【解析】【分析】根据标价×=售价求解即可【详解】解:设该商品的标价为x 元由题意08x =64解得x =80(元)故答案为:80元【点睛】考查了销售问题解题关键是掌握折扣售价标价之间的关系解析:80 【解析】 【分析】 根据标价×10折扣=售价,求解即可. 【详解】解:设该商品的标价为x 元 由题意0.8x =64 解得x =80(元) 故答案为:80元. 【点睛】考查了销售问题,解题关键是掌握折扣、售价、标价之间的关系.17.三﹣【解析】【分析】单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数由此可得答案【详解】是三次单项式系数是故答案为:三【点睛】本题考查了单项式的知识掌握单项式系数及次解析:三 ﹣25【解析】 【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 18.【解析】试题解析:∵2x+4与3x-2互为相反数∴2x+4=-(3x-2)解得x=-故答案为- 解析:25- 【解析】试题解析:∵2x+4与3x-2互为相反数,∴2x+4=-(3x-2),解得x=-25. 故答案为-25. 19.【解析】【分析】根据去括号和添括号法则把原式变形整体代入计算得到答案【详解】解:6+(4b ﹣8a )=﹣8a+4b+6=﹣4(2a ﹣b )+6当2a ﹣b =﹣2原式=﹣4×(﹣2)+6=14故答案为:14解析:【解析】【分析】根据去括号和添括号法则把原式变形,整体代入计算,得到答案.【详解】解:6+(4b ﹣8a )=﹣8a+4b+6=﹣4(2a ﹣b )+6,当2a ﹣b =﹣2,原式=﹣4×(﹣2)+6=14,故答案为:14.【点睛】本题考查的是整式的化简求值,掌握整式的加减混合运算法则和整体代入是解题的关键. 20.5°【解析】∵∠CBE=180°-∠ABC -∠DBE=180°-45°-60°=75°BM 为∠CBE 的平分线∴∠EBM=∠CBE=×75°=375°∵BN 为∠DBE 的平分线∴∠EBN=∠EBD=×6解析:5°【解析】∵∠CBE=180°-∠ABC-∠DBE=180°-45°-60°=75°,BM 为∠CBE 的平分线,∴∠EBM=12∠CBE =12×75°=37.5°, ∵BN 为∠DBE 的平分线,∴∠EBN=12∠EBD=12×60°=30°, ∴∠MBN=∠EBM+∠EBN==37.5°+30°=67.5°故答案为:67.5°. 三、解答题21.(1)2214a +a 2π;(2)6a a π+;(3)245.【解析】【分析】(1)根据图示,窗户的面积等于4个小正方形的面积加上半径是a 的半圆的面积;(2)根据图示,窗户外框的总长就是用3条长度是2acm 的边的长度加上半径是acm 的半圆的长度;(3)根据窗户的总面积,代入求值即可.【详解】 解:(1)窗户的面积为:()()222214a a 422a a a cm ππ⎛⎫⨯+=+ ⎪⎝⎭ (2)窗户的外框的总长为:()()132a 262a a a cm ππ⨯+⨯=+ (3)当a=50cm ,即:a=0.5m 时, 窗户的总面积为:()2220.540.5128m ππ⎛⎫⨯+=+ ⎪⎝⎭ 取π≈3.14,原式=1+0.3925≈1.4(m 2)安装窗户的费用为:1.4×175=245(元). 【点睛】本题考查的知识点是求组合图形的面积与周长,将已知图形分解为所熟悉的简单图形是解此题的关键.22.∠AOE=20°,∠FOG=20°【解析】试题分析:根据对顶角相等得到∠AOC=∠BOD=40°,然后再根据角平分线的定义即可求得∠AOE 的度数,再根据同角的余角相等即可求得∠FOG 的度数.试题解析:∵∠AOC 与∠BOD 是对顶角,∴∠AOC=∠BOD=40°,∵OE平分∠AOC,∴∠AOE=12∠AOC=20°,∵OF⊥AB,OG⊥OE,∴∠AOF=∠EOG=90°,即∠AOG与∠FOG互余,∠AOG与∠AOE互余,∴∠FOG=∠AOE=20°.【点睛】本题考查了对顶角的性质、角平分线的定义、余角的性质等,在解题时根据对顶角的性质和角平分线,余角的性质进行解答是关键.23.(1)①∠COD=∠BOE,理由见解析;②∠BOD+∠COE=180°,理由见解析;(2)①∠COD=∠BOE,②成立【解析】【分析】(1)①根据等式的性质,在直角的基础上都加∠BOD,因此相等,②将∠BOD+∠COE转化为两个直角的和,进而得出结论;(2)①根据同角的余角相等,可得结论,②仍然可以将∠BOD+∠COE转化为两个直角的和,得出结论.【详解】解:(1)①∠COD=∠BOE,理由如下:∵∠BOC=∠DOE=90°,∴∠BOC+∠BOD=∠DOE+∠BOD,即∠COD=∠BOE,②∠BOD+∠COE=180°,理由如下:∵∠DOE=90°,∠AOE+∠DOE+∠BOD=∠AOB=180°,∴∠BOD+∠AOE=180°﹣90°=90°,∴∠BOD+∠COE=∠BOD+∠AOE+∠AOC=90°+90°=180°,(2)①∠COD=∠BOE,∵∠COD+∠BOD=∠BOC=90°=∠DOE=∠BOD+∠BOE,∴∠COD=∠BOE,②∠BOD+∠COE=180°,∵∠DOE=90°=∠BOC,∴∠COD+∠BOD=∠BOE+∠BOD=90°,∴∠BOD+∠COE=∠BOD+∠COD+∠BOE+∠BOD=∠BOC+∠DOE=90°+90°=180°,因此(1)中的∠BOD和∠COE的关系仍成立.【点睛】本题考查角度的和差计算,找出图中角度之间的关系,熟练掌握同角的余角相等是解题的关键.24.成人票售出650张,学生票各售出350张.【解析】【分析】此题基本的数量关系是:①成人票张数+学生票张数=1000张,②成人票票款+学生票票款=6950,利用①设未知数,另一个用x表示,利用②列方程解答即可.【详解】设成人票售出x张,学生票各售出(1000﹣x)张,根据题意列方程得:8x+5(1000﹣x)=6950,解得:x=650,1000﹣x=350(张).答:成人票售出650张,学生票各售出350张.【点睛】此题考l利用一元一次方程解应用题,理清题里蕴含的数量关系:①成人票张数+学生票张数=1000张,②成人票票款+学生票票款=6950.25.1 2【解析】【分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【详解】原式=7a2b+4a2b﹣6ab2﹣12a2b+3ab2=﹣a2b﹣3ab2,∵|a+2|+(b﹣12)2=0,∴a+2=0,b﹣12=0,即a=﹣2,b=12,当a=﹣2,b=12时,原式=﹣2+32=﹣12.【点睛】本题考查了整式的加减-化简求值与非负数的性质,解题的关键是熟练的掌握整式的加减-化简求值与非负数的性质.。