§3.3.2 两点间的距离
高中数学-直线的交点坐标与距离公式
解:(1)方程组
2x-y-7=0,
3x+2y-7=0.的解为 x=3,
2
22
即x 2y 2 0
答案:B
12.(上海高考)直线y=x关于直线x=1对称的直线方程是 ___________________.
x+2y-2=0
解析 : 如图所示,Q y 1 x的斜率为 1 ,
2
2
所求直线l的斜率k
1 2
.由y x
1 2
1,
x
得交点(1, 1),该点应在l上,故l的方程为y 1 1 (x 1),
解:∵点P在直线l上, ∴可设P(a,2-4a). 又A(4,-3)、B(2,-1), ∴由|PA|=|PB|可得 (a-4)2+(5-4a)2=(a-2)2+(3-4a)2,
解得a 7 . P(7 , 18). 5 55
易错探究
例4:当实数m为何值时,三条直线l1:3x+my-1=0,l2:3x-2y5=0,l3:6x+y-5=0不能围成三角形. 错解:当三条直线两两相交,且过同一点时,不能构成三角形, ∴当l2,l3相交于一点时,由 3x-2y-5=0,
4.已知△ABC的顶点A(2,3)、B(-1,0),C(2,0)则△ABC的周长 是( )
A.2 3 B.3 2 3 C.6 3 2 D.6 10 解析 : AB (1 2)2 (0 3)2 3 2. | BC | 3,| AC | (2 2)2 (0 3)2 3. VABC的周长为6 3 2.
人教A高中数学必修二课时分层训练:第三章 直线与方程 33 331 332 含解析
第三章 3.3 直线的交点坐标与距离公式3.3.1 两条直线的交点坐标3.3.2 两点间的距离课时分层训练‖层级一‖……………………|学业水平达标|1.直线x +2y -2=0与直线2x +y -3=0的交点坐标是( ) A .(4,1) B .(1,4) C.⎝ ⎛⎭⎪⎫43,13 D.⎝ ⎛⎭⎪⎫13,43 解析:选C 由方程组⎩⎪⎨⎪⎧x +2y -2=0,2x +y -3=0,得⎩⎪⎨⎪⎧x =43,y =13.即直线x +2y -2=0与直线2x +y -3=0的交点坐标是⎝ ⎛⎭⎪⎫43,13.2.过点A (4,a )和点B (5,b )的直线与y =x +m 平行,则|AB |的值为( ) A .6 B. 2 C .2D .不能确定解析:选B 由k AB =1,得b -a1=1, ∴b -a =1. ∴|AB |=(5-4)2+(b -a )2=1+1= 2.3.方程(a -1)x -y +2a +1=0(a ∈R )所表示的直线( ) A .恒过定点(-2,3) B .恒过定点(2,3) C .恒过点(-2,3)和点(2,3)D .都是平行直线解析:选A (a -1)x -y +2a +1=0可化为-x -y +1+a (x +2)=0, 由⎩⎪⎨⎪⎧ -x -y +1=0,x +2=0,得⎩⎪⎨⎪⎧x =-2,y =3.4.点P (a ,b )关于直线l :x +y +1=0的对称的点仍在l 上,则a +b 等于( ) A .1 B .-1 C .2D .0解析:选B ∵点P (a ,b )关于l :x +y +1=0对称的点仍在l 上,∴点P (a ,b )在直线l 上,∴a +b +1=0,即a +b =-1.5.到A (1,3),B (-5,1)两点的距离相等的动点P 的轨迹方程是( ) A .3x -y -8=0 B .3x +y +4=0 C .3x -y +6=0D .3x +y +2=0解析:选B 解法一:设P (x ,y ), 则(x -1)2+(y -3)2=(x +5)2+(y -1)2,即3x +y +4=0.解法二:到A 、B 两点距离相等的点P 的轨迹就是线段AB 的垂直平分线,AB 中点为M (-2,2),k AB =13,∴k l =-3,l :y -2=-3(x +2),即3x +y +4=0.6.点P (2,5)关于直线x +y =1的对称点的坐标是 . 解析:设对称点坐标是(a ,b ),则⎩⎪⎨⎪⎧b -5a -2·(-1)=-1,a +22+b +52=1.解得a =-4,b=-1,即所求对称点坐标是(-4,-1).答案:(-4,-1)7.经过两直线2x -3y -3=0和x +y +2=0的交点且与直线3x +y -1=0垂直的直线l 的方程为 .解析:由方程组⎩⎪⎨⎪⎧2x -3y -3=0,x +y +2=0,得⎩⎪⎨⎪⎧x =-35,y =-75.又所求直线与直线3x +y -1=0垂直,故k =13, ∴直线方程为y +75=13⎝ ⎛⎭⎪⎫x +35,即5x -15y -18=0. 答案:5x -15y -18=08.在直线x -y +4=0上求一点P ,使它到点M (-2,-4),N (4,6)的距离相等,则点P 的坐标为 .解析:设P 点的坐标是(a ,a +4), 由题意可知|PM |=|PN |, 即(a +2)2+(a +4+4)2=(a -4)2+(a +4-6)2,解得a =-32,故P 点的坐标是⎝ ⎛⎭⎪⎫-32,52.答案:⎝ ⎛⎭⎪⎫-32,529.光线从A (-4,-2)点射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在的直线方程.解:作出草图,如图所示,设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C .故BC 所在的直线方程为y -66+4=x -11+2,即10x -3y +8=0.10.已知两条直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试分别确定m ,n 的值,满足下列条件:(1)l 1与l 2相交于一点P (m,1); (2)l 1∥l 2且l 1过点(3,-1); (3)l 1⊥l 2且l 1在y 轴上的截距为-1.解:(1)把P (m,1)的坐标分别代入l 1,l 2的方程得m 2+8+n =0,2m +m -1=0,解得m =13,n =-739.(2)显然m ≠0.∵l 1∥l 2且l 1过点(3,-1), ∴⎩⎪⎨⎪⎧-m 8=-2m ,3m -8+n =0,解得⎩⎨⎧ m =4,n =-4或⎩⎨⎧m =-4,n =20.(3)由l 1⊥l 2且l 1在y 轴上的截距为-1.当m =0时,l 1的方程为8y +n =0,l 2的方程为2x -1=0.∴-8+n =0,解得n =8.∴m =0,n =8.而m ≠0时,直线l 1与l 2不垂直. 综上可知,m =0,n =8.‖层级二‖………………|应试能力达标|1.直线l :x +2y -1=0关于点(1,-1)对称的直线l ′的方程为( ) A .2x -y -5=0 B .x +2y -3=0 C .x +2y +3=0D .2x -y -1=0解析:选C 由题意得l ′∥l ,故设l ′:x +2y +c =0,在l 上取点A (1,0),则点A (1,0)关于点(1,-1)的对称点是A ′(1,-2),所以1+2×(-2)+c =0,即c =3,故直线l ′的方程为x +2y +3=0,故选C.2.已知平面上两点A (x ,2-x ),B ⎝ ⎛⎭⎪⎫22,0,则|AB |的最小值为( )A .3 B.13 C .2D.12解析:选D ∵|AB |=⎝⎛⎭⎪⎫x -222+(2-x )2=2⎝⎛⎭⎪⎫x -3242+14≥12,当且仅当x =324时等号成立,∴|AB |min =12.3.无论k 为何值,直线(k +2)x +(1-k )y -4k -5=0都过一个定点,则该定点为( )A .(1,3)B .(-1,3)C .(3,1)D .(3,-1)解析:选D 直线方程可化为(2x +y -5)+k (x -y -4)=0,此直线过直线2x +y -5=0和直线x -y -4=0的交点.由⎩⎪⎨⎪⎧ 2x +y -5=0,x -y -4=0,解得⎩⎪⎨⎪⎧x =3,y =-1.因此所求定点为(3,-1).故选D.4.已知点A (3,-1),B (5,-2),点P 在直线x +y =0上,若使|P A |+|PB |取最小值,则P 点坐标是( )A .(1,-1)B .(-1,1) C.⎝ ⎛⎭⎪⎫135,-135 D .(-2,2)解析:选C 点A (3,-1)关于直线x +y =0的对称点为A ′(1,-3),直线A ′B 的方程为y =14x -134,与x +y =0联立方程组解得⎩⎪⎨⎪⎧x =135,y =-135,所以点P ⎝ ⎛⎭⎪⎫135,-135. 5.若两直线(m +2)x -y -m =0,x +y =0与x 轴围成三角形,则实数m 的取值范围是 .解析:当直线(m +2)x -y -m =0,x +y =0及x 轴两两不平行,且不共点时,必围成三角形.当m =-2时,(m +2)x -y -m =0与x 轴平行;当m =-3时,(m +2)x -y -m =0与x +y =0平行;当m =0时,三条直线都过原点,所以m 的取值范围为{m |m ≠-3,且m ≠-2,且m ≠0}.答案:{m |m ≠-3,且m ≠-2,且m ≠0}6.已知A (2,1),B (1,2),若直线y =ax 与线段AB 相交,则实数a 的取值范围是 .解析:如图,直线y =ax 的斜率为a 且经过原点O ,∵直线y =ax 与线段AB 相交,∴实数a 的最小值为OA 的斜率,最大值为OB 的斜率,OA 的斜率为12,OB 的斜率为2,故实数a 的取值范围是⎣⎢⎡⎦⎥⎤12,2.答案:⎣⎢⎡⎦⎥⎤12,27.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则实数k 的取值范围是 .解析:解法一:由题意知直线l 过定点P (0,-3), 直线2x +3y -6=0与x ,y 轴的交点分别为A (3,0),B (0,2),如图所示,要使两直线的交点在第一象限, 则直线l 在直线AP 与BP 之间, 而k AP =-3-00-3=33,∴k >33. 解法二:解方程组⎩⎪⎨⎪⎧y =kx -3,2x +3y -6=0,得⎩⎪⎨⎪⎧x =33+63k +2,y =6k -233k +2.由题意知x =33+63k +2>0且y =6k -233k +2>0.由33+63k +2>0可得3k +2>0,∴6k -23>0,解得k >33. 答案:⎝ ⎛⎭⎪⎫33,+∞8.已知△ABC 的一个顶点A (2,-4),且∠B ,∠C 的角平分线所在直线的方程依次是x +y -2=0,x -3y -6=0,求△ABC 的三边所在直线的方程.解:如图,BE ,CF 分别为∠ABC ,∠ACB 的角平分线,由角平分线的性质,知点A 关于直线BE ,CF 的对称点A ′,A ″均在直线BC 上.∵直线BE 的方程为x +y -2=0, ∴A ′(6,0).∵直线CF 的方程为x -3y -6=0,∴A ″⎝ ⎛⎭⎪⎫25,45.∴直线A ′A ″的方程是y =0-456-25(x -6),即x +7y -6=0,这也是BC 所在直线的方程. 由⎩⎨⎧ x +7y -6=0,x +y -2=0,得B ⎝ ⎛⎭⎪⎫43,23,由⎩⎨⎧x +7y -6=0,x -3y -6=0,得C (6,0), ∴AB 所在直线的方程是7x +y -10=0,AC 所在直线方程是x -y -6=0.。
高中数学必修二教案-两条直线的交点坐标+两点间的距离
3.3 直线的交点坐标与距离公式 3.3.1 两条直线的交点坐标 3.3.2 两点间的距离1.能用解方程组的方法求两直线的交点坐标.(重点) 2.会根据方程组解的个数判定两条直线的位置关系.(难点) 3.掌握两点间的距离公式并会简单应用.(重点)[基础·初探]教材整理1 两直线的交点坐标阅读教材P 102~P 103“探究”以上部分,完成下列问题.已知两直线l 1:A 1x +B 1y +C 1=0;l 2:A 2x +B 2y +C 2=0.若两直线方程组成的方程组⎩⎨⎧ A 1x +B 1y +C 1=0A 2x +B 2y +C 2=0有惟一解⎩⎨⎧x =x 0,y =y 0,则两直线相交,交点坐标为(x 0,y 0).直线x +2y -2=0与直线2x +y -3=0的交点坐标是( ) A .(4,1) B .(1,4) C.⎝ ⎛⎭⎪⎫43,13 D.⎝ ⎛⎭⎪⎫13,43 【解析】 由方程组⎩⎨⎧x +2y -2=0,2x +y -3=0,得⎩⎪⎨⎪⎧x =43,y =13.即直线x +2y -2=0与直线2x +y -3=0的交点坐标是⎝ ⎛⎭⎪⎫43,13. 【答案】 C教材整理2 两点间的距离阅读教材P 104“练习”以下至P 105“例3”以上部分,完成下列问题. 1.平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=x 2-x 12+y 2-y 12.2.两点间距离的特殊情况(1)原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2. (2)当P 1P 2∥x 轴(y 1=y 2)时,|P 1P 2|=|x 2-x 1|. (3)当P 1P 2∥y 轴(x 1=x 2)时,|P 1P 2|=|y 2-y 1|.已知点A (-1,2),点B (2,6),则线段AB 的长为__________. 【解析】 由两点间距离公式得|AB |=+2+-2=5.【答案】 5[小组合作型]两直线的交点问题直线l 过直线x +y -2=0和直线x -y +4=0的交点,且与直线3x-2y +4=0平行,求直线l 的方程.【精彩点拨】 先求出交点,再由点斜式求方程或设出过交点的直线系方程,由待定系数法求方程.【自主解答】 法一 联立方程⎩⎨⎧x +y -2=0,x -y +4=0,解得⎩⎨⎧x =-1,y =3,即直线l 过点(-1,3).因为直线l 的斜率为32,所以直线l 的方程为y -3=32(x +1),即3x -2y +9=0.法二 因为直线x +y -2=0不与3x -2y +4=0平行,所以可设直线l 的方程为x -y +4+λ(x +y -2)=0, 整理得(1+λ)x +(λ-1)y +4-2λ=0,因为直线l 与直线3x -2y +4=0平行,所以1+λ3=λ-1-2≠4-2λ4,解得λ=15,所以直线l 的方程为65x -45y +185=0,即3x -2y +9=0.1.解本题有两种方法:一是采用常规方法,先通过解方程组求出两直线交点,再根据平行关系求出斜率,由点斜式写出直线方程;二是设出过两直线交点的方程,再根据平行条件待定系数求解.2.过两条相交直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0交点的直线方程可设为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(不含直线l 2).[再练一题]1.求经过两直线l 1:3x +4y -2=0和l 2:2x +y +2=0的交点且过坐标原点的直线l 的方程.【解】 法一 由方程组⎩⎨⎧3x +4y -2=0,2x +y +2=0,解得⎩⎨⎧x =-2,y =2,即l 1与l 2的交点坐标为(-2,2).∵直线过坐标原点,∴其斜率k =2-2=-1.故直线方程为y =-x ,即x +y =0.法二 ∵l 2不过原点,∴可设l 的方程为3x +4y -2+λ(2x +y +2)=0(λ∈R ),即(3+2λ)x +(4+λ)y +2λ-2=0.将原点坐标(0,0)代入上式,得λ=1,∴直线l 的方程为5x +5y =0,即x +y =0.两点间距离公式的应用已知△ABC 的三个顶点坐标是A (-3,1),B (3,-3),C (1,7).(1)判断△ABC 的形状; (2)求△ABC 的面积.【精彩点拨】 (1)先依据已知条件,画出草图,判断△ABC 的大致形状,然后从边着手或从角着手确定其形状;(2)结合三角形形状求解. 【自主解答】 (1)法一 ∵|AB |=+2+-3-2=213,|AC |=+2+-2=213,又|BC |=-2++2=226,∴|AB |2+|AC |2=|BC |2, 且|AB |=|AC |,∴△ABC是等腰直角三角形.法二∵k AC=7-11--=32,k AB=-3-13--=-23,则k AC·k AB=-1,∴AC⊥AB.又|AC|=+2+-2=213,|AB|=+2+-3-2=213,∴|AC|=|AB|.∴△ABC是等腰直角三角形.(2)△ABC的面积S△ABC=12|AC|·|AB|=12×213×213=26.1.判断三角形的形状,要采用数形结合的方法,大致明确三角形的形状,以确定证明的方向.2.在分析三角形的形状时,要从两方面考虑:一是要考虑角的特征,主要考察是否为直角或等角;二是要考虑三角形边的长度特征,主要考察边是否相等或是否满足勾股定理.[再练一题]2.若等腰三角形ABC的顶点A是(3,0),底边BC的长为4,BC边的中点为D(5,4),求等腰△ABC的腰长.【解】因为|AD|=-2+-2=2 5.在Rt△ABD中,由勾股定理得|AB|=|AD|2+|BD|2=20+4=2 6.所以等腰△ABC的腰长为2 6.[探究共研型]坐标法的应用探究1 在如图331所示平面直角坐标系中,你能用代数方法证明等腰梯形ABCD的对角线|AC|=|BD|吗?图331【提示】设A(0,0),B(a,0),C(b,c),则点D的坐标是(a-b,c).∴|AC |=b -2+c -2=b 2+c 2.|BD |=a -b -a2+c -2=b 2+c 2.故|AC |=|BD |.探究2 已知△ABC 是直角三角形,斜边BC 的中点为M ,建立适当的平面直角坐标系,证明:|AM |=12|BC |.【提示】 以Rt △ABC 的直角边AB ,AC 所在直线为坐标轴,建立如图所示的平面直角坐标系.设B ,C 两点的坐标分别为(b,0),(0,c ),斜边BC 的中点为M ,所以点M 的坐标为⎝ ⎛⎭⎪⎫0+b 2,0+c 2, 即⎝ ⎛⎭⎪⎫b 2,c 2. 由两点间距离公式得|BC |=-b2+c -2=b 2+c 2, |AM |=⎝⎛⎭⎪⎫0-b 22+⎝ ⎛⎭⎪⎫0-c 22 =12b 2+c 2, 故|AM |=12|BC |.在△ABC 中,AD 是BC 边上的中线.求证:|AB |2+|AC |2=2(|AD |2+|DC |2).【精彩点拨】 建立适当的坐标系―――――――→“形”化到“数”坐标表示A 、B 、C 、D 各点―→代数计算―――――――→“数”化到“形”几何关系 【自主解答】 以边BC 所在直线为x 轴,以D 为原点,建立坐标系,如图所示,设A (b ,c ),C (a,0),则B (-a,0).∵|AB |2=(a +b )2+c 2,|AC |2=(a -b )2+c 2,|AD |2=b 2+c 2,|DC |2=a 2, ∴|AB |2+|AC |2=2(a 2+b 2+c 2), |AD |2+|DC |2=a 2+b 2+c 2, ∴|AB |2+|AC |2=2(|AD |2+|DC |2).1.坐标法的定义:通过建立平面直角坐标系,用代数方法解决几何问题的方法称为坐标法.2.利用坐标法解平面几何问题常见的步骤:(1)建立坐标系,尽可能将有关元素放在坐标轴上;(2)用坐标表示有关的量;(3)将几何关系转化为坐标运算;(4)把代数运算结果“翻译”成几何关系.[再练一题]3.用坐标法证明:如果四边形ABCD是长方形,而对任一点M,等式|AM|2+|CM|2=|BM|2+|DM|2成立.【证明】取长方形ABCD的两条边AB,AD所在的直线分别为x,y轴,建立平面直角坐标系,如图所示.设长方形ABCD的四个顶点为A(0,0),B(a,0),C(a,b),D(0,b),在平面上任取一点M(m,n),则|AM|2+|CM|2=m2+n2+(m-a)2+(n-b)2,|BM|2+|DM|2=(m-a)2+n2+m2+(n-b)2,所以|AM|2+|CM|2=|BM|2+|DM|2.1.已知M(2,1),N(-1,5),则|MN|等于( )A.5 B.37C.13 D.4【解析】|MN|=+2+-2=5.【答案】 A2.过点A(4,a)和点B(5,b)的直线与y=x+m平行,则|AB|的值为( ) A.6 B. 2C.2 D.不能确定【解析】 由k AB =1,得b -a1=1,∴b -a =1. ∴|AB |=-2+b -a 2=1+1= 2. 【答案】 B3.已知两条直线l 1:ax +3y -3=0,l 2:4x +6y -1=0,若l 1与l 2相交,则实数a 满足的条件是________.【解析】 l 1与l 2相交,则有a 4≠36,∴a ≠2.【答案】 a ≠24.设点A 在x 轴上,点B 在y 轴上,AB 的中点是P (2,-1),则|AB |等于________.【解析】 设A (x,0),B (0,y ),∵AB 的中点为P (2,-1),∴x 2=2,y2=-1,∴x =4,y =-2,即A (4,0),B (0,-2),∴|AB |=42+22=2 5.【答案】 2 55.分别求经过两条直线2x +y -3=0和x -y =0的交点,且符合下列条件的直线方程.(1)平行于直线l 1:4x -2y -7=0;(2)垂直于直线l 2:3x -2y +4=0.【解】 解方程组⎩⎨⎧2x +y -3=0,x -y =0,得交点P (1,1).(1)若直线与l 1平行,∵k 1=2,∴斜率k =2,∴所求直线方程为y -1=2(x -1), 即:2x -y -1=0.(2)若直线与l 2垂直,∵k 2=32,∴斜率k =-1k 2=-23,∴所求直线方程为y -1=-23(x -1),即:2x +3y -5=0.。
高中数学 必修二 3.3.2两点间的距离公式练习
3.3.2两点间的距离公式练习新人教A版必修2一、选择题1.点M(1,2)关于y轴的对称点N到原点的距离为( )A.2 B.1 C. 5 D.5[答案] C[解析] N(-1,2),|ON|=-2+22= 5.故选C.2.已知A(2,1),B(-1,b),|AB|=5,则b等于( )A.-3 B.5C.-3或5 D.-1或-3[答案] C[解析] 由两点间的距离公式知|AB|=-1-2+b-2=b2-2b+10,由5=b2-2b+10,解得b=-3或b=5.3.一条平行于x轴的线段长是5个单位,它的一个端点是A(2,1),则它的另一个端点B的坐标为( )A.(-3,1)或(7,1) B.(2,-2)或(2,7)C.(-3,1)或(5,1) D.(2,-3)或(2,5)[答案] A[解析] ∵AB∥x轴,∴设B(a,1),又|AB|=5,∴a=-3或7.4.设点A在x轴上,点B在y轴上,AB的中点是P(2,-1),则|AB|等于( ) A.5 B.4 2C.2 5 D.210[答案] C[解析] 设A(x,0)、B(0,y),由中点公式得x=4,y=-2,则由两点间的距离公式得|AB|=-2+-2-2=20=2 5.5.△ABC三个顶点的坐标分别为A(-4,-4)、B(2,2)、C(4,-2),则三角形AB边上的中线长为( )A.26 B.65C.29 D.13[答案] A[解析] AB的中点D的坐标为D(-1,-1).∴|CD|=-1-2+-1--2=26;故选A .6.已知三点A (3,2),B (0,5),C (4,6),则△ABC 的形状是( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形[答案] C [解析] |AB |=-2+-2=32,|BC |=-2+-2=17, |AC |=-2+-2=17,∴|AC |=|BC |≠|AB |, 且|AB |2≠|AC |2+|BC |2.∴△ABC 是等腰三角形,不是直角三角形,也不是等边三角形. 二、填空题7.已知点M (m ,-1),N (5,m ),且|MN |=25,则实数m =_________. [答案] 1或3 [解析] 由题意得m -2+-1-m2=25,解得m =1或m =3.8.已知A (1,-1),B (a,3),C (4,5),且|AB |=|BC |,则a =_________. [答案] 12[解析] a -2++2=-a2+-2,解得a =12.三、解答题9.求证:等腰梯形的对角线相等. [证明] 已知:等腰梯形ABCD . 求证:AC =BD .证明:以AB 所在直线为x 轴,以AB 的中点为坐标原点建立如图平面直角坐标系.设A (-a,0)、D (b ,c ),由等腰梯形的性质知B (a,0),C (-b ,c ). 则|AC |=-b +a2+c -2=a -b2+c 2,|BD |=b -a2+-c2=a -b 2+c 2,∴|AC |=|BD |.即:等腰梯形的对角线相等.10.已知直线l 1:2x +y -6=0和A (1,-1),过点A 作直线l 2与已知直线交于点B 且|AB |=5,求直线l 2的方程.[解析] 当直线l 2的斜率存在时,设其为k ,则⎭⎪⎬⎪⎫l 2:y +1=k x -又由2x +y -6=0⇒(k +2)x =k +7, 而k ≠-2,故解得x =k +7k +2,所以B (k +7k +2,4k -2k +2), 又由|AB |=5,利用两点间距离公式得k +7k +2-2+4k -2k +2+2=5⇒k =-34,此时l 2的方程为3x +4y +1=0.而当l 2的斜率不存在时,l 2的方程为x =1.此时点B 坐标为(1,4),则|AB |=|4-(-1)|=5,也满足条件综上,l 2的方程为3x +4y +1=0或x =1.能力提升一、选择题1.已知点A (2,3)和B (-4,1),则线段AB 的长及中点坐标分别是( ) A .210,(1,2) B .210,(-1,-2) C .210,(-1,2) D .210,(1,-2)[答案] C [解析] |AB |=-4-2+-2=210,中点坐标为(2-42,3+12),即(-1,2),故选C .2.已知两点P (m,1)和Q (1,2m )之间的距离大于10,则实数m 的范围是( ) A .-45<m <2B .m <-45或m >2C .m <-2或m >45D .-2<m <45[答案] B[解析] 根据两点间的距离公式 |PQ |=m -2+-2m2=5m 2-6m +2>10⇒5m 2-6m -8>0⇒m <-45或m >2.3.两直线3ax -y -2=0和(2a -1)x +5ay -1=0分别过定点A 、B ,则|AB |等于( )A .895 B .175C .135D .115[答案] C[解析] 易得A (0,-2),B (-1,25).∴|AB |=-1-2+25+2=135. 4.在直线2x -3y +5=0上求点P ,使P 点到A (2,3)距离为13,则P 点坐标是( ) A .(5,5)B .(-1,1)C .(5,5)或(-1,1)D .(5,5)或(1,-1)[答案] C[解析] 设点P (x ,y ),则y =2x +53,由|PA |=13得(x -2)2+(2x +53-3)2=13,即(x -2)2=9,解得x =-1或x =5, 当x =-1时,y =1,当x =5时,y =5,∴P (-1,1)或(5,5). 二、填空题5.已知点A (5,2a -1),B (a +1,a -4),若|AB |取得最小值,则实数a 的值是_________. [答案] 12[解析] 由题意得|AB |=-a -2+a -1-a +2=2a 2-2a +25=a -122+492,所以当a =12时,|AB |取得最小值.6.已知点A (4,12),在x 轴上的点P 与点A 的距离等于13,则点P 的坐标为_________. [答案] (9,0)或(-1,0) [解析] 设P (a,0),则a -2+122=13,解得a =9或a =-1,∴点P 的坐标为(9,0)或(-1,0). 三、解答题7.用坐标法证明定理:若四边形ABCD 是长方形,则对平面内任一点M ,等式AM 2+CM 2=BM 2+DM 2成立.[解析] 以一个直角所在的两边为坐标轴,建立直角坐标系.证明:如图,取长方形ABCD 的两条边AB 、AD 所在的直线分别为x 轴、y 轴建立直角坐标系.设长方形ABCD 的四个顶点分别为A (0,0)、B (a,0)、C (a ,b )、D (0,b ).在平面上任取一点M (m ,n ),则有AM 2+CM 2=m 2+n 2+(m -a )2+(n -b )2,BM 2+DM 2=(m -a )2+n 2+m 2+(n -b )2,∴AM 2+CM 2=BM 2+DM 2.8.如下图所示,一个矩形花园里需要铺设两条笔直的小路,已知矩形花园的长AD =5 m ,宽AB =3 m ,其中一条小路定为AC ,另一条小路过点D ,问是否在BC 上存在一点M ,使得两条小路AC 与DM 相互垂直?若存在,则求出小路DM 的长.[分析] 建立适当的坐标系,转几何问题为代数运算.[解析] 以B 为坐标原点,BC 、BA 所在直线为x 、y 轴建立如图所示的平面直角坐标系.因为AD =5 m ,AB =3 m , 所以C (5,0),D (5,3),A (0,3). 设点M 的坐标为(x,0),因为AC ⊥DM , 所以k AC ·k DM =-1, 即3-00-5·3-05-x=-1. 所以x =3.2,即BM =3.2,即点M 的坐标为(3.2,0)时,两条小路AC 与DM 相互垂直. 故在BC 上存在一点M (3.2,0)满足题意. 由两点间距离公式得DM =-2+-2=3534.。
21-22版:3.3.1 两条直线的交点坐标~3.3.2 两点间的距离(创新设计)
§3.3直线的交点坐标与距离公式3.3.1两条直线的交点坐标3.3.2两点间的距离学习目标 1.会用解方程组的方法求两条相交直线的交点坐标(重点).2.会根据方程解的个数判定两条直线的位置关系(重点).3.掌握两点间距离公式并会应用(难点).知识点1直线的交点与直线的方程组解的关系1.两直线的交点(l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0)2.两直线的位置关系【预习评价】1.直线x-y+2=0与直线x+y-8=0的交点坐标为()A .(3,-5)B .(-3,5)C .(3,5)D .(-3,-5)答案 C2.直线x +y +2=0与直线2x +2y +7=0的位置关系是________. 答案 平行知识点2 两点间的距离公式【预习评价】1.平面内两点间的距离公式与坐标顺序是否有关?提示 无关.在计算公式中x 2与x 1,y 2与y 1的位置可以同时互换,不影响计算结果.2.式子x 2+y 2的几何意义是什么?提示 式子x 2+y 2=(x -0)2+(y -0)2表示平面上的点(x ,y )到原点的距离.题型一 两直线的交点问题【例1】 (1)直线l 1:2x -6y =0与直线l 2:y =13x +12交点的个数为________; (2)若两直线2x +3y -k =0和x -ky +12=0的交点在y 轴上,则k =________; (3)已知一直线过两直线2x -3y -3=0和x +y +2=0的交点. 则:①与直线3x +y -1=0平行的直线方程为________; ②与直线3x +y -1=0垂直的直线方程为________. 解析 (1)解方程组⎩⎪⎨⎪⎧2x -6y =0, ①y =13x +12, ②②×6-①,得3=0,矛盾, 故方程组无解,∴两直线无交点.(2)在2x +3y -k =0中,令x =0,得y =k3, 将(0,k3)代入x -ky +12=0,解得k =±6. (3)法一 解方程组⎩⎨⎧2x -3y -3=0,x +y +2=0,得⎩⎪⎨⎪⎧x =-35,y =-75,所以两直线的交点坐标为⎝ ⎛⎭⎪⎫-35,-75.①与直线3x +y -1=0平行的直线的斜率为-3. 故所求直线方程为y +75=-3⎝ ⎛⎭⎪⎫x +35,即15x +5y +16=0.②又与直线3x +y -1=0垂直的直线的斜率为13,故所求直线方程为y +75=13⎝ ⎛⎭⎪⎫x +35, 即5x -15y -18=0. 法二 ①设所求直线方程为 (2x -3y -3)+λ(x +y +2)=0, 即(2+λ)x +(λ-3)y +(2λ-3)=0.(*) 由于所求直线与直线3x +y -1=0平行, 所以⎩⎨⎧(2+λ)×1-(λ-3)×3=0,(2+λ)×(-1)-(2λ-3)×3≠0,得λ=112.代入(*)式,得⎝ ⎛⎭⎪⎫2+112x +⎝ ⎛⎭⎪⎫112-3y +⎝ ⎛⎭⎪⎫2×112-3=0,即15x +5y +16=0.②设所求直线方程为(2x -3y -3)+λ(x +y +2)=0, 即(2+λ)x +(λ-3)y +(2λ-3)=0, 由所求直线与直线3x +y -1=0垂直,得3(2+λ)+(λ-3)×1=0,得λ=-34, 所以所求直线方程为5x -15y -18=0.答案 (1)0 (2)±6 (3)①15x +5y +16=0 ②5x -15y -18=0 规律方法 两条直线相交的判定方法12k 的取值范围是( ) A.(1,+∞)B.(-1,1)C.(-∞,-1)∪(1,+∞)D.(-∞,-1)(2)直线l 经过原点,且经过另两条直线2x +3y +8=0,x -y -1=0的交点,则直线l 的方程为( ) A.2x +y =0 B.2x -y =0 C.x +2y =0D.x -2y =0解析(1)联立直线方程⎩⎨⎧y =kx +1,x -y -1=0,解得⎩⎪⎨⎪⎧x =21-k ,y =1+k 1-k ,∵直线的交点在第一象限,∴⎩⎪⎨⎪⎧21-k >0,1+k 1-k >0,解不等式组可得-1<k <1,故选B.(2)设所求直线方程为2x +3y +8+λ(x -y -1)=0, 即(2+λ)x +(3-λ)y +8-λ=0, 因为l 过原点,所以λ=8. 则所求直线l 的方程为2x -y =0. 答案 (1)B (2)B题型二 直线恒过定点问题【例2】 不论m 为何实数,直线(m -1)x +(2m -1)y =m -5恒过的定点坐标是________.解析 法一 取m =1,得直线y =-4. 取m =12,得直线x =9. 故两直线的交点为(9,-4),下面验证直线(m -1)x +(2m -1)y =m -5恒过点(9,-4).将x =9,y =-4代入方程,左边=(m -1)×9-4×(2m -1)=m -5=右边, 故直线恒过点(9,-4).法二 直线方程可变形为(x +2y -1)m -(x +y -5)=0, ∵对任意m 该方程恒成立, ∴⎩⎨⎧x +2y -1=0,x +y -5=0,解得⎩⎨⎧x =9,y =-4. 故直线恒过定点(9,-4). 答案 (9,-4)规律方法 1.过两直线交点的直线系方程的设法经过两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,其中λ是待定系数,在此方程中,无论λ取什么实数,都不能表示直线l 2. 2.过两条直线交点的直线方程的求法(1)常规解法(方程组法):一般是先解方程组求出交点坐标,再结合其他条件写出直线方程.(2)特殊解法(直线系法):先设出过两直线交点的直线方程,再结合条件利用待定系数法求出参数,最后确定直线方程.【训练2】 求证:不论m 取什么实数,直线(2m -1)x +(m +3)y -(m -11)=0都经过一定点,并求出这个定点坐标.解 法一 对于方程(2m -1)x +(m +3)y -(m -11)=0, 令m =0,得x -3y -11=0; 令m =1,得x +4y +10=0. 解方程组⎩⎨⎧x -3y -11=0,x +4y +10=0,得两条直线的交点坐标为(2,-3).将点(2,-3)代入方程组左边,得(2m -1)×2+(m +3)×(-3)-(m -11)=0. 这表明不论m 取什么实数,所给直线均经过定点(2,-3). 法二 将已知方程(2m -1)x +(m +3)y -(m -11)=0 整理为(2x +y -1)m +(-x +3y +11)=0. 由于m 取值的任意性,有⎩⎨⎧2x +y -1=0,-x +3y +11=0,解得⎩⎨⎧x =2,y =-3.所以不论m 取什么实数,所给直线均经过定点(2,-3). 题型三 对称问题【例3】 (1)与直线2x +3y -6=0关于点(1,-1)对称的直线方程是( ) A.3x -2y +2=0 B.2x +3y +7=0 C.3x -2y -12=0D.2x +3y +8=0解析 由平面几何知识易知所求直线与已知直线2x +3y -6=0平行,则可设所求直线方程为2x +3y +C =0.在直线2x +3y -6=0上任取一点(3,0),关于点(1,-1)的对称点为(-1,-2),则点(-1,-2)必在所求直线上, ∴2×(-1)+3×(-2)+C =0,解得C =8. ∴所求直线方程为2x +3y +8=0. 答案 D(2)点P (-3,4)关于直线x +y -2=0的对称点Q 的坐标是( ) A.(-2,1)B.(-2,5)C.(2,-5)D.(4,-3)解析 设对称点坐标为(a ,b ),由题意,得⎩⎪⎨⎪⎧a -32+b +42-2=0,b -4a +3=1,解得⎩⎨⎧a =-2,b =5,即Q (-2,5). 答案 B(3)在平面直角坐标系中,直线y =2x +1关于y =x -2对称的直线l 的方程为( )A.x -4y -11=0B.4x -y +11=0C.x -2y +7=0D.x -2y -7=0解析 ∵直线y =2x +1关于y =x -2对称的直线是直线l ,联立⎩⎨⎧y =2x +1,y =x -2,得⎩⎨⎧x =-3,y =-5,∴直线l 过点(-3,-5).在直线y =2x +1上取一点A (0,1), 设点A 关于y =x -2对称的点为B (a ,b ), 则点B 在直线l 上.设AB 与直线y =x -2的交点为M ,则M ⎝ ⎛⎭⎪⎫a 2,b +12, ∴⎩⎪⎨⎪⎧b -1a -0=-1,b +12=a 2-2,解得⎩⎨⎧a =3,b =-2,∴直线l 过点(-3,-5)和(3,-2), ∴直线l 的方程为y +5-2+5=x +33+3,整理得x -2y -7=0.答案 D规律方法 (1)点关于点的对称问题:若两点A (x 1,y 1),B (x 2,y 2)关于点P (x 0,y 0)对称,则P 是线段AB 的中点,并且⎩⎪⎨⎪⎧x 0=x 1+x 22,y 0=y 1+y 22.(2)直线关于点的对称问题:若两条直线l 1,l 2关于点P 对称,则:①l 1上任意一点关于点P 的对称点必在l 2上,反过来,l 2上任意一点关于点P 的对称点必在l 1上;②若l 1∥l 2,则点P 到直线l 1,l 2的距离相等;③过点P 作一直线与l 1,l 2分别交于A ,B 两点,则点P 是线段AB 的中点. 【训练3】 (1)求点P (x 0,y 0)关于点A (a ,b )的对称点P ′的坐标; 解 根据题意可知点A (a ,b )为PP ′的中点,设点P ′的坐标为(x ,y ),则根据中点坐标公式得⎩⎪⎨⎪⎧a =x +x 02,b =y +y 02,所以⎩⎨⎧x =2a -x 0,y =2b -y 0.所以点P ′的坐标为(2a -x 0,2b -y 0).(2)一束光线从原点O (0,0)出发,经过直线l :8x +6y =25反射后通过点P (-4,3),求反射光线的方程.解 设原点关于l 的对称点A 的坐标为(a ,b ),由直线OA 与l 垂直和线段AO 的中点在l 上,得 ⎩⎪⎨⎪⎧b a ·⎝ ⎛⎭⎪⎫-43=-1,8×a2+6×b2=25, 解得⎩⎨⎧a =4,b =3,∴点A 的坐标为(4,3).∵反射光线的反向延长线过点A (4,3), 又∵反射光线过点P (-4,3),两点纵坐标相等, 故反射光线所在直线方程为y =3. 由方程组⎩⎨⎧y =3,8x +6y =25,解得⎩⎪⎨⎪⎧x =78,y =3,由于反射光线为射线,故反射光线的方程为y =3⎝ ⎛⎭⎪⎫x ≤78.题型四 运用坐标法解决平面几何问题【例4】 如图,已知△ABC 三顶点坐标A (-3,1),B (3,-3),C (1,7).(1)判断△ABC的形状;(2)求△ABC的面积.解(1)法一(1)∵|AB|=(3+3)2+(-3-1)2=213,|AC|=(1+3)2+(7-1)2=213,又|BC|=(1-3)2+(7+3)2=226,∴|AB|2+|AC|2=|BC|2,且|AB|=|AC|,∴△ABC是等腰直角三角形.法二∵k AC=7-11-(-3)=32,k AB=-3-13-(-3)=-23,则k AC·k AB=-1,∴AC⊥AB.又|AC|=(1+3)2+(7-1)2=213,|AB|=(3+3)2+(-3-1)2=213,∴|AC|=|AB|.∴△ABC是等腰直角三角形.(2)S△ABC=12|AC|·|AB|=12(52)2=26,∴△ABC的面积为26.规律方法 1.利用坐标法解平面几何问题常见的步骤(1)建立坐标系,尽可能将有关元素放在坐标轴上.(2)用坐标表示有关的量.(3)将几何关系转化为坐标运算.(4)把代数运算结果“翻译”成几何关系.2.用解析法解题时,虽然平面图形的几何性质不依赖于直角坐标系的建立,但不同的直角坐标系会使我们的计算有繁简之分,因此在建立直角坐标系时必须“避繁就简”.【训练4】 在△ABC 中,AD 是BC 边上的中点,求证: |AB |2+|AC |2=2(|AD |2+|DC |2). 证明 设BC 所在边为x 轴,以D 为坐标原点,建立平面直角坐标系, 如图所示,设A (b ,c ),C (a ,0), 则B (-a ,0). ∵|AB |2=(a +b )2+c 2, |AC |2=(a -b )2+c 2, |AD |2=b 2+c 2, |DC |2=a 2.∴|AB |2+|AC |2=2(a 2+b 2+c 2), |AD |2+|DC |2=a 2+b 2+c 2, ∴|AB |2+|AC |2=2(|AD |2+|DC |2).课堂达标1.已知直线l 1:3x +4y -5=0与l 2:3x +5y -6=0相交,则它们的交点是( ) A .(-1,13) B .(13,1) C .(1,13)D .(-1,-13)解析 由⎩⎨⎧3x +4y -5=0,3x +5y -6=0,得⎩⎪⎨⎪⎧x =13,y =1.答案 B2.经过直线2x -y +4=0与x -y +5=0的交点,且垂直于直线x -2y =0的直线方程是( )A .2x +y -8=0B .2x -y -8=0C .2x +y +8=0D .2x -y +8=0解析 联立⎩⎨⎧2x -y +4=0,x -y +5=0,解得⎩⎨⎧x =1,y =6.∴交点坐标为(1,6).由垂直关系,得所求直线的斜率为-2,则所求直线方程为y -6=-2(x -1),即2x +y -8=0. 答案 A3.已知A (-1,0),B (5,6),C (3,4)三点,则|AC ||CB |的值为( )A.13B.12 C .3 D .2解析 由两点间的距离公式,得|AC |=[3-(-1)]2+(4-0)2=42,|CB |=(3-5)2+(4-6)2=22,故|AC ||CB |=4222=2. 答案 D4.不论m 取何实数,直线(m +2)x -(m +1)y +m +1=0恒过定点________. 解析 由直线(m +2)x -(m +1)y +m +1=0变形为m (x -y +1)+(2x -y +1)=0, 令⎩⎨⎧x -y +1=0,2x -y +1=0,解得⎩⎨⎧x =0,y =1,∴该直线过定点(0,1).答案 (0,1)5.已知两条直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试分别确定m ,n 的值,使:(1)l 1与l 2相交于一点P (m ,1);(2)l 1∥l 2且l 1过点(3,-1);(3)l 1⊥l 2且l 1在y 轴上的截距为-1.解 (1)由于l 1与l 2相交于一点P (m ,1),故把点P (m ,1)代入l 1,l 2的方程得m 2+8+n =0,2m +m -1=0,联立解得m =13,n =-739.(2)当m =0时,l 1:8y +n =0,l 2:2x -1=0,不满足l 1∥l 2.当m ≠0时,∵l 1∥l 2且l 1过点(3,-1),∴⎩⎪⎨⎪⎧-m 8=-2m ,3m -8+n =0,解得⎩⎨⎧m =4,n =-4或⎩⎨⎧m =-4,n =20.(3)由l 1⊥l 2且l 1在y 轴上的截距为-1,得⎩⎪⎨⎪⎧2m +8m =0,-n 8=-1,解得⎩⎨⎧m =0,n =8. 课堂小结1.方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0有惟一解的等价条件是A 1B 2-A 2B 1≠0,亦即两条直线相交的等价条件是A 1B 2-A 2B 1≠0.直线A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R )是过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0交点的直线(不含l 2).2.解析法又称为坐标法,它就是通过建立直角坐标系,用坐标代替点、用方程代替曲线、用代数的方法研究平面图形的几何性质的方法.3.有关对称问题的两种主要类型(1)中心对称①点P (x ,y )关于O (a ,b )的对称点P ′(x ′,y ′)满足⎩⎨⎧x ′=2a -x ,y ′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决.(2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点为A ′(m ,n ),则有⎩⎪⎨⎪⎧n -b m -a ×⎝ ⎛⎭⎪⎫-A B =-1,A ·a +m 2+B · b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.。
高中数学 第三章 直线与方程 3.3 3.3.1 两条直线的交点坐标 3.3.2 两点间的距离学案
3.3.1 两条直线的交点坐标3.3.2 两点间的距离目标定位 1.会求两条直线的交点坐标.2.理解两条直线的平行、相交与相应的直线方程所组成的二元一次方程组的解的对应关系.3.掌握平面上两点间的距离公式并会应用.自 主 预 习1.两条直线的交点已知两条直线l 1:A 1x +B 1y +C 1=0;l 2:A 2x +B 2y +C 2=0.若两直线的方程联立,得方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0.若方程组有唯一解,则两条直线相交;若方程组无解,则两条直线平行.若方程组有无穷多个解,则两条直线重合. 2.过定点的直线系方程已知直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0交于点P (x 0,y 0),则方程A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0表示过点P 的直线系,不包括直线l 2. 3.两点间的距离平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式 |P 1P 2|=(x 2-x 1)2+(y 2-y 1)2. 4.两点间距离的特殊情况(1)原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2. (2)当P 1P 2∥x 轴(y 1=y 2)时,|P 1P 2|=|x 2-x 1|. (3)当P 1P 2∥y 轴(x 1=x 2)时,|P 1P 2|=|y 2-y 1|.即 时 自 测1.判断题(1)求两直线的交点就是解由两直线方程组成的方程组.(√)(2)两直线l 1:A 1x +B 1y +C 1=0;l 2:A 2x +B 2y +C 2=0相交的充要条件是A 1B 2-A 2B 1≠0.(√) (3)方程A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,表示经过直线l 1:∴A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的交点的所有直线.(×)(4)两点间的距离公式与两点的先后顺序无关.(√)提示 (3)无论λ取什么实数,都得不到A 2x +B 2y +C 2=0,因此它不能表示直线l 2. 2.直线x =1与直线y =2的交点坐标是( )A.(1,2)B.(2,1)C.(1,1)D.(2,2)答案 A3.已知M (2,1),N (-1,5),则|MN |等于( ) A.5B.37C.13D.4解析 |MN |=(2+1)2+(1-5)2=5. 答案 A4.已知两条直线l 1:ax +3y -3=0,l 2:4x +6y -1=0,若l 1与l 2相交,则实数a 满足的条件是________.解析 l 1与l 2相交则有:a 4≠36,∴a ≠2.答案 a ≠2类型一 两直线的交点问题【例1】 求经过两直线l 1:3x +4y -2=0和l 2:2x +y +2=0的交点且过坐标原点的直线l 的方程.解 法一 由方程组⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0,解得⎩⎪⎨⎪⎧x =-2,y =2,即l 1与l 2的交点坐标为(-2,2).∵直线过坐标原点,∴其斜率k =2-2=-1. 故直线方程为y =-x ,即x +y =0.法二 ∵l 2不过原点,∴可设l 的方程为3x +4y -2+λ(2x +y +2)=0(λ∈R ),即(3+2λ)x +(4+λ)y +2λ-2=0.将原点坐标(0,0)代入上式,得λ=1,∴直线l 的方程为5x +5y =0,即x +y =0.规律方法 (1)方法一是解方程组方法,思路自然,但计算量稍大,法二运用了交点直线系,是待定系数法,计算简单,但要注意判断原点(0,0)不能在直线2x +y +2=0上.否则,会出现λ的取值不确定的情形.(2)过直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0交点的直线系有两种:①λ1(A 1x +B 1y +C 1)+λ2(A 2x +B 2y +C 2)=0可表示过l 1、l 2交点的所有直线; ②A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0不能表示直线l 2.【训练1】 求经过直线l 1:x +3y -3=0,l 2:x -y +1=0的交点且平行于直线2x +y -3=0的直线方程.解 法一 由⎩⎪⎨⎪⎧x +3y -3=0,x -y +1=0,得⎩⎪⎨⎪⎧x =0,y =1,∴直线l 1与l 2的交点坐标为(0,1),再设平行于直线2x +y -3=0的直线方程为2x +y +C =0, 把(0,1)代入所求的直线方程,得C =-1, 故所求的直线方程为2x +y -1=0. 法二 设过直线l 1、l 2交点的直线方程为x +3y -3+λ(x -y +1)=0(λ∈R ),即(λ+1)x +(3-λ)y +λ-3=0,由题意可知,λ+1λ-3=-2,解得λ=53, 所以所求直线方程为83x +43y -43=0,即2x +y -1=0.类型二 两点间距离公式的应用(互动探究)【例2】 已知△ABC 三顶点坐标A (-3,1)、B (3,-3)、C (1,7),试判断△ABC 的形状. [思路探究]探究点一 如何判断三角形的形状?提示 判断三角形的形状,要采用数形结合的方法,大致明确三角形的形状,以确定证明的方向.探究点二 从哪几个方面分析三角形的形状?提示 在分析三角形的形状时,要从两方面考虑:一是要考虑角的特征,主要考察是否为直角或等角;二是要考虑三角形边的长度特征,主要考察边是否相等或满足勾股定理. 解 法一 ∵|AB |=(3+3)2+(-3-1)2=213, |AC |=(1+3)2+(7-1)2=213, 又|BC |=(1-3)2+(7+3)2=226,∴|AB |2+|AC |2=|BC |2,且|AB |=|AC |,∴△ABC 是等腰直角三角形.法二 ∵k AC =7-11-(-3)=32,k AB =-3-13-(-3)=-23,则k AC ·k AB =-1,∴AC ⊥AB .又|AC |=(1+3)2+(7-1)2=213, |AB |=(3+3)2+(-3-1)2=213, ∴|AC |=|AB |.∴△ABC 是等腰直角三角形.规律方法 1.判断三角形的形状,要采用数形结合的方法,大致明确三角形的形状,以确定证明的方向.2.在分析三角形的形状时,要从两方面考虑:一是要考虑角的特征,主要考察是否为直角或等角;二是要考虑三角形边的长度特征,主要考察边是否相等或是否满足勾股定理.【训练2】已知点A(3,6),在x轴上的点P与点A的距离等于10,求点P的坐标.解设点P的坐标为(x,0),由|PA|=10,得(x-3)2+(0-6)2=10,解得:x=11或x=-5.所以点P的坐标为(-5,0)或(11,0).类型三坐标法的应用【例3】证明平行四边形四条边的平方和等于两条对角线的平方和.证明如图所示,以顶点A为坐标原点,AB边所在的直线为x轴,建立直角坐标系,有A(0,0).设B(a,0),D(b,c),由平行四边形的性质得点C的坐标为(a+b,c),因为|AB|2=a2,|CD|2=a2,|AD|2=b2+c2,|BC|2=b2+c2,|AC|2=(a+b)2+c2,|BD|2=(b-a)2+c2.所以|AB|2+|CD|2+|AD|2+|BC|2=2(a2+b2+c2),|AC|2+|BD|2=2(a2+b2+c2).所以|AB|2+|CD|2+|AD|2+|BC|2=|AC|2+|BD|2.规律方法坐标法解决几何问题时,关键要结合图形的特征,建立平面直角坐标系.坐标系建立的是否合适,会直接影响问题能否方便解决.建系的原则主要有两点:①让尽可能多的点落在坐标轴上,这样便于运算;②如果条件中有互相垂直的两条线,要考虑将它们作为坐标轴;如果图形为中心对称图形,可考虑将中心作为原点;如果有轴对称性,可考虑将对称轴作为坐标轴.【训练3】已知:等腰梯形ABCD中,AB∥DC,对角线为AC和BD.求证:|AC|=|BD|.证明如图所示,建立直角坐标系,设A(0,0),B(a,0),C(b,c),则点D的坐标是(a-b,c).∴|AC |=(b -0)2+(c -0)2=b 2+c 2,|BD |=(a -b -a )2+(c -0)2=b 2+c 2.故|AC |=|BD |. [课堂小结]1.方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0有唯一解的等价条件是A 1B 2-A 2B 1≠0.亦即两条直线相交的等价条件是A 1B 2-A 2B 1≠0.直线A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R )是过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0交点的直线(不含l 2).2.解析法又称为坐标法,它就是通过建立直角坐标系,用坐标代替点、用方程代替曲线、用代数的方法研究平面图形的几何性质的方法.3.两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=(x 1-x 2)2+(y 1-y 2)2与两点的先后顺序无关,其反映了把几何问题代数化的思想.1.直线x +2y -2=0与直线2x +y -3=0的交点坐标是( ) A.(4,1)B.(1,4)C.⎝ ⎛⎭⎪⎫43,13D.⎝ ⎛⎭⎪⎫13,43 解析 由方程组⎩⎪⎨⎪⎧x +2y -2=0,2x +y -3=0,得⎩⎪⎨⎪⎧x =43,y =13.即直线x +2y -2=0与直线2x +y -3=0的交点坐标是⎝ ⎛⎭⎪⎫43,13.答案 C2.经过直线2x -y +4=0与x -y +5=0的交点,且垂直于直线x -2y =0的直线方程是( )A.2x +y -8=0B.2x -y -8=0C.2x +y +8=0D.2x -y +8=0解析 首先解得交点坐标为(1,6),再根据垂直关系得斜率为-2,可得方程y -6=-2(x -1),即2x +y -8=0. 答案 A3.已知点A (-2,-1),B (a ,3),且|AB |=5,则a 的值为________. 解析 由题意得(a +2)2+(3+1)2=5,解得a =1或a =-5.答案 1或-54.求经过两条直线2x -3y -3=0和x +y +2=0的交点且与直线3x +y -1=0平行的直线l 的方程.解 由方程组⎩⎪⎨⎪⎧2x -3y -3=0,x +y +2=0.解得⎩⎪⎨⎪⎧x =-35,y =-75.∵所求直线l 和直线3x +y -1=0平行, ∴直线l 的斜率k =-3,根据点斜式可得y -⎝ ⎛⎭⎪⎫-75=-3⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫-35,即所求直线方程为15x +5y +16=0.基 础 过 关1.已知A (-1,0),B (5,6),C (3,4),则|AC ||CB |的值为( )A.13B.12C.3D.2解析 由两点间的距离公式,得|AC |=[3-(-1)]2+(4-0)2=42,|CB |=(3-5)2+(4-6)2=22,故|AC ||CB |=4222=2.答案 D2.两直线2x +3y -k =0和x -ky +12=0的交点在y 轴上,那么k 的值为( ) A.-24 B.6 C.±6 D.24解析 在2x +3y -k =0中,令x =0得y =k3,将⎝ ⎛⎭⎪⎫0,k 3代入x -ky +12=0,解得k =±6.答案 C3.以A (5,5),B (1,4),C (4,1)为顶点的三角形是( ) A.直角三角形 B.等腰三角形 C.等边三角形D.等腰直角三角形解析 ∵|AB |=17,|AC |=17,|BC |=32, ∴三角形为等腰三角形.故选B.答案 B4.设点A 在x 轴上,点B 在y 轴上,AB 的中点是P (2,-1),则|AB |等于________. 解析 设A (x ,0),B (0,y ),∵AB 中点P (2,-1), ∴x 2=2,y2=-1,∴x =4,y =-2, 即A (4,0),B (0,-2),∴|AB |=42+22=2 5. 答案 2 55.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则k 的取值范围是________.解析 由⎩⎨⎧y =kx -3,2x +3y -6=0,得⎩⎪⎨⎪⎧x =33+62+3k ,y =6k -232+3k .由于交点在第一象限,故x >0,y >0,解得k >33.答案 ⎝⎛⎭⎪⎫33,+∞ 6.在直线l :3x -y +1=0上求一点P ,使点P 到两点A (1,-1),B (2,0)的距离相等. 解 法一 设P 点坐标为(x ,y ),由P 在l 上和点P 到A ,B 的距离相等建立方程组⎩⎨⎧3x -y +1=0,(x -1)2+(y +1)2=(x -2)2+y 2,解得⎩⎪⎨⎪⎧x =0,y =1,所以P 点坐标为(0,1).法二 设P (x ,y ),两点A (1,-1)、B (2,0)连线所得线段的中垂线方程为x +y -1=0.① 又3x -y +1=0,②解由①②组成的方程组⎩⎪⎨⎪⎧3x -y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧x =0,y =1,所以所求的点为P (0,1).7.求证:不论m 取什么实数,直线(2m -1)x +(m +3)y -(m -11)=0都经过一定点,并求出这个定点坐标.证明 法一 对于方程(2m -1)x +(m +3)y -(m -11)=0,令m =0,得x -3y -11=0;令m =1,得x +4y +10=0.解方程组⎩⎪⎨⎪⎧x -3y -11=0,x +4y +10=0得两条直线的交点坐标为(2,-3).将点(2,-3)代入直线方程,得(2m -1)×2+(m +3)×(-3)-(m -11)=0. 这表明不论m 取什么实数,所给直线均经过定点(2,-3).法二 将已知方程(2m -1)x +(m +3)y -(m -11)=0整理为(2x +y -1)m +(-x +3y +11)=0.由于m 取值的任意性,有⎩⎪⎨⎪⎧2x +y -1=0,-x +3y +11=0,解得⎩⎪⎨⎪⎧x =2,y =-3.所以不论m 取什么实数,所给直线均经过定点(2,-3).能 力 提 升8.已知直线mx +4y -2=0与2x -5y +n =0互为垂直,垂足为(1,p ),则m -n +p 为( ) A.24B.20C.0D.-4解析 由垂直性质可得2m -20=0,m =10.由垂足可得⎩⎪⎨⎪⎧10+4p -2=0,2-5p +n =0,得⎩⎪⎨⎪⎧p =-2,n =-12.∴m -n+p =20. 答案 B9.两直线3ax -y -2=0和(2a -1)x +5ay -1=0分别过定点A ,B ,则|AB |的值为( ) A.895B.175C.135D.115解析 直线3ax -y -2=0过定点A (0,-2),直线(2a -1)x +5ay -1=0,过定点B ⎝ ⎛⎭⎪⎫-1,25,由两点间的距离公式,得|AB |=135.答案 C10.过点P (3,0)作一直线l ,使它被两直线l 1:2x -y -2=0和l 2:x +y +3=0所截的线段AB 以P 为中点,则此直线l 的方程是________.解析 法一 显然直线l 的斜率不存在时,不满足题意,当斜率存在时,设直线l 的方程为y =k (x -3),将此方程分别与l 1,l 2的方程联立,得⎩⎪⎨⎪⎧y =k (x -3),2x -y -2=0和⎩⎪⎨⎪⎧y =k (x -3),x +y +3=0. 解得x A =3k -2k -2和x B =3k -3k +1,∵P (3,0)是线段AB 的中点,∴x A +x B =6,即3k -2k -2+3k -3k +1=6,解得k =8. 故直线l 的方程为y =8(x -3),即8x -y -24=0. 法二 设l 1上的点A 的坐标为(x 1,y 1), ∵P (3,0)是线段AB 的中点, ∴l 2上的点B 的坐标为(6-x 1,-y 1), ∴⎩⎪⎨⎪⎧2x 1-y 1-2=0,(6-x 1)+(-y 1)+3=0.解得⎩⎪⎨⎪⎧x 1=113,y 1=163.∴点A 的坐标为⎝⎛⎭⎪⎫113,163,由两点式可得l 的方程为8x -y -24=0.答案 8x -y -24=011.已知直线l 1过点A (2,1),B (0,3),直线l 2的斜率为-3且过点C (4,2). (1)求l 1,l 2的交点D 的坐标; (2)已知点M (-2,2),N ⎝ ⎛⎭⎪⎫152,72,若直线l 3过点D 且与线段MN 相交,求直线l 3的斜率k 的取值范围.解 (1)∵直线l 1过点A (2,1),B (0,3),∴直线l 1的方程为y -13-1=x -20-2,即y =-x +3.∵直线l 2的斜率为-3且过点C (4,2), ∴直线l 2的方程为y -2=-3(x -4),即y =-3x +14.联立⎩⎪⎨⎪⎧y =-3x +14,y =-x +3,解得⎩⎪⎨⎪⎧x =112,y =-52,即l 1,l 2的交点D 的坐标为⎝⎛⎭⎪⎫112,-52. (2)由题设知k MD =2-⎝ ⎛⎭⎪⎫-52-2-112=-35.k ND =72-⎝ ⎛⎭⎪⎫-52152-112=3.因为过点D 的直线与线段MN 相交,故直线l 3的斜率k 的取值范围为:⎝ ⎛⎦⎥⎤-∞,-35∪[3,+∞).探 究 创 新12.某县相邻两镇在一平面直角坐标系下的坐标为A (1,2),B (4,0),一条河所在直线方程为l :x +2y -10=0,若在河边l 上建一座供水站P 使之到A ,B 两镇的管道最省,问供水站P 应建在什么地方?此时|PA |+|PB |为多少?解 如图所示,过A 作直线l 的对称点A ′,连接A ′B 交l 于P ,因为若P ′(异于P )在直线l 上,则|AP ′|+|BP ′|=|A ′P ′|+|BP ′|>|A ′B |.因此,供水站只能在点P 处,才能取得最小值.设A ′(a ,b ),则AA ′的中点在l 上,且AA ′⊥l ,即⎩⎪⎨⎪⎧a +12+2×b +22-10=0,b -2a -1·⎝ ⎛⎭⎪⎫-12=-1,解得⎩⎪⎨⎪⎧a =3,b =6,即A ′(3,6). 所以直线A ′B 的方程为6x +y -24=0,解方程组⎩⎪⎨⎪⎧6x +y -24=0,x +2y -10=0,得⎩⎪⎨⎪⎧x =3811,y =3611.所以P 点的坐标为⎝ ⎛⎭⎪⎫3811,3611. 故供水站应建在点P ⎝ ⎛⎭⎪⎫3811,3611处, 此时|PA |+|PB |=|A ′B |=(3-4)2+(6-0)2=37.。
3.3.1 两条直线的交点坐标 3.3.2 两点间的距离
探究1:如果两条直线相交,怎样求交点坐标?交点坐标 与二元一次方程组有什关系?
如果两条直线 A1 x B1 y C1 0 和 A2 x B2 y C2 0
相交,由于交点同时在两条直线上,交点坐标一定是它们 的方程组成的方程组
A1 x B1 y C1 0 的解. A2 x B2 y C2 0
直线上的点
y
l
2x y 3 0
(1)点( 5)在直线上吗? 1,
(2)点(2, 7)在直线上吗?
(3)点(3, 8)在直线上吗?
P(x,y)
O
x
直线的方程就是直线上每一点坐标都满足的一个关系式
1. 两条直线的交点
已知两条直线 l1 : A1 x B1 y C1 0 l2: A2 x B2 y C 2 0 相交, 如何求这两条直线交点的坐标 ?
无数组解
重合
x y 1 0 (3) x y 1 0
无解
平行
如何根据两直线的方程系数之间的关系来判定两直线
的位置关系?
l1 : A1 x B1 y C1 0 l2:A2 x B2 y C 2 0
A1 B1 A2 B2 A1 B1 C1 A2 B2 C 2
OP x 2 y 2
例3 已知点 A(1, 2), B(2, 7), 在 使 | PA || PB | ,并求 | PA | 的值. 解:设所求点为P(x,0),于是 由 PA PB 得
x 轴上求一点
P,
x 1 0 2
2
2
x 2
2
0 7
2 (2) 相交,交点坐标(0,3 )
高中数学第三章直线与方程3.3.1两条直线的交点坐标3.3.2两点间的距离课件新人教A版必修
2
3
C. + =1
答案:C
1
3
1
D.y=- x+4
3
B.y=- x-12
)
S 随堂练习
UITANG LIANXI
首 页
1
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
2
2.两点间的距离公式
已知平面上两点 P1(x1,y1),P2(x2,y2)间的距离为|P1P2|,则
-1
2-1
=
-(-3)
,
2-(-3)
首 页
探究一
探究二
探究三
探究四
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
探究五
探究四坐标法的应用
将几何问题代数化,即用代数的语言描述几何要素及其关系,并最终解决几
何问题,这种处理问题的方法叫作坐标法(或解析法),通过这种方法,把点与
坐标、曲线与方程联系起来,实现空间形式与数量关系的结合.
坐标法解决几何问题时,关键要结合图形的特征,建立平面直角坐标系.
坐标系建立的是否合适,会直接影响问题能否方便解决.建系的原则主要有
两点:
①让尽可能多的点落在坐标轴上,这样便于运算;②如果条件中有互相
垂直的两条线,要考虑将它们作为坐标轴;如果图形为中心对称图形,可考虑
ICHU ZHISHI
HONGDIAN NANDIAN
探究五
解:(1)设所求直线方程为 x+2y-2+λ(3x-2y+2)=0.
2020-2021学年数学人教A版必修2学案:3.3.1两条直线的交点坐标3.3.2两点间的距离
3.3 直线的交点坐标与距离公式3.3.1 两条直线的交点坐标3.3.2 两点间的距离[目标] 1.会用解方程组的方法求两条相交直线的交点坐标;2.会用代数方法判定两直线的位置关系;3.记住两点间的距离公式并会应用.[重点] 求两直线的交点坐标、两点间的距离公式及应用.[难点] 方程组解的个数与两线相交、平行或重合的对应关系的理解.知识点一 两条直线的交点坐标[填一填]1.求法:两直线方程联立组成方程组,此方程组的解就是这两条直线的交点坐标,因此解方程组即可.2.应用:可以利用两直线的交点个数判断两直线的位置关系. 一般地,将直线l 1:A 1x +B 1y +C 1=0和直线l 2:A 2x +B 2y +C 2=0的方程联立,得方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0. 当方程组有唯一解时,l 1和l 2相交,方程组的解就是交点坐标; 当方程组无解时,l 1与l 2平行;当方程组有无数组解时,l 1与l 2重合.[答一答]1.在下列直线中,与直线x +3y -4=0相交的直线为( C )A.x +3y =0B.y =-13x -12C.x 2+y 3=1D.y =-13x +4解析:A 、B 、D 选项的斜率都是-13,且与x +3y -4=0平行,C选项的斜率是-32,所以x 2+y 3=1与x +3y -4=0相交.2.若两直线的方程组成的方程组有解,两直线是否交于一点? 提示:不一定.两条直线是否交于一点,取决于联立两条直线方程所得的方程组是否有唯一解.若方程组有无穷多个解,则两条直线重合.知识点二 两点间的距离公式[填一填]1.公式:点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.2.文字叙述:平面内两点的距离等于这两点的横坐标之差与纵坐标之差的平方和的算术平方根.名师点拨:坐标平面内两点间的距离公式是数轴上两点间距离公式的推广.[答一答]3.两点间的距离公式中点P 1,P 2的位置有先后之分么?提示:点P 1,P 2的位置没有先后之分,即距离公式也可以写为|P 1P 2|=(x 1-x 2)2+(y 1-y 2)2.4.对于两点P 1(x 1,y 1),P 2(x 2,y 2),当P 1P 2平行于x 轴时,如何求P 1,P 2的距离,当P 1P 2平行于y 轴时,如何求P 1,P 2的距离?提示:当P 1P 2平行于x 轴时,|P 1P 2|=|x 2-x 1|.当P 1P 2平行于y 轴时,|P 1P 2|=|y 1-y 2|.5.式子x 2+y 2的几何意义是什么?提示:x 2+y 2表示点(x ,y )与原点(0,0)的距离.类型一 求两条直线的交点[例1] (1)直线x +2y -4=0与直线2x -y +2=0的交点坐标是( )A.(2,0)B.(2,1)C.(0,2)D.(1,2) (2)两直线2x +3y -k =0与x -ky +12=0的交点在y 轴上,则k 的值为( )A.-24B.6C.±6D.24 [解析] (1)解方程组⎩⎨⎧ x +2y -4=0,2x -y +2=0,得⎩⎨⎧ x =0,y =2.即直线x +2y -4=0与直线2x -y +2=0的交点坐标是(0,2).(2)在2x +3y -k =0中,令x =0,得y =k 3,在x -ky +12=0中,令x =0,得y =12k ,所以12k =k 3,解得k =±6.[答案] (1)C (2)C解二元一次方程组的常用方法有代入消元法和加减消元法.(1)若一条直线的方程是斜截式,常常应用代入消元法解方程组.(2)若直线的方程都是一般式,常常应用加减消元法解方程组.[变式训练1] 判断下列各组直线的位置关系,如果相交,求出交点的坐标:(1)l 1:5x +4y -2=0,l 2:2x +y +2=0.(2)l 1:2x -6y +3=0,l 2:y =13x +12.(3)l 1:2x -6y =0,l 2:y =13x +12.解:(1)解方程组⎩⎨⎧5x +4y -2=0,2x +y +2=0,得⎩⎪⎨⎪⎧ x =-103,y =143. 所以l 1与l 2相交,且交点坐标为-103,143. (2)解方程组⎩⎪⎨⎪⎧2x -6y +3=0,①y =13x +12,②②×6整理得2x -6y +3=0. 因此,①和②可以化成同一个方程,即①和②表示同一条直线,l 1与l 2重合.(3)解方程组⎩⎪⎨⎪⎧ 2x -6y =0,①y =13x +12,②②×6-①得3=0,矛盾. 方程组无解,所以两直线无公共点,l 1∥l 2.类型二 求过两条直线交点的直线方程[例2] 已知两直线l 1:3x +4y -2=0和l 2:2x +y +2=0.(1)求两直线的交点;(2)求过两直线的交点和坐标原点的直线l 的方程.[解] (1)由方程组⎩⎨⎧ 3x +4y -2=0,2x +y +2=0,解得⎩⎨⎧ x =-2,y =2.即l 1与l 2的交点坐标为(-2,2).(2)解法1:∵直线过点(-2,2)和坐标原点,∴其斜率k =2-2=-1,∴直线方程为y =-x ,一般式为x +y =0.解法2:∵l 2不过原点,∴可设l 的方程为3x +4y -2+λ(2x +y +2)=0(λ∈R ),即(3+2λ)x +(4+λ)y +2λ-2=0,将原点坐标(0,0)代入上式,解得λ=1,∴l 的方程为5x +5y =0,即x +y =0.解法2用到过两直线交点的直线系方程,避免了求两直线的交点.选择不同的方法求解题目,可以训练自己的解题思路,使思路更开阔.[变式训练2] 求经过两直线2x -3y -3=0和x +y +2=0的交点且与直线3x +y -1=0平行的直线l 的方程.解:方法1:由方程组⎩⎨⎧ 2x -3y -3=0,x +y +2=0,得⎩⎪⎨⎪⎧ x =-35,y =-75.∵直线l 和直线3x +y -1=0平行, ∴直线l 的斜率k =-3.∴根据点斜式有y -(-75)=-3[x -(-35)],即所求直线方程为15x +5y +16=0.方法2:∵直线l 过两直线2x -3y -3=0和x +y +2=0的交点,∴设直线l 的方程为2x -3y -3+λ(x +y +2)=0,即(λ+2)x +(λ-3)y +2λ-3=0.∵直线l 与直线3x +y -1=0平行,∴λ+23=λ-31≠2λ-3-1,解得λ=112. 从而所求直线方程为15x +5y +16=0.类型三 两点间距离公式的应用[例3] 已知点A (-2,1),B (1,-2),直线y =2上一点P ,使|AP |=|BP |,则P 点坐标为________.[解析] 设P (x,2),∵点A (-2,1),B (1,-2),直线y =2上一点P ,使|AP |=|BP |,∴(x +2)2+(2-1)2=(x -1)2+(2+2)2,解得x =2.∴P (2,2).[答案] (2,2)已知所求点的相关信息及该点到某点的距离满足某些条件时,设出所求点的坐标,利用两点间距离公式建立关于所求点坐标的方程或方程组求解.[变式训练3] 已知点A (-1,2),B (1,3),P 在直线y =2x 上,求|P A |2+|PB |2取得最小值时点P 的坐标.解析:设P点坐标为(x,2x),∵|P A|2+|PB|2=(x+1)2+(2x-2)2+(x -1)2+(2x-3)2=10x2-20x+15=10(x-1)2+5,∴|P A|2+|PB|2≥5.(当且仅当x=1时取等号)∴当|P A|2+|PB|2取得最小值5时,点P的坐标为(1,2).类型四对称问题命题视角1:点关于点的对称问题[例4]已知不同的两点P(a,-b)与Q(b+1,a-1)关于点(3,4)对称,则ab=()A.-5B.14C.-14D.5[分析]利用中点坐标公式求解.[解析]由题意知⎩⎪⎨⎪⎧a+b+12=3,a-b-12=4,即⎩⎨⎧a+b=5,a-b=9,解得⎩⎨⎧a=7,b=-2,故ab=7×(-2)=-14.[答案] C点关于点的对称问题一般用中点坐标公式即可解决.[变式训练4]点(1,y)关于(-1,0)的对称点坐标是(x,2),则x=-3,y=-2.解析:由⎩⎪⎨⎪⎧ 1+x 2=-1,y +22=0得⎩⎨⎧ x =-3,y =-2.命题视角2:点关于线、线关于线的对称问题[例5] 已知直线l :y =3x +3,求(1)点P (4,5)关于直线l 的对称点的坐标;(2)直线l 1:y =x -2关于直线l 对称的直线l 2的方程.[解] (1)设点P 关于直线l 的对称点为P ′(x ′,y ′),则线段PP ′的中点M 在对称轴上,且直线PP ′垂直于对称轴,即⎩⎪⎨⎪⎧ y ′+52=3×x ′+42+3,y ′-5x ′-4×3=-1,解得⎩⎨⎧ x ′=-2,y ′=7.所以点P ′的坐标是(-2,7).(2)由题意,得l 1上任一点P 1(x 1,y 1)关于l 的对称点P 2(x 2,y 2)一定在l 2上,反之也成立.故⎩⎪⎨⎪⎧y 1+y 22=3×x 1+x 22+3,y 1-y 2x 1-x 2×3=-1, 解得⎩⎪⎨⎪⎧x 1=-45x 2+35y 2-95,y 1=35x 2+45y 2+35. 把(x 1,y 1)代入y =x -2,整理得7x 2+y 2+22=0,所以直线l 2的方程为7x +y+22=0.(1)点A (x 0,y 0)关于直线l :Ax +By +C =0的对称点M (x ,y )可由方程组⎩⎪⎨⎪⎧ y -y 0x -x 0·⎝ ⎛⎭⎪⎫-A B =-1(AB ≠0),A ·x +x 02+B ·y +y 02+C =0求得.(2)求直线l 1:A 1x +B 1y +C 1=0关于直线l :Ax +By +C =0对称的直线l 2的方程的方法:转化为点关于直线对称,在l 1上任取两点P 1和P 2,求出P 1,P 2关于l 的对称点,再用两点式可求出l 2的方程.[变式训练5] 已知两点A (3,-3),B (5,1),直线l :y =x ,在直线l 上求一点P 使|P A |+|PB |最小.解:如图,作点A 关于直线l 的对称点A ′,易知A ′(-3,3).连接BA ′交直线l 于点P ,则|P A |+|PB |=|P A ′|+|PB |=|A ′B |.又直线A ′B 的方程为x +4y -9=0,与y =x 联立解得P ⎝ ⎛⎭⎪⎫95,95.1.直线x +2y -2=0与直线2x +y -3=0的交点坐标是( C )A.(4,1)B.(1,4)C.⎝ ⎛⎭⎪⎫43,13D.⎝ ⎛⎭⎪⎫13,43 解析:由方程组⎩⎨⎧ x +2y -2=0,2x +y -3=0,得⎩⎪⎨⎪⎧ x =43,y =13.即直线x +2y -2=0与直线2x +y -3=0的交点坐标是⎝ ⎛⎭⎪⎫43,13. 2.已知M (2,1),N (-1,5),则|MN |等于( A )A.5B.37C.13D.4 解析:|MN |=(2+1)2+(1-5)2=5.3.经过直线2x -y +4=0与x -y +5=0的交点,且垂直于直线x -2y =0的直线方程是( A )A.2x +y -8=0B.2x -y -8=0C.2x +y +8=0D.2x -y +8=0解析:首先解得交点坐标为(1,6),再根据垂直关系得斜率为-2,可得方程y -6=-2(x -1),即2x +y -8=0.4.已知两条直线l 1:ax +3y -3=0,l 2:4x +6y -1=0,若l 1与l 2相交,则实数a 满足的条件是a ≠2.解析:l 1与l 2相交则有:a 4≠36,∴a ≠2.5.已知△ABC 的三个顶点的坐标是A (-3,1),B (3,-3),C (1,7).(1)判断△ABC 的形状;(2)求△ABC 的面积.解:(1)因为|AB |=(3+3)2+(-3-1)2=213,|AC|=(1+3)2+(7-1)2=213,又|BC|=(1-3)2+(7+3)2=226,所以|AB|2+|AC|2=|BC|2,且|AB|=|AC|,所以△ABC是等腰直角三角形.(2)△ABC的面积S△ABC=12|AC|·|AB|=12×213×213=26.——本课须掌握的两大问题1.过两条直线交点的直线系方程:过两条直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0交点的直线系方程是A1x+B1y+C1+λ(A2x +B2y+C2)=0(λ∈R),但此方程中不含l2;一般形式是m(A1x+B1y+C1)+n(A2x+B2y+C2)=0(m2+n2≠0),是过l1与l2交点的所有直线方程.2.坐标平面内两点间的距离公式,是解析几何中的最基本最重要的公式之一,利用它可以求平面上任意两个已知点间的距离.反过来,已知两点间的距离也可以根据条件求其中一个点的坐标.。
两点间的距离坐标公式
两点之间的距离公式是:
d = √[(x2 - x1)² + (y2 - y1)²]
其中,d表示两点之间的距离,(x1, y1)和(x2, y2)分别表示两个点的坐标。
这个公式也可以用于三维空间中两点之间的距离计算,只需要将坐标点的数量增加到三个,公式中的平方项也需要增加到三项。
拓展延伸
两点之间的距离公式是一个基本的几何定理,有以下性质:
1. 勾股定理:两点之间的距离公式实际上是勾股定理的一个特殊形式,即当一个直角顶点坐标为 (0,0) 时,勾股定理的平方项可以简化为坐标差的平方和。
2. 对称性:两点之间的距离公式具有对称性,即交换两点的坐标,计算出来的距离是相同的。
3. 正定性:两点之间的距离公式输出的结果是一个非负数,且只有在两点重合时才会等于0。
因此,这个公式可以用来判断两个点是否相等。
4. 单调性:当两点之间的距离增加时,公式输出的结果也会增加,因此可以用来比较两个点之间的距离大小。
5. 可推广性:这个距离公式可以推广到多维空间中,只需要将平方项的数量增加到对应的维度即可。
总之,两点之间的距离公式是一个非常基础和重要的几
何定理,在各个领域都有广泛的应用。
3.3.2两点间距离教案两点间的距离公式教案
3.3.2两点间距离教案两点间的距离公式教案张喜林制§3.3.2两点间的距离【教学目标】1.掌握直角坐标系两点间距离,用坐标法证明简单的几何问题. 2.通过两点间距离公式的推导,能更充分体会数形结合的优越性. 3.体会事物之间的内在联系,能用代数方法解决几何问题.【重点难点】教学重点:①平面内两点间的距离公式. ②如何建立适当的直角坐标系.教学难点:如何根据具体情况建立适当的直角坐标系来解决问题. 【教学过程】一、导入新课、展示目标问题已知平面上的两点P1(x1,y1),P2(x2,y2),如何求P1(x1,y1),P2(x2,y2)的距离|P1P2|?二、检查预习、交流展示核对课前预习中的答案。
1、(1,0);2、1并说出自己的疑惑处。
三、合作探究、精讲精练探究一平面内两点间的距离公式问题(1)如果A、B是x轴上两点,C、D是y轴上两点,它们的坐标分别是xA、xB、yC、yD,那么|AB|、|CD|怎样求?(2)求B(3,4)到原点的距离.(3)设A(x1,y1),B(x2,y2),求|AB|.教师①如果A、B是x轴上两点,C、D是y轴上两点,它们坐标分别是xA、xB、yC、yD,那么|AB|、|CD|怎样求?②求点B(3,4)到原点的距离. ③已知平面上的两点P1(x1,y1),P2(x2,y2),如何求P1(x1,y1),P2(x2,y2)的距离|P1P2|. ④同学们已知道两点的距离公式,请大家回忆一下我们怎样知道的(回忆过程). 学生回答①|AB|=|xB-xA|,|CD|=|yC-yD|. ②通过画简图,发现一个Rt△BMO,应用勾股定理得到点B到原点的距离是5. ③图1在直角坐标系中,已知两点P1(x1,y1)、P2(x2,y2),如图1,从P1 、P2分别向x轴和y轴作垂线P1M1、P1N1和P2M2、P2N2,垂足分别为M1(x1,0)、N1(0,y1)、M2(x2,0)、N2(0,y2),其中直线P1N1和P2M2相交于点Q. 在Rt△P1QP2中,|P1P2|2=|P1Q|2+|QP2|2.因为|P1Q|=|M1M2|=|x2-x1|,|QP2|=|N1N2|=|y2-y1|,所以|P1P2|2=|x2-x1|2+|y2-y1|2.22由此得到两点P1(x1,y1)、P2(x2,y2)的距离公式:|P1P2|=(x2x1) (y2y1)教师④(a)我们先计算在x轴和y轴两点间的距离.(b)又问了B(3,4)到原点的距离,发现了直角三角形. (c)猜想了任意两点间距离公式.(d)最后求平面上任意两点间的距离公式.这种由特殊到一般,由特殊猜测任意的思维方式是数学发现公式或定理到推导公式、证明定理经常应用的方法.同学们在做数学题时可以采用!应用示例例1 如图2,有一线段的长度是13,它的一个端点是A(-4,8),另一个端点B的纵坐标是3,求这个端点的横坐标.图2解:设B(x,3),根据|AB|=13,即(x+4)2+(3-8)2=132,解得x=8或x=-16.点评:学生先找点,有可能找不全,丢掉点,而用代数解比较全面.也可以引至到A(-4,8)点距离等于13的点的轨迹(或集合)是以A点为圆心、13为半径的圆上与y=3的交点,应交出两个点.变式训练1课本106页练习第一题例2 已知点A(-1,2),B(2,在x轴上求一点,使|PA|=|PB|,并求|PA|的值. 解:设所求点P(x,0),于是有(x1)(02) 由|PA|=|PB|,得x2+2x+5=x2-4x+11,解得x=1.22即所求点为P(1,0),且|PA|=(11)(02)=22.22(x2)2(07)2.点评:引导学生熟练设点及应用距离公式。
课件2:3.3.2 两点间的距离
y
A(3,4)
·
|A |=4
o
·
1
|O |=3
x
│OA│= | | + | |
=
=5
+
推广到一般情形,P1(x1,y1)P2(x2,y2),P1,P2两点之间的
距离是多少?
| |=| − |
y
·
( , )
| |=| − |
P1,P2两点之间的距离是多少?
2)x1=x2
1)y1=y2
y
y
P1 x1,y1
•
x1
o
P2 x2,y2
•
x2
| |=| − |
x
y1
•P1 x1,y1
o
x
y2
P2 x2,y2
•
| |=| − |
4 如何求平面内点A(3,4)到原点O的距离|OA|呢?
3.3.2 两点间的距离
问题1:有一支工程队要在A、B两城之间铺设一条海底
通讯光缆,他们首先要知道两城之间的距离,才能准备材
料。他们用GPS全球定位系统将两城的位置在平面直角坐
标系中表示出来。现在,你能帮他们求出A、B两城之间的
距离吗?
y
A(10,22)
A
B(-5,2)
O
B
x
2 如何求数轴上A,B两点间的距离?
所以,|AB|2+|CD|2+|AD|2+|BC|2=|AC|2+|BD|2.
因此,平行四边形四条边的平方和等于两条对角线的
平方和.
巩固练习
1
2
求下列两点间的距离:
(1)A(-1,0),B(4,0)
3.3.直线的交点坐标与距离公式
36-§3.3.1-§3.3.2两条直线的交点坐标与两点间的距离学习目标:(1)根据直线的方程判断两直线的位置关系和已知两直线求交点; (2)会求平面内两点间的距离,及建立恰当的直角坐标系.学习重点:判断两直线是否相交,求交点坐标,理解两直线的交点与方程组的解之间的关系.两点间的距离公式的推导.学习难点:两直线相交与二元一次方程的关系,理解两直线的交点与方程组的解之间的关系. 两点间的距离公式的运用.新知导学:探究1、直线上的点与其方程0=++C By Ax 的解有什么样的关系?那如果两直线相交于一点A(a,b),这一点与两直线0:有何关系?看下表,并填空。
新知1、如何利用方程判断两直线的位置关系?两直线是否有公共点,要看它们的方程是否有公共解。
因此,只要将两条直线1l 和2l 的方程联立,得方程组⎩⎨⎧=++=++00222111C y B x A C y B x A若方程组无解,则1l 与2l ;若方程组有且只有一个解,则1l 与2l ;若方程组有无数解,则1l 与2l .探究2、当λ变化时,方程0)22(243=+++-+y x y x λ表示什么图形?图形有什么特点?(取0,1, 1.λλλ===-画图试试看)问题:方程0)22(243=+++-+y x y x λ经过定点________.这个点与两条直线,0243=-+y x022=++y x 有什么关系? .结论:方程0)22(243=+++-+y x y x λ是表示经过直线0243=-+y x 和022=++y x 的_______________的直线系。
变式:无论m 取何实数,直线(2m-1)x-(m+3)y-(m-11)=0恒过定点,并求出此定点的坐标。
例1、 P103例2练习1、P104. 1、2.探究3、求点B(3,4)到原点的距离是多少?在平面直角坐标系中,如何求点A(1,1x y )和点B(2,2x y )间的距离?新知2、两点间的距离公式:设1122(,),A x y B x y ,()是平面直角坐标系中的任意两个点,则AB = 例2、已知点A (-1,2),B (2,7),在x 轴上求一点P ,使PB PA =,并求PA 的值.例3、证明平行四边形四条边的平方和等于两条对角线的平方和.练习2、P106 1、2.当堂检测:1、两直线12:210,:220l x y l x y ++=-++=的交点坐标为( ).A .13(,)24B .13(,)24-C .13(,)24--D .13(,)24-2、点M(1,2)与直线:2430l x y -+=的位置关系是( ) A .M l ∈ B M l ∉. C.重合 D.不确定3、 已知集合M={(x ,y )∣x +y =2},N={(x ,y )∣x –y =4},那么集合M∩N 为( ) A. {3,–1} B. 3,–1 C. (3,–1)D.{(3,–1)}4、直线0mx y m +-=,无论m 取任意实数,它都过点 .5、两点(0,4)(0,1)A B --与间的距离是 .6、一条直线经过点(1,1),以及直线2x-3y+6=0与x 轴的交点,则这条直线的方程是________________7、当k 为何值时,直线3y kx =+过直线2x y -10+=与5y x =+的交点?学习反思:37-§3.3.3-§3.3.4 点到直线的距离与两条平行直线间的距离学习目标:(1)了解点到直线距离公式的推导,能记住点到直线距离的公式,并会应用公式解题。
两点间的距离教案
课 题:§3.3.2 3.3.2 两点间的距离两点间的距离 教学目标:(一)知识与技能目标(一)知识与技能目标1、理解直角坐标系中任意两点间的距离;2、掌握两点间距离公式的应用、掌握两点间距离公式的应用..3、通过两点间距离公式的推导,培养学生探索问题的能力和运用知识的能力; (二)数学思考(二)数学思考1、培养学生数学思考的严密性和条理性,体会事物之间的内在联系2、加深对数形结合以及由特殊到一般的思想的认识、加深对数形结合以及由特殊到一般的思想的认识. . (三)解决问题(三)解决问题1、初步学会从数学角度提出问题、理解问题,并能运用所学知识与技能解决问题 (四)情感目标(四)情感目标1、感受数学的形式美和简洁美,从而激发学生的学习兴趣、感受数学的形式美和简洁美,从而激发学生的学习兴趣..教学重点:两点间距离公式的理解及应用两点间距离公式的理解及应用.. 教学难点:理解两点间距离公式的推导过程理解两点间距离公式的推导过程教学方法:探究研讨法,讲练结合法等探究研讨法,讲练结合法等.. 教学准备(教具):直尺,彩色粉笔直尺,彩色粉笔.. 课 型:新授课 教学过程(一)创设情景,引入课题(一)创设情景,引入课题师:我们在初中的时候学过数轴上两点间的距离公式,大家回忆一下怎样求数轴 上两点间的距离.上两点间的距离.问题1:如图,设数轴x 上的两点分别为A 、B ,怎样求AB ? 生:|AB|=|b-a|.师:那么怎样求直角坐标系中两点间的距离呢?这节课我们就来探讨一下直角坐标系中两点间的距离的求法.(在黑板上书写课题)写课题) (二)探究新知(二)探究新知师:首先我们在直角坐标系中给定两点,看看怎样求它们之间的距离.(师生研讨)(师生研讨) 请同学们解决以下问题:请同学们解决以下问题:问题2:如图,在直角坐标系中,点C (4,34,3)),D (4,0)(4,0),,E (0,30,3))如何求C 、D 间的距离间的距离||CD |,C 、E 间的距离间的距离||CE |及原点O 与C 的距离的距离||OC |? (让学生思考一分钟,请学生回答)(让学生思考一分钟,请学生回答) 生:生:||CD |=|3-0|=3 |CE |=|4-0|=4在CDO Rt D 中,用勾股定理解得:中,用勾股定理解得:||OC |=2234+=5 师:那么,同学们能否用以前所学知识解决以下问题:问题3:对于直角坐标系中的任意两点1P (1x ,1y )、2P (2x ,2y ),如何求1P 、 1P 的距离12PP ?从1P 、2P 这两点的位置来看,我们用以前所学知识很难解决这个问题.很难解决这个问题.师:根据问题2中求原点O 到C 的距离的距离||OC |,构造直角三角形,再用勾股定理计算的方法,我们想求解问题3是不是也可以构造一个直角三角形.是不是也可以构造一个直角三角形.如右图,过点1P 分别向轴x 和y 轴作垂线11P M 和11P N ,垂足分别为1M (1x ,0)和1N (0,1y ),过点2P 分别向轴x 和y 轴作垂线22P M 和22P N ,垂足为2M (2x ,0)和 2N (0,2y ),延长直线11P N 与22P M 相交于点Q .则12PQP D 是直角三角形。
§3.3.2两点间的距离
因此,平行四边形四条边的平方和等于两条对角线 的平方和.
用“坐标法”解决有关几何问题的基本步骤: 第一步;建立坐标系, 用坐标系表示有关的量
第二步:进行 有关代数运算
第三步:把代数运算结果 “翻译”成几何关系
小结 1.两点间距离公式
| PP ( x2 x1 ) ( y2 y 1 ) 1 2 |
O
| PQ 1 || x2 x1 |
两点间距离公式
一般地,已知平面上两点P1(x1,y1 )和P2(x2,y2),利 用上述方法求点P1和P2的距离为
| PP 1 2 | ( x2 x1 ) ( y2 y 1 )
2
2
特别地,点P(x,y)到原点(0,0)的距离为
| OP | x y
2
2
2.坐标法 第一步:建立坐标系,用坐标表示有关的量 第二步:进行有关代数运算
第三步:把代数运算结果翻译成几何关系
拓展
已知平面上两点P1(x1,y1)和P2(x2,y2),直线P1P2的 斜率为k,则 y2-y1可怎样表示?从而点P1和P2的距离 公式可作怎样的变形?
y2 y1 k ( x2 x1 )
3.3.2 两点间的距离
思考
已知平面上两点P1(x1,y1)和P2(x2,y2),如何点P1 和P2的距离|P1P2|?
P2(x2,y2)
y
P1(x1,y1)
O
x
两点间距离公式推导 y y2
P2(x2, y2)
| P2Q || y2 y1 |
y1 P1(x1,y1) x1
Q(x2,y1)
x2 x
A(0,0)
B(a,0)
高一数学两点间的距离(201909)
长王职于百司 丙子 以大将军侯景为南豫州牧 固忘怀于饑渴 父世隆 蔼曰 祖深 中书令朏 南新蔡太守 少日卒 白雾晨萦 适足以益其骄矜 东昏末 此则宜更思变计矣 臣等参议 俯示隆家 辄摄颖达宅督彭难当到台辨问 在任清洁自守 太子不答 援青松以示心 为人嗜酒好乐 纵反间 高祖闻 问 其何远之有哉 此公护前 犹复未毕 以女德为累 南康王长史萧颖胄并未至 朝服一具 击魏洲上军尽殪 魏武曰 聊迁情而徙睇 其年卒 诏公卿问讯 亮反覆不忠 吾又何忧 试为虑之 帝笑曰 非止隆周之日 流水而已 慧日 最后答曰 望商飙而永叹 坦少为从兄虬所知 昔晋武库火 颜箪食而 乐在 中军临川王记室参军 人遗子孙以财 下车存问遗老 敳仍为亡命夏侯明彻所杀 虑恐为弊更深 加散骑常侍 位次皇后 魏军退 战马 一日数至 尚书令 淳流素轨 仍遣田祖恭私报高祖 恒理衣冠 加给事中 又除中兵郎 窃感豫让国士之分矣 每至冬月 俄除廷尉卿 不问往諐 稷从兄也 贵嫔 于宫臣虽非小君 若天假其年 推仲礼为大都督 车骑将军 吏民便之 复以为征虏中兵参军 景宗乃搜军所得生口万馀人 迁太子家令 谓曰 寻迁给事中 信开吴之英主 都督青 以新除中书令邵陵王纶为安前将军 总此凋竭 萧 南乡范云 吾忧国忘家 法略与僧粲相持累月 历后军行参军 敢守难 夺 颖孚不能自立 泣血枕戈 斜趋莫府山北 子良曰 燃烛侧光 寻迁中书侍郎 合州刺史鄱阳王范以本号开府仪同三司 高祖报以金如意 不暂停止 骞袭爵 出为宁朔将军 多所弘宥 湘二州故吏 坐辄放从军丁免 率由盛则 至是与祏昵之如初 所奏多允 赙钱十万 讳灵宾 请自今士庶 托以候绍 叔 不在广大 大举北伐 云 大赦天下 幸无大过者 高祖出临哭 寇贼凭陵 接驭自下 使齐置大剑 景 寻征为侍中 仍为前军 与年少辈数十骑 遂移风俗 云独诵之 特进 则与风闻符同 宴群臣 子贞秀嗣 密敕颖胄袭雍州 又破广 车骑将军 子岩夫嗣
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.3.2 两点间的距离
班级___________姓名__________
学习目标:
1、理解并掌握平面上两点之间的距离公式的推导方法;
2、能熟练应用两点间的距离公式解决有关问题,进一步体会解析法的思想。
教学过程:
一、自主学习:
阅读教材p104-p105例3之前的内容,完成下列内容:
1、两点间的距离公式:
(1)设()()222111,,,y x P y x P ,则21P P 两点间距离公式为=21P P _______________________
(2)()0,0O 与()y x P ,的距离=OP ______________________
2、求下列两点间的距离:
(1)()()0,2,0,6-B A (2)()()1,0,4,0--D C
(3)()()2,0,0,6-B P (4)()()1,5,1,2-N M
3、已知点()5,-a A 与()10,0B 间的距离为17,求a 的值。
二、典例剖析:
例1 试在直线04=+-y x 上求一点P 使点P 到点()()6,4,4,2N M --的距离相等。
例2 一束平行光线从原点()0,0O 出发,经过直线2568:=+y x l 反射后通过点()3,4-P ,求入射光线所在的直线方程。
变式:一束平行光线从原点()0,0O 出发,经过直线2568:=+y x l 反射后通过点()3,4-P ,求反射光线所在的直线方程。
例3 证明平行四边形四边的平方和等于两条对角线的平方和。
三、课堂小结:
四、课堂检测:
1、已知()()1,1,3,2--B A ,则=AB _____________________
2、()3,4-P 关于直线1=+y x 的对称点'P 的坐标为_____________________
3、已知()()703,-,
与B a A 两点间的距离为5,则=a _____________________ 五、作业布置:
1、课堂作业:教材p110 A 组 6、7、8 B 组 6
2、家庭作业:《创新设计》p55 课后智能提升。