分式方程教案
分式方程应用教案
分式方程应用教案。
一、教学目标1、学生能够掌握分式方程的基本概念和解题方法;2、学生能够熟练运用分式方程解决生活中的实际问题;3、学生能够自主探究、理性思考,培养创新意识和解决问题的能力。
二、教学重难点1、分式方程的基本概念与解题方法;2、应用题的实际解决方法。
三、教学方法1、讲述法:教师通过板书、PPT等方式,讲解分式方程的基本概念与解题方法,引导学生深入理解。
2、练习法:教师通过多个例题的练习,让学生得到更深入的理解与巩固。
3、实践法:教师通过生活中的实际问题,引导学生综合运用已学知识解决现实问题。
四、教学步骤1、引入新课:教师通过展示生活中的实际问题(如通过加油时间和加油机编号推断加油员工作时段),引导学生主动思考并提出问题。
2、讲解分式方程的基本概念:教师通过板书、PPT等方式,展示分式方程的符号、含义和基本形式,并让学生理解分子、分母等概念。
3、分式方程的解题方法:教师通过多个例题的讲解,让学生掌握分式方程的解题方法。
在解题过程中,教师需要重点讲解去分母、通分、除法消去等技巧。
4、应用题的解决方法:教师通过多个例题引导学生理解分式方程在实际问题中的应用,提高学生运用已学知识解决实际问题的能力。
5、课堂练习:教师布置多道练习题,让学生在课堂上独立完成,并针对性解答学生提出的问题。
6、课后习题:教师布置一定量的课后习题,让学生巩固已学知识。
五、教学反思和总结在教学中,我们应该注重理论与实践相结合,通过实际问题引导学生自主探究、培养创新意识和解决问题的能力。
同时,在教学中给学生更多的时间和空间去思考、提问,让学生更好地理解抽象的数学内容。
在教学中,教师需要通过合理的教学方式和方法,引导学生学习分式方程,并提高他们解题的能力。
只有这样,学生才能在将来的学习和工作中更好地应对各种数学问题的挑战。
人教版数学八年级上册15.3分式方程的解法(教案)
1.教学重点
(1)理解分式方程的定义:重点强调分式方程的形式特点,即方程中包含有分母,且分母不为零,让学生充分理解这一核心内容。
举例:如方程2/x = 3/(x+1),其中x≠0。
(2)掌握分式方程的解法:包括消元法、代入法、加减法等,特别是消元法在求解分式方程中的应用。
举例:消元法求解方程2/x = 3/(x+1):
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式方程的基本概念。分式方程是指含有分母的方程,它是代数方程的一种特殊形式。分式方程在解决实际问题时具有重要作用,能够帮助我们处理比例、速率、百分比等问题。
2.案例分析:接下来,我们来看一个具体的案例。假设小明和小红的糖果总数为10个,要平均分给两人,我们可以建立分式方程x/2 = 10,其中x表示每人应得的糖果数。通过解这个方程,我们可以得到答案。
2.提升学生的数学建模素养:使学生能够将实际问题抽象为分式方程模型,并运用所学方法求解,从而提高解决实际问题的能力;
3.增强学生的数学运算能力:让学生熟练掌握分式方程的消元、代入、加减等解法,培养他们准确、迅速地进行数学运算的能力。
这些核心素养目标与新教材的要求相符,旨在帮助学生形成系统的数学知识体系,提高数学思维品质和解决问题的综合能力。
难点解析:代入法中,学生可能会遇到以下困难:
-不清楚应该将哪个表达式代入另一个表达式中;
-在代入过程ቤተ መጻሕፍቲ ባይዱ,容易忽视方程中的限制条件(如分母不为零);
-计算过程中可能因粗心导致错误。
(3)分式方程在实际问题中的应用:学生需要学会将实际问题抽象为分式方程,并正确求解。
难点解析:实际问题抽象为分式方程时,学生可能会遇到以下问题:
分式教案(2)
分式教案一、教学内容本节课的教学内容来自人教版初中数学八年级下册第22章《分式》。
本节课主要讲解分式的概念、分式的基本性质、分式的运算以及分式方程的解法。
二、教学目标1. 理解分式的概念,掌握分式的基本性质。
2. 学会分式的运算方法,提高运算能力。
3. 学会解分式方程,提高解决问题的能力。
三、教学难点与重点重点:分式的概念、分式的基本性质、分式的运算方法、分式方程的解法。
难点:分式方程的解法。
四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。
学具:教材、练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入:教师出示实际问题:“甲、乙两地相距100公里,甲地有一辆汽车以每小时40公里的速度向乙地行驶,同时乙地有一辆汽车以每小时60公里的速度向甲地行驶。
问两辆汽车相遇时,它们之间的距离是多少?”学生尝试解决实际问题,引出分式的概念。
2. 自主学习:学生自主阅读教材,理解分式的概念,并尝试解决教材中的例题。
3. 课堂讲解:教师讲解分式的概念,强调分式的分子、分母以及分式的值。
4. 课堂练习:教师出示练习题,学生独立完成,巩固分式的概念。
5. 分式的基本性质:教师讲解分式的基本性质,引导学生发现分式的基本性质。
6. 课堂练习:教师出示练习题,学生独立完成,巩固分式的基本性质。
7. 分式的运算:教师讲解分式的运算方法,引导学生发现分式的运算规律。
8. 课堂练习:教师出示练习题,学生独立完成,巩固分式的运算方法。
9. 分式方程的解法:教师讲解分式方程的解法,引导学生发现解分式方程的方法。
10. 课堂练习:教师出示练习题,学生独立完成,巩固解分式方程的方法。
六、板书设计板书设计如下:分式的概念:分子分母分式的值分式的基本性质:分式的分子、分母都乘(或除以)同一个不为零的数,分式的值不变。
分式的运算:加减法:通分后相加(减)乘除法:分子相乘(除),分母相乘(除)分式方程的解法:去分母求解七、作业设计1. 请解释分式的概念,并给出一个例子。
2024《分式方程》说课稿范文
2024《分式方程》说课稿范文教学内容:《分式方程》是2024年版小学数学七年级下册第五单元的内容。
它是在学生已经学习了分式和方程的基础上进行教学的,是小学数学领域中的重要知识点,而且分式方程在解决实际问题中有着广泛的应用。
教学目标:1. 认知目标:理解分式方程的概念,掌握如何建立分式方程,以及求解分式方程的方法。
2. 能力目标:培养学生分析和解决实际问题的能力,提高学生的数学应用能力。
3. 情感目标:在解决分式方程的过程中,培养学生的合作精神和创新意识。
教学重难点:重点是:理解分式方程的概念,学会建立和求解分式方程。
难点是:解决实际问题时如何将问题转化为分式方程,以及求解分式方程的方法。
教法学法:本课采用启发式教学法和案例分析法。
通过引导学生自主思考和合作探究,激发学生的学习兴趣和解决问题的能力。
教学准备:在教学过程中,我准备了多媒体课件和实际问题的案例,以直观呈现教学素材,提高教学效果。
教学过程:一、导入新课我将以一个实际问题开始导入新课,例如:小明有一堆苹果,他吃了一半后还剩下4个,那么初始有多少个苹果?通过学生的思考和讨论,引出分式方程的概念和应用。
二、讲解概念和方法我将通过多媒体课件讲解分式方程的定义和建立方法,以及求解分式方程的步骤和技巧。
同时,我会提供一些实际问题的案例,让学生运用所学知识解决问题。
三、合作探究我将安排学生进行小组合作活动,给出几个实际问题,让他们自主思考并尝试建立相应的分式方程。
然后,学生可以互相交流讨论,纠正错误并找到正确的解决方法。
四、总结归纳在合作探究的基础上,我将引导学生总结归纳所学知识,梳理解题思路和方法。
同时,我也会对学生的解题过程进行点评和指导,强化对知识的理解和应用。
五、练习巩固我将设计一些练习题,让学生巩固所学知识,提高解决问题的能力。
针对不同层次的学生,我会设置不同难度的题目,以满足不同学生的学习需求。
六、课堂总结在课堂结束前,我将提醒学生回顾本节课的重点内容,并帮助他们做好知识的总结和归纳。
分式的教案(优秀5篇)
分式的教案(优秀5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!分式的教案(优秀5篇)分式方程是方程中的一种,是指分母里含有未知数或含有未知数整式的有理方程。
《分式方程》教案
《分式方程》教案一、教学目标1.知识与技能目标:使学生理解分式方程的概念,掌握解分式方程的方法,能够正确求解各种类型的分式方程。
2.过程与方法目标:通过分式方程的求解过程,培养学生分析问题和解决问题的能力,提高学生的数学思维能力。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生良好的学习习惯和团队合作精神。
二、教学内容1.分式方程的概念:介绍分式方程的定义,让学生理解分式方程的特点。
2.分式方程的求解方法:讲解解分式方程的一般步骤,包括移项、通分、去分母等。
3.分式方程的应用:通过具体的例题,让学生学会将实际问题转化为分式方程,并运用所学知识解决问题。
三、教学重点与难点1.教学重点:分式方程的求解方法,包括移项、通分、去分母等步骤。
2.教学难点:分式方程中分母的处理,特别是分母为零的情况。
四、教学步骤1.导入新课:通过一个简单的分式方程例子,引导学生思考如何求解分式方程,激发学生的兴趣。
2.讲解分式方程的概念:介绍分式方程的定义,让学生理解分式方程的特点。
3.讲解分式方程的求解方法:讲解解分式方程的一般步骤,包括移项、通分、去分母等。
通过具体的例题,让学生跟随教师的步骤进行求解。
4.解答例题:给出几个不同类型的分式方程例题,让学生独立解答,并邀请学生分享解题过程和答案。
5.分组讨论:将学生分成小组,给出一些实际问题,让学生将问题转化为分式方程,并运用所学知识解决问题。
小组内进行讨论和交流,共同解决问题。
6.总结与拓展:对分式方程的求解方法进行总结,强调注意事项,如分母为零的处理等。
同时,给出一些拓展题目,让学生进行挑战和练习。
7.作业布置:布置一些分式方程的练习题,让学生巩固所学知识。
五、教学评价1.课堂参与度:观察学生在课堂上的参与程度,包括积极回答问题、参与小组讨论等。
2.解题能力:通过学生的解题过程和答案,评价学生对分式方程求解方法的掌握程度。
3.小组合作:评价学生在小组讨论中的合作精神,包括积极参与、分享思路、互相帮助等。
分式方程步骤教案
分式方程步骤教案。
第一步:将所有项移到一个侧面
我们要将所有项移到等式中的一侧,使得等式只剩下一个单独的分式。
例如,我们有一个方程 2/x + 3 = 4/2x,我们希望将其变成只有一个分式,就需要将3移到左边,其它项移到右边,如下所示:2/x = 4/2x - 3
第二步:将分母相同化简
下一步是将分母相同,这样可以使方程更容易解决。
为了使分母相同,我们需要找到两个分式的最小公倍数(LCM)。
例如,如果我们有一个方程:2/5 + 1/3x = 1/10x,我们需要将分母变成相同的数,这样可以使分式相加更容易。
在本例中,我们可以找到3和10的LCM,其为30。
我们需要修改原来的方程,使得分母为30,如下所示:
(12x + 30)/30 + (10 - 10x)/30 = 3/30
第三步:将分式相加
接下来,我们需要将分式相加,并将其化简。
为了将分式相加,我们需要计算Numerator的总和,并将其除以分母,如下所示:
22 - 13x = 1
第四步:解方程
最后一步是解方程,找到变量的值。
在本例中,我们可以将方程重组,得到如下结果:
13x - 21 = 0
然后我们可以将其解决,得到:x = 21/13.
分式方程可以是很复杂的,特别是当其中包含多个分式时。
但是,如果我们按照上述步骤解决,就可以很容易地解决这些方程。
由于每个方程都是独立的,因此每次解决问题时,我们需要花时间处理每个方程。
但是,当我们掌握了一些技巧时,这些方程就不再那么令人畏惧了。
分式方程教案
分式方程教案一、教学目标1.理解分式方程的概念,掌握分式方程的解法,并能够正确求解分式方程。
2.通过对分式方程的求解过程进行归纳和总结,培养学生的观察、分析、推理和概括能力。
3.通过对分式方程的求解过程进行反思和评价,培养学生的批判性思维和严谨的学习态度。
二、教学重点和难点1.教学重点:分式方程的解法及其在实际问题中的应用。
2.教学难点:如何通过观察和分析找到分式方程的解,并能够正确地将其转化为整式方程进行求解。
三、教学过程1.导入新课:通过实例引入分式方程的概念和意义,引导学生理解分式方程与整式方程的区别和联系。
2.新课教学:通过讲解、演示和讨论等多种方式,引导学生掌握分式方程的解法,包括去分母、去括号、移项、合并同类项等步骤。
同时,通过例题和练习题的讲解和练习,让学生更好地理解和掌握分式方程的解法。
3.巩固练习:通过多种形式的练习题,让学生进一步巩固分式方程的解法,并能够正确地求解分式方程。
4.归纳小结:通过总结和归纳,让学生更好地理解分式方程的概念和意义,掌握分式方程的解法及其在实际问题中的应用。
四、教学方法和手段1.教学方法:讲解、演示、讨论、练习等多种方式相结合。
2.教学手段:采用多媒体教学,通过动画、图像等手段增强学生对分式方程的理解和掌握。
五、课堂练习、作业与评价方式1.课堂练习:通过多种形式的练习题,包括填空题、选择题、判断题等,让学生更好地掌握分式方程的解法。
2.作业布置:根据教学内容和学生实际情况,布置适量的作业题,让学生回家后继续练习分式方程的解法。
3.评价方式:采用多种评价方式相结合,包括作业批改、课堂练习、小组讨论、期中考试等多种方式,全面了解学生的学习情况。
六、辅助教学资源与工具1.教学软件:采用数学软件等辅助教学。
2.教学资料:参考多种教学资料,包括教科书、参考书、网络资源等。
3.实验室资源:利用数学实验室资源进行实验操作和实践,增强学生的实践能力。
七、结论通过本节课的教学,学生已经掌握了分式方程的概念和意义,以及分式方程的解法及其在实际问题中的应用。
人教版八年级数学上册教案:15.3分式方程-分式方程的应用
我也注意到,在解决分式方程的难点部分,如去分母和移项,学生们的操作还不够熟练。这提示我,在接下来的课程中,需要设计更多的练习来加强这一部分的训练。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果,这些成果将被记录在黑板上或投影仪上。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式方程的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对分式方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。如果有任何疑问或不明白的地方,请随时向我提问。
人教版八年级数学上册教案:15.3分式方程分式方程的应用。本节课将围绕以下内容展开:
1.掌握分式方程在实际问题中的应用;
2.学会列出分式方程解决实际问题;
3.能够运用等式性质和分式运算解决分式方程相关问题;
4.举例说明分式方程在生活中的应用,如速度、浓度、比例等问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式方程的基本概念。分式方程是含有分式的方程,它能够帮助我们解决涉及比例、速度、浓度等实际问题。
2.案例分析:接下来,我们来看一个具体的案例。假设有两人合作完成一项工作,甲工作效率是乙的两倍,他们合作3天完成了任务。我们可以通过分式方程来计算他们各自完成的工作量。
举例:在浓度问题中,若将5克盐溶解在水中得到20%的盐水,求所需水的质量。难点在于如何将“20%的盐水”这一描述转化为数学表达式,并建立正确的分式方程。
在教学过程中,需要针对以上难点进行详细讲解和反复练习,确保学生能够透彻理解分式方程的核心知识,并在实际问题中能够灵活应用。通过对重点和难点的强调,帮助学生建立起分式方程的解题框架,提高解题能力。
分式方程解法教案
分式方程解法教案。
一、分式方程的定义及基本性质所谓分式方程,就是带有分式的方程。
一般而言,分式方程可分为简单分式方程和复杂分式方程两种类型。
其中,简单分式方程的分母是一次式,而复杂分式方程的分母则为多项式。
分式方程解法教案主要以简单分式方程为主。
对于简单分式方程,我们可以通过分离变量的方法进行求解。
具体而言,我们需要将方程化为一个比较简单的形式,然后通过逆运算得到解析式。
因此,在进行分式方程解法时,我们需要掌握以下基本性质:1、对于任意的实数a、b、c,若a·b=c,那么有a=c÷b和b=c÷a。
2、对于任意的实数a、b,若a+b≠0,那么有a+b=a÷(a+b)·(a+b)+b÷(a+b)·(a+b)。
3、对于任意的实数a、b,有a+b=a·b÷(a÷b+1)+(b÷a+1)。
4、对于任意的实数a、b、c,若a+b=c,那么有a·b=c2-(a-b)2。
二、分式方程的解法1、我们需要注意分式方程的分母不能为0,否则方程无解。
2、我们需要将方程两边通分,将分式转化为整式,这样可以大大简化求解的过程。
具体而言,我们要将方程中的每一个分式都乘以相应的倍数,使得分母相同。
3、接着,我们需要将方程化为一个比较简单的形式,如分式方程ax+b=c,此时需要将其变为形如mx+n=p的方程,其中m、n、p为常数。
4、将方程两边同时乘以相应的数,以消去分母,此时方程就变成了一元一次方程,可以通过常规的求解方法(如配方法、代入法等)求出解析式。
需要注意的是,如果分式方程中存在二次项等高中数学难度系数较大的难题,则需要运用更加高深的数学知识进行求解。
有些分式方程难以直接化为简单形式,需要通过一些变形或借助一些特定的知识点才能得到解析式。
三、分式方程的实例1、将分式方程2·(x-1)÷(x+5)=1化为整式方程我们需要通分,将方程的左侧倍乘5,将右侧倍乘(x+5)。
(完整版)分式方程教案
分式方程瑞发学校张文娇一、教学目标1.使学生理解分式方程的意义.2.使学生掌握可化为一元一次方程的分式方程的一般解法.3.了解解分式方程解的检验方法.4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.二、教学重点和难点1.教学重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想.2.教学难点:检验分式方程解的原因3.疑点及分析和解决办法:解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.三、教学方法启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.四、教学手段:演示法和同学练习相结合,以练习为主.五、教学过程(一)复习引入1.提问:什么叫方程?什么叫方程的解?答:含有未知数的等式叫做方程.使方程两边相等的未知数的值,叫做方程的解.(二)新知探索板书课题:分式方程的定义.分母中含有未知数的方程叫分式方程(fractional equation ).以前学过的方程都是整式方程.(课件展示)1、判断下列各式哪个是分式方程.(课件展示) (1)21-=x (2)22=-x x (3)1214112-=+--x x x (4)05432=---x x 在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母.2、例题精讲例1 解方程 xx 332=-(课件展示完整步骤) 解:方程两边同乘x (x -3),得2x =3x -9解得 x =9检验:x =9时 x (x -3)≠0,9是原分式方程的解。
分式方程教案(5篇)
分式方程教案(5篇)分式方程教案(5篇)分式方程教案范文第1篇一、预习导学,呈现问题导入新课思索:你能正确识别分式方程吗?下列关于x的方程,其中是分式方程的有______.(填序号)问题1 什么是分式方程?问题2 为什么方程(4)不是分式方程?它是什么方程?如何看待其分母中的字母?引导同学思索并归纳总结,分式方程的特点是:①含分母;②分母中含有未知数,分母中是否含有未知数是区分分式方程与整式方程的标志.本例中的(4)是关于x的方程,其他字母皆为字母系数,通过本例辨析分式方程与含有字母已知数方程的区分.设计意图在设疑解惑中引导同学关注分式方程形式上的定义,不是简洁让同学重复概念,而是展现一组方程让同学识别,在答疑辨析中调动同学对分式方程概念的理解,加深理解分式方程概念的关键点——分母中含有未知数,设计的方程(3)(4)(6)用意深刻,是对同学思索提出的进展性目标.二、合作探究,问在学问发生处,点拨释疑·你会解分式方程吗?老师出示问题,同学动手解题,探究体验:比较方程(1)(2)的结果有差异吗?为什么?·为什么x=2不是原方程(2)的根?·产生x=2不是原方程(2)的根的缘由是什么?你能用数学语言说明吗? 解(2):方程两边同乘以3(x-2),得3(5x-4)=4x+10-3(x-2),x=2.检验:把x=2代入最简公分母3(x-2)中,3(x-2)=0,x=2称为原方程的增根.·引导同学进一步思索:(1)解分式方程的一般步骤?要求同学自己归纳总结,然后争论沟通.①去分母,方程两边同乘以最简公分母,把分式方程转化为整式方程;②解这个整式方程;③验根.使得最简公分母为0的根为原方程的增根,必需舍去.同学提出问题,小组合作探究争论:验根有几种方法?如何检验?适当的练习加强同学对解分式方程的理解,关心同学深刻理解化分式方程为整式方程的数学思想.(2)呈现错例,分析错误缘由.(组织同学开展纠错争论)①确定最简公分母失误;②去分母时漏乘整式项;③去分母时忽视符号的变化;④遗忘验根.设计意图分解因式是要求同学把握的基本技能,引导同学独立思索,总结归纳解题步骤,对错例进行剖析,加深对学问的理解.纠错是数学解题教学的一种重要学习形式.(3)增根从哪里来?为什么要舍去?(4)下面分式方程的解法是否正确?谈谈你的想法?引导同学议一议,深化思索:你对上述解法有什么看法?还有其他解法吗?通过解题表象再深化思索解分式方程的本质.分式方程的增根是它变形后整式方程的根,但不是原方程的根,产生增根的缘由是在分式方程的左右两边乘以为0的最简公分母造成的,所以使最简公分母为0的未知数的值均有可能为增根.着名教学者李镇西说过:“能让同学自己完成的,老师绝不帮忙.”老师引路设问,创设质疑争论的空间,深化对解分式方程本质的理解,拓宽同学的视野.三、敏捷应用,拓展思维思索“无解”与该分式方程有“增根”的意义一样吗?分析方程两边乘以(x+2)(x-2),可得2(x+2)+ax=3(x-2),(a-1)x=-10.明显a=1时原方程无解.当(x+2)(x-2)=0,即x=2或x=-2时,原方程亦无解,当x=2时,a=-4>:请记住我站域名/设计意图分式方程的增根问题是同学理解的难点,部分同学解题过程中存有怀疑,还会与无解相混淆.本课例设计直击难点,关心同学梳理如何争论增根问题,并能利用其解决方程无解的相关问题.老师运用问题串形式组织同学解分式方程不是表面上培育细心,明确算理,而是像几何推理那样步步有据,启发同学经过自己的独立思索去寻求解决问题方案.本课设计尝试从数学的角度提出问题,理解问题.引导同学理解解分式方程的途径是通过转化为整式方程来求解.在解分式方程的过程中体验增根的由来.总结出解分式方程的一般步骤和验根的方法,通过敏捷应用实例分析把方程的相关学问融会贯穿,在富有挑战性问题的引导下,同学在探究、答疑、辨别中体会到,提出一个有价值的问题有时比解决一个问题更重要,本课例的设计让同学学会质疑,学会思索,真正在思维的层面上学会数学解题.分式方程教案范文第2篇关键词:案例―任务驱动;计算机程序语言;教学模式在高校计算机教育中,老师讲授程序语言类课程时,一般是在课堂上进行学问点的介绍、举例、讲解、分析、总结等,同学被动地听讲并记忆,在上机实践环节中,同学提前不做什么预备,上机就是在集成环境中输入并运行笔记或教材上的例题,或是自己参按例题完成课后练习,有错误也不求甚解。
分式方程应用教案
分式方程应用教案一、教学内容本节课选自人教版《数学》八年级下册第十二章《分式方程》,具体内容包括:分数方程的应用、实际问题与分式方程的建立、分式方程的求解方法及其在实际问题中的应用。
二、教学目标1. 理解并掌握分式方程在实际问题中的应用,能正确列出分式方程。
2. 学会运用分式方程解决实际问题,提高数学应用能力。
3. 培养学生的逻辑思维能力和团队合作意识。
三、教学难点与重点1. 教学难点:分式方程在实际问题中的建立与求解。
2. 教学重点:分数方程的应用及求解方法。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入(1)展示小明骑自行车去公园的情景,提出问题:“小明骑自行车的速度是每小时x千米,去公园的路程是y千米,他用了多少时间?”(2)引导学生利用分式方程表示出时间。
2. 例题讲解(1)讲解分式方程在实际问题中的应用。
(2)以小明骑自行车去公园的问题为例,展示分式方程的建立和求解过程。
3. 随堂练习(1)让学生根据实际情景,列出分式方程。
(2)引导学生互相讨论,共同求解分式方程。
(1)分式方程的建立方法。
(2)分式方程的求解方法。
5. 课堂小结六、板书设计1. 分式方程的应用2. 实际问题与分式方程的建立3. 分式方程的求解方法七、作业设计1. 作业题目:(1)小华家距离学校3千米,他骑自行车的速度是每小时5千米,求他到学校所需的时间。
(2)已知甲、乙两地的距离是x千米,一辆汽车从甲地出发,以每小时y千米的速度行驶,行驶了z千米后到达乙地,求汽车从甲地到乙地所需的时间。
2. 答案:(1)0.6小时(2)z/ y 小时八、课后反思及拓展延伸1. 反思:本节课通过实际情景引入,让学生学会运用分式方程解决实际问题,提高了学生的数学应用能力。
2. 拓展延伸:(1)让学生思考:分式方程在实际生活中的其他应用。
(2)引导学生研究:如何求解更复杂的分式方程。
分式方程教案 分式方程数学教案(精选6篇)
分式方程教案分式方程数学教案(精选6篇)解分式方程练习题篇一分式方程的教学设计分式方程的教学设计教学目标1.使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;2.通过列分式方程解应用题,渗透方程的思想方法。
教学重点和难点重点:列分式方程解应用题。
难点:根据题意,找出等量关系,正确列出方程。
教学过程设计一、复习例解方程:(1)2x+xx+3=1; (2)15x=2×15 x+12;(3)2(1x+1x+3)+x-2x+3=1.解(1)方程两边都乘以x(3+3),去分母,得2(x+3)+x2=x2+3x,即2x-3x=-6所以x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。
(2)方程两边都乘以x(x+12),约去分母,得15(x+12)=30x。
解这个整式方程,得x=12.检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。
(3)整理,得2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,即2x+xx+3=1.方程两边都乘以x(x+3),去分母,得2(x+3)+x2=x(x+3),即2x+6+x2=x2+3x,亦即2x-3x=-6.解这个整式方程,得x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。
二、新课例1 一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍。
若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?请同学根据题意,找出题目中的等量关系。
答:骑车行进路程=队伍行进路程=15(千米);骑车的速度=步行速度的2倍;骑车所用的时间=步行的时间-0。
5小时。
请同学依据上述等量关系列出方程。
分式的教案(精选4篇)
分式的教案(精选4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!分式的教案(精选4篇)分式方程是方程中的一种,是指分母里含有未知数或含有未知数整式的有理方程。
《分式方程》教案
《分式方程》教案(1)[教学目标]1.知道分式方程的意义,会解可化为一元一次方程的分式方程.2,了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根.3.会列出方程解决简单的实际问题,并能根据实际问题的意义检验所得结果是否合理.此外,通过经历“实际问题一建立数学模型(方程)一解释、应用与拓展”的过程,体验解决问题的基本策略,发展应用意识和解决问题的技能.[教学过程(第一课时)]1.情境创设问题是数学的心脏,遵循《标准》关于“方程是刻画现实世界的一种有效的数学模型”的理念,同以往一样,我们仍然从问题开始,让学生从实际问题数量关系的探索中,发现一类未知数出现在分母中的新方程——分式方程.除课本提供的3个实例外,教师可以根据学生的实际情况,补充一些与学生生活相关的实际问题,激发学生学习分式方程的兴趣.2.探索活动探索活动(一):可以采用不同的方式,探寻各个实际问题中的数量关系.例如:对于情境(一),可以用表格揭示服装加工中的工作总量与工作时间、个人工作效率之间的数量关系:根据问题中的相等关系,得xx 20124=+ 对于情境(二),可以用数位填空的方式表示两位数的构成:原两位数改变后的两位数于是,可得方程47410104=++⨯x x 对于情境(三),可以用线段示意图表示行程问题:由于自行车早出发40min ,但与汽车同时到达,多行驶了40min ,所以可得方程:604031515=-x x 探索活动(二):探索分式方程的解法. 仍以问题为先导,发动学生研究如何解分式方程?20124x x =+ 学生可能会出现多种思路,例如: 其一,分式方程与含有分数系数的一元一次方程“形似”,容易想到通过类比提出猜想:解分式方程也应该先去分母(卡通人语).猜想是否正确?实践之,检验之.要强调检验的必要性,通过检验能初步说明猜想的正确性.然后告诉学生,解分式方程的一般方法是先去分母,把不熟悉的方程转化为熟悉的方程来解决.其二,移项进行减法运算,化简,得0)1(204=+-x x x 由分式的值为0的概念,得4x —20=0,从而得解x =5.正确否?可代人检验.其三,利用分式的基本性质,使方程两边的分式的分子为它们的最小公倍数,如xx 612055120=+,由分式相等的概念,得5x +5=6x ,从而得x =5. 应注意的是,如果学生提出后两种解决问题的思路,教师则要在给予充分肯定后,引导学生继续探讨,得出解分式方程的一般方法;如果没有学生提出,则不必刻意追求,避免干扰本课主题——分式方程的一般解法.3.例题教学例1给出了解分式方程的一般过程及完整的书写格式,若有必要,教师可增补例题,让学生学会求解并规范表述.。
八年级分式方程教案
八年级分式方程教案一、教学目标:1. 让学生掌握分式方程的定义和基本性质。
2. 培养学生解决实际问题能力,提高分析问题和解决问题的能力。
3. 培养学生合作交流意识,提高学生数学思维能力。
二、教学内容:1. 分式方程的定义及基本性质。
2. 解分式方程的方法和技巧。
3. 分式方程在实际问题中的应用。
三、教学重点与难点:1. 重点:分式方程的定义、解法及应用。
2. 难点:分式方程的解法,特别是含字母系数和分式系数的分式方程。
四、教学方法:1. 采用问题驱动法,引导学生主动探究分式方程的解法。
2. 运用案例分析法,让学生在解决实际问题中掌握分式方程的应用。
3. 采用合作交流法,培养学生的团队协作能力和沟通能力。
五、教学过程:1. 引入:通过生活中的实际问题,引导学生思考分式方程的定义和应用。
2. 讲解:讲解分式方程的定义、基本性质和解法。
3. 练习:让学生独立解决一些简单的分式方程问题。
4. 拓展:引导学生思考分式方程在实际问题中的应用。
5. 总结:对本节课的内容进行总结,强调分式方程的重要性和应用价值。
6. 作业布置:布置一些有关的练习题,巩固所学知识。
后续章节待您提供要求后,我将为您编写。
六、教学评价:1. 评价学生对分式方程定义和基本性质的理解。
2. 评价学生解决实际问题时运用分式方程的能力。
3. 评价学生在合作交流中对分式方程的解法和应用的掌握。
七、教学资源:1. 教材:八年级数学教材及相关分式方程教学辅导书。
2. 课件:制作与教学内容相关的课件,辅助讲解和展示。
3. 练习题:提供一定数量的练习题,用于巩固所学知识。
八、教学进度安排:1. 第1课时:介绍分式方程的定义和基本性质。
2. 第2课时:讲解分式方程的解法和技巧。
3. 第3课时:通过案例分析,讲解分式方程在实际问题中的应用。
4. 第4课时:进行分式方程的综合练习。
5. 第5课时:总结本单元内容,进行复习和检测。
九、教学反思:在教学过程中,教师应不断反思自己的教学方法和解题策略,以便更好地指导学生。
分式方程难点教案
分式方程难点教案。
对于初学者来说,分式方程可能是比较难以理解的一个概念。
因为分式方程不仅仅需要对方程式本身有一定的理解,还需要具备对分式的掌握和熟练运用能力。
不过,只要我们花费足够的时间和精力去学习和练习,掌握分式方程是完全可以做到的。
下面,我们就来分析一下在教学过程中,分式方程可能会出现的一些难点。
同时,也会提供一些针对性的解决方案,帮助初学者更好的理解和掌握分式方程。
1.分式方程的求解方法分式方程的求解既可以使用代数方法,也可以使用图形方法。
而在代数方法中,又分为两种,即通分法和消元法。
在初学者来看,这些方法可能会非常的抽象和难以理解。
而如果不理解求解方法,那么就法解决分式方程的问题。
解决方法:对于初学者来说,可以通过举例来帮助学生理解求解方法。
比如,给出不同的分式方程,并通过演示的方式来展示不同的求解方法。
通过不断的练习和实践,掌握分式方程的求解方法是完全可以做到的。
2.分式方程的化简分式方程的化简是掌握分式方程必须要掌握的技能之一。
在分式方程的求解过程中,经常需要对方程进行化简,这可以让问题更加简单化。
但是,对于初学者来说,分式方程的化简可能会非常复杂和繁琐,这也是分式方程的难点之一。
解决方法:对于初学者来说,可以在教学中着重讲解分式化简的方法和技巧,这可以让学生更好的理解如何把复杂的分式化简为简单的形式。
同时,在教学过程中,可以结合大量的例子来让学生实践操作,这样可以让学生更加深入地领悟化简的方法和技巧。
3.分式方程的常见错误在分式方程的求解过程中,有些常见的错误会使得问题产生很大的误差。
这些错误包括未运用正确的求解方法、忽略一些可能影响答案的因素,以及在化简过程中犯下错误等。
例如,“分母不能为零”的错误就是很多初学者容易犯的错误。
解决方法:对于初学者来说,可以教学中讲解常见错误,并提供一些防范措施。
同时,我们也可以通过训练和练习来帮助学生避免这些常见错误,例如通过实践出题的方式来使学生更泛的掌握常见错误的避免方法。
分式方程实例教案
分式方程实例教案。
一、分式方程的概念及基本操作在进行分式方程实例教学之前,首先要掌握分式方程的概念及基本操作。
简单来说,分式方程就是一个有分数的方程式,可以表示为分子与分母用符号“/”连接起来的形式,例如:2/x + 3 = 5/x - 1。
在解分式方程时,我们需要进行以下基本操作:1、通分:将分式的分母化为相同的分母。
2、合并同类项:将分式中相同的项合并起来,即将分子相同的项合并在一起,将分母相同的项合并在一起。
3、移项:将含有未知数的项移到方程一边,将常数项移到方程另一边。
4、化简:使方程变得更简单,例如,化简分式、取消分母等。
二、分式方程实例教案1、实例一题目:把一个分数的2加上整数5,再将结果乘以分数的3,得到的结果等于分数的12。
求原来的分数。
思路:将题目中的文字化为数学式子,得到以下方程:3(2+x/1+5) = 12化简后可得:6 + 3x = 12 + 3x将方程两边的3x移至左边,得到:6 = 12显然这个方程无解,因此思路出现错误。
通过这个例子,我们可以发现,解分式方程时一定要注意思路的正确性,不能从中途出现错误。
2、实例二题目:分数的x-1除以4,减去分数的x+1除以3,所得值等于常数的2。
求x。
思路:将题目中的文字化为数学式子,得到以下方程:(x-1)/4 - (x+1)/3 = 2通过通分和合并同类项,可得:(3x-3-4x-4)/12 = 2-1-x = 24x = -25因此,我们通过这个实例的解题过程,不难发现群集通分、合并同类项等基本操作是解分式方程的关键。
三、教学反思通过以上分式方程实例教案,我们对于解决分式方程所需的基本步骤和技巧有了更为深入的了解。
同时,在教学过程中,需要老师结合学生的具体情况,采取不同的教学方法,在课堂上深入浅出地讲解分式方程实例,便于学生更好地理解和掌握这门课程。
另外,在教学中,还需要给予学生充足的练习机会,让学生通过大量练习,熟练掌握分式方程的解法,培养学生的分析和解决问题的能力。
《分式方程》教案
分式方程一、教学目标(1)了解分式方程的特征;(2)掌握解分式方程的方法。
二、教学重点、难点(一)教学重点分式方程的特征;将分式方程化为整式方程的具体做法“去分母”。
(二)教学难点找对最简公分母;理解有的方程为什么无解。
(三)教学设计要点1、情境设计:用动态的画面把引言中的问题表达出来,还要把问题中的江水改为学生现在生活所熟悉的江河,激发学生的学习兴趣,引入新课。
2、教学内容的处理(1)补充一组方程判断是否是分式方程(写在小黑板A面上);(2)补充一组解分式方程的变式练习(写在小黑板B面上);(3)思考为什么有的分式方程“去分母”后无解?三、教具准备自己制作的纸船、长50cm的线、小黑板、彩色粉笔。
四、教学过程(一)创新问题情境引入新课1、问题情境同学们这节课我们先来做一个情境游戏,我想请两位同学帮助老师完成这个游戏好吗?有没有同学主动上台的。
(两位同学拉住那节50cm 并串有纸船的线)。
我们学校附近有一条某某河,现在有一艘小船在静水中的最大航速为20千米/时,(边说边示范)它沿某某河以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,此河的流速是多少?2、 让学生考虑几分钟,老师可以适当提醒(t vs =)3、 请一位同学到黑板上写出方程4、 让学生观察解得的方程与我们以前学习的方程有何不同的。
不同点:它的未知数出现在分母中。
概括分式方程的特征:首先他是含有未知数,并且未知数在分母中出现。
揭示课题:分式方程(板书课题)(二) 层层递进、探索新知识1、 分式方程的定义 如:v v -=+206020100的分母中含有未知数v ,像这样分母中含有未知数的方程叫做分式方程。
2、 基本练习(提出小黑板A 面)3、 探索分式方程的解法 试解vv -=+206020100(先让学生们思考) 解:找最简公分母(20+v )(20-v),两边同时乘以(20+v )(20-v)得100(20-v)=60(20+v )5(20-v)=3(20+v )解得v=5把v=5代入原方程中,看是否是原方程的解教师点明:解分式方程的首要步骤就是找到最简公分母。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程(第一课时)备课教案
数学组:穆耶赛尔·阿卜来提
2015年8月6日
民族团结教育:
观看视频并让学生观察所看视频中的好人好事,描述有何感想,有教师来总结此视频所提倡的重点内容,此视频总共有九件好人好事,描述了不同民族,不同性别,不同年龄段的中国公民互相帮助,传递了一份爱心,形成了一串爱心链。
只要我们中华民族团结互助,我们的家乡才会更美好!
教学课题: 15.3 分式方程
上课时间:
课时安排:共三课时(第一课时)
课前测评:解方程;
3162x x +-=
教学内容:分式方程的解法。
教学目标:
1,知识与技能:了解分式方程定义,掌握分式方程的一般解法及验根的方法。
2,过程与方法:通过经历探究解分式方程的过程,发展学生分析问题解决问题的能力,渗透类比与转化的思想。
3,情感与态度:在活动中培养学生乐于探究、合作学习的习惯,使学生体验成功的喜悦,体会数学的应用价值。
教学重点:分式方程的解法。
教学难点:解分式方程过程中产生增根的原因及如何验根。
教学方法:先学后教、当堂训练和小组合作、讲练结合法。
学习方法:自主探索、合作交流、自我反思的学习方法。
教学工具:多媒体课件,教科书。
教学过程:
(一)创设情境,提出问题:
[活动1]
问题:一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行90千米所用时间与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
【教师提出问题,学生分组探究】:
1.这个问题中给出了哪些信息,等量关系是什么?
2.设江水的流速为V 千米/时
轮船顺流航行速度为______千米/时,逆流航行速度为______千米/时,顺流航行90千米所用时间为______小时,逆流航行60千米所用时间为______小时,列方程_____
【师生行为】:教师提出问题,学生思考回答。
(二)探究方法,讲授新课
[活动2]
1.问题:
(1)方程 υυ-=+306030
90与以前所学的整式方程有何不同? (2)满足什么特点的方程叫分式方程?
板书:像这样分母中含有未知数的方程,叫做分式方程。
师生共同归纳:确定是不是分式方程,主要是看是否符合分式方程的概念,方程的分母中含有未知数,像这样的方程才属于分式方程。
2.练习
下列方程中,哪些是分式方程?哪些整式方程.
1.这样的方程你以前解过吗?
2. 你以前解过什么方程?
3.那你能不能把这个方程转化为你会解的方程即整式方程呢?
4. 怎么转化呢?
5.你能结合上述探究活动归纳出解分式方程的基本思路和做法吗?
【师生行为】:教师提出问题,学生思考,讨论后在全班交流探究结果。
(三)应用举例,巩固提高
[活动3]
问题:(1)解分式方程:
1
x-5 = 10 X 2-25
13(2)2x x =-2(1)2
3x x -=3(3)2x x π-=(1)(4)1x x x -=-105126=-+x x )(215=-x x )(2131x x x ++=437x y +=
(2) 上面两个方程中,为什么
去分母后所得整式方程的解是它的解,而
去分母所得整式方程的解却不是它的解呢?
(3)探究:
分式方程无解的原因是什么?
(分式方程去分母后的整式方程的解代入原分式方程分母中,分母为0无意义,所以分式方程无解)
(4)探究:
如何检验分式方程的解?
1.直接代入原方程(计算量大,很少用)
2.间接代入最简公分母(常用检验方法)
[活动4]
解下列分式方程;
)2)(1(311)2(332)
1(+-=--=-x x x x x
x (四)课堂总结
探究:
解分式方程基本思路是什么?有哪些步骤?每一步的目的是什么?
解分式方程的基本思路是:分式方程通过去分母转化成整式方程。
步骤:
100 20+V = 60 20-V
1 x-5 = 10 X 2-25
口诀:一化二解三检验
[活动4]:学习小结
(1) 在探索中遇到挫折,你是怎么办的?
(2) 对自己在本节课的学习情况进行反思总结.
(3) 本节课你和同伴一起提出什么问题?有什么收获?
【师生行为】:学生对本课学习进行反思总结在全班交流 板书设计:
解分式方程的思路及步骤:
验根的方法:
布置作业 :
解下列方程
11
3)2(0
21
23
)1(22-+=-=--+x x x x x x x x
课后反思:
15.3分式方程(1)
分式方程的定义: 例1: 例2:。