初一数学ppt课件-初一数学第一章有理数课件
合集下载
七年级数学上册 第1章 有理数(全章课件)
我们还可以按其它标准分类吗?
练习
1,任意写出三个有理数,并说出是什么 类型的数,与同伴进行交流.
练习
2.把下列各数填入它所属于的集合的 圈内: 15, , -5, , , 0.1, -5.32,
… 正整数集合
-80,
…
123, 2.333.
负整数集合
… 正分数集合
… 率除外),有理数可 以按不同的标准进行分类,标准不 同,分类的结果也不同。
3、能说出数轴上的点表示的有理数。
什么叫数轴?
-2
-1
0
1
2
画一条水平直线,在直线上取一点 表示0(这个点叫原点),选取某一长度 作为 单位长度 ,规定直线上向右的方向 为正方向 ,这样的直线叫做数轴。
画一条水平直线,在直线上取一点表 示0(这个点叫原点 ),选取某一长度作 为 单位长度,规定直线上向右的方向 为正方向 ,这样的直线叫做数轴。 (1)数轴是一条直线
当堂训练(一)
用正负数表示相 反意义的量
1.如果80m表示向东走80m,那么-60m表 示 向西走60m 。 2.如果水位升高3m时水位变化记作+3m,那 么水位下降3m时的水位变化记作 -3 m。 3.月球表面的白天平均温度是零上126℃, 记作 +126 ℃,夜间平均温度是零下150℃, 记作 -150 ℃。
数轴的特征
(2)数轴三要素
原点
正方向
单位长度
注:规定了原点、正方向、单位长度的直线叫做数轴。
1、判断下列直线都是数轴吗?说出你的理由
1 (1) 0 1 (2)
(3)
-3 -2 -1 0 1 2 3
(5)
0
01 (4)
-4 -3 -2 -1 1 2 3
人教版七年级数学上册第一章 有理数 PPT课件
负整数
正整数
1. 我们学过的数有:_______、_____、________、
零
正分数
负分数
______、__________.
2. 你能试着对上面举出的数进行分类吗?
素养目标
3. 知道有理数的两种分类方法.
2. 会判断一个数是整数还是分数,是正数还
是负数.
1. 了解有理数的定义.
探究新知
知识点 1
A. 0℃表示没有温度
B. 0表示什么也没有
C. 0是非正数
D. 0既可以看作是正数又可
以看作是负数
巩固练习
5.解释图中的正数和负数的含义。
10℃表示白天温度为零上10℃
-5℃表示晚上温度为零下5℃
它们以什么为基准?
0℃
巩固练习
6. 下面是某存折中记录的支出、存入信息,试着说说其
中“支出或存入”那一栏的数字表示什么含义.
正整数 和_______;
自然数
(4)非负整数包括________
又称为________;
0
整数 和_______;
(5)非负分数包括________
正分数
负分数
(6)非正分数包括________和_______.
整数
探究新知
素养考点 1
有理数分类的能力
例1 下列说法:
①0是整数;
1
2
② 3 是负分数;
0的意义及用正负数表示相对基准量
下图是吐鲁番盆地的示意图,你能用语言表述它与海平
面的高度关系吗?它的含义是什么?
记为+8844.43米
8844.43米
珠
穆
朗
玛
峰
初中数学《有理数》课件PPT
知3-讲
3.易错警示: (1)0是有理数,也是整数,也是最小的自然数. (2)奇数、偶数也扩充到了负数,如-1,-3是负奇
数,-2,-4是负偶数. (3)整数也可以看作分母为1的分数. (4)有限小数与无限循环小数都可以化成分数,所以
是有理数. (5)无限不循环小数,比如π,0.131 131 113…不能
知2-练
知识点 3 数的分类
知3-讲
1.整数和分数的定义: (1)数的认知过程:
自然数 引入分数 非负有理数 引入负有理数 有理数. (2)整数和分数:
正整数、0、负整数统称整数. 正分数、负分数统称分数.
知3-讲
2.要点精析:几种常用的整数和分数名词的含义: (1)正整数:既是正数,又是整数的数;(2)负整数: 既是负数,又是整数的数;(3)正分数:既是正 数,又是分数的数;(4)负分数:既是负数,又是 分数的数;(5)非负整数:正整数和0;(6)非正整 数:0和负整数.
知1-讲
(来自《点拨》)
总结
知1-讲
(1)引入负数后,奇数、偶数的范围扩充了负奇数、 负偶数;质数、合数的范围没有变化;
(2)本例中,因为偶数含负偶数,所以A是错误的; 质数没有负质数,所以B也是错误的;奇数含负 奇数,所以D是错误的.因此选C.
(来自《点拨》)
知1-练
1 下列说法不正确的是( )
3
3 5
.
非负有理数:{ 0,25%,11, 22, 0.3, 2 3 };
7
5
整数: {
-2,0,11
};
自然数: {
0,11
};
分数: { -0.314,25%,22,-4 1 , 0.3, 2 3 };
第1章 有理数 人教版七年级数学上册单元复习课件(共38张PPT)
知识点四:有理数的混合运算 有理数的运算有加法、减法、乘法、除法和乘方.进行混合 运算时,运算顺序是: (1)先乘方,再乘除,最后加减; (2)同级运算,按从左到右的顺序进行; (3)如有括号,先做括号内的运算,按小括号、中括号、大 括号依次进行.
13.【例1】下面的说法正确的是( D ) A.有理数的绝对值一定比0大 B.有理数的相反数一定比0小 C.若两个数的绝对值相等,则这两个数相等 D.互为相反数的两个数的绝对值相等
20.【例8】(创新题)观察下列所给的式子,解答下列问题: 1+3=22; 1+3+5=32; 1+3+5+7=42; 1+3+5+7+9=52;…. (1)1+3+5+7+…+29= 225 ; (2)1+3+5+…+(2n-1)= n2 ;(n为正整数) (3)21+23+25+…+57+59= 800 .
16.【例4】(创新题)若x为有理数,式子2 023-|x+2|存在最
大值,则这个最大值是( B )
A.2 022
B.2 023
C.2 024
D.2 025
小结:直接利用绝对值的性质得出|x+2|的最小值为0.
小结:明确有理数混合运算的计算方法,并合理运用运算律.
18.【例6】(全国视野)(2022泸州改编)若(a-2)2+|b+3|=0, 求ab的值. 解:由题意得a-2=0,b+3=0, 可得a=2,b=-3, 所以ab=2×(-3)=-6.
(3)相反数:只有符号不同的两个数叫做互为相反数,0的相 反数是0. 互为相反数的两个数到原点的距离相等.
(4)绝对值:一个数在数轴上对应的点到原点的距离叫做这 个数的绝对值. 一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0. (5)倒数:乘积是1的两个数互为倒数.
人教版七年级数学上册 第一章 有理数复习课件(共51张PPT)
01
复习课
有理数
1. 正__整_数__、__零_、__负__整_数统称整数,试举例说明。
2. 正_分__数__、_负__分__数___统称分数,试举例说明。
3. __整__数__、_分__数____统称有理数。
有理数的分类表
整数 有 理 数 分数
正整数 0
自然数
(非负整数)
负整数
正分数 负分数
有理数的分类
②下列说法正确的是( )A A.–1/4的相反数是0.25
B.4的相反数是-0.25
C.0.25的倒数是-0.25,
D.0.25的相反数的倒数是-0.25
③用-a表示的数一定是( D) A.负数 B.正数 C.正数或负数 D.都不对
④一个数的相反数是最小的正整数,那么这个数 是( A)
A .–1 B. 1 C .±1 D. 0
A.“向东5米”与“向西10米”不是相反意义的 量; B.如果汽球上升25米记作+25米,那么-15米
的意义就是下降-15米; C.如果气温下降6℃记作-6℃,那么+8℃的意
义就是零上8℃; D.若将高1米设为标准0,高1.20米记作+0.20
米,那么-0.05米所表示的高是0.95米.
6.正数、负数在实际生活中的应用
8.05×106
解:⑴ 0.07010 ,精确到 十万分位(或精确到0.00001),
有四个有效数字: 7,0,1,0
⑵ 103.2万 ,精确到 千位
有四个有效数字 1,0,3, 2 (3) 2.4千,精确到 百位, 有二个有效数字2,4
(4) 8.05×106 ,精确到 万位,
有三个有效数字 8,0,5
小测验
1. 22 2 22
复习课
有理数
1. 正__整_数__、__零_、__负__整_数统称整数,试举例说明。
2. 正_分__数__、_负__分__数___统称分数,试举例说明。
3. __整__数__、_分__数____统称有理数。
有理数的分类表
整数 有 理 数 分数
正整数 0
自然数
(非负整数)
负整数
正分数 负分数
有理数的分类
②下列说法正确的是( )A A.–1/4的相反数是0.25
B.4的相反数是-0.25
C.0.25的倒数是-0.25,
D.0.25的相反数的倒数是-0.25
③用-a表示的数一定是( D) A.负数 B.正数 C.正数或负数 D.都不对
④一个数的相反数是最小的正整数,那么这个数 是( A)
A .–1 B. 1 C .±1 D. 0
A.“向东5米”与“向西10米”不是相反意义的 量; B.如果汽球上升25米记作+25米,那么-15米
的意义就是下降-15米; C.如果气温下降6℃记作-6℃,那么+8℃的意
义就是零上8℃; D.若将高1米设为标准0,高1.20米记作+0.20
米,那么-0.05米所表示的高是0.95米.
6.正数、负数在实际生活中的应用
8.05×106
解:⑴ 0.07010 ,精确到 十万分位(或精确到0.00001),
有四个有效数字: 7,0,1,0
⑵ 103.2万 ,精确到 千位
有四个有效数字 1,0,3, 2 (3) 2.4千,精确到 百位, 有二个有效数字2,4
(4) 8.05×106 ,精确到 万位,
有三个有效数字 8,0,5
小测验
1. 22 2 22
人教版初中数学七年级上册第一章有理数ppt课件
乘 方
求n个相同因数的积 的运算,叫做乘方, 乘方的结果叫做幂。 在an中,a叫做底数, n叫做指数,当an看 作a的n次方的结果时, 也可读作“a的n次 幂”。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
理
对值相加;符号相反的两 个数相加,结果的符号与
数
绝对值较大的加数的符号
的
相有理数加法中可以使用
法
加法交换律、结合律
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
有理数的乘法
负数乘负数,积为正数,乘积的 绝对值等于各乘数绝对值的积。
有理数乘法法则: 两数相乘,同号得正,异号得负,
并把绝对值相乘。 任何数与0相乘,都得0.
注意:有理数的乘法可以使用: 乘法交换律、结合律、分配律
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
有 理 数 知 识 结 构 图
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
正 数 和 负 数
正数:大于0的数叫做正数
负数:小于0的数叫做负数
数0既不是正数,也不是 负数,它是正、负数的届限, 表示“基准”的数,零不是 表示“没有”,它表示一个 实际存在的数量。正数负数 的“+”“-”的符号是表示 性质相反的量,符号写在数 字前面,这种符号叫做性质 符号。
人教版数学七年级上第一章有理数 1.1正数与负数课件(17张PPT)
A.收入250元与支出20元
B.水位上升17米与下降10米
C.超过0.5mm和不足0.03mm D.增大2岁与减少2升
变式训练:下列是具有相反意义的量的是( )
A、顺时针旋转30度和逆时针旋转70度
B、向东走6米和向北走7米
C、节约5吨水和浪费5吨油
D、超过3克和超过12克
学习任务三 具有相反意义的量
学习任务三 具有相反意义的量
3.1 数字规律
例9:(1)有一列数:1,-2,-3,4,-5,-6,7,-8,….那么接下来的3个数分别
是______,_____,______; (2)有一列数:1 , 2 , 3 , 4 ,….那么接下来的第7个数是______________.
(1)求七年级(1)班50人中跳绳最多的同学一分钟跳的次数是多少个,跳绳最少的同学一分钟跳的 次数是多少个? (2)跳绳比赛的计分方式如下:①若每分钟跳绳个数是规定标准数量,不计分;②若每分钟跳绳个 数超过规定标准数量,每多跳1个绳加2分;③若每分钟跳绳个数没有达到规定标准数量,每少跳1个 绳扣1分.如果班级跳绳总积分超过200分,便可得到学校的奖励,请你通过计算说明七年级(1)班能 否得到学校奖励?
与标准质量的差(单位:千
-3 -2 -1.5 0
1
2.5
克)
筐数
1
4
2
2
8
(1)请将表格补充完整. (2)20筐白菜中,最重的一筐比最轻的一筐要重多少千克? (3)求这20筐白菜的总重量.
学习任务三 具有相反意义的量
变式训练:某中学为提高学生的身体素质,经常在课间开展学生跳绳比赛,下表为该校七年级(1) 班50名学生参加某次跳绳比赛的情况,规定标准数量为每人每分钟100个.
人教版数学七年级上册 第一章 有理数 1.1正数、负数以及0的意义 第二课时课件(共17张PPT)
You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
探究新知
下面图中的正探究新知
2.在地形图上表示某地的高度时,需要以海 平面为基准(规定海平面的海拔高度为0 m). 通常用正数表示高于海平面的某地的海拔高 度,用负数表示低于海平面的的某地的海拔 高度,珠穆朗玛峰的海拔高度为8 844.43 m, 它表示什么含义?吐鲁番盆地的海拔高度为 -155 m,它表示什么含义?
课堂小结
谈谈你对正、负数及0的认识. 1.正、负数表示具有相反意义的量, 一是它们的意义相反,
二是它们都是数量,且是同类量.
2.0的意义已不仅表示“没有”, 在实际问题中它有着特有的意义.
布置作业
习题1.1第1、2、3、7题.
探究新知
(1)那么当温度是零摄氏度时,我们应该怎样表
示呢? 表示为0℃.
(2)温度是零摄氏度表示没有温度,对吗? 不对,它是一个确定的温度.
(3)它是正数还是负数呢? 由于零摄氏度既不是零上温度也不是零下
温度,所以0既不是正数也不是负数,它是正数与
负数的分界,它的意义已不仅是表示“没有”.
探究新知
探究新知
问题1:既然0是一种既不是正数又不是负数的 数,那么它的意义仅表示没有吗?
例如:在温度的表示中,零上温度和零 下温度是两种不同意义的量,通常规定零上 温度用正数来表示,零下温度用负数来表示, 那么某一天某地的最高温度是零上7℃,最低 温度为零下5℃时,就应该表示为+7℃和-5℃, 这里+7℃和-5℃就分别称为正数和负数.
4 3
,0,-3.14,120,-1.732,
探究新知
下面图中的正探究新知
2.在地形图上表示某地的高度时,需要以海 平面为基准(规定海平面的海拔高度为0 m). 通常用正数表示高于海平面的某地的海拔高 度,用负数表示低于海平面的的某地的海拔 高度,珠穆朗玛峰的海拔高度为8 844.43 m, 它表示什么含义?吐鲁番盆地的海拔高度为 -155 m,它表示什么含义?
课堂小结
谈谈你对正、负数及0的认识. 1.正、负数表示具有相反意义的量, 一是它们的意义相反,
二是它们都是数量,且是同类量.
2.0的意义已不仅表示“没有”, 在实际问题中它有着特有的意义.
布置作业
习题1.1第1、2、3、7题.
探究新知
(1)那么当温度是零摄氏度时,我们应该怎样表
示呢? 表示为0℃.
(2)温度是零摄氏度表示没有温度,对吗? 不对,它是一个确定的温度.
(3)它是正数还是负数呢? 由于零摄氏度既不是零上温度也不是零下
温度,所以0既不是正数也不是负数,它是正数与
负数的分界,它的意义已不仅是表示“没有”.
探究新知
探究新知
问题1:既然0是一种既不是正数又不是负数的 数,那么它的意义仅表示没有吗?
例如:在温度的表示中,零上温度和零 下温度是两种不同意义的量,通常规定零上 温度用正数来表示,零下温度用负数来表示, 那么某一天某地的最高温度是零上7℃,最低 温度为零下5℃时,就应该表示为+7℃和-5℃, 这里+7℃和-5℃就分别称为正数和负数.
4 3
,0,-3.14,120,-1.732,
初一级数学上册第一章精人教版ppt课件
因数有偶数个时,积为正。
ppt精选版
7
4、除法: 除以一个数等于乘以这个数的倒数。 两数相除,同号得正,异号得负,并把绝对值相除。 0除以任何一个不为0的数,都得0。
5、乘方: 求几个相同因数的积的运算,叫做乘方。 乘方运算可以化为乘法运算进行:
即: an a a a
n
a是底数, n 是指数, a n 是幂。
算括号里面的。
注意:同级运算要由左到右进行。
ppt精选版
9
测试:
6.5
12、、一绝个对数值的小绝于对3的值非是负6整.5,数这是个_数0_,1是,_2 ________。。
3、1 91
9
的相反数的倒数是_10 ____。
4(、1)2002(22) __4___。
5、如a果2 16 ,那么a__4___。
第一单元复习
ppt精选版
1
有理数的两种分类:
整数
{ 有理数
{ { 分数
正整数
0 负整数 正分数
负分数
{ {{ 有理数
正有理数 0 负有理数
正整数 正分数 负整数 负分数
ppt精选版
2
数轴:
规定了原点、正方向、单位长度的直线叫做数轴。 任何一个有理数都可以用数轴上的一个点来表示。
如上图:
A点表示__2;
B点表示_2_;
C点表示__3;
D点表示_0_:
E点表示_1_.5。
ppt精选版
3
相反数:
只有符号不同的两个数互为相反数。 0的相反数是0。 例如:2和-2 互为相反数的两个数相加得0。 例如:5+(-5)=0
一个数 a相反数是 a。
例如: 3的相反数是-3 -4的相反数是-(-4)=4
ppt精选版
7
4、除法: 除以一个数等于乘以这个数的倒数。 两数相除,同号得正,异号得负,并把绝对值相除。 0除以任何一个不为0的数,都得0。
5、乘方: 求几个相同因数的积的运算,叫做乘方。 乘方运算可以化为乘法运算进行:
即: an a a a
n
a是底数, n 是指数, a n 是幂。
算括号里面的。
注意:同级运算要由左到右进行。
ppt精选版
9
测试:
6.5
12、、一绝个对数值的小绝于对3的值非是负6整.5,数这是个_数0_,1是,_2 ________。。
3、1 91
9
的相反数的倒数是_10 ____。
4(、1)2002(22) __4___。
5、如a果2 16 ,那么a__4___。
第一单元复习
ppt精选版
1
有理数的两种分类:
整数
{ 有理数
{ { 分数
正整数
0 负整数 正分数
负分数
{ {{ 有理数
正有理数 0 负有理数
正整数 正分数 负整数 负分数
ppt精选版
2
数轴:
规定了原点、正方向、单位长度的直线叫做数轴。 任何一个有理数都可以用数轴上的一个点来表示。
如上图:
A点表示__2;
B点表示_2_;
C点表示__3;
D点表示_0_:
E点表示_1_.5。
ppt精选版
3
相反数:
只有符号不同的两个数互为相反数。 0的相反数是0。 例如:2和-2 互为相反数的两个数相加得0。 例如:5+(-5)=0
一个数 a相反数是 a。
例如: 3的相反数是-3 -4的相反数是-(-4)=4
最新人教版七年级数学上册《第一章 有理数》优质PPT公开课件
182.5,
5 , 3 3 , 17 ,
2 43
负分数:
-7.5,
5, 2
3.25,
33, 4
5.35, 17 , 3
0
正整数集合
零
负整数集合
1.1, 12.91, 182.5, 3 3 ,
4
-7.5,
5 , 3.25, 3 3 ,
2
4
正分数集合
1
2
3
负分数集合
4
5 首页
二、合作探究
首页
两个整数的比(如 2),都1 可以化成 有限小数或无限循环小数。3 2
有限小数和无限循环小数都是分数,所以也 是有理数。
无限不循环小数(如 )不是分数,就不是
有理数。
首页
有理数分类的几点注意:
1,如
15 ,200%, 3
能约分成整数的数_不__能__
(填“能”或“不能”)算做分数;
2,无限不循环小数不是有理数;(无理数) 3,整数中除了正整数和负整数,还有__0___.
-89
正数集合
负数集合
0 2008
-89
……
整数集合
12/7 -3.1416 -8/5 -0.23456 10% 10.1
…0.6…7
分数集合
首页
例2:以下是两位同学给出的有理数的分类方 法,你认为他们的分类正确吗 ?
有理数
正整数 正有理数
正分数 有 理
负整数 数 负有理数
负分数
正数 整数 分数 负数 零
1.在以上各数中,哪些是在小学里学过的数?哪些是在初中里学过的数?
2.在小学里学过的数中,有没有哪类数在上面没有出现?请举例说明.
最新人教版七年级数学上册全套PPT课件-七年级数学上ppt精选全文
*
1.什么是负数?
我们将前面带有“-”的数叫负数,那么为什么要引入负数?通常我们在日常生活中用正数和负数分别表示怎样的量呢?.
*
中国男蓝在雅典奥运会上: 58:83负于西班牙 69:62战胜新西兰 57:82负于阿根廷 52:89负于意大利 积分:5分 67:66战胜塞黑
*
比标准重量多出5克
比标准重量少出5克
*
1.2.1有理数
*
复习与回顾:
上一节课我们讲了些什么内容?
1,正数和负数。 2,0既不是正数,也不是负数。 3,正数与负数通常用来表示具有相反意义的 量。 4,“0”所表示的意思。 5,在生产中,通常用正负数来表示允许误差;
*
1、粮食每袋标准重量是50千克,先测得甲、乙、丙三袋粮 食重量如下:52千克,49千克,49.8千克,如果超重部分 用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的 超重数和不足数;
*
“不是正数的数一定是负数,不是负数的数一定是正数”的说法对吗?
答案肯定是不对的,还有0的存在.
*
在生活中,我们将海平面高度计为0米,根据图的标识,你能说出我国的最高峰珠穆朗玛峰和吐鲁番盆地的海拔高度吗?
8848
-155
类似题中0可以都有怎样的意义?
0只是一个基准,它具有丰富的意义,不是简简单单的只表示没有.
2、国际乒联在正式比赛中采用打球,对大球的直径有严格的标准,现有5个乒乓球,测量它们的直径,超过标准的毫米数记为正数,不足的记为负数,测量结果如下: A.-0.1mm B.-0.2mm C.+0.25mm D.-0.05mm E.+0.15mm 你认为应该选哪一个4,7,142,-12,0,-37, 中,负整数共有( ) A.3个 B.2个 C.1 个 D.0个
1.什么是负数?
我们将前面带有“-”的数叫负数,那么为什么要引入负数?通常我们在日常生活中用正数和负数分别表示怎样的量呢?.
*
中国男蓝在雅典奥运会上: 58:83负于西班牙 69:62战胜新西兰 57:82负于阿根廷 52:89负于意大利 积分:5分 67:66战胜塞黑
*
比标准重量多出5克
比标准重量少出5克
*
1.2.1有理数
*
复习与回顾:
上一节课我们讲了些什么内容?
1,正数和负数。 2,0既不是正数,也不是负数。 3,正数与负数通常用来表示具有相反意义的 量。 4,“0”所表示的意思。 5,在生产中,通常用正负数来表示允许误差;
*
1、粮食每袋标准重量是50千克,先测得甲、乙、丙三袋粮 食重量如下:52千克,49千克,49.8千克,如果超重部分 用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的 超重数和不足数;
*
“不是正数的数一定是负数,不是负数的数一定是正数”的说法对吗?
答案肯定是不对的,还有0的存在.
*
在生活中,我们将海平面高度计为0米,根据图的标识,你能说出我国的最高峰珠穆朗玛峰和吐鲁番盆地的海拔高度吗?
8848
-155
类似题中0可以都有怎样的意义?
0只是一个基准,它具有丰富的意义,不是简简单单的只表示没有.
2、国际乒联在正式比赛中采用打球,对大球的直径有严格的标准,现有5个乒乓球,测量它们的直径,超过标准的毫米数记为正数,不足的记为负数,测量结果如下: A.-0.1mm B.-0.2mm C.+0.25mm D.-0.05mm E.+0.15mm 你认为应该选哪一个4,7,142,-12,0,-37, 中,负整数共有( ) A.3个 B.2个 C.1 个 D.0个
人教版七年级数学上册第一章 有理数概念 教学课件(共61张PPT)
1用科学计数法表示数只是改变数的形式并没有改变数的大小2负数用科学计数法表示时和正数一样区别就是前面多一个号3当把一个用科学计数法表示的数还原为原数时只需将小数点向右移动n位不足的数位用0补齐并把10的n次幂去掉551确定n时要根据科学计数法的规定使它为只含有一位整数的数2确定n的方法有两种1利用整数的位数来求nn等于原数的整数位数1ex
有理数的混合运算
知识拓展:
1、将带分数化为假分数,小数化为分数,再 进行乘方、乘除等运算;另外,有些运算可以
同时进行,以简化运算
2、分为三级:(1)第一级:加和减 (2)第二级:乘和除 (3)第三级:乘方
近似数
科学计数法:
1、用科学计数法表示数只是改变数的形式, 并没有改变数的大小
2、负数用科学计数法表示时和正数一样,区 别就是前面多一个“-”号 3、当把一个用科学计数法表示的数还原为原 数时,只需将小数点向右移动n位(不足的数 位用0补齐),并把10的n次幂去掉
乘方
有理数乘方运算的符号法则: (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数
偶次幂是正数 (3)0的任何正整数次幂都是0
乘方
有理数乘方的运算方法: (1)一是根据底数与指数确定幂的符号
二是把绝对值乘方 (2)根据乘方的意义,先把乘方转化为乘法, 再利用乘法的运算法则进行计算
乘方
知识拓展:
加号的几个正数或负数的和的形式 ex:(-9)-(+12)+(-3)-(-7)=-9-12-3+7
减法法则
提示: (1)只有把加减法统一成加法之后,才能写
成省略加号和括号的和的形式 (2)省略加号和括号的和的形式有两种读法:
a、按加法的结果来读:应读作“负9、负12、 负3、正7的和
有理数的混合运算
知识拓展:
1、将带分数化为假分数,小数化为分数,再 进行乘方、乘除等运算;另外,有些运算可以
同时进行,以简化运算
2、分为三级:(1)第一级:加和减 (2)第二级:乘和除 (3)第三级:乘方
近似数
科学计数法:
1、用科学计数法表示数只是改变数的形式, 并没有改变数的大小
2、负数用科学计数法表示时和正数一样,区 别就是前面多一个“-”号 3、当把一个用科学计数法表示的数还原为原 数时,只需将小数点向右移动n位(不足的数 位用0补齐),并把10的n次幂去掉
乘方
有理数乘方运算的符号法则: (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数
偶次幂是正数 (3)0的任何正整数次幂都是0
乘方
有理数乘方的运算方法: (1)一是根据底数与指数确定幂的符号
二是把绝对值乘方 (2)根据乘方的意义,先把乘方转化为乘法, 再利用乘法的运算法则进行计算
乘方
知识拓展:
加号的几个正数或负数的和的形式 ex:(-9)-(+12)+(-3)-(-7)=-9-12-3+7
减法法则
提示: (1)只有把加减法统一成加法之后,才能写
成省略加号和括号的和的形式 (2)省略加号和括号的和的形式有两种读法:
a、按加法的结果来读:应读作“负9、负12、 负3、正7的和
初中七年级数学上册《第一章 有理数》课件
(
8 19
)
0;
6、(
3 4
)
(8
2 3
1 3
);
7、0
23
(4)3
1 8
;
8、(2)3 0.5 (1.6)2 (2)2.
巩固练习3:
9、27
(
9 8
)
0;
(注意符号)
10、 9 5 (6) 12 (6);
11、0
ቤተ መጻሕፍቲ ባይዱ
23
(4)3
有理数的混合运算 (复习课)
观察
下面的算式中有哪几种运算?
3+50÷22×(
-
1 5
)-1
一个运算中,含有有理数的加、减、
乘、除、乘方多种运算,称为有理数的
混合运算.
对于有理数的运算,分为三级运算:
1、第一级是加减运算; 2、第二级是乘除运算; 3、第三级是乘方
有理数的混合运算可按下面的法则
1进、行先计算算乘:方运算,再算乘除运算,最后算 加减;
1 8
;
12、(2)3 0.5 (1.6)2 (2)2.
拓展练习:
13、 32
(2
1 2
)
2
(2)3
22
;
14、 9 5 (6) (4)2 (3);
15、 22 (2) (2)3 (0 2)3 (2)2
16、14
A8 73 1 -8 -7 3
“24点”游戏
QQ3A 12 -12 3 -1
A2 1 -2
人教版七年级上册数学-第一章-有理数-1.1-PPT
答:这个物体又向左移动了1 m,即回到了原处。
探讨:
➢ -a,-b一定是负数吗? +a,+b一定是正数吗?
➢ 0是不是仅仅表示“没有”
下次再见
第一章 有理数 1.1 正数和负数
1.1 正数和负数
数的产生和发展离不开生活和生产的需要。
由表示“没 有”“空位”, 产生数0
由记数、排序, ,
产生分数 ½ , ⅓,……
说一说下列题中用到的数的含义。
温度: 3℃
-3℃
零上3℃ 零下3℃
产量增长率: 1.8% -1.8%
答:这个月小明体重增长 2 kg, 小华增长 -1 kg, 小强体重增长 0 kg 。
例2 某年,下列国家的商品进出口总额比上年的变化情况是:美 国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意 大利增长0.2%,中国增加7.5%.写出这些国家这一年商品进出口总 额的增长率。
本日收入: 4.5元 -4.5元
产量增加1.8% 产量减少1.8%
收入4.5元 支出4.5元
你能说说每一个 数字的实际意义
吗?
知识点
正数
大于0的数
0是正数还是负数?
数
零
负数
正数怎么用符 号表示呢?
既不是正数,也不是负数。
在正数前面加上符号“-”(负)的 数(小于0的数)
例题:
例1 一个月内,小明体重增加2 kg,小华体重减少1 kg, 小强体重无变化,写出他们这个月的体重增长值。
升降
练习:
-3 -150
向西走60m 0
+126
5.下列结论中正确的是 ( D ).
(A) 0既是正数,又是负数 (B) 0是最小的正数 (C) 0是最大的负数 (D) 0既不是正数,也不是负数
探讨:
➢ -a,-b一定是负数吗? +a,+b一定是正数吗?
➢ 0是不是仅仅表示“没有”
下次再见
第一章 有理数 1.1 正数和负数
1.1 正数和负数
数的产生和发展离不开生活和生产的需要。
由表示“没 有”“空位”, 产生数0
由记数、排序, ,
产生分数 ½ , ⅓,……
说一说下列题中用到的数的含义。
温度: 3℃
-3℃
零上3℃ 零下3℃
产量增长率: 1.8% -1.8%
答:这个月小明体重增长 2 kg, 小华增长 -1 kg, 小强体重增长 0 kg 。
例2 某年,下列国家的商品进出口总额比上年的变化情况是:美 国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意 大利增长0.2%,中国增加7.5%.写出这些国家这一年商品进出口总 额的增长率。
本日收入: 4.5元 -4.5元
产量增加1.8% 产量减少1.8%
收入4.5元 支出4.5元
你能说说每一个 数字的实际意义
吗?
知识点
正数
大于0的数
0是正数还是负数?
数
零
负数
正数怎么用符 号表示呢?
既不是正数,也不是负数。
在正数前面加上符号“-”(负)的 数(小于0的数)
例题:
例1 一个月内,小明体重增加2 kg,小华体重减少1 kg, 小强体重无变化,写出他们这个月的体重增长值。
升降
练习:
-3 -150
向西走60m 0
+126
5.下列结论中正确的是 ( D ).
(A) 0既是正数,又是负数 (B) 0是最小的正数 (C) 0是最大的负数 (D) 0既不是正数,也不是负数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
零的相反数是零 绝对值的意义: 1、一个正数的绝对值是它本身
2、零的绝对值是零 3、一个负数的绝对值是它的相反数 一个数的绝对值一定大于或等于零
4
判断下列各图形是否是数轴:
5
课前回顾
1
有理数
正有理数 0
负有理数
正整数 正分数
负整数
整 数分
数
负分数
2
负数: 小于零的数 表示与正数意义相反的数
正数都大于零,负数都小于零,正数都大于负数。
数轴三要素: 原点 正方向 单位长度
总原则:在数轴上表示的两个数,右边的数总比左边的数大。
相反数的特点: 1、性质符号不同 2、这两个点到原点的距离相等
2、零的绝对值是零 3、一个负数的绝对值是它的相反数 一个数的绝对值一定大于或等于零
4
判断下列各图形是否是数轴:
5
课前回顾
1
有理数
正有理数 0
负有理数
正整数 正分数
负整数
整 数分
数
负分数
2
负数: 小于零的数 表示与正数意义相反的数
正数都大于零,负数都小于零,正数都大于负数。
数轴三要素: 原点 正方向 单位长度
总原则:在数轴上表示的两个数,右边的数总比左边的数大。
相反数的特点: 1、性质符号不同 2、这两个点到原点的距离相等