有理数运算检测2

合集下载

第2章 有理数的运算 配 套 阶 段 性 测 试(二)

第2章 有理数的运算   配 套 阶 段 性 测 试(二)

阶 段 性 测 试(二)(见学生单册)[考查范围:2.1~2.4 总分:100分]一、选择题(每小题4分,共32分) 1.下列各式运算正确的是( C ) A .(-3)+(+7)=-4 B .(-2)+(+2)=-4 C .(+6)+(-11)=-5 D .(-5)+(+3)=-82.若( )-(-5)=-3,则括号内的数是( B ) A .-2 B .-8 C .2 D .83.用算式表示“比-4 ℃低6 ℃的温度”正确的是( B ) A .-4+6=2 B .-4-6=-10 C .-4+6=-10 D .-4-6=-24.引入相反数后,加减混合运算可以统一为加法运算,用式子表示正确的是( D ) A .a +b -C =a +b +C B .a -b +C =a +b +CC .a +b -C =a +(-b )+(-C)D .a +b -C =a +b +(-C)5.下列变形,运用运算律正确的是( B ) A .2+(-1)=1+2B .3+(-2)+5=(-2)+3+5C .[6+(-3)]+5=[6+(-5)]+3 D.13+(-2)+⎝⎛⎭⎫+23=⎝⎛⎭⎫13+23+(+2) 6.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( C )第6题图①|b |<|a |; ②a -b >0; ③a +b >0; ④a -b >a +b . A .①② B .①③ C .②④ D .③④7.某公司的仓库中原先有1.5万件货物,后又运出0.7万件,过了一段时间后计划往仓库中补充1.2万件,但因为某些原因,少往仓库中补充0.3万件,则现在仓库中的货物有( B )A .1.8万件B .1.7万件C .1.5万件D .1.1万件 8.已知|a |=3,|b |=4,且a ,b 异号,则a -b 的值为( D ) A .1或7 B .-1或7 C .±1 D .±7 二、填空题(每小题5分,共20分)9.三个不同的有理数(不全同号)的和为1,请你写出一个算式__(-3)+5+(-1)(答案不唯一)__.10.若|a |=8,b 的相反数为5,则a +b 的值是__3或-13__.11.表示运算a +C -b ,y +w -x -z .__4__.12.如图的号码是由12位数字组成的,每一位数字写在下面的方格中,若任何相邻的∴根据任何相邻的三个数字之和都等于12,可得x 右边的数字为-2,9右边的紧接着的两个空格中的两数之和为3,∴可得x 左边的空格中的数为9,故x =12-9+2=5. 三、解答题(共48分)13.(8分)计算下列各式:(1)-114+2.75.(2)4.8-3.4-(-4.5). (3)23-18-⎝⎛⎭⎫-13+⎝⎛⎭⎫-38. (4)12+⎝⎛⎭⎫-23-⎝⎛⎭⎫-45+⎝⎛⎭⎫-12. 解:(1)-114+2.75=-1.25+2.75=1.5.(2)4.8-3.4-(-4.5)=4.8-3.4+4.5=5.9 (3)23-18-⎝⎛⎭⎫-13+⎝⎛⎭⎫-38=23+13-18-38=1-12=12. (4)12+⎝⎛⎭⎫-23-⎝⎛⎭⎫-45+⎝⎛⎭⎫-12=12-12-23+45=-1015+1215=215. 14.(10分)张华记录了今年雨季钱塘江一周内水位变化的情况,如下表(正号表示比前(1)本周星期__二____水位最高,星期__一__水位最低.(2)与上周末相比,本周日的水位是上升了还是下降了?(写出计算过程) 解:(2)设上周日的水位是a 米,(+0.25)+(0.80)+(-0.40)+(+0.03)+(+0.28)+(-0.36)+(-0.04)=0.56,则这周末的水位是(a +0.56)米,∴(a +0.56)-a =0.56>0,即本周日的水位是上升了.15.(10分)计算⎝⎛⎭⎫-556+⎝⎛⎭⎫-923+1734+⎝⎛⎭⎫-312时,小明把整数与分数拆开,再运用加法运算律计算:解:原式=⎣⎡⎦⎤(-5)+(-56)+⎣⎡⎦⎤(-9)+⎝⎛⎭⎫-23+⎝⎛⎭⎫17+34+⎣⎡⎦⎤(-3)+⎝⎛⎭⎫-12=[(-5)+(-9)+17+(-3)]+⎣⎡⎦⎤⎝⎛⎭⎫-56+⎝⎛⎭⎫-23+34+⎝⎛⎭⎫-12 =0+⎝⎛⎭⎫-114 =-114.阅读小明的计算过程,如果喜欢他的方法,请你仿照计算下面题目,如不喜欢,请你用自己的方法计算.(1)-114+⎝⎛⎭⎫-213)+756+⎝⎛⎭⎫-412. (2)⎝⎛⎭⎫-2 01723+2 01634+⎝⎛⎭⎫-2 01556+1612. 解:(1)原式=(-1-2+7-4)+⎝⎛⎭⎫-14-13+56-12=-14. (2)原式=(-2017+2016-2015+16)+⎝⎛⎭⎫-23+34-56+12 =-2 000-14=-2 00014.16.(10分)一名足球守门员练习折返跑,从球门的位置出发,向前记做正数,返回记做负数,他的记录如下(单位:米):+5,-3,+10,-8,-6,+12,-10.(1)守门员是否回到了原来的位置? (2)守门员离开球门的位置最远是多少? (3)守门员一共走了多少路程? 解:根据题意得(1)5-3+10-8-6+12-10=0, 故回到了原来的位置.(2)离开球门的位置最远是12米.(3)总路程=|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=54(米). 17第17题图(1)对照数轴填写上表,并猜想:A 、B 两点间的距离可表示为( D ) A .a +b B .a -b C .|a +b | D .|a -b |(2)数轴上|x -2|=1表示x 到2的距离是1,则x 的值是__1或3__.|3+5|表示的意义是__数轴上3到-5的距离__;(3)求出数轴上到7和-7的距离之和为14的所有整数的和. (4)若数轴上点C 表示的数为x .①当点C 对应数__-1__时,|x +1|的值最小,|x +1|的最小值是__0__. ②当点C 在什么位置时,|x +1|+|x -2|的值最小?并求出这个最小值.解:(3)-7+(-6)+(-5)+(-4)+(-3)+(-2)+(-1)+0+1+2+3+4+5+6+7=0. (4)②点C 在-1与2之间(包括-1和2)时|x +1|+|x -2|的值最小,此时|x +1|+|x -2|=x +1+2-x =3.1.1 生活中的立体图形一、预习检测1.参照课本第 2 页的导游图(1)发现了亭子的顶端是__________,下面的支柱是_________。

第二章 有理数的运算单元测试题及答案

第二章 有理数的运算单元测试题及答案

第二章 有理数的运算单元测试题班级 ______________ 学号一、选择题1、以下表达正确的选项是〔 〕(A)有理数中有最大的数. (B)零是整数中最小的数.(C)有理数中有绝对值最小的数. (D)假设一个数的平方与立方结果相等,则这个数是0.2、 以下近似数中,含有3个有效数字的是〔 〕 〔A 〕5 430. 〔B 〕5.430×106〔C 〕0.543 0. 〔D 〕5.43万.3、已知两数相乘大与0,两数相加小于0,则这两数的符号为( )(A) 同正. 〔B 〕同负. 〔C 〕一正一负. 〔D 〕无法确定. 4、假设-2减去一个有理数的差是-5,则-2乘这个有理数的积是〔 〕 〔A 〕10. 〔B 〕-10. 〔C 〕6. 〔D 〕-6. 5、算式〔61-21-31〕×24的值为〔 〕 〔A 〕-16. 〔B 〕16. 〔C 〕24. 〔D 〕-24. 6、已知不为零的a,b 两数互为相反数,则以下各数不是互为相反数的是〔 〕 〔A 〕5 a 与5 b . (B)a 3与b 3. (C)a 1与b1. (D)a 2与b 2. 7、按下面的按键顺序在某型号计算器上按键:显示结果为〔 〕〔A 〕56.25. 〔B 〕5.625. 〔C 〕0.562 5. 〔D 〕0.056 25.8.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米, 超过部分按每立方米1.2元收费.已知甲用户某月份用煤气80每立方米,那么这个月甲用户应交煤气费 ( )A.64元B.66元C.72元D.96元 9. 3是331的近似值,其中331叫做真值,假设某数由四舍五入得到的近似数是27,则以下各数中不可能是27的真值的是 ( )A.26.48B.26.53C.26.99D.27.02 10.小华和小丽最近测了自己的身高,小华量得自己约1.6m ,小丽测得自己的身高约为1.60m ,以下关于她俩身高的说法正确的选项是 ( )A.小华和小丽一样高B.小华比小丽高C.小华比小丽低D.无法确定谁高 二、填空题 11. -32的倒数是 ;-32的相反数是 ,-32的绝对值是 ;-32的平方是 . 12、比较以下各组数的大小:〔1〕43 65; 〔2〕-87 -98; 〔3〕 -22 〔-2〕2;〔4〕〔-3〕3 -33.13、〔1〕近似数2.5万精确到 位;有效数字分别是 ;〔2〕1纳米等于十亿分之一米,用科学记数法表示25米= 纳米. 14.数轴上表示有理数-3.5与4.5两点的距离是 . 15.(-1)2+(-1)3+…+(-1)2010= .16.李明与王伟在玩一种计算的游戏,计算的规则是|d c b a |=ad -bc,李明轮到计算|1523|,根据规则|1523|=3×1-2×5=3-10=-7,,现在轮到王伟计算|5632|得 .17、我国著名数学家华罗庚曾经说过这样一句话:“数形结合百般好,隔裂分家万事休”.如图, 在一个边长为1的正方形纸板上,依次贴上面积为21,41,81,161,…,1021的小长方形纸片,请你写出最后余下未贴部分的面积的表达式: .18.a 是不为1的有理数,我们把a -11称为a 的差倒数....如:3的差倒数是311-=-21,-1的差倒数是)1(11--=21.已知a 1=2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,则a 2010= 。

浙教版数学七上第二单元练习测试

浙教版数学七上第二单元练习测试

第2章有理数的运算检测题一、选择题(每小题3分,共30分)1.有理数a、b在数轴上对应的位置如图所示,则()A.a+b<0B.a+b>0C.a-b=0D.a-b>02.下列运算正确的是()A. B. C.D. =83.计算的值是()A.0B.-54C.-72D.-184.下列说法中正确的有()①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值,等于这两个有理数的绝对值的积.A.1个B.2个C.3个D.4个5.气象部门测定发现:高度每增加1 km,气温约下降5 ℃.现在地面气温是15 ℃,那么4 km高空的气温是()A.5 ℃B.0 ℃C.-5 ℃D.-15 ℃6.计算等于()A.-1B.1C.-4D.47.小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是( )A.90分B.75分C.91分D.81分8.若规定“!”是一种数学运算符号,且1!=1,2!=1×2=2,3!=3×2×1=6,4!=4×3×2×1=24,⋯,则!98!100的值为( ) A.4950B.99!C.9 900D.2! 9.已知,,且,则的值为( )A.-13B.+13C.-3或+13D.+3或-13 10.若,则a 及b 的大小关系是( )A.a =b =0B.a 及b 不相等C.a ,b 异号D.a ,b 互为相反数二、填空题(每小题3分,共24分) 11.若规定,则的值为 .12.如图所示,在数轴上将表示-1的点向右移动3个单位长度后,对应点表示的数是_____ ____.13.甲、乙两同学进行数字猜谜游戏.甲说:一个数的相反数就是它本身,乙说:一个数的倒数也等于它本身,请你猜一猜_______.14.计算:________ _.15.某次数学测验共20道选择题,规则是:选对一道得5分,选错一道得-1分,不选得零分,王明同学的卷面成绩是:选对16道题,选错2道题,有2道题未做,他的得分是 .16.讲究卫生要勤洗手,人的一只手上大约有28 000万个看不见的细菌,用科学记数法表示两只手上约有个细菌.17.某年级举办足球循环赛,规则是:胜一场得3分,平一场得1分,输一场得-1分,某班比赛结果是胜3场平2场输4场,则该班得分.18.如图是一个数值转换机的示意图,若输入x的值为3,的值为-2,则输出的结果为.三、解答题(共46分)19.(12分)计算:(1);(2);(3)211; (4).20.(5分)已知:,,且,求的值21.(5分)某工厂本周内计划每日生产300辆电动车,由于每日上班人数不一定相等,实际每日生产量及计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数): 星期 一 二 三 四 五 六 日 增减-5+7-3+4+10-9-25(1)本周三生产了多少辆电动车?(2)本周总生产量及计划生产量相比,是增加还是减少? (3)产量最多的一天比产量最少的一天多生产了多少辆?22.(6分)为节约用水,某市对居民用水规定如下:大户(家庭人口4人及4人以上者)每月用水15 m 3以内的,小户(家庭人口3人及3人以下者)每月用水10 m 3以内的,按每立方米收取0.8元的水费;超过上述用量的,超过部分每立方米水费加倍收取.某用户5口人,本月实际用水25 m 3,则这户本月应交水费多少元?23.(6分)出租车司机老王某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:)如下:(1)将第几名乘客送到目的地时,老王刚好回到上午出发点? (2)将最后一名乘客送到目的地时,老王距上午出发点多远?(3)若汽车耗油量为0.4/,这天上午老王耗油多少升?24.(6分)李强靠勤工俭学的收入维持上大学费用,表中是李强某一周的收支情况表,记收入为正,支出为负(单位:元):星期一二三四五六日收入+15+180+160+25+24支出10 14 13 8 10 14 15(1)到这个周末,李强有多少节余?(2)照这个情况估计,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?25.(6分)观察下列各式:….猜想:(1)的值是多少?(2)如果为正整数,那么的值是多少?第2章 有理数的运算检测题参考答案一、选择题1.A 解析:由数轴可知是负数,是正数,离原点的距离比离原点的距离大,所以,故选A.2.B 解析:,A 错;,C 错;,D错.只有B 是正确的. 3.B解析:.4.B 解析: ①错误,如(-2)×(-3)=6,符号改变; ③错误,如0×0,积为0;②④正确.5.C 解析:15-5×4=-5(℃).6.C解析:.7.C 解析:小明第四次测验的成绩是故选C.8.C 解析:根据题意可得:100!=100×99×98×97×…×1,98!=98×97×…×1, ∴19798198×99×100!98!100⨯⨯⨯⨯⨯= =100×99=9 900,故选C .9.C 解析:因为,,所以,.又,所以.故或.10.A 解析:因为,又,所以.二、填空题11.解析:.12.2 解析:.13.1 解析:因为相反数等于它本身的数是,倒数等于它本身的数是,所以,所以14.解析:.15.78分解析:(分).16.17.7 解析:(分).18.5 解析:将代入得.三、解答题19.解:(1).(2).(3)211(4).20.解:因为,所以.因为,所以.又因为,所以.所以或.21.分析:(1)明确增加的车辆数为正数,减少的车辆数为负数,依题意列式,再根据有理数的加减法法则计算;(2)首先求出总生产量,然后和计划生产量比较即可得到结论; (3)根据表格可以知道产量最多的一天和产量最少的一天各自的产量,然后相减即可得到结论. 解:(1)本周三生产的电动车为:(辆).(2)本周总生产量为(辆),计划生产量为:300×7=2 100(辆),2 100-2 079=21(辆), 所以本周总生产量及计划生产量相比减少21辆. 或者由,可知本周总生产量及计划生产量相比减少21辆.(3)产量最多的一天比产量最少的一天多生产了(辆),即产量最多的一天比产量最少的一天多生产了35辆.22.解:因为该用户是大户,所以应交水费(元).答:这户本月应交水费28元.23.解:(1)因为,所以将第6名乘客送到目的地时,老王刚好回到上午出发点.(2)因为,所以将最后一名乘客送到目的地时,老王距上午出发点.(3)因为,,所以这天上午老王耗油.24.分析:(1)七天的收入总和减去支出总和即可;(2)首先计算出一天的节余,然后乘30即可;(3)计算出这7天支出的平均数,即可作为一个月中每天的支出,乘30即可求得.解:(1)由题意可得:(元).(2)由题意得:14÷7×30=60(元).(3)根据题意得:10+14+13+8+10+14+15=84,84÷7×30=360(元).答:(1)到这个周末,李强有14元节余.(2)照这个情况估计,李强一个月(按30天计算)能有60元节余.(3)按以上的支出水平,李强一个月(按30天计算)至少有360元收入才能维持正常开支.25.解:(1).(2).。

鲁教版小学数学六年级上册《有理数及其运算》单元测试2

鲁教版小学数学六年级上册《有理数及其运算》单元测试2

第二章 有理数及其运算单元测试一、选择题(本大题共15小题,共45分):1、在–1,–2,1,2四个数中,最大的一个数是( )(A )–1 (B )–2 (C )1 (D )22、有理数31的相反数是( ) (A )31 (B )31- (C )3 (D ) –3 3、计算|2|-的值是( )(A )–2 (D )21- (C ) 21 (D )2 4、有理数–3的倒数是( )(A )–3 (B )31- (C )3 (D )31 5、π是( )(A )整数 (B )分数 (C )有理数 (D )以上都不对6、计算:(+1)+(–2)等于( )(A )–l (B ) 1 (C )–3 (D )37、计算32a a ⋅得( )(A )5a (B )6a (C )8a (D )9a8、计算()23x 的结果是( )(A )9x (B )8x (C )6x (D )5x9、我国拟设计建造的长江三峡电站,估计总装机容量将达16780000千瓦,用科学记数法表示总装机容量是( )(A )4101678⨯千瓦(B )61078.16⨯千瓦(C )710678.1⨯千瓦(D )8101678.0⨯千瓦10、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为( )亿元(A )4101.1⨯ (B )5101.1⨯ (C )3104.11⨯ (D )3103.11⨯11、用科学记数法表示0.0625,应记作( )(A )110625.0-⨯ (B )21025.6-⨯ (C )3105.62-⨯ (D )410625-⨯12、大于–3.5,小于2.5的整数共有( )个。

(A )6 (B )5 (C )4 (D )313、已知数b a ,在数轴上对应的点在原点两侧,并且到原点的位置相等;数y x ,是互为倒数,那么xy b a 2||2-+的值等于( )(A )2 (B )–2 (C )1 (D )–114、如果a a =||,那么a 是( )(A )0 (B )0和1 (C )正数 (D )非负数15、如果两个有理数的积是正数,和也是正数,那么这两个有理数( )(A )同号,且均为负数 (B )异号,且正数的绝对值比负数的绝对值大(C )同号,且均为正数 (D )异号,且负数的绝对值比正数的绝对值大二、填空题:(本大题共5小题,共15分)16、如果向银行存入人民币20元记作+20元,那么从银行取出人民币32.2元记作________。

新北师版初中数学七年级上册第二章有理数及其运算检测题2(2.1-2.6)和解析答案

新北师版初中数学七年级上册第二章有理数及其运算检测题2(2.1-2.6)和解析答案

第二章 有理数及其运算检测卷一、选择题1.计算:|-13|=( )A .3B .-3 C.13 D .-132.下列各数中,最小的数是( ) A .0 B.13C .-13 D .-33.计算(-2)+3的结果是( )A .1B .-1C .-5D .-6 4.下面说法正确的是( )A .两数之和不可能小于其中的一个加数B .两数相加就是它们的绝对值相加C .两个负数相加,和取负号,绝对值相减D .不是互为相反数的两个数,相加不能得零5.哈市某天的最高气温为28 ℃,最低气温为21 ℃,则这一天的最高气温与最低气温的差为( )A .5 ℃B .6 ℃C .7 ℃D .8 ℃ 6.下列各式中,其和等于4的是( ) A .(-114)+(-214)B .312-558-|-734|C .(-12)-(-34)+2D .(-34)+0.125-(-458)7.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图.则这4筐杨梅的总质量是( )A .19.7千克B .19.9千克C .20.1千克D .20.3千克8.已知有理数a ,b ,c 在数轴上的位置如图,则下列结论错误的是( )A .c -a <0B .b +c <0C .a +b -c <0D .|a +b |=a +b 二、填空题9.如果将低于警戒线水位0.27 m 记作-0.27 m ,那么+0.42 m 表示________________________. 10.按规定,食品包装袋上都应标明袋内装有食品多少克,下表是几种饼干的检验结果,“+”“-”号分别表示比标准重量多和少,用绝对值判断最符合标准的一种食品是________.11.从-5中减去-1,-3,2的和,所得的差是________.12.如果a 的相反数是最小的正整数,b 是绝对值最小的数,那么a +b =________,b -a =________.13.一只小虫从数轴上表示-1的点出发,先向左爬行2个单位长度,再向右爬行5个单位长度到点C ,则点C 表示的数是________.14.现有一列数:2,34,49,516,…,则第7个数为________.15.已知01=-x ,2=y ,则x -y =________.16.已知33+=+x x ,猜猜看x 是什么数?________.三、解答题17.将下列各数填在相应的集合里:+6,-2,-0.9,-15,1,35,0,314,0.63,-4.92.18.在数轴上表示下列各数:-12,|-2|,-(-3),0,52,-(+32),并用“<”将它们连接起来.19.计算: (1)(-10)+(+7);(2)(+52)-(-13);(3)12-(-18)+(-7)-15;(4)12+(-23)-(-45)+(-12)-(+13).20.一个水利勘察队,第一天沿江向上游走了7千米,第二天沿江向下游走了5.3千米,第三天沿江向下游走了6.5千米,第四天沿江向上游走了10千米,第四天勘察队在出发点的上游还是下游?距出发点多少千米?21.某自行车厂本周计划每天生产100辆自行车,由于工人实行轮休,每天上班人数不一定相等,实际每天产量与计划产量对比如下表:(超出的辆数为正数,不足的辆数为负数)五(1)本周总产量与计划产量相比,增加(或减少)了多少辆?(2)日平均产量与计划产量相比,增加(或减少)了多少辆?。

北师大版(2024)七年级上册《2.2_有理数的加减运算2》2024年同步练习卷+答案解析

北师大版(2024)七年级上册《2.2_有理数的加减运算2》2024年同步练习卷+答案解析

北师大版(2024)七年级上册《2.2有理数的加减运算2》2024年同步练习卷一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.计算的结果等于()A.12B.C.6D.2.下列算式正确的是()A. B.C. D.3.下列算式正确的是()A. B.C. D.4.把统一为加法运算,正确的是()A. B.C. D.5.若,则括号内的数是()A.13B.3C.D.6.甲、乙两人用简便方法进行计算的过程如下所示,下列判断正确的是()甲:乙:A.甲、乙都正确B.甲、乙都不正确C.只有甲正确D.只有乙正确7.能与相加得0的数是()A. B. C. D.8.某同学在计算时,误将看成了,从而算得的结果是5,则正确结果是()A.13B.C.9D.二、填空题:本题共4小题,每小题3分,共12分。

9.已知甲地的海拔高度是300m ,乙地的海拔高度是,那么甲地比乙地高______.10.若a 的相反数是,b 的绝对值是4,则______.11.若a 是绝对值最小的数,b 是最大的负整数,则______.12.如图所示,某勘探小组测得E点的海拔为20m,F点的海拔为以海平面为基准,则E点比F点高______三、计算题:本大题共1小题,共6分。

13.计算;四、解答题:本题共10小题,共80分。

解答应写出文字说明,证明过程或演算步骤。

14.本小题8分计算:;;15.本小题8分计算:;;;;;16.本小题8分计算:;;;以地面为基准,A处高,B处高,C处高处比B处高多少米?处和C处哪个地方高?高多少米?处和C处哪个地方低?低多少米?18.本小题8分列式计算:减的差与的和;与的和减的差.19.本小题8分计算.;20.本小题8分计算:;;;;;;;;21.本小题8分某商店去年四个季度盈亏情况如下盈利为正数,亏损为负数:68万元,万元,万元,145万元.问:盈利最多的季度与最少的季度相差多少?全年盈亏情况如何?用简便方法计算:;23.本小题8分已知,若,,求的值;若,求的值.答案和解析1.【答案】C【解析】【分析】根据减去一个数等于加上这个数相反数,可得答案.本题考查了有理数的加法,先转化成加法,再进行加法运算.【解答】解:原式故选2.【答案】B【解析】解:,故选项A错误;B.,故选项B正确;C.,故选项C错误;D.,故选项D错误.故选:根据有理数的减法运算法则解答即可.本题考查了有理数的减法运算,熟练掌握有理数的减法运算法则是解题的关键.3.【答案】D【解析】解:,此选项的计算错误,故此选项不符合题意;B.,此选项的计算错误,故此选项不符合题意;C.,此选项的计算错误,故此选项不符合题意;D.,,,此选项的计算正确,故此选项符合题意;故选:各个选项均根据有理数的加减法则和绝对值是性质,进行计算,然后根据计算结果进行判断即可.本题主要考查了有理数的减法,解题关键是熟练掌握有理数的加减法则.4.【答案】B【解析】解:原式,故选:根据有理数的减法法则即可求得答案.本题考查有理数的减法,熟练掌握相关运算法则是解题的关键.5.【答案】A【解析】解:;故选:根据有理数的加法即可算出答案.本题考查的有理数的加法运算,解题关键是掌握有理数的加法法则.6.【答案】D【解析】解:甲的计算错误,正确过程如下:;乙的计算过程正确:原式,故选:分别根据甲乙两人的计算过程,结合加法的运算律,根据有理数的加减混合运算的法则进行判断即可.本题考查了有理数的加减混合运算,运用运算律简化运算,掌握加法运算律是解题的关键.7.【答案】B【解析】解:一个数能与相加得0,这个数是的相反数,即故选:根据相反数的定义列式求解即可.本题主要考查了相反数的应用,理解和为零的两个数互为相反数是解答本题的本题的关键.8.【答案】B【解析】解:由题意,得,,故选:根据题意,得出,求出N的值,然后再计算出正确结果即可.本题考查了有理数的加法运算和减法运算,熟练掌握有理数的加法运算法则和减法运算法则是解题的关键.9.【答案】360m【解析】解:根据题意,得,故答案为:根据甲地比乙地高列式计算.本题主要考查了有理数的加法,掌握有理数的加法运算法则,符号的确定是解题关键.10.【答案】7或【解析】解:的相反数是,的绝对值是4,当,时,则,当,时,故答案为:7或先根据相反数和绝对值的定义求得a、b的值,最后相加即可.本题主要考查的是求代数式的值,求得a、b的值是解题的关键.11.【答案】1【解析】解:若a是绝对值最小的数,b是最大的负整数,则,,故答案为:根据绝对值都是非负数,可得绝对值最小的数,根据相反数,可得一个负数的相反数.本题考查了绝对值,根据定义解题是解题关键.12.【答案】40【解析】解:,答:E点比F点高故答案为:根据题意,列出,再根据有理数的减法运算法则计算即可.本题考查了有理数的减法运算,正负数,熟练掌握有理数的减法运算法则是解题的关键.13.【答案】解:;【解析】根据有理数加减运算法则、去绝对值法则计算出结果即可.本题考查了有理数加减运算、去绝对值,做题关键是要掌握有理数加减运算法则、去绝对值法则.14.【答案】解:;;【解析】先把式子省略括号和加号,再加减;先把式子省略括号和加号,再把分数化为小数,最后利用加法的交换律和结合律;先把部分分数化为小数,再利用加法的交换律和结合律.本题考查了有理数的加减运算,掌握有理数的加减法法则、加法的交换律和结合律是解决本题的关键.15.【答案】解:;;;;;【解析】根据有理数减法法则:减去一个数,等于加上这个数的相反数.即:,依此计算即可求解.考查了有理数减法.①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号减号变加号;二是减数的性质符号减数变相反数16.【答案】;;;【解析】利用有理数的减法法则计算;利用有理数的减法法则计算;利用有理数的减法法则计算;利用有理数的减法法则计算.本题考查了有理数的减法运算,解题的关键是掌握有理数的减法法则.17.【答案】解:答:A处比B处高19m;,处比C处高,答:B处比C处高15m;,处比A处低,答:C处比A处低【解析】分别列式,再根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.本题考查了正负数的意义,大小比较,有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.18.【答案】解:;【解析】根据题意列出式子再进行计算即可;根据题意列出式子再进行计算即可.本题考查有理式的加减法,掌握运算法则是解题的关键.19.【答案】解:;【解析】先把式子化为省略加号和括号的形式,再把正数、负数分别相加;先把式子化为省略加号和括号的形式,再把分母相同的分数分别相加.本题考查了有理数的加减运算,掌握有理数的加减法法则、加法的交换律和结合律是解决本题的关键.20.【答案】解:原式;原式;原式;原式;原式;原式;原式;原式;原式【解析】直接利用有理数的加减运算法则计算得出答案.此题主要考查了有理数的减法,正确掌握相关运算法则是解题关键.21.【答案】解:由题意知,盈利最多的季度盈利了145万元,最少的季度盈利了万元,万元;由题意,,,万元答:盈利最多的季度与最少的季度相差285万元;全年亏损22万元.【解析】由题意知,盈利最多的季度为145万元,盈利最少的季度为万元,盈利最多的季度钱数-盈利最少的季度钱数,即为所求;四个季度的盈利额相加,结果为正则盈利,结果为负则亏损.本题主要考查了正数和负数,掌握正负数表示一对相反意义的量,用正数表示其中一种意义的量,另一种量用负数表示.22.【答案】解:;【解析】先把分数化为小数,再利用加法的交换律和结合律;先把减法转化为加法,再利用加法的交换律和结合律.本题考查了有理数的加减运算,掌握有理数的加减法法则、加法的交换律和结合律是解决本题的关键.23.【答案】解:,,,,,,,;,,,,或,,当,时,,当,时,,的值为或【解析】先根据已知条件,求出x,y值,再根据,,求出;由中求出的x,y值,根据,取值进行计算即可.本题主要考查了有理数的加减法,解题关键是熟练掌握有理数的加减法则.。

新人教版初中数学七年级数学上册第一单元《有理数》检测卷(有答案解析)(2)

新人教版初中数学七年级数学上册第一单元《有理数》检测卷(有答案解析)(2)

一、选择题1.下列计算正确的是()A.|﹣3|=﹣3 B.﹣2﹣2=0C.﹣14=1 D.0.1252×(﹣8)2=12.据报通,国家计划建设港珠澳大桥,估解该项工程总报资726亿元,用科学记数法表示726亿正确的是A.B.C.D.3.下列说法正确的是()A.近似数5千和5000的精确度是相同的B.317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C.2.46万精确到百分位D.近似数8.4和0.7的精确度不一样4.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A.点C B.点D C.点A D.点B5.下列各组数中,不相等的一组是()A.-(+7),-|-7| B.-(+7),-|+7|C.+(-7),-(+7)D.+(+7),-|-7|6.下列各组数中,互为相反数的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23| 7.计算-3-1的结果是()A.2 B.-2 C.4 D.-48.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为()A.312⎛⎫⎪⎝⎭米B.512⎛⎫⎪⎝⎭米C.612⎛⎫⎪⎝⎭米D.1212⎛⎫⎪⎝⎭米9.下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则ab=﹣1.③如果a大于b,那么a的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤x2﹣2x﹣33x3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个10.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是()A.1℃~3℃B.3℃~5℃C.5℃~8℃D.1℃~8℃11.计算(-2)2018+(-2)2019等于( )A.-24037B.-2 C.-22018D.22018 12.下列计算结果正确的是()A.-3-7=-3+7=4B.4.5-6.8=6.8-4.5=2.3C.-2-13⎛⎫-⎪⎝⎭=-2+13=-213D.-3-12⎛⎫-⎪⎝⎭=-3+12=-212二、填空题13.绝对值小于2的整数有_______个,它们是______________.14.在|﹣3|、﹣32、﹣(﹣3)2、﹣(3﹣π)、﹣|0|中,负数的个数为_____.15.(1)-23与25的差的相反数是_____.(2)若|a+2|+|b-3|=0,则a-b=_____.(3)-13的绝对值比2的相反数大_____.16.如果将正整数按下图的规律排列,那么第六行,第五列的数为_______.17.计算:(1)(2)(3)(4)(2019)(2020)++-+++-++++-=_____.18.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.19.若三个互不相等的有理数,既可以表示为3,a b+,b的形式,也可以表示为0,3a b,a 的形式,则4a b -的值________. 20.(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位;(2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.三、解答题21.计算:2334[28(2)]--⨯-÷-22.如图,数轴上A ,B 两点之间的距离为30,有一根木棒MN ,设MN 的长度为x .MN 数轴上移动,M 始终在左,N 在右.当点N 移动到与点A ,B 中的一个重合时,点M 所对应的数为9,当点N 移动到线段AB 的中点时,点M 所对应的数是多少?23.计算:(1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 1024.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 25.计算:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭. 26.计算:(1)13|38|44⎛⎫--+- ⎪⎝⎭(2)2202111(1)236⎛⎫-+⨯-÷ ⎪⎝⎭ (3)22110.51339⎛⎫⨯-÷ ⎪⎝⎭ (4)157(48)2812⎡⎤⎛⎫-⨯--+ ⎪⎢⎥⎝⎭⎣⎦【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据绝对值的性质,有理数的减法法则,有理数的乘方法则即可求出答案.【详解】A、原式=3,故A错误;B、原式=﹣4,故B错误;C、原式=﹣1,故C错误;D、原式=[0.125×(﹣8)]2=1,故D正确.故选:D.【点睛】本题考查了绝对值的化简,有理数的运算法则,熟练掌握有理数运算的运算法则是本题的关键,要注意符号变号问题.2.A解析:A【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】726亿=7.26×1010.故选A.【点睛】本题考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n 的值是解题的关键.3.B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A.近似数5千精确度到千位,近似数5000精确到个位,所以A选项错误;B.317500精确到千位可以表示为31.8万,也可以表示为53.1810,所以B选项正确;C.2.46万精确到百位,所以C选项错误;D.近似数8.4和0.7的精确度是一样的,所以D选项错误.故选B.【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.4.B解析:B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A,2所对应的点是B,3对应的点是C,4对应的点是D,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.5.D解析:D【详解】A.-(+7)=-7,-|-7|=-7,故不符合题意;B.-(+7)=-7,-|+7|=-7,故不符合题意;C.+(-7)=-7,-(+7)=-7,故不符合题意;D.+(+7)=7,−(−7)=−7,故符合题意,故选D.6.A解析:A【分析】各项中两式计算得到结果,即可作出判断.【详解】A、(﹣3)2=9,﹣32=﹣9,互为相反数;B、(﹣3)2=32=9,不互为相反数;C、(﹣2)3=﹣23=﹣8,不互为相反数;D、|﹣2|3=|﹣23|=8,不互为相反数,故选:A.【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.7.D解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.8.C解析:C【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为(12)2米,那么依此类推得到第六次后剩下的绳子的长度为(12)6米.【详解】∵1-12=12,∴第2次后剩下的绳子的长度为(12)2米;依此类推第六次后剩下的绳子的长度为(12)6米.故选C.【点睛】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.9.C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a,b互为相反数,则ab=-1在a、b均为0的时候不成立,故本小题错误;③∵如果a=2,b=0,a>b,但是b没有倒数,∴a的倒数小于b的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x2-2x-33x3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.10.B解析:B【解析】【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.【详解】解:设温度为x ℃,根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩ 解得35x ≤≤.故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.11.C解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.12.D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A 选项:3710--=-,故错误;B 选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.二、填空题13.3;-101等【分析】当一个数为非负数时它的绝对值是它本身;当这个数是负数时它的绝对值是它的相反数【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数它们是0±1共有3个故答案为(1解析:3; -1,0,1等.【分析】当一个数为非负数时,它的绝对值是它本身;当这个数是负数时,它的绝对值是它的相反数.【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数,它们是0,±1,共有3个.故答案为(1). 3; (2). -1,0,1等.【点睛】本题考查了绝对值,熟悉掌握绝对值的定义是解题的关键.14.2个【分析】分别计算出题目中所给的每一个数即可作出判定【详解】∵|﹣3|=3﹣32=﹣9﹣(﹣3)2=﹣9﹣(3﹣π)=π﹣3﹣|0|=0∴﹣32﹣(﹣3)2是负数故答案为2个【点睛】此题考查的知识解析:2个【分析】分别计算出题目中所给的每一个数,即可作出判定.【详解】∵|﹣3|=3,﹣32=﹣9,﹣(﹣3)2=﹣9,﹣(3﹣π)=π﹣3,﹣|0|=0,∴﹣32、﹣(﹣3)2是负数.故答案为2个.【点睛】此题考查的知识点是正数和负数,关键是理解负数的概念,而且要把这些数化为最后结果才能得出正确答案.这就又要理解平方、绝对值,正负号的变化等知识点.15.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab 的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a +2|+|b - 解析:1615 -5 123【分析】 (1)先计算两个数的差,再计算相反数即可;(2)由绝对值的非负性,求出a 、b 的值,再求出答案即可;(3)由题意列出式子进行计算,即可得到答案.【详解】解:(1)根据题意,则221616()()351515---=--=; (2)∵|a +2|+|b -3|=0,∴20a +=,30b -=,∴2a =-,3b =,∴235a b -=--=-;(3)根据题意,则111(2)22333---=+=; 故答案为:1615;5-;123. 【点睛】 本题考查了绝对值的意义,相反数,列代数式求值,解题的关键是熟练掌握题意,正确的列出式子,从而进行解题.16.32【分析】观察分析题图中数的排列规律可知:第n 行第一列是且第n 行第一列到第n 列的数从左往右依次减少1所以第六行的第一个数是36减去4即可得到第五个数【详解】解:观察分析题图中数的排列规律可知:第n 解析:32【分析】观察、分析题图中数的排列规律可知:第n 行第一列是2n ,且第n 行第一列到第n 列的数从左往右依次减少1,所以第六行的第一个数是36,减去4,即可得到第五个数.【详解】解:观察、分析题图中数的排列规律可知:第n 行第一列是2n ,且第n 行第一列到第n 列的数从左往右依次减少1,所以第六行第五个数是26436432-=-=.故答案为:32.【点睛】本题主要考查了数字规律题,能够观察出第一个数是行数的平方,再依次减少是解决本题的关键.17.【分析】第1个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两解析:1010-【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】原式(12)(34)(20192020)11111010 =-+-++-=-----=-.故答案为:1010-.【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.18.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1;(2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1;(3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.19.15【分析】根据分母不等于0可得b≠0进而推得a+b=0再求出=-3解得b=-3a=3然后代入进行计算即可【详解】解:∵三个互不相等的有理数既可以表示为3的形式也可以表示为的形式∴∴=∴∴==∴==解析:15【分析】根据分母不等于0,可得b≠0,进而推得a+b=0,再求出3ab=-3,解得b=-3.a=3,然后代入4a b-进行计算即可.【详解】解:∵三个互不相等的有理数,既可以表示为3、a b+、b的形式,也可以表示为0、3ab、a的形式∴0b≠,∴a b+=0,∴3a3b=-,∴b=3-,a=3,∴4a b-=123+=15.故答案为15.【点睛】本题考查了代数式求值及其有理数的相关概念,根据题意推得b≠0、 a+b=0、3ab=-3是解答本题的关键.20.(1)千分(2)百(3)314十万【分析】(1)根据精确到哪位就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位就解析:(1)千分 (2)百 (3)3.14 十万【分析】(1)根据精确到哪位,就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位,就是对它后边的一位进行四舍五入以及科学记数法的精确方法解答即可.【详解】解:(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到千分位;(2)近似数2.428×105中,2.428的小数点前面的2表示20万,则这一位是十万位,因而2.428的最后一位8应该是在百位上,因而这个数是精确到百位;(3)用四舍五入法把3.141 592 6精确到百分位是3.14,近似数3.0×106精确到十万位.故答案为: (1)千分; (2)百; (3)3.14、十万.【点睛】本题考查了近似数,掌握确定近似数精确的位数和科学记数法的精确方法是解答本题的关键.三、解答题21.21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.22.点M 所对应的数为24或-6.【分析】设MN=x ,然后分类计算即可:①当点N 与点A 重合时,点M 所对应的数为9,则点N 对应的数为x+9;②当点N 与点B 重合时,点M 所对应的数为9,则点N 对应的数为x+9.【详解】设MN=x ,①当点N 与点A 重合时,点M 所对应的数为9,则点N 对应的数为x+9,∵AB=30,∴当N 移动到线段AB 的中点时,点N 对应的数为x+9+15=x+24,∴点M 所对应的数为x+24-x=24;②当点N 与点B 重合时,点M 所对应的数为9,则点N 对应的数为x+9,∵AB=30,∴当N 移动到线段AB 的中点时,点N 对应的数为x+9-15=x-6,∴点M 所对应的数为x-6-x=-6;综上,点M 所对应的数为24或-6.【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键.23.(1)17;(2)1.【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.12-. 【分析】 根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】 原式311222⎛⎫=-++-=- ⎪⎝⎭. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.25.(1)0;(2)1-.【分析】(1)原式先把除法转换为乘法,再逆用乘法分配律进行计算即可得到答案; (2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】 解:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭ 45355171271234⎛⎫=⨯--⨯+⨯ ⎪⎝⎭ 4535571271212=-⨯-⨯+ 43517712⎛⎫=--+⨯ ⎪⎝⎭ 5012=⨯ 0=; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭ ()98427427⎛⎫-⨯+-⨯- ⎝=⎪⎭98=-+1=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键. 26.(1)4;(2)13;(3)14-;(4)26.【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13 |38|44⎛⎫--+- ⎪⎝⎭=13 544 --=5-1 =4;(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭=1 1269-+⨯⨯=-1+4 3=13;(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭=211 1()1 369⨯-÷=519() 3610⨯-⨯=14 -;(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦=157 (48)()(48)(48)2812 -⨯---⨯+-⨯=24+30-28=26.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.。

第二单元《有理数的运算》单元测试卷(标准难度)(含解析)

第二单元《有理数的运算》单元测试卷(标准难度)(含解析)

浙教版初中数学七年级上册第二单元《有理数的运算》单元测试卷考试范围:第二章;考试时间:120分钟;总分:120分第I 卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1. 两个有理数相加,如果和小于每一个加数,那么( )A. 这两个加数同为负数B. 这两个加数同为正数C. 这两个加数中有一个负数,一个正数D. 这两个加数中有一个为零2. 小于2014且不小于−2013的所有整数的和是( )A. 0B. 1C. 2013D. 20143. 杭州某企业第一季度盈余2200万元,第二季度亏损500万元,第三季度亏损1400万元,第四季度盈余1100万元.该企业当年的盈亏情况是( )A. 盈余1400万元B. 盈余1500万元C. 亏损1400万元D. 亏损1500万元4. 下列计算结果正确的是( )A. −3−7=−3+7=4B. 4.5−6.8=6.8−4.5=2.3C. −2−(−13)=−2+13=−213D. −3−(−12)=−3+12=−212 5. 有理数a ,b ,c 在数轴上的对应点的位置如图所示,有如下四个结论:①|a|>3;②ab >0;③b +c <0;④b −a >0.上述结论中,所有正确结论的序号是( )A. ①②B. ②③C. ②④D. ③④ 6. 已知abc >0,则|a |a +|b |b −|c |c 的值是( )A. 1或3B. 1或−3C. −1或3D. −1或−37. 若规定“!”是一种数学运算符号,且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,⋯,则100!98!的值为( )A. 5049B. 99!C. 9900D. 2!8.有理数a、b在数轴上对应的位置如图所示,则( )>0 C. a+b>0 D. a−b>0A. ab>0B. ab9.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量.由图可知,她一共采集到的野果数量为( )A. 1837个B. 1838个C. 12302个D. 1839个10.如图所示为按照一定规律画出的树形图经观察可以发现;图②比图①多出2个树枝,图③比图②多出4个树枝,图④比图③多出8个树枝照此规律,图⑥比图②多出的树枝个数为( )A. 28B. 56C. 60D. 12411.已知4个有理数之和的1是4,其中的3个数分别是−12、−6、9,那么第4个数是( )3A. −9B. 15C. −18D. 2112.小明在计算机上设置了一个运算程序:任意输入一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2.通过对输出结果的观察,他发现了一个有意思的现象:无论输入的自然数是多少,按此规则经过若干次运算后可得到1.例如:如图所示,输入自然数5,最少经过5次运算后可得到1.如果一个自然数a恰好经过7次运算后得到1,则所有符合条件的a的值有( )A. 1个B. 2个C. 3个D. 4个第II 卷(非选择题)二、填空题(本大题共4小题,共12分)13. 数轴上有两个数a ,b.若a >0,b <0,a +b <0,则四个数a ,b ,−a ,−b 的大小关系为 (用“<”连接).14. 已知x 是3的相反数,|y|=5,则x −y 的值是 .15. a 是不为1的有理数,我们把11−a 称为a 的差倒数.如:2的差倒数是11−2=−1,−1的差倒数是11−(−1)=12.已知a 1=−13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,则a 2022=________________.16. 如果a ,b ,c 是整数,且a c =b ,那么我们规定一种记号(a,b)=c ,例如32=9,那么记作(3,9)=2,根据以上规定,求(−2,−32)=______.三、解答题(本大题共9小题,共72分。

(必考题)人教版初中七年级数学上册第一章《有理数》模拟检测题(答案解析)(2)

(必考题)人教版初中七年级数学上册第一章《有理数》模拟检测题(答案解析)(2)

一、选择题1.(0分)[ID:67646]一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积()A.缩小到原来的12B.扩大到原来的10倍C.缩小到原来的110D.扩大到原来的2倍2.(0分)[ID:67643]在-1,2,-3,4,这四个数中,任意三数之积的最大值是()A.6 B.12 C.8 D.243.(0分)[ID:67626]已知a、b在数轴上的位置如图所示,将a、b、-a、-b从小到排列正确的一组是()A.-a<-b<a<b B.-b<-a<a<bC.-b<a<b<-a D.a<-b<b<-a4.(0分)[ID:67611]下列说法:①a-一定是负数;②||a一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个5.(0分)[ID:67601]下列结论错误的是( )A.若a,b异号,则a·b<0,ab<0B.若a,b同号,则a·b>0,ab>0C.ab-=ab-=-abD.ab--=-ab6.(0分)[ID:67600]计算2136⎛⎫---⎪⎝⎭的结果为()A.-12B.12C.56D.567.(0分)[ID:67598]绝对值大于1且小于4的所有整数的和是()A.6 B.–6 C.0 D.4 8.(0分)[ID:67595]若a,b互为相反数,则下面四个等式中一定成立的是()A.a+b=0 B.a+b=1C .|a|+|b|=0D .|a|+b=09.(0分)[ID :67584]下列四个式子,正确的是( ) ①33.834⎛⎫->-+ ⎪⎝⎭;②3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+ ⎪⎝⎭. A .③④B .①C .①②D .②③ 10.(0分)[ID :67566]按键顺序是的算式是( )A .(0.8+3.2)÷45= B .0.8+3.2÷45= C .(0.8+3.2)÷45= D .0.8+3.2÷45= 11.(0分)[ID :67578]把实数36.1210-⨯用小数表示为() A .0.0612B .6120C .0.00612D .61200012.(0分)[ID :67577]下面说法中正确的是 ( ) A .两数之和为正,则两数均为正 B .两数之和为负,则两数均为负 C .两数之和为0,则这两数互为相反数 D .两数之和一定大于每一个加数13.(0分)[ID :67573]有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a <14.(0分)[ID :67568]下列各式计算正确的是( ) A .826(82)6--⨯=--⨯ B .434322()3434÷⨯=÷⨯ C .20012002(1)(1)11-+-=-+D .-(-22)=-415.(0分)[ID :67567]若2020M M +-=+,则M 一定是( ) A .任意一个有理数B .任意一个非负数C .任意一个非正数D .任意一个负数二、填空题16.(0分)[ID :67758]把67.758精确到0.01位得到的近似数是__.17.(0分)[ID :67757]若a 、b 、c 、d 、e 都是大于1、且是不全相等的五个整数,它们的乘积2000abcde =,则它们的和a b c d e ++++的最小值为__. 18.(0分)[ID :67726]已知|a |=3,|b |=2,且ab <0,则a ﹣b =_____. 19.(0分)[ID :67725]数轴上表示 1 的点和表示﹣2 的点的距离是_____.20.(0分)[ID :67712]截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____.21.(0分)[ID :67710]在如图所示的运算流程中,若输出的数y=5,则输入的数x=_____.22.(0分)[ID :67692]计算3253.1410.31431.40.284⨯+⨯-⨯=__. 23.(0分)[ID :67680]有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm 的圆,它的周长约31.4 cm ,其中是准确数的有_____,是近似数的有_____. 24.(0分)[ID :67676]定义一种正整数的“H 运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H 运算”的结果是22,经过2次“H 运算”的结果为11,经过3次“H 运算”的结果为46,那么数28经过2020次“H 运算”得到的结果是_________.25.(0分)[ID :67748]A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.26.(0分)[ID :67746]点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位长度到达点B ,则这两点所表示的数分别是____________和___________. 27.(0分)[ID :67732]给下面的计算过程标明运算依据: (+16)+(-22)+(+34)+(-78) =(+16)+(+34)+(-22)+(-78)① =[(+16)+(+34)]+[(-22)+(-78)]② =(+50)+(-100)③ =-50.④①______________;②______________;③______________;④______________.三、解答题28.(0分)[ID :67956]计算:2334[28(2)]--⨯-÷- 29.(0分)[ID :67861]计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 30.(0分)[ID :67921]如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E 表示的数.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.B3.D4.A5.D6.A7.C8.A9.D10.B11.C12.C13.C14.C15.B二、填空题16.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数17.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=18.5或﹣5【分析】先根据绝对值的定义求出ab的值然后根据ab<0确定ab的值最后代入a﹣b中求值即可【详解】解:∵|a|=3|b|=2∴a=±3b=±2;∵ab<0∴当a=3时b=﹣2;当a=﹣3时b19.3【分析】直接根据数轴上两点间的距离公式求解即可【详解】∵|1-(-2)|=3∴数轴上表示-2的点与表示1的点的距离是3故答案为3【点睛】本题考查的是数轴熟知数轴上两点间的距离公式是解答此题的关键20.7×106【分析】根据科学记数法形式:a×10n其中1≤a<10n为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是21.910【详解】试题分析:由运算流程可以得出有两种情况当输入的x为偶数时就有y=x 当输入的x为奇数就有y=(x+1)把y=5分别代入解析式就可以求出x的值而得出结论解:由题意得当输入的数x是偶数时则y22.0【分析】先把0314314都转化为314然后逆运用乘法分配律进行计算即可得解【详解】解:故答案为:0【点睛】本题考查了有理数的乘法运算把算式进行转化逆运用乘法分配律运算更加简便23.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中24.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶25.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【26.-4【解析】试题27.①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c)依此即可求解【详解】第①步交换了加三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【分析】根据题意列出乘法算式,计算即可.【详解】设一个因数为a,另一个因数为b∴两数乘积为ab根据题意,得11 10202a b ab故选A.【点睛】本题考查了有理数乘法运算,根据有理数乘法运算法则计算即可.2.B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B.【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.3.D解析:D【解析】【分析】根据数轴表示数的方法得到a<0<b,且|a|>b,则-a>b,-b>a,然后把a,b,-a,-b从大到小排列.【详解】∵a<0<b,且|a|>b,∴a<-b<b<-a,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.4.A解析:A【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可.【详解】①a-不一定是负数,故该说法错误;②||a一定是非负数,故该说法错误;③倒数等于它本身的数是±1,故该说法正确;④绝对值等于它本身的数是非负数,故该说法错误;⑤平方等于它本身的数是0或1,故该说法错误.综上所述,共1个正确,故选:A.【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键.5.D解析:D【解析】根据有理数的乘法和除法法则可得选项A、B正确;根据有理数的除法法则可得选项C正确;根据有理数的除法法则可得选项D原式=ab,选项D错误,故选D.6.A解析:A 【分析】根据有理数加减法法则计算即可得答案. 【详解】2136⎛⎫--- ⎪⎝⎭=2136-+ =12-. 故选:A . 【点睛】本题考查有理数的加减,有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,一个数同零相加,仍得这个数,有理数减法法则:减去一个数,等于加上这个数的相反数.7.C解析:C 【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C .8.A解析:A 【解析】a ,b 互为相反数0a b ⇔+= ,易选B. 9.D解析:D 【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案. 【详解】①∵33 3.754⎛⎫-+=- ⎪⎝⎭,33.833.754>=, ∴33.834⎛⎫-<-+ ⎪⎝⎭,故①错误;②∵33154420⎛⎫--==⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.10.B解析:B【分析】根据计算器的使用方法,结合各项进行判断即可.【详解】解:按下列按键顺序输入:则它表达的算式是0.8+3.2÷45=,故选:B.【点睛】此题主要考查了计算器的应用,根据有理数的输入方法正确输入数据是解题关键.11.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】6.12×10−3=0.00612, 故选C . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.C解析:C 【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1, 故选C. 【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.13.C解析:C 【分析】根据数轴可得0a b <<且a b >,再逐一分析即可. 【详解】由题意得0a <,0b >,a b >,A 、0ab <,故本选项错误;B 、a b >,故本选项错误;C 、a b ->,故本选项正确;D 、b a >,故本选项错误. 故选:C . 【点睛】本题考查数轴,由数轴观察出0a b <<且a b >是解题的关键.14.C解析:C 【分析】原式各项根据有理数的运算法则计算得到结果,即可作出判断. 【详解】A 、82681220--⨯=--=-,错误,不符合题意;B 、433392234448÷⨯=⨯⨯=,错误,不符合题意;C 、20012002(1)(1)110-+-=-+=,正确,符合题意;D 、-(-22)=4,错误,不符合题意;故选:C .【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.15.B解析:B【分析】直接利用绝对值的性质即可解答.【详解】解:∵M +|-20|=|M |+|20|,∴M≥0,为非负数.故答案为B .【点睛】本题考查了绝对值的应用,灵活应用绝对值的性质是正确解答本题的关键.二、填空题16.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数解析:76.【分析】根据要求进行四舍五入即可.【详解】解:把67.758精确到0.01位得到的近似数是67.76.故答案是:67.76.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.17.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde 都大于1得到使a+b+c+d+e 尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a ,b ,c ,d ,e 都大于1,得到使a+b+c+d+e 尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e 尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.18.5或﹣5【分析】先根据绝对值的定义求出ab的值然后根据ab<0确定ab 的值最后代入a﹣b中求值即可【详解】解:∵|a|=3|b|=2∴a=±3b=±2;∵ab<0∴当a=3时b=﹣2;当a=﹣3时b解析:5或﹣5【分析】先根据绝对值的定义,求出a、b的值,然后根据ab<0确定a、b的值,最后代入a﹣b中求值即可.【详解】解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵ab<0,∴当a=3时b=﹣2;当a=﹣3时b=2,∴a﹣b=3﹣(﹣2)=5或a﹣b=﹣3﹣2=﹣5.故填5或﹣5.【点睛】本题主要考查的是有理数的乘法、绝对值、有理数的减法,熟练掌握相关法则是解题的关键.19.3【分析】直接根据数轴上两点间的距离公式求解即可【详解】∵|1-(-2)|=3∴数轴上表示-2的点与表示1的点的距离是3故答案为3【点睛】本题考查的是数轴熟知数轴上两点间的距离公式是解答此题的关键解析:3【分析】直接根据数轴上两点间的距离公式求解即可.【详解】∵|1-(-2)|=3,∴数轴上表示-2的点与表示1的点的距离是3.故答案为3.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.20.7×106【分析】根据科学记数法形式:a×10n其中1≤a<10n为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是解析:7×106【分析】根据科学记数法形式:a×10n,其中1≤a<10,n为正整数,即可求解.【详解】解:7000000科学记数法表示为:7×106.故答案为:7×106.【点睛】本题考查科学记数法,解决本题的关键是把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.[科学记数法形式:a×10n,其中1≤a<10,n为正整数.21.910【详解】试题分析:由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x为奇数就有y=(x+1)把y=5分别代入解析式就可以求出x的值而得出结论解:由题意得当输入的数x是偶数时则y解析:9,10【详解】试题分析:由运算流程可以得出有两种情况,当输入的x为偶数时就有y=12x,当输入的x为奇数就有y=12(x+1),把y=5分别代入解析式就可以求出x的值而得出结论.解:由题意,得当输入的数x是偶数时,则y=12x,当输入的x为奇数时,则y=12(x+1).当y=5时,∴5=12x或5=12(x+1).∴x=10或9故答案为9,10考点:一元一次方程的应用;代数式求值.22.0【分析】先把0314314都转化为314然后逆运用乘法分配律进行计算即可得解【详解】解:故答案为:0【点睛】本题考查了有理数的乘法运算把算式进行转化逆运用乘法分配律运算更加简便解析:0【分析】先把0.314,31.4都转化为3.14,然后逆运用乘法分配律进行计算即可得解.【详解】解:3253.1410.31431.40.284⨯+⨯-⨯,353.141 3.14 3.14288=⨯+⨯-⨯,353.14(12)88=⨯+-,3.140=⨯,=.故答案为:0.本题考查了有理数的乘法运算,把算式进行转化,逆运用乘法分配律运算更加简便.23.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中解析:68和10 14亿和31.4【分析】准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.【详解】我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中准确数的有68和10;近似数的有14亿和31.4故答案为:68和10;14亿和31.4【点睛】理解“准确数”和“近似数”的意义是解决此题的关键.24.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316⨯⨯⨯⨯=,等于第5次.第7次:160.50.50.50.51所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.25.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得.【详解】>->-,因为205070-米,所以最高点的海拔高度为20米,最低点的海拔高度70--=+=(米),则20(70)207090即最高点比最低点高90米,故答案为:90.【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.26.-4【解析】试题解析:-4【解析】试题两点的距离为8,则点A、B距离原点的距离是4,∵点A,B互为相反数,A在B的右侧,∴A、B表示的数是4,-4.27.①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c)依此即可求解【详解】第①步交换了加解析:①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则,相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c).依此即可求解.【详解】第①步,交换了加数的位置;第②步,将符号相同的两个数结合在一起;第③步,利用了有理数加法法则;第④步,同样应用了有理数的加法法则.故答案为加法交换律;加法结合律;有理数加法法则;有理数加法法则.【点睛】考查了有理数的加法,关键是熟练掌握计算法则,灵活运用运算律简便计算.三、解答题28.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.29.(1)23-;(2)-11 【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法;(2)先计算乘方和绝对值,再计算乘除法,最后计算加减法.【详解】(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+=23-; (2)6÷(-2)3-|-22×3|+3÷2×12+1 =116(8)123122÷--+⨯⨯+ =3312144--++ =-11.【点睛】此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键. 30.(1)1- (2)0.5 (3)3-或7-(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D是线段AC的中点;(3)在点B左侧找一点E,点E到点A的距离是到点B的距离的2倍,依此即可求解.【详解】解:(1)点B表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D表示的数为(-1+2)÷2=1÷2=0.5;(3)点E在点B的左侧时,根据题意可知点B是AE的中点,AB=|-1+4|=3则点E表示的数是-4-3=-7.点E在点B的右侧时,即点E在AB上,则点E表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.。

第2章 有理数的运算 浙教版七年级数学上册单元检测卷 含解析

第2章 有理数的运算 浙教版七年级数学上册单元检测卷 含解析

浙教版2023年七年级上册第2章有理数的运算单元检测卷一.选择题(共10小题,满分30分,每小题3分)1.﹣2023的倒数是( )A.2023B.C.﹣2023D.2.﹣3+4 的值是( )A.1B.7C.﹣1D.﹣73.计算|﹣3|﹣(﹣3)的结果是( )A.0B.﹣6C.6D.94.截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为( )A.23.9×107B.2.39×108C.2.39×109D.0.239×1095.如果两个数的和是正数,那么( )A.这两个加数都是正数B.一个加数为正数,另一个加数为0C.一个加数为正数,另一个加数为负数,且正数的绝对值大于负数的绝对值D.以上皆有可能6.气温由﹣4℃上升了5℃时的气温是( )A.﹣1℃B.1℃C.﹣9℃D.9℃7.对于(﹣3)×4,左边第一个因数增加1后积的变化是( )A.减少3B.增加3C.减少4D.增加48.湘雅路过江通道工程是长沙市区“十八横十六纵”三十四条主干路之一,位于三一大道与营盘路之间,总投资53.278亿元.其中数据53.278亿元精确到哪位?( )A.万位B.十万位C.百万位D.亿位9.若数a,b在数轴上的对应点的位置如图所示,则以下结论正确的是( )A.a﹣b>0B.ab>0C.a<﹣b D.|a|<|b|10.定义新运算“⊗”,规定:a⊗b=a2﹣|b|,则(﹣2)⊗(﹣1)的运算结果为( )A.﹣5B.﹣3C.5D.3二.填空题(共6小题,满分18分,每小题3分)11.计算:7×(﹣6)= .12.(﹣3)6的底数是 .13.计算:15﹣(﹣4)2÷8= .14.用四舍五入法取近似数:3.4962(精确到0.01)≈ .15.若m、n互为相反数,p、q互为倒数,则−2023m+−2023n的值是 .16.已知|a|=5,|b|=3,且|a﹣b|=b﹣a,则a+b= .三.解答题(共7小题,满分52分)17.(6分)计算:(1)﹣18+(﹣14)﹣(﹣18)﹣13;(2)﹣17.2+(﹣33.8)﹣(﹣8)+42.18.(6分)已知电路振荡1838526354次的时间为0.2s.(1)1s内电路振荡 次.(2)用四舍五入法将(1)中的结果精确到千万位,并用科学记数法表示.19.(6分)计算:.20.(8分)数学张老师在多媒体.上列出了如下的材料:计算:.解:原式==.上述这种方法叫做拆项法.请仿照上面的方式计算:.21.(8分)嘉淇在解一道数学计算题时,发现有一个数被污染了.计算:(﹣1)3×■﹣(1﹣3)÷4,嘉淇猜污染的数为1,请计算(﹣1)3×1﹣(1﹣3)÷4.老师说,嘉淇猜错了,正确的计算结果不小于,求被污染的数最大是几?22.(9分).出租车司机小王某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“﹣”,他这天下午行车情况如下:(单位:千米)﹣2,+5,﹣8,﹣3,+6,﹣6.(1)小王将最后一名乘客送到目的地时,在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若出租车每公里耗油0.3升,求小王回到出发地共耗油多少升?(3)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米(不足1千米按1千米计算)还需收4元钱,小王今天是收入是多少元?23.(9分)设[a]表示不超过a的最大整数,例如:[2.3]=2,[﹣4]=﹣5,[5]=5.(1)求[2]+[﹣3.6]﹣[﹣7]的值;(2)令{a}=a﹣[a],求{2}﹣[﹣2.4]+{﹣6}.第2章有理数的运算参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.﹣2023的倒数是( )A.2023B.C.﹣2023D.【分析】运用乘积为1的两个数是互为倒数进行求解.【解答】解:∵﹣2023×(﹣)=1,∴﹣2023的倒数是﹣,故选:B.2.﹣3+4 的值是( )A.1B.7C.﹣1D.﹣7【分析】原式利用异号两数相加的法则计算即可求出值.【解答】解:原式=+(4﹣3)=1.故选:A.3.计算|﹣3|﹣(﹣3)的结果是( )A.0B.﹣6C.6D.9【分析】取绝对值,把减化为加计算即可.【解答】解:原式=3+3=6,故选:C.4.截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为( )A.23.9×107B.2.39×108C.2.39×109D.0.239×109【分析】用科学记数法表示绝对值较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:239000000=2.39×108,故选:B.5.如果两个数的和是正数,那么( )A.这两个加数都是正数B.一个加数为正数,另一个加数为0C.一个加数为正数,另一个加数为负数,且正数的绝对值大于负数的绝对值D.以上皆有可能【分析】根据有理数的计算得出结论即可.【解答】解:如果两个数的和是正数,可能这两个加数都是正数,如1+1=2,可能一个数为正数,另一个加数为0,如0+2=2,可能一个加数为正数,另一个加数为负数,且正数的绝对值大于负数的绝对值,如﹣1+3=2,故选:D.6.气温由﹣4℃上升了5℃时的气温是( )A.﹣1℃B.1℃C.﹣9℃D.9℃【分析】根据题意列出算式,计算即可求出值.【解答】解:根据题意得:﹣4+5=1,则气温由﹣4℃上升了5℃时的气温是1℃.故选:B.7.对于(﹣3)×4,左边第一个因数增加1后积的变化是( )A.减少3B.增加3C.减少4D.增加4【分析】根据题意列式、求解.【解答】解:[(﹣3)+1]×4﹣(﹣3)×4=(﹣2)×4+12=﹣8+12=4,故选:D.8.湘雅路过江通道工程是长沙市区“十八横十六纵”三十四条主干路之一,位于三一大道与营盘路之间,总投资53.278亿元.其中数据53.278亿元精确到哪位?( )A.万位B.十万位C.百万位D.亿位【分析】根据近似数的精确度求解.【解答】解:数据53.278亿精确到的位数是十万位.故选:B.9.若数a,b在数轴上的对应点的位置如图所示,则以下结论正确的是( )A.a﹣b>0B.ab>0C.a<﹣b D.|a|<|b|【分析】根据图中的点的位置即可确定a、b的正负,即可判断.【解答】解:根据数轴可知:a<0、b>0,|a|<|b|,A、a﹣b<0,故该选项不符合题意;B、ab<0,故该选项不符合题意;C、∵a+b>0,∴a>﹣b,故该选项不符合题意;D、|a|<|b|,故该选项符合题意;故选:D.10.定义新运算“⊗”,规定:a⊗b=a2﹣|b|,则(﹣2)⊗(﹣1)的运算结果为( )A.﹣5B.﹣3C.5D.3【分析】直接利用已知运算公式代入,进而计算得出答案.【解答】解:由题意可得:(﹣2)⊗(﹣1)=(﹣2)2﹣|﹣1|=4﹣1=3.故选:D.二.填空题(共6小题,满分18分,每小题3分)11.计算:7×(﹣6)= ﹣42 .【分析】直接利用有理数的乘法运算法则计算得出答案.【解答】解:原式=﹣42.故答案为:﹣42.12.(﹣3)6的底数是 ﹣3 .【分析】根据有理数乘方的定义可得答案.【解答】解:(﹣3)6的底数是﹣3.故答案为:﹣3.13.计算:15﹣(﹣4)2÷8= 13 .【分析】根据有理数混合运算的顺序计算即可.【解答】解:15﹣(﹣4)2÷8=15﹣16÷8=15﹣2=13.故答案为:13.14.用四舍五入法取近似数:3.4962(精确到0.01)≈ 3.50 .【分析】精确到0.01,则要把千分位上的数字6进行四舍五入即可.【解答】解:四舍五入法取近似数:3.4962(精确到0.01)≈3.50,故答案为:3.50.15.若m、n互为相反数,p、q互为倒数,则−2023m+−2023n的值是 3 .【分析】直接利用相反数、倒数的定义得出m+n=0,pq=1,进而得出答案.【解答】解:∵m、n互为相反数,p、q互为倒数,∴m+n=0,pq=1,∴−2023m+−2023n=﹣2023(m+n)+=0+3=3.故答案为:3.16.已知|a|=5,|b|=3,且|a﹣b|=b﹣a,则a+b= ﹣2或﹣8 .【分析】已知|a|=5,b=|3|,根据绝对值的性质先分别解出a,b,然后根据|a﹣b|=b﹣a,判断a与b的大小,从而求出a+b.【解答】解:∵|a|=5,b=|3|,∴a=±5,b=±3,∵|a﹣b|=b﹣a≥0,∴b≥a,①当b=3,a=﹣5时,a+b=﹣2;②当b=﹣3,a=﹣5时,a+b=﹣8,综上所述,a+b的值为﹣2或﹣8.故答案是:﹣2或﹣8.三.解答题(共7小题,满分52分)17.(6分)计算:(1)﹣18+(﹣14)﹣(﹣18)﹣13;(2)﹣17.2+(﹣33.8)﹣(﹣8)+42.【分析】(1)先去括号,再根据有理数的加减法则进行计算;(2)先去括号,再根据有理数的加减法则进行计算.【解答】解:(1)原式=﹣18﹣14+18﹣13=(﹣18+18)﹣14﹣13=﹣27;(2)原式=﹣17.2﹣33.8+8+42=﹣51+8+42=﹣1.18.(6分)已知电路振荡1838526354次的时间为0.2s.(1)1s内电路振荡 9192631770 次.(2)用四舍五入法将(1)中的结果精确到千万位,并用科学记数法表示.【分析】(1)1s内电路振荡的次数=.(2)根据近似数的精确度进行求解即可.【解答】解:(1)根据题意知,=9192631770.故答案是:9192631770;(2)9192631770≈9190000000=9.19×109.19.(6分)计算:.【分析】先根据平方运算、绝对值运算、(﹣1)n计算,再由有理数加减运算法则求解即可得到答案.【解答】解:====.20.(8分)数学张老师在多媒体.上列出了如下的材料:计算:.解:原式==.上述这种方法叫做拆项法.请仿照上面的方式计算:.【分析】根据题目所提供的计算方法,写成几个整数的和以及几个分数的和即可.【解答】解:原式=[(﹣2021)+(﹣)]+[(﹣2022)+(﹣)]+4044+=(﹣2021﹣2022+4044)+(﹣﹣+)=1+(﹣)=.21.(8分)嘉淇在解一道数学计算题时,发现有一个数被污染了.计算:(﹣1)3×■﹣(1﹣3)÷4,嘉淇猜污染的数为1,请计算(﹣1)3×1﹣(1﹣3)÷4.老师说,嘉淇猜错了,正确的计算结果不小于,求被污染的数最大是几?【分析】先计算被污染的数为1时的结果,然后设正确的计算结果为时求得被污染的数即可.【解答】解:(﹣1)3×1﹣(1﹣3)÷4=﹣1﹣(﹣2)÷4=﹣1+=﹣;设正确的计算结果为,则[+(1﹣3)÷4]÷[(﹣1)3×1]=[+(﹣2)÷4]÷[(﹣1)×1]=[+(﹣)]÷(﹣1)=2÷(﹣1)=﹣2,即被污染的数最大是﹣2.22.(9分).出租车司机小王某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“﹣”,他这天下午行车情况如下:(单位:千米)﹣2,+5,﹣8,﹣3,+6,﹣6.(1)小王将最后一名乘客送到目的地时,在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若出租车每公里耗油0.3升,求小王回到出发地共耗油多少升?(3)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米(不足1千米按1千米计算)还需收4元钱,小王今天是收入是多少元?【分析】(1)根据有理数的加法进行计算即可得到答案;(2)将这些数的绝对值相加,求出总路程,再根据出租车每公里耗油0.3升,可得答案;(3)根据行车记录和收费方法列出算式,计算即可得解.【解答】解:(1)﹣2+5﹣8﹣3+6﹣6=﹣8(千米),∴小王将最后一名乘客送到目的地时,小王在下午出车的出发地的北方,距下午出车的出发地8千米.(2)|﹣2|+|5|+|﹣8|+|﹣3|+|6|+|﹣6|+|﹣8|=38(千米),38×0.3=11.4(升),∴小王回到出发地共耗油11.4升.(3)根据出租车收费标准,可知小王今天的收入是10+[10+(5﹣3)×4]+[10+(8﹣3)×4]+10+[10+(6﹣3)×4]+[10+(6﹣3)×4]=112(元),∴小王今天的收入是112元.23.(9分)设[a]表示不超过a的最大整数,例如:[2.3]=2,[﹣4]=﹣5,[5]=5.(1)求[2]+[﹣3.6]﹣[﹣7]的值;(2)令{a}=a﹣[a],求{2}﹣[﹣2.4]+{﹣6}.【分析】(1)根据新定义得:[2]=2,[﹣3.6]=﹣4,[﹣7]=﹣7,再代入计算即可;(2)根据新定义得:{2}=2﹣[2]=2﹣2,[﹣2.4]=﹣3,{﹣6}=﹣6﹣[﹣6]=﹣6+7,再代入原式进行计算.【解答】解:(1)[2]+[﹣3.6]﹣[﹣7],=2+(﹣4)﹣(﹣7),=2﹣4+7,=5;(2){2}﹣[﹣2.4]+{﹣6},=2﹣[2]﹣[﹣2.4]+(﹣6)﹣[﹣6],=﹣2+3﹣+7,=8﹣,=8﹣3.5,=4.5.。

浙教版第2章有理数的运算阶段测试含答案(二)

浙教版第2章有理数的运算阶段测试含答案(二)

第2章阶段测试(二)1 . — 0.5的倒数为()—6 B. 6 C. — 9 D. 9计算一100十10X 秸,正确的结果是(A 1B . — 1 C. 100 D. — 1007.下列四个有理数:2, 0, 1,— 2,从中任取两个相乘,积最小为 ( )测试范围:2.3〜2.6 时间:40分钟分值:100分 (选择题共18分)、选择题(每小题2分,共 18分) B. 0.5C.1D22计算(—1) X 3的结果是(A.C.D. 33.F 列算式中,积为正数的是 A. —2X 5B.— 6X ( — 2)C. 0X ( — 1)D. 5X ( — 3)4.计算(一3)2的结果是( )到 1.62 移动互联网已经全面进入人们的日常生活, 亿,其中1.62 亿用科学记数法表示为截至 2015年3月,全国4G 用户总数达A.1.62 X 104 B .162 X 106C. 1.62 X 108D. 0.162X 109&两个有理数的积是负数,和也是负数,那么这两个数( )A 都是负数B. 互为相反数C. 其中绝对值大的数是正数,另一个是负数D. 其中绝对值大的数是负数,另一个是正数 9.下列计算正确的是()A 1 1A. ( — 1) - ( — 5) X = 1 - 5X = 1- 1 = 15 5 B. 12- (2 + 3) = 12- 2+ 12- 3= 10 (3\ 31 C ' — 66; r 3=— 66- 3 —-- 3= — 22 I 8丿 8 8D. 0-0 = 0请将选择题答案填入下表:第n 卷(非选择题共82分)、填空题(每小题3分,共21分) 10 .计(—3) X ( — 4)=11.计算:- 21 -3X —3 =12 .绝对值与倒数均等于它本身的数是___________ B. 0C. — 1D. - 213 .计算(—2.5) X 0.37 X 1.25 X ( —4) X ( —8)的值为_________14•若x为正数,y为负数,贝U 1^-1 +甲= ___________ .I X| y15 .如图J2 —4是一个数值转换机,若输入的x为—5,则输出的结果是_____________输呂回一<^右出图J2 —4了a x b (a> b),16. 定义运算:a?b={ _________ 则(—2)?(—3)= .a+ b (a v b),三、解答题(共61分)17. (4 分)计算:(一3)十—2X —4 .18. (8分)用简便方法计算:2 2 1 5(1) —13 X 3 —0.34 X 7 + 3X ( —13) —7 X 0.34 ;11171 32十2,求(2探7)探4的值.19. (6分)若规定:玄※b=—3—4+ 5—厉%( - 60).20. (8分)如图J2 —5是小明的计算过程,请仔细阅读,并解答下列问题.计算:(—15)十3— 3 — 6.解:原式=(一15)—一石X 6…第一步=(—15)十(—25) …第二步=—3…第三步5图J2—5回答:(1)小明的计算过程中有两处错误:第1处是第______ 步,错误原因是__________________第2处是第______ 步,错误原因是__________________(2)请写出正确的计算过程.21. (8分)某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)⑵每袋样品的标准质量为450克,则抽样检测的总质量是多少克?22. (8分)下面是小强和小刚两名同学在求 71^6X ( — 8)的值时,各自的解题过程,请你阅读后回答下面的问题.r …115192081小强:原式=— X 8= ------------- 面 =—575空・(1) 以上两种解法中,你认为谁的解法比较好?为什么?23. (9分)一辆货车从超市出发,向东走了 1千米,到达小明家,继续向东走了3千米到达小兵家,然后向西走了 10千米,到达小华家,最后又向东走了6千米结束行程.(1) 如果以超市为原点,以向东为正方向,用1个单位长度表示1千米,请你在如图 J 2—6所示的数轴上表示出小明家、小兵家和小华家的具体位置;(2) 请你通过计算说明货车最后回到什么地方;15(2)请你参考上面的解题方法,计算(—8) +曙 X ( — 8) =— 575;1.—49(3)如果货车行驶1千米的耗油量为0.25升,请你计算货车从出发到结束行程共耗油多少升.-6 -5 -3 -2 -1 0 1 2 3 4 S 6图J2 - 624. (10分)古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋•为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求•大臣说:“就在这个棋盘上放一些米粒吧•第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒,16粒,32粒,…,一直到第64格.” “你真傻!就要这么一点米粒?” 国王哈哈大笑.(1) 在第64格中应放多少粒米?(用幕表示)(2) 请探究(1)中的数的末位数字是多少?(简要写出探究过程)(3) 求国王应给这位大臣多少粒米.1. C2.A3.B4.D5.C6.B7.D& D 9.C10. 12 11. 3 12. 1 13. —37 14.0 15. 21 16.63 417•解:原式=—3X 寸 9=~ 2. 18. (1) — 13.34⑵5119. (1 n 7 解:(2探7)探4= i — 十2探4= 220.解:(1)二 运算顺序错误 三 符号错误 (2)( 0 3) ( 25、108 —15)宁 3— 3—2 X 6 = ( — 15)宁—6X 6=5.21.解:(1)( — 5) X 1 + ( — 2) X 4+ 0X 3 + 1X 4+ 3 X 5 + 6X 3= 24(克). 答: 样品的总质量比标准总质量多,多24克.(2)20 X 450 + 24= 9024(克).答:抽样检测的总质量是 9024克.22.J 解:(1)小刚的解法比较好,乘法分配律计算运算量小. 「 11、 f 1、 1 1 1 ⑵—49石 X 6= — 50 + 在 X 6 =— 50X 6+ 石X 6= — 300 + ? = — 29逅.小华家 小明家小兵家”1 1 1 1 1 1 1 1 丄 1 1 匸23解:(1) . .(2)由题意得(+ 1) + ( + 3) + ( — 10) + ( + 6) = 0,所以货车最后回到了超市.⑶由题意得1 + 3+ 10 + 6= 20(千米),货车从出发到结束行程共耗油0.25 X 20= 5(升). 24.解:(1)2 63粒.1 2 3 4 5⑵••• 2 = 2, 2 = 4, 2 = 8, 2 = 16, 2 = 32,…,•••末位数字按2, 4, 8, 6为一个循环组依次循环.•/ 63-4 = 15……3,• 263的末位数字与23的末位数字相同,是8.⑶设x= 1 + 2+ 22+…+ 263①,①X 2,得2x= 2 + 22+…+ 264②,由②一①,得x= 264—1,二国王应给这位大臣(264- 1)粒米.。

第二章 有理数及其运算章末测试

第二章 有理数及其运算章末测试

第二章有理数及其运算章末测试一、把正确的答案选在括号里(每题3分)1.某地一天最高气温23摄氏度,最低气温﹣5摄氏度,这天的温差是()摄氏度.A.18B.28C.﹣28D.﹣182.两个有理数a与b,a+b=0,a与b的关系是()A.一正一负B.互为倒数C.互为相反数D.都是零3.下列各对数中,互为相反数的是()A.﹣0.01和0.1B.和C.﹣0.125和D.﹣0.125和84.如果两个数的积为负数,和也为负数,那么这两个数()A.都是负数B.都是正数C.一正一负,且负数的绝对值大D.一正一负,且正数的绝对值大5.设a是最小的自然数,b是最小的正整数,c是最大的负整数,则a、b、c三数之和为()A.﹣1B.0C.1D.26.下列说法正确的是()A.﹣a一定是负数B.a的绝对值等于aC.﹣b是b的相反数D.0的倒数为07.4个有理数相乘,积的符号是负号,则这4个有理数中,负数有()A.1个或3个B.1个或2个C.2个或4个D.3个或4个8.若|x﹣2|+|y+6|=0,则x+y的值是()A.4B.﹣4C.﹣8D.89.把数轴上表示数2的点移动3个单位后,表示的数为()A.5B.1C.5或1D.5或﹣110.若一个有理数的绝对值等于3,则这个数可能是()A.3B.﹣3C.±3D.无法确定二、填空题(每空3分)11.计算:|﹣(+4.8)|=;0﹣(﹣2019)=.12.一艘潜艇正在水下执行任务,所处位置记作﹣50米,距它正上方30米处,有一条鲨鱼正好游过,这条鲨鱼所处位置为米.13.平方得的数是,立方得﹣8的数是.14.绝对值不大于3的所有整数是,其和是,积是.15.我校勤工俭学基地预计今年可收入12800,把这个数用科学记数法表示为:.三、解答题16把下列各数填在相应的横线上.,﹣3.15,6,,﹣7,0,﹣100,50%,78,π(1)正整数:(2)整数:(2)负分数(4)非负数17把下列各数表示到数轴上,并将它们从小到大用“<”连接.﹣1,0,4,﹣3,2.5.19计算题:(1)﹣20﹣(﹣15)+(﹣12)﹣(+5);(2)(﹣+)×(﹣24);(3);(4)﹣12﹣[1+12÷(﹣6)]2×(﹣)2.20某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下:2、﹣1、0、3、﹣2、﹣3、1、0(1)这8名男生共做了多少个俯卧撑?(2)这8名男生的达标率是百分之几?。

浙教版2021—2022学年七年级数学(上):第2章 有理数的运算 单元达标测试卷(二)含答案解析

浙教版2021—2022学年七年级数学(上):第2章  有理数的运算 单元达标测试卷(二)含答案解析

浙教版七年级(上)第二单元达标测试卷(二)数 学(考试时间:100分钟 满分:120分)学校: 班级: 考号: 得分:一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.根据相关部门统计,2020年全国普通高校毕业生约8340000人.将8340000用科学记数法表示应为( ) A .583.410⨯B .58.3410⨯C .68.3410⨯D .70.83410⨯2.下列四个实数中,是负数的是( ) A .-(-1)B .(-1)2C .|-1|D .(-1)33.已知a ,b 是有理数,()a b a b +=-+,a b a b -=-,若将a ,b 在数轴上表示,则图中有可能( ) A .B .C .D .4.若2x =,3y =,且x ,y 异号,则x y +的值为( ) A .5B .5或1C .1D .1或-15.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻的可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A C -表示观测点A 相对观测点C 的高度),根据这次测量的数据,可得观测点A 相对观测点B 的高度是( )A C -C D -E D -F E -G F -B G -100米 80米60-米50米70-米20米A .240-米B .240米C .390米D .210米6.若a <0<b <c ,则( ) A .a +b +c 是负数 B .a +b -c 是负数 C .a -b +c 是正数D .a -b -c 是正数7.若数轴上点A 表示的数是5-,则与它相距2个单位的点B 表示的数是( ) A .5±B .7-或3-C .7D .8-或38.3的倒数是( ) A .13B .3-C .13-D .13±9.计算10099(2)(2)-+-所得的结果是( ) A .2-B .2C .992-D .99210.下列计算中,正确的是( ). A .1515-=- B .4.5 1.7 2.5 1.8 5.5--+= C .()22--=D .()1313-÷-=11.定义运算2a b ab a b =--★,如13132132=⨯-⨯-=★,则24-★的值为( ) A .8B .-8C .16D .-1612.如图所示是计算机程序计算,若开始输入2x =-,则最后输出的结果是( )A .4-B .14-C .64-D .16-二、填空题(本大题共6小题,每小题3分,共18分) 13.将59800000用科学记数法表示为__________.14.若实数a ,b 满足()2120a b ++-=,则b a =_____________.15.如图是一数值转换机,若输入的x 为﹣4,y 为6,则输出的结果为_____.16.如图所示的运算程序中,若输入的x 值为-2,则输出的y 的值为 ______.17.已知3x =,2y =,且x y y x -=-,则x y +=______. 18.已知()2210a b -++=,则()2003a b +=______.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.小慧坐公交车从家里出发去学校,他从家门口的公交站上年,上车后发现车上连自己共座了9人,之后经过A 、B 、C 3个站点,他观察到上下车情况如下(记上车为正,下车为负):()()()5,3,3,4,2,5A B C +-+-+-.(1)若公交车费每人每趟2元,则公交车在A 、B 、C 这3个站点共收入多少元? (2)经过A 、B 、C 这3个站点后,车上还有多少人? 20.计算:(1)﹣7+(+20)﹣(﹣5)﹣(+3);(2)512.5()()84-÷-⨯-;(3)3777(1)()48128--÷-;(4)3(2)-+(﹣2)×(23+1)﹣12÷(﹣4).21.出租车司机小王某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“-”.他这天下午行车情况如下:(单位:千米:每次行车都有乘客)−2,+5,−2,−3,−2,+6请回答:⑴小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?⑵若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.那么小王这天下午收到的乘客所给车费共多少元?⑶若小王的出租车每千米耗油0.3升,每升汽油6元.不计汽车的损耗,那么小王这天下午是盈利(或亏损)多少钱?22.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km ):(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米? (2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km 收费10元,超过3km 的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元? 23.有理数,,a b c 均不为0,且0a b c ++=,设a b c x b cc aa b=+++++,试求代数式19992098x x -+的值.24.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且24(1)0a b ++-=,现将A ,B 之间的距离记作BA ,定义AB a b .(1)求,a b 的值; (2)求AB 的值;(3)设点P 在数轴上对应的数是x ,当2PA PB -=时,求x 的值参考答案二、选择题(本大题共12小题,每小题3分,共36分。

有理数的运算 单元检测 (困难)培优提升 答案

有理数的运算 单元检测 (困难)培优提升 答案

第二章、有理数的运算单元测试(难度:困难)参考答案与试题解析一.选择题(共10小题)1.m是有理数,则m+|m|()A.可以是负数B.不可能是负数C.一定是正数D.可是正数也可是负数【分析】根据m大于0,可得m+是正数,根据m等于0,可得m+|m|等于0,根据m小于0,可得m+|m|等于0.【解答】解:当m>0时,m+|m|>0,当m=0时,m+|m|=0,当m<0时,m+|m|=0,故选:B.【点评】本题考查了有理数的加法,分类讨论是解题关键,根据分类先化简,再进行有理数的加法运算.2.数整数部分的个位数是()A.1B.2C.3D.以上都不是【分析】放缩法即可得到数整数部分的个位数.【解答】解:∵<<∴1<<,∴数整数部分的个位数是1.故选:A.【点评】本题考查了有理数的混合运算,关键是将分母放大和缩小求出取值范围.3.一根1m长的绳子,第一次剪去绳子的,第二次剪去剩下绳子的,如此剪下去,第100次剪完后剩下绳子的长度是()A.B.C.D.【分析】根据有理数的乘方的定义解答即可.【解答】解:∵第一次剪去绳子的,还剩m;第二次剪去剩下绳子的,还剩=m,……∴第100次剪去剩下绳子的后,剩下绳子的长度为()100m;故选:C.【点评】本题考查了有理数的乘方,理解乘方的意义是解题的关键.4.已知a,b,c是有理数,且a+b+c=0,abc(乘积)是负数,则的值是()A.3B.﹣3C.1D.﹣1【分析】因为a+b+c=0,abc(乘积)是负数,则这三个数中只能有一个负数,另两个为正数.把a+b+c=0变形代入代数式,求值.【解答】解:由题意知,a,b,c中只能有一个负数,另两个为正数,不妨设a<0,b>0,c>0.由a+b+c=0得出:a+b=﹣c,b+c=﹣a,a+c=﹣b,代入代数式,原式==1﹣1﹣1=﹣1.故选:D.【点评】注意分析条件,得出这三个数中只能有一个负数,另两个为正数是化简的关键.5.对于实数a,b,如果a>0,b<0且|a|<|b|,那么下列等式成立的是()A.a+b=|a|+|b|B.a+b=﹣(|a|+|b|)C.a+b=﹣(|a|﹣|b|)D.a+b=﹣(|b|﹣|a|)【分析】题中给出了a,b的范围,根据“正数的绝对值是其本身,负数的绝对值是其相反数,0的绝对值是0”进行分析判断.【解答】解:由已知可知:a,b异号,且正数的绝对值<负数的绝对值.∴a+b=﹣(|b|﹣|a|).故选:D.【点评】有理数的加法运算法则:异号的两个数相加,取绝对值较大的数的符号,再让较大的绝对值减去较小的绝对值.6.设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a+b﹣c的值为()A.0B.2C.﹣2D.2或﹣2【分析】由a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,可分别得出a、b、c的值,代入计算可得结果.【解答】解:根据题意知a=1,b=﹣1,c=0,则a+b﹣c=1﹣1+0=0,故选:A.【点评】本题主要考查有理数的概念的理解,能正确判断有关有理数的概念是解题的关键.7.“△”表示一种运算符号,其意义是:a△b=2a﹣b,如果x△(1△3)=2,那么x等于()A.1B.C.D.2【分析】此题逻辑思维能力较强,充分利用已知条件.对号入座,先做括号里面的.【解答】∵x△(1△3)=2,x△(1×2﹣3)=2,x△(﹣1)=2,2x﹣(﹣1)=2,2x+1=2,∴x=.故选:B.【点评】本题主要考查了在有理数的混合运算的基础上,拓展练习,属于知识竞赛的题型.8.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:如图所示.如果自然数m恰好经过7步运算可得到1,则所有符合条件的m的值有()A.3个B.4个C.5个D.6个【分析】首先根据题意,应用逆推法,用1乘以2,得到2;用2乘以2,得到4;用4乘以2,得到8;用8乘以2,得到16;然后分类讨论,判断出所有符合条件的m的值为多少即可.【解答】解:根据分析,可得则所有符合条件的m的值为:128、21、20、3.故选:B.【点评】此题主要考查了探寻数列规律问题,考查了逆推法的应用,注意观察总结出规律,并能正确的应用规律.9.设a=,b=,则a、b的大小关系是()A.a>b B.a=b C.a<b D.无法确定【分析】先化简a、b,再根据有理数大小比较的方法进行比较即可求解.【解答】解:∵a======﹣20042×2003+1<0,b=====1>0,∴a<b.故选:C.【点评】考查了有理数的混合运算,有理数大小比较,关键是化简求出a、b的值.10.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9B.10C.12D.13【分析】三个顶角分别是4,5,6,4与5之间是3,6和5之间是1,4和6之间是2,这样每边的和才能相等.【解答】解:三边之和是3s,等于1+2+…+6三个顶点的值.而三个顶点的值最大是4+5+6,当三个顶点分别是4,5,6时,可以构成符合题目的三角形.所以s最大为(1+2+3+4+5+6+4+5+6)÷3=12.故选:C.【点评】考查了有理数的加法,解题关键是三角形的三个顶点的数字是1~6这6个数最大的三个数字.二.填空题(共6小题)11.已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b﹣c=2或0.【分析】先利用绝对值的代数意义求出a,b及c的值,再根据a>b>c,判断得到各自的值,代入所求式子中计算即可得到结果.【解答】解:∵|a|=1,|b|=2,|c|=3,∴a=±1,b=±2,c=±3,∵a>b>c,∴a=﹣1,b=﹣2,c=﹣3或a=1,b=﹣2,c=﹣3,则a+b﹣c=2或0.故答案为:2或0【点评】此题考查了有理数的加减混合运算,以及绝对值,确定出a,b及c的值是解本题的关键.12.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是4分钟.【分析】根据路程=速度×时间,则此题中需要用到三个未知量:设车的速度是a,人的速度是b,每隔t分发一班车.然后根据追及问题和相遇问题分别得到关于a,b,t的方程,联立解方程组,利用约分的方法即可求得t.【解答】解:设车的速度是a,人的速度是b,每隔t分发一班车.二辆车之间的距离是:at车从背后超过是一个追及问题,那么:at=6(a﹣b)①车从前面来是相遇问题,那么:at=3(a+b)②①﹣②,得:a=3b所以:at=4at=4即车是每隔4分钟发一班.【点评】注意:此题中涉及了路程问题中的追及问题和相遇问题.考查了对方程的应用,解方程组的时候注意技巧.13.三个数a=266,b=344,c=622中,最小的一个是c.【分析】指数相同的正数,底数大的一定大.【解答】解:因为a=266=(23)22=822,b=344=(32)22=922,c=622.故最小的一个是622.【点评】对于此类问题应化为同指数的幂,再比较大小.14.如果|x+1|+(y+2)2=0,并且ax﹣3ay=1,那么a=0.2.【分析】先根据非负数的性质,求出x,y的值,代入ax﹣3ay=1,即可得出a的值.【解答】解:∵|x+1|+(y+2)2=0,∴x+1=0,y+2=0,解得x=﹣1,y=﹣2,把x=﹣1,y=﹣2代入ax﹣3ay=1,得﹣a+6a=1,∴a=0.2.故答案为:0.2.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.计算:1﹣(+2)+3﹣(+4)+5﹣(+6)…+2015﹣(+2016)=﹣1008.【分析】根据运算律即可化简求值【解答】解:原式=(1﹣2)+(3﹣4)+…+(2015﹣2016)=﹣1+(﹣1)+…(﹣1)=﹣1008故答案为:﹣1008【点评】本题考查有理数运算,注意利用有理数运算律.16.观察下列等式:=×(1﹣),=×(﹣),=×(﹣),=×(﹣),…根据你得出的规律写出第n个等式为=×(﹣),并根据该规律计算:+++…+=.【分析】根据等式的左边分母是n2+2n,分子是1,右边是乘以﹣的差,再把式子展开,进行合并即可.【解答】解:第n个等式为=×(﹣),+++…+=×(1﹣)+×(﹣)+×(﹣)+…+×(﹣)=×(1﹣+﹣+﹣+…+﹣)=×(1+﹣﹣)=×=.故答案为=×(﹣),.【点评】本题考查了有理数的混合运算,本题是一个找规律的题目,找到第n个式子是解题的关键.三.解答题(共7小题)17.计算(1)27﹣18+(﹣7)﹣32;(2);(3);(4).【分析】(1)先化简,再分类计算即可;(2)先判定符号,再化为连乘计算;(3)利用乘法分配律简算;(4)先算乘方,再算括号里面的减法,再算乘法,最后算括号外面的减法.【解答】解:(1)27﹣18+(﹣7)﹣32=27﹣18﹣7﹣32=27﹣57=﹣30;(2)=﹣7××=﹣;(3)=﹣×(﹣24)﹣×(﹣24)+×(﹣24)=18+20﹣21=17;(4)=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.【点评】此题考查有理数的混合运算,注意抓组运算顺序,根据数字特点灵活运用运算定律简算.18.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求m+cd+的值.【分析】(1)根据互为相反数的和为0,互为倒数的积为1,绝对值的意义,即可解答;(2)分两种情况讨论,即可解答.【解答】解:(1)∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+=2+1+0=3;当m=﹣2时,m+cd+=﹣2+1+0=﹣1.【点评】本题考查了倒数、相反数、绝对值,解决本题的关键是熟记倒数、相反数、绝对值的意义.19.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):第1批第2批第3批第4批第5批5km2km﹣4km﹣3km10km(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费10元,超过3km的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?【分析】(1)根据有理数加法即可求出答案.(2)根据题意列出算式即可求出答案.(3)根据题意列出算式即可求出答案.【解答】解:(1)5+2+(﹣4)+(﹣3)+10=10(km)答:接送完第五批客人后,该驾驶员在公司的南边10千米处.(2)(5+2+|﹣4|+|﹣3|+10)×0.2=24×0.2=4.8(升)答:在这个过程中共耗油4.8升.(3)[10+(5﹣3)×1.8]+10+[10+(4﹣3)×1.8]+10+[10+(10﹣3)×1.8]=68(元)答:在这个过程中该驾驶员共收到车费68元.【点评】本题考查正负数的意义,解题的关键是熟练运用正负数的意义,本题属于基础题型.20.已知|x|=5,|y|=3.(1)若x﹣y>0,求x+y的值;(2)若xy<0,求|x﹣y|的值;(3)求x﹣y的值.【分析】(1)根据题意,利用绝对值的代数意义求出x与y的值,代入原式计算即可得到结果;(2)根据题意,利用绝对值的代数意义求出x与y的值,代入原式计算即可得到结果;(3)根据题意,利用绝对值的代数意义求出x与y的值,代入原式计算即可得到结果.【解答】解:∵|x|=5,∴x=5或﹣5,∵|y|=3,∴y=3或﹣3,(1)当x﹣y>0时,x=5,y=3或x=5,y=﹣3,此时x+y=5+3=8或x+y=5+(﹣3)=2,即x+y的值为:8或2;(2)当xy<0,x=5,y=﹣3或x=﹣5,y=3,此时|x﹣y|=8或|x﹣y|=8,即|x﹣y|的值为:8;(3)①x=5时,y=3时,x﹣y=5﹣3=2;②x=5时,y=﹣3时,x﹣y=5+3=8;③x=﹣5时,y=3时,x﹣y=﹣5﹣3=﹣8;④x=﹣5时,y=﹣3时,x﹣y=﹣5+3=﹣2,综上:x﹣y=±2或±8.【点评】此题考查了有理数的加减法以及绝对值,熟练掌握运算法则及绝对值的代数意义是解本题的关键.21.若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.【分析】分别根据运算“*”的运算方法列式,然后进行计算即可得解.【解答】解:(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.【点评】本题考查了有理数的乘法,是基础题,理解新运算的运算方法是解题的关键.22.在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.【分析】(1)根据三个数的和为2+3+4=9,依次列式计算即可求解;(2)先求出下面中间的数,进一步得到右上面的数,从而得到x、y的值,相加可求x+y 的值.【解答】解:(1)2+3+4=9,9﹣6﹣4=﹣1,9﹣6﹣2=1,9﹣2﹣7=0,9﹣4﹣0=5,如图所示:(2)﹣3+1﹣4=﹣6,﹣6+1﹣(﹣3)=﹣2,﹣2+1+4=3,x=3﹣4﹣(﹣6)=5,y=3﹣1﹣(﹣6)=8,x+y=5+8=13.【点评】本题考查了有理数的加法,根据表格,先求出三个数的和是解题的关键,也是本题的突破口.23.数学课上老师出了一道题计算:1+21+22+23+24+25+26+27+28+29,老师在教室巡视了一圈,发现同学们都做不出来,于是给出答案:解:令s=1+21+22+23+24+25+26+27+28+29①则2s=2+22+23+24+25+26+27+28+29+210②②﹣①得s=210﹣1根据以上方法请计算:(1)1+2+22+23+…+22015(写出过程,结果用幂表示)(2)1+3+32+33+…+32015=(结果用幂表示)【分析】(1)根据题意可以对所求式子变形,从而可以解答本题;(2)根据题意可以对所求式子变形,从而可以解答本题.【解答】解:(1)设s=1+2+22+23+…+22015①,则2s=2+22+23+…+22015+22016②,②﹣①,得s=22016﹣1,即1+2+22+23+…+22015=22016﹣1;(2)设s=1+3+32+33+…+32015①,则3s=3+32+33+…+32015+32016②,②﹣①,得∴s=,故答案为:.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.。

第二章 有理数及其运算单元测试卷(解析版)

第二章 有理数及其运算单元测试卷(解析版)

第二章 有理数及其运算单元测试卷一.选择题(共10小题)1.(2023•路桥区二模)2023年第一季度,浙江省全省创造了约1900000000000元的生产总值,排名哲时排名全国第四位.数据1900000000000用科学记数法表示为( )A .111.910´B .121.910´C .111910´D .130.1910´【分析】科学记数法的表示形式为10n a ´的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10…时,n 是正整数;当原数的绝对值1<时,n 是负整数.【解答】解:数据1900000000000用科学记数法可以表示为121.910´.故选:B .2.(2023•抚松县模拟)下列各数中,最小的数是( )A .3-B .1-C .0D .3【分析】根据正数大于0,0大于负数,以及两个负数比较大小方法判断即可.【解答】解:3103-<-<<Q ,\最小的数为3-.故选:A .3.(2023•滨城区二模)2(2)3--的结果是( )A .7-B .1C .2-D .6【分析】先算乘方,再算减法.【解答】解:2(2)3--43=-1=.故选:B .4.(2023•新昌县模拟)|2023|(-= )A .2023B .2023-C .12023-D .12023【分析】根据负数的绝对值等于它的相反数,即可求解.【解答】解:|2023|(2023)2023-=--=.故选:A.5.(2023•乾县三模)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为( )A.6B.6-C.0D.1 6【分析】根据数轴表示和相反数的定义进行求解.【解答】解:6-Q的相反数是6,\点B表示的数为6,故选:A.6.(2023•兰溪市模拟)一条数轴上有点A、B,点C在线段AB上,其中点A、B表示的数分别是8-,6,现以点C为折点,将数轴向右对折,若点A¢落在射线CB上,并且4A B¢=,则C点表示的数是( )A.1B.1-C.1或2-D.1或3-【分析】设点C表示的数为x,分两种情况:A¢在线段CB的延长线上或线段CB上分别计算即可.【解答】解:设点C表示的数为x,当A¢在线段CB的延长线上时,4A B¢=Q,\点A¢表示的数为6410+=,AC A C=¢Q,(8)10x x\--=-,解得:1x=;当A¢在线段CB上时,4A B¢=Q,\点A¢表示的数为642-=,AC A C=¢Q,(8)2x x\--=-,解得:3x=-;故选:D.7.(2023•河北模拟)将122135222555´´´´´´´{{L L 个个的计算结果用科学记数法可表示为( )A .12510´B .13110´C .12210´D .13210´【分析】先计算出结果,再根据科学记数法的表示形式进行解答即可.【解答】解:Q 1212213512251522255525255510´´´´´´´´=´´¼´´´=´{{{{L L 个个个个,故选:A .8.(2023•南关区校级四模)中国是最早采用正负数来表示相反意义的量的国家,如果盈利50元,记作“50+元”,那么亏损30元,记作( )A .30+元B .20-元C .30-元D .20+元【分析】根据正负数来表示相反意义,盈利50元,记作“50+元”,亏损30元,则记作“30-元”即可求解.【解答】解:Q 盈利50元,记作“50+元”,\亏损30元,记作“30-元”.故选:C .9.(2023•河东区二模)如图,数轴上A ,C 位于B 的两侧,且2AB BC =,若点B 表示的数是1,点C 表示的数是3,则点A 表示的数是( )A .0B .2-C .3-D .1-【分析】求出AB 线段的长度,因为点A 表示的数小于点B ,点B 表示1,推理出点A 表示的数.【解答】解:Q 点B 表示的数是1,点C 表示的数是3,2BC \=,2AB BC =Q ,4AB \=,有数轴可知:点A 表示的数小于点B 表示的数,143\-=-,即点A 表示的数为3-,故选:C .10.(2023春•武昌区期末)将1,2,3,4,5,6,7,8,9,10这个10个自然数填到图中的10个格子里,每个格子中只填一个数,使得田字形的4个格子中所填数字之和都等于m .则m 的最大值是( )A .23B .24C .25D .26【分析】图形中有3个“田”字形,其中重叠的有两个小格,设对应的数为a ,b ,则与a 与b 均被加了两次,根据“田“字形的4个格子中所填数字之和都等于m ,其总和为3m 根据3个“田”字形所填数的总和为1234567891055a h a b +++++++++++=++,列出不等式,求整数解即可.【解答】解:设每个“田”字格四个数的和为m ,共12个数的和为3m ,有两数重复,设这两数分别为a ,b ,所以3个“田”字形所填数的总和为:1234567891055a b a b +++++++++++=++.则有355m a b =++,要m 最大,必须a 、b 最大,而a b +最大值为91019+=,则355910m ++…,则2243m <,则m 最大整数值为24,故选:B .二.填空题(共6小题)11.(2023春•芝罘区期中)如图,数轴上有A 、B 、C 三点,A 、B 两点表示的有理数是分别是2-和8,若将该数轴从点C 处折叠后,点A 和点B 恰好重合,那么点C 表示的有理数是 3 .??【分析】由题意得点C 是线段AB 的中点,再进行求解.【解答】解:由题意得点C 是线段AB 的中点,\点C 表示的有理数是:(28)2-+¸62=¸3=,故答案为:3.12.(2023春•秦淮区期中)若44222a +=,5553333b ++=,则a b -的值为 1- .【分析】根据乘方的定义(求几个相同因数或因式的积的一种运算)解决此题.【解答】解:44222a +=Q ,5553333b ++=,452222a \=´=,563333b =´=.5a \=,6b =.561a b \-=-=-.故答案为:1-.13.(2023春•平谷区期末)某校要举办秋季运动会,初一(2)班有四名同学分别想参与100m ,200m ,400m ,和800m 的比赛,其中甲同学擅长跑100m 和200m ,乙同学擅长跑400m 和800m ,丙同学擅长跑100m 、200m 和400m ,丁同学最擅长跑100m .为了让班级取得好成绩,也让他们每个人都可以参加比赛,并且每人只能参加一项比赛,那么只能派 丙 参加400m 比赛.【分析】根据四名同学最擅长的项目分析即可得出答案.【解答】解:Q 甲同学擅长跑100m 和200m ,丁同学最擅长跑100m ,\让丁同学跑100m ,甲同学跑200m ,Q 乙同学擅长跑400m 和800m ,丙同学擅长跑100m 、200m 和400m ,\让乙同学跑800m ,丙同学跑400m ,故答案为:丙.14.(2023•甘州区校级模拟)ABC D 的三边长a ,b ,c 满足2|4|(2)0a b c +-+-=,则ABC D 的周长为 6 .【分析】直接利用非负数的性质得出a b +,c 的值,进而得出答案.【解答】解:2|4|(2)0a b c +-+-=Q ,40a b \+-=,20c -=,解得:4a b +=,2c =,ABC \D 的周长为:426a b c ++=+=.故答案为:6.15.(2023春•浦东新区期末)若|1|1a a -=-,则a 的取值范围是 1a … .【分析】根据||a a =-时,0a …,因此|3|3a a -=-,则30a -…,即可求得a 的取值范围.【解答】解:|1|1a a -=-Q ,10a \-…,解得:1a ….故答案为:1a ….16.(2023•随州)计算:2(2)(2)2-+-´= 0 .【分析】根据有理数的混合运算顺序,先计算乘方,再计算乘法,后计算加法即可.【解答】解:2(2)(2)2-+-´4(4)=+-0=.故答案为:0.三.解答题(共8小题)17.(2022秋•宝山区校级期末)计算:212.75136++.【分析】首先把小数化为分数,然后再通分,计算即可.【解答】解:原式32121436=++,98221121212=++,7412=.18.(2022秋•和平区校级期末)计算①111()24386-+´;②42211(2)(25(0.25326-¸-+´--.【分析】①根据乘法分配律计算即可;②先算乘方,再算乘除法,最后算加减法即可.【解答】解:①111(24386-+´111242424386=´-´+´834=-+9=;②42211(2)(25(0.25326-¸-+´--64111116()9264=¸+´--911116(64124=´+--27113()121212=+--1312=.19.(2023春•明水县期末)计算下面各题,能简便运算的要用简便方法算(1);(2);(3).【分析】(1)先算括号里的除法,然后括号外的乘法即可;(2)先变形,然后根据乘法分配律计算即可;(3)根据乘法分配律计算即可.【解答】解:(1)=×()=×=1×=;(2)=×88+×88=()×88=1×88=88;(3)=(27×+27×)×39=(+5)×39=×39+5×39=54+195=249.20.(2023春•海沧区期末)对有序数对(,)x y 定义“f 运算”: 11(,)(,)22f x y x a y b =-+,其中a ,b 为常数.(1)若(2f ,4)(1-=-,3),求a ,b 的值;(2)当4a =,3b =-时,有序数对(,)m n 经过“f 运算”后结果是(,)n c .若4m n …,求c 的最大值.【分析】(1)根据新定义“f 运算”,将(2f ,4)(1-=-,3)代入,解一元一次方程即可;(2)当4a =,3b =-,序数对(,)m n 代入“f 运算”得28m n =+,4m n …得c 的取值范围,进而作答.【解答】解:(1)Q 11(,)(,)22f x y x a y b =-+,(2f ,4)(1-=-,3),(2f \,14)(22a -=´-,14)2b -´+,11a \-=-,23b -+=,解得:2a =,5b =;(2)当4a =,3b =-时,(,)1(42x y f x =-,11)2y -,(,)1(42m n f m \=-,11)2n -,\142132m n n c ì-=ïïíï-=ïî①②,由①得:28m n =+,4m n Q …,284n n \+…,解得:4n …,\1312n --…,1c \-…,c \的最大值为1-.21.(2022秋•寻乌县期末)卓越中学为提高中学生身体素质,积极倡导“阳光体育”运动,开展一分钟跳绳比赛.七年级某班10名参赛代表成绩以160次为标准,超过的次数记为正数,不足的次数记为负数,成绩记录如下(单位:次):18+,1-,22+,2-,5-,12+,8-,1,8+,15+.(1)求该班参赛代表最好成绩与最差成绩相差多少?(2)求该班参赛代表一分钟平均每人跳绳多少次?(3)规定:每分钟跳绳次数为标准数量,不加分;超过标准数量,每多跳1个加1分;未达到标准数量,每少跳1个,扣0.5分,若班级跳绳总积分超过60分,便可得到学校的奖励,请通过计算说明该班能否得到学校奖励?【分析】(1)用记录中的最大数减去最小数即可;(2)根据平均数的意义,可得答案;(3)根据题意列式计算求出该班的总积分,再与60比较即可.【解答】解:(1)22(8)22830+--=+=(次),答:该班参赛代表最好成绩与最差成绩相差30次;(2)160(18122251281815)10+-+--+-+++¸1606010=+¸1606=+166=(次),答:该班参赛代表一分钟平均每人跳绳166次;(3)(1822121815)1(1258)0.5+++++´-+++´768=-68=(分),6860>,答:该班能得到学校奖励.22.(2022秋•徐闻县期末)为体现社会对老师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师,如果规定向东为正,向西为负,出租车的行程如下(单位:千米):5+,4-,3+,10-,3+,9-.(1)最后一名老师送到目的时,小王距出租车出发点的距离是多少千米;(2)若汽车耗油量为0.4升/千米,则这天上午小王的汽车共耗油多少升?【分析】(1)把记录的数字相加得到结果,即可做出判断;(2)求出各数绝对值之和,乘以0.4即可得到结果.【解答】解:(1)根据题意得:543103912+-+-+-=-(千米),则后一名老师送到目的时,小王距出租车出发点的距离是12千米;(2)根据题意得:0.4(5431039)13.6´+++++=(升),则这天上午小王的汽车共耗油13.6升.23.(2023春•长宁区期末)小明表演魔术,从一副除去大小王的扑克中请观众随机选择了4张牌,并让观众每次取其中三张牌,将牌面数字相加,牌面数字之和分别为18,24,25,26.小明立刻说出了观众随机选择的4张扑克牌面的数字.这4张牌牌面的数字都是几呢?你能尝试用数学原理去揭秘这个魔术吗?(A 表示1,J表示11,Q表示12,K表示13)【分析】设这4张牌牌面的数字分别为a,b,c,d,根据题意可得:18a b c++=,24a b d++=,25a c d++=,26b c d++=,从而可得333318242526a b c d+++=+++,进而可得31a b c d+++=,然后分别进行计算,即可解答.【解答】解:设这4张牌牌面的数字分别为a,b,c,d,由题意得:18a b c++=,24a b d++=,25a c d++=,26b c d++=,333318242526a b c d\+++=+++,31a b c d\+++=,31()311813d a b c\=-++=-=,31()31247c a b d=-++=-=,31()31256b ac d=-++=-=,31()31265a b c d=-++=-=,\这4张牌牌面的数字分别为5,6,7,13.24.(2023春•南岗区期中)阅读下面材料,然后回答问题.计算12112 ()() 3031065 -¸-+-解法一:原式12111112 ()()()(3033010306305 =-¸--¸+-¸--¸1111203512 =-+-+16=.解法二:原式12112 ()[()()]3036105 =-¸-+-113()()30210 =-¸-1530=-´16=-.解法三:原式的倒数为21121 ()() 3106530-+-¸-2112()(30)31065=-+-´-2112(30)(30(30)(30) 31065=´--´-+´--´-203512=-+-+10=-故原式110=-.(1)上述得出的结果各不同,肯定有错误的解法,但是三种解法中有一种解法是正确的,请问:正确的解法是解法 解法三 ;(2)根据材料所给的正确方法,计算:11322 ((4261437-¸-+-.【分析】(1)上述得出的结果不同,肯定有错误的解法,我认为解法一和解法二是错误的.在正确的解法中,我认为解法三最简捷;(2)利用乘法分配律求出原式倒数的值,即可求出原式的值.【解答】解:(1)根据除法没有分配律可知解法一错误;根据加法的交换律可知,交换加数的位置时应连同符号一起交换,故解法二也错误;(2)Q13221 (() 6143742-+-¸-1322()(42)61437=-+-´-1322(42)(42)(42)(42) 61437=´--´-+´--´-792812 =-+-+14=-,\113221 ((426143714-¸-+-=-.。

第二章有理数及其运算测试题

第二章有理数及其运算测试题

第二章 有理数及其运算测试卷姓名:___________班级:___________一、选择题1.|﹣3|的绝对值为( )A .﹣3B .0C .3D .±32.在6-,0,5-,1-这四个数中,最小的数是( )A .0B .6-C .5-D .1-3.《金刚川》上映不久,其票房突破13亿元,1300000000用科学记数法表示为( )A .1.3×108B .1.3×109C .0.13×109D .13×1084.下列各组数中,数值相等的是( )A .23与32B .(﹣3)2与﹣32C .﹣23与(﹣2)3D .(﹣3)3与|﹣3|35.下列说法中,正确的是( )A .在数轴上表示﹣a 的点一定在原点的左边B .有理数18的倒数是12C .一个数的相反数一定小于或等于这个数D .如果a a =-,那么a 是负数或零6.规定运算Δ:若a ≥b ,则a Δb =a ﹣b +1;若a <b ,则a Δb =a 2+b ,则(﹣2)Δ1的值为( ) A .﹣2 B .3 C .4 D .57.如图,数轴上的A ,B ,C 三点所表示的数分别是a ,b ,c ,其中AB BC =,如果a b c >>,那么该数轴的原点O 的位置应该在( )A .点A 与点B 之间(靠近B )或点A 的左边B .点A 与点B 之间(靠近A )或点B 的右边C .点B 与点C 之间(靠近B )或点B 的左边D .点B 与点C 之间(靠近C )或点C 的右边 8.若0xy ≠,则x y x y +的值不可能是( ) A .0 B .1 C .2 D .2-9.实数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +>B .||a b a b -=-C .||||b a >D .(1)(1)0a b +->10.已知a ,b 是有理数,若a 在数轴上的对应点的位置如图所示,0a b +<,有以下结论:①0b <;②0b a ->;③a b ->-;④1b a <-,则所有正确的结论是( ) A .①④ B .①③ C .②③ D .②④11.小明在计算机上设置了一个运算程序:任意输入一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2.通过对输出结果的观察,他发现了一个有意思的现象:无论输入的自然数是多少,按此规则经过若干次运算后可得到1.例如:如图所示,输入自然数5,最少经过5次运算后可得到1.如果一个自然数a 恰好经过7次运算后得到1,则所有符合条件的a 的值有( )A .1个B .2个C .3个D .4个12.a 是不为2的有理数,我们把22a -称为a 的“哈利数”.如:3的“哈利数”是223-=﹣2,﹣2的“哈利数”是212(2)2=--,已知a 1=3,a 2是a 1的“哈利数”,a 3是a 2的“哈利数”,a 4是a 3的“哈利数”,…,依此类推,则a 2019=( )A .3B .﹣2C .12D .43二、填空题13.用四舍五入法将1.3582精确到0.01的近似数为_____.14.绝对值大于1而不大于4的所有整数的和是_________.15.若一个三棱锥的顶点个数为m 、它的棱数为n ,则(m +n -9)2021的值为______.16.有理数a ,b ,c 在数轴上的位置如图所示,若m =|a +b |﹣|b ﹣1|﹣|a ﹣c |,则m =____.17.观察下列等式:第1层1+2=3,第2层4+5+6=7+8,第3层9+10+11+12=13+14+15,第4层16+17+18+19+20=21+22+23+24,…在上述的数字宝塔中,从上往下数,2020在第_____层.18.同学们都知道:()5--2 表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,同理,23x x ++-可以表示数轴上有理数x 所对应的点到-2和3所对应的点的距离之和,则32x x ++- 的最小值为__________.三、解答题19.计算(1)(16)(25)(1)(11)-+++-+- (2)(3)(5)30(15)-⨯--÷-(3)35(15)(15)(15)828-⨯--⨯+-÷ (4)421113(3)262⎛⎫⎡⎤--⨯---÷- ⎪⎣⎦⎝⎭20.在数轴上把下列各数表示出来,并用“<”把它们连接起来.130,1,3,(0.5),24-----.21.某电力检修小组乘一辆皮卡车沿南北走向的公路检修线路,约定向北为正,向南为负,当天从P 地出发到收工时,行走记录如下(单位:千米)+15,-8,+5,-12,+10,-18,+20,+14,-11,+17. (1)收工时,该检修小组在P 地的哪一边,距P 地有多远?说明理由;(2)若该车每千米耗油0.08升,收工时共耗油多少升?说明理由;(3)现油价约为7.5元/升,若耗油量与(2)相同,则该小组回到P 地时,当天所需油费总共是多少元?22.已知有理数a 、b 在数轴上的对应点如图所示.、1)已知a =–2.3、b =0.4,计算|a +b |–|a |–|1–b |的值;、2)已知有理数a 、b ,计算|a +b |–|a |–|1–b |的值.23.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km ):(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米? (2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km 收费10元,超过3km 的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?24.观察下列等式:第1个等式:1111a 11323==⨯-⨯();第2个等式:21111a 35235==⨯-⨯();第3个等式:31111a 57257==⨯-⨯(); 第4个等式:41111a 79279==⨯-⨯();… 请解答下列问题:(1)按以上规律列出第5个等式:a 5= = ;(2)用含有n 的代数式表示第n 个等式:a n = = (n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值.25.阅读材料:4﹣1表示4与1的差的绝对值,也可以理解为4与1两数在数轴上所对应的两点之间的距离;|4+1|可以看作|4﹣(﹣1)|,表示4与﹣1的差的绝对值,也可以理解为4与﹣1两数在数轴上所对应的两点之间的距离.(1)数轴上表示4和﹣1的两点之间的距离是 ,数轴上表示﹣7和﹣3的两点之间的距离是 ; (2)利用数轴找出所有符合条件的整数x ,使得|x +3|=5,则x = ;(3)利用数轴找出所有符合条件的整数x ,使得|x +3|+|x ﹣2|=5,并说明理由.26.已知:a 是最大的负整数,1=b ,5c =,且0bc >,0b c +>请回答问题.(1)请直接写出a 、b 、c 的值:=a ________,b =________,c =________;(2)在数轴上,a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在A 到B 之间运动时(即11x -≤≤时),请化简式子:13125x x x +----(请写出化简过程);(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个単位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC AB -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.。

人教版数学七年级上册第1章 有理数 单元检测题(二)

人教版数学七年级上册第1章 有理数 单元检测题(二)

七年级上册第1章单元检测(二)一.选择题1.在﹣6,12,﹣(﹣5),﹣|﹣3|,﹣12,0这六个数中,负数的个数有()A.0个B.1个C.2个D.3个2.下列计算正确的是()A.(﹣)2=B.23=2×3=6C.﹣32=﹣3×(﹣3)=9D.﹣23=﹣83.根据a×b=c×d(字母表示的数均不为0),改写成比例正确的是()A.c:a=d:b B.c:a=b:d C.a:b=c:d D.a:c=b:d 4.2019年暑期爆款国产动漫《哪吒之魔童降世》票房已斩获4930000000,开启了国漫市场崛起新篇章,4930000000用科学记数法可表示为()A.49.3×108B.4.93×109C.4.93×108D.493×1075.已知a,b互为相反数,c,d互为倒数,m的绝对值为1,x是数轴上到原点的距离为1的点表示的数,则x2018﹣cd +﹣1的值为()A.3B.2C.1D.06.a、b是有理数,它们在数轴上的对应点的位置如图所示,下列说法正确的有()个.①|a+b|=|a|﹣|b|;②﹣b<a<﹣a<b;③a+b>0;④|﹣b|<|﹣a|.A.1B.2C.3D.47.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数;第1页(共1页)④不仅是有理数,而且是分数;⑤是无限不循环小数,所以不是有理数;⑥无限小数不都是有理数;⑦正数中没有最小的数,负数中没有最大的数.其中错误的说法的个数为()A.7个B.6个C.5个D.4个8.下列各组数中,数值相等的是()A.﹣22和(﹣2)2B .﹣和(﹣)2C.(﹣2)2和22D .﹣(﹣)2和﹣9.有两个正数a,b,且a<b,把大于等于a且小于等于b所有数记作[a,b],例如大于等于1且小于等于4的所有数记作[1,4].如果m在[5,15]内,n在[20,30]内,那么的一切值中属于整数的有()A.1,2,3,4,5B.2,3,4,5,6C.2,3,4D.4,5,610.若1<x<2,则的值是()A.﹣3B.﹣1C.2D.1二.填空题11.在﹣8,2020,3,0,﹣5,+13,,﹣6.9中,正整数有个.12.绝对值大于4.5而小于7的所有整数的和等于.13.若|x|=3,|y|=2,且y<0,则x+y=.14.已知a、b两数在数轴上的位置如图所示,则化简代数式|a+b|﹣|2﹣a|+|b+2|的结果是.第1页(共1页)15.对有理数a、b,定义运算★如下,a★b =,则﹣5★6=.三.解答题16.计算:(1)12﹣(﹣18)+(﹣7)﹣20;(2)﹣5﹣9+17﹣3;(3)(﹣1)3﹣[2﹣(﹣3)2]÷(﹣);(4)(﹣7)×(﹣5)﹣90÷(﹣15)+3×(﹣1).17.2020年春节将至,某商场计划购进一批鼠年吉祥物“鼠来宝”,生产厂家订价为每个“鼠来宝“60元,由于临近春节,生产厂家进行促销活动,商场以八折的价格购进,结果比计划多购进了100个“鼠来宝”.(1)该商场购进这批“鼠来宝”共花费多少元?(2)该商场将每个“鼠来宝”在进价的基础上提高50%进行销售.由于“鼠来宝”深受人们的喜欢,所以很快售完,商场以同样的进价又购进了300个“鼠来宝”,并以同样的售价进行销售,到小年了,还有第二次购进的30%的“鼠来宝”没卖出去,求此时商场获利多少元?(3)在(2)的条件下,过完小年商场将剩下的“鼠来宝”以售价的五折进行降价处理,那么商场将两次购进的“鼠来宝”全部销售完后共获利多少元?18.如图1,点A,B,C是数轴上从左到右排列的三个点,分别对应的数为﹣5,b,4.某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对应刻度1.8cm,点C对齐刻度5.4cm.第1页(共1页)(1)在图1的数轴上,AC=个长度单位;数轴上的一个长度单位对应刻度尺上的cm;(2)求数轴上点B所对应的数b;(3)在图1的数轴上,点Q是线段AB上一点,满足AQ=2QB,求点Q所表示的数.19.发现:小明经过计算总结出两位数乘11的速算方法:头尾一拉,中间相加,满十进一.例1.计算:32×11=352.方法:32头尾拉开,中间相加,即3+2=5,计算结果为352;例2.计算:57×11=627.方法:57头尾拉开,中间相加,即5+7=12,满十进一,计算结果为627.尝试:(1)43×11=;(2)69×11=;(3)98×(﹣11)=.探究:一个两位数,十位上的数字是m,个位上的数字是n,这个两位数乘11.(1)若m+n<10,计算结果的百位、十位、个位上的数字分别是什么?请通过计算加以验证.(2)若m+n≥10,直接写出计算结果中十位上的数字.20.对于一个数x,我们用(x]表示小于x的最大整数,例如:(2.6]=2,(﹣3]=﹣4,(10]=9.第1页(共1页)(1)填空:(﹣2020]=,(﹣2.4]=,(0.7]=;(2)如果a,b都是整数,且(a]和(b]互为相反数,求代数式a2﹣b2+4b的值;(3)如果|(x]|=3,求x的取值范围.第1页(共1页)参考答案一.选择题1.解:﹣(﹣5)=5,﹣|﹣3|=﹣3,﹣12=﹣1,所以这六个数中,负数为﹣6,﹣|﹣3|,﹣12.故选:D.2.解:A、(﹣)2=,所以A选项错误;B、23=2×2×2=8,所以B选项错误;C、﹣32=﹣3×3×3=﹣9,所以C选项错误;D、﹣23=﹣2×2×2=﹣8,所以D选项正确.故选:D.3.解:∵a×b=c×d(字母表示的数均不为0),∴改写成比例正确的是a:c=d:b或c:a=b:d.故选:B.4.解:4930000000=4.93×109.故选:B.5.解:∵a,b互为相反数,c,d互为倒数,m的绝对值为1,x是数轴上到原点的距离为1的点表示的数,∴a+b=0,cd=1,m=±1,x=±1,∴m2=1,x2018=1,第1页(共1页)∴x2018﹣cd +﹣1=1﹣1++1﹣1=1﹣1+0+1﹣1=0,故选:D.6.解:根据有理数a、b在数轴上的对应点的位置可知,a<0,b>0,且|a|<|b|,∴a+b>0,因此③正确;∵|a|=|﹣a|,|b|=|﹣b|,而|a|<|b|,∴|﹣a|<|﹣b|,因此④不正确;∵a<0,b>0,且|a|<|b|,∴a+b=|b|﹣|a|>0,因此①不正确,根据绝对值和相反数的意义可得,﹣b<a<﹣a<b;因此②正确,故选:B.7.解:①没有最小的整数;②有理数包括正数、0和负数;③非负数就是正数和0;④是无理数;⑤是无限循环小数,所以是有理数;⑥无限小数不都是有理数;第1页(共1页)⑦正数中没有最小的数,负数中没有最大的数,故其中错误的说法的个数为5个.故选:C.8.解:∵﹣22=﹣4,(﹣2)2=4,﹣22≠(﹣2)2,∴选项A不符合题意;∵﹣=﹣,(﹣)2=,﹣≠(﹣)2,∴选项B不符合题意;∵(﹣2)2=4,22=4,(﹣2)2=22,∴选项C符合题意;∵﹣(﹣)2=﹣,﹣=﹣,﹣(﹣)2≠﹣,∴选项D不符合题意.故选:C.9.解:∵m在[5,15]内,n在[20,30]内,∴5≤m≤15,20≤n≤30,∴的一切值中属于整数的有=2,=3,=4,=5,=6.故选:B.第1页(共1页)10.解:∵1<x<2,∴x﹣2<0,x﹣1>0,x>0,∴原式=﹣1+1+1=1,故选:D.二.填空题11.解:正数有:2020,,+13,,故答案为:4.12.解:绝对值大于4.5而小于7的所有整数为﹣5,﹣6,5,6,之和为0.故答案为:0.13.解:∵|x|=3,|y|=2,且y<0,∴x=±3,y=﹣2,∴x+y=3+(﹣2)=1或x+y=(﹣3)+(﹣2)=﹣5.故答案为:1或﹣5.14.解:由有理数a、b、c在数轴上的位置,可得,﹣2<b<﹣1,2<a<3,所以有a+b>0,2﹣a<0、b+2>0,因此|a+b|﹣|2﹣a|+|b+2|=a+b﹣(a﹣2)+b+2=a+b﹣a+2+b+2=2b+4,故答案为:2b+4.15.解:∵a★b =,∴﹣5★6==﹣30.第1页(共1页)故答案为:﹣30.三.解答题16.解:(1)原式=12+18﹣7﹣20=30﹣27=3;(2)原式=﹣5﹣﹣9﹣+17+﹣3﹣=﹣5﹣9+17﹣3﹣﹣+﹣=﹣﹣+﹣=﹣=﹣;(3)原式=﹣1﹣(2﹣9)×(﹣2)=﹣1﹣(﹣7)×(﹣2)=﹣1﹣14=﹣15;(4)原式=35+6﹣3=38.17.解:(1)设该商场购进这批“鼠来宝”共花费x元,由题意得,解得x=24000(元),第1页(共1页)答:该商场购进这批“鼠来宝”共花费24000元;(2)该商场第一次购进“鼠来宝”的数量:(个),实际进价60×80%=48(元),所以48×(1+50%)×[500+300×(1﹣30%)]﹣48×(500+300)=12720(元).答:此时商场获利12720元;(3)48×(1+50%)×50%×300×30%=3240(元),12 720+3 240=15 960(元).答:商场共获利15 960元.18.解:(1)AC=4﹣(﹣5)=9(个长度单位),数轴上的一个长度单位对应刻度尺上的5.4÷9=0.6(cm);故答案为:9;0.6.(2)依题意有1.8=0.6(b+5),解得b=﹣2,即数轴上点B所对应的数b为﹣2;(3)设点Q所表示的数是x,依题意有x﹣(﹣5)=2(﹣2﹣x),解得x=﹣3.故点Q所表示的数是﹣3.19.解:尝试:(1)43×11=473;(2)69×11=759;第1页(共1页)(3)98×(﹣11)=﹣1078;探究:(1)若m+n<10,计算结果的百位、十位、个位上的数字分别是m,m+n,n,验证:这个两位数为10m+n,根据题意得:(10m+n)×11=(10m+n)(10+1)=100m+10(m+n)+n,则若m+n<10,百位、十位、个位上的数字分别是m,m+n,n;(2)若m+n≥10,十位上数字为m+n﹣10.故答案为:尝试:(1)473;(2)759;(3)﹣1078.20.解:(1)(﹣2020]=﹣2021,(﹣2.4]=﹣3,(0.7]=0;(2)∵a,b都是整数,且(a]和(b]互为相反数,∴a﹣1+b﹣1=0,∴a+b=2,∴a2﹣b2+4b=(a﹣b)(a+b)+4b=2(a﹣b)+4b=2(a+b)=2×2=4;(3)当x<0时,第1页(共1页)∵|(x]|=3,∴x>﹣3,∴﹣3<x≤﹣2;当x>0时,∵|(x]|=3,∴x>3,∴3<x≤4.故x的范围取值为﹣3<x≤﹣2或3<x≤4.故答案为:﹣2021,﹣3,0.第1页(共1页)。

第2章 有理数的运算 综合检测卷(含答案) 初中数学人教版(2024)七年级上册

第2章  有理数的运算  综合检测卷(含答案)   初中数学人教版(2024)七年级上册

人教版(2024年新教材)七年级(上)综合检测卷第2章《有理数的运算》考试时间:100分钟总分值:120分题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.计算:2+(﹣6)=( )A.4B.﹣4C.8D.﹣82.﹣2024的倒数是( )A.﹣2024B.2024C.D.3.横冲国际滑雪场某一天的最高气温为1℃,最低气温为﹣9℃,则这天的最高气温比最低气温高( )A.﹣10℃B.﹣8℃C.8℃D.10℃4.据国家统计局发布,2023年全国固定资产投资(不含农户)50.3万亿元,同比增长3.0%.其中数据“50.3万亿”用科学记数法表示为( )A.5.03×1014 B.5.03×1013 C.0.503×1014 D.5.03×10125.不改变原式的值,将6﹣(﹣3)+(﹣7)﹣(+2)中的减法改成加法,并写成省略加号的形式是( )A.6+3﹣7+2B.6﹣3﹣7﹣2C.6﹣3+7﹣2D.6+3﹣7﹣26.下列计算不正确的是( )A.﹣1.5×(﹣3)=4.5B.(﹣1.2)×(﹣7)=﹣8.4C.﹣8×(﹣1.3)=10.4D.0×(﹣1.6)=07.两个非零有理数的和为零,则它们的商( )A.1B.﹣1C.0D.不能确定8.下列各数中,结果相等的是( )A.23和32B.(﹣2)3和﹣23C.(﹣3)2和﹣32D.|﹣2|3和(﹣2)39.对于有理数a、b,定义一种新运算“※”,规定:a※b=|a|﹣|b|﹣|a﹣b|,则2※(﹣3)等于( )A.﹣2B.﹣6C.0D.210.数轴上的两点所表示的数分别为a,b,且满足ab>0,a+b<0,下列结论正确的是( )A.a>0,b>0B.a<0,b<0C.a>0,b<0D.a<0,b>0二.填空题(共6小题,满分18分,每小题3分)11.比﹣27大3的数是 .12.底数是﹣2,指数是4的幂可以写成 .13.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为 个.14.将数2 024.624四舍五入取近似值,精确到个位为 .15.计算(﹣2)÷6×的结果是 .16.在数4、﹣6、3、﹣2、1中,任意取3个不同的数相乘,其中乘积最大是 .三.解答题(共9小题,满分72分,每小题8分)17.(8分)计算:(1)(﹣7)+13﹣5;(2)(﹣)﹣(﹣)﹣|﹣1|.18.(6分)如果a、b互为相反数,c、d互为倒数,m的绝对值为5,求的值.19.(6分)先阅读第(1)小题,再计算第(2)小题:(1)计算:﹣1+(﹣5)+24+(﹣3)解:原式=(﹣1﹣)+(﹣5﹣)+(24+)+(﹣3﹣)=﹣1﹣﹣5﹣+24+﹣3﹣=﹣1﹣5﹣3+24﹣﹣+﹣=15﹣=13(2)计算(﹣15)+(﹣19)+14+(﹣1).20.(10分)计算:(1);(2).21.(6分)阅读下列材料:计算:÷(﹣+).解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷(﹣+)=÷=×6=.解法三:原式的倒数=(﹣+)÷=(﹣+)×24=×24﹣×24+×24=4.所以,原式=.(1)上述得到的结果不同,你认为解法 是错误的;(2)请你选择合适的解法计算:(﹣)÷(﹣+﹣).22.(8分)若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.23.(8分)某仓库5月份前6天,每天粮食相对于前一天(单位:袋)变化如图,增加粮食记作“+”,减少粮食记作“﹣”.(1)通过计算说明前6天,仓库粮食总共的变化情况;(2)在1~7号中,如果前四天的仓库粮食变化情况是后三天变化精况的一半,求7号这天仓库粮食变化情况.24.(10分)①如果a,b,c是有理数且abc≠0,计算代数式的值;②如果有理数a+b+c=0且abc≠0,计算代数式的值.25.(10分)阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数.所以,当a≥0时,|a|=a,当a≤0时,|a|=﹣a.根据以上阅读完成:(1)|3.14﹣π|= ;(2)|x+y|=x+y,则x+y ;(3)计算:.参考答案一.选择题1.B.2.C.3.D.4.B.5.D.6.B.7.B.8.B.9.B.10.B.二.填空题11.﹣24.12.(﹣2)4.13.8.14.2025.15..16.48.三.解答题17.解:(1)原式=6﹣5=1;(2)原式=﹣﹣=﹣=0.18.解:∵a、b互为相反数,c、d互为倒数,m的绝对值为5,∴a+b=0,cd=1,m=±5,当a+b=0,cd=1,m=5时,;当a+b=0,cd=1,m=﹣5时,;所以原式的值为﹣7或3.19.解:(﹣15)+(﹣19)+14+(﹣1)=﹣15﹣﹣19﹣+14+﹣1﹣=﹣15﹣19+14﹣1﹣﹣+﹣=﹣21﹣=﹣2220.解:(1)=﹣8×(﹣+﹣)×6=﹣48×(﹣+﹣)=﹣48×(﹣)﹣48×﹣48×(﹣)=8﹣36+4=﹣24;(2)=﹣1﹣[2﹣(﹣8)]×(﹣)×=﹣1﹣10×(﹣)×=﹣1+=.21.解:(1)上述得到的结果不同,我认为解法一是错误的;故答案为:一;(2)原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣35+21=﹣14,则原式=﹣.22.解:(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.23.解:(1)﹣4+2﹣6+5+3﹣7=﹣7答:前6天,仓库粮食减少7袋;(2)设7号粮食变化x袋,由题意得,,解得:x=﹣2答:7号粮食减少2袋.24.解:①当a、b、c中没有负数时,都是正数,则原式=1+1+1+1=4;当a、b、c中只有一个负数时,不妨设a是负数,则原式=﹣1+1+1﹣1=0;当a、b、c中有2个负数时,不妨设a、b是负数,则原式=﹣1﹣1+1+1=0;当a、b、c都是负数时,则原式=﹣1﹣1﹣1﹣1=﹣4,综上所述,代数式的值是4或﹣4或0;②当有理数a+b+c=0且abc≠0时,a、b、c中至少有1个正数,有1个负数.则代数式的值是:0.25.解:(1)|3.14﹣π|=π﹣3.14;故答案为:π﹣3.14;(2)|x+y|=x+y,则x+y≥0,故答案为:≥0;(3)原式=1﹣+﹣+﹣+⋯+﹣=1﹣=.。

七年级数学上册阶段许2第2章有理数的运算2-1-2-4作业新版浙教版

七年级数学上册阶段许2第2章有理数的运算2-1-2-4作业新版浙教版

=1250(元),到乙店购买需要花费:25×60×(1-
16%)=1260(元),到丙店购买需要花费:25×60-
25×60 100
× 15 = 1500 - 225 = 1275( 元 ) , ∵ 1250 <
1260<1275,答:到甲店购买比较省钱,最少费用
为 1250 元.
17.(12分)伽师瓜是喀什地区伽师县的特产,可称得 上是新疆瓜果的珍品,享誉全国.伽师县的张师傅将自 家种植的伽师瓜进行网上销售,原计划每天销售100公 斤伽师瓜,由于受到实际产量的影响,每天的实际销售 量与计划销售量相比略有不同.第一周的销售情况如下 表所示(超额记为正,不足记为负.单位:公斤):
3.某种植物成活的主要条件是该地区的四季温差
不得超过20℃,若不考虑其他因素,表中的四个地
区中,哪个地区适合大面积栽培这种植物?( B )
A.甲 B.乙
C.丙
D.丁
4.-6×(112 -123 +254 )=-12 +10-54 这
步运算运用了( D )
A.加法结合律
B.乘法结合律
C.乘法交换律
4―÷―2→ 2―÷―2→ 1 如果正整数 m 最少经过 6 步运算可
得到 1,则 m 的值为__1_0_或___6_4__.
三、解答题(共 48 分) 13.(8 分)计算:
(1)|0.75|+(+314 )-(-0.125)-|-0.125|;34
+13
根据表格回答下列问题: (1)张师傅前三天共卖出________公斤伽师瓜; (2)销售量最多的一天比销售量最少的一天多销售 ________公斤伽师瓜; (3)若伽师瓜的网上售价为每公斤8元,运费为每公 斤3元,求张师傅本周的总收入.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数运算检测(二)
一、选择题
1、下列说法正确的是( )
A 、一个数前面加上“-”号这个数就是负数;
B 、非负数就是正数;
C 、正数和负数统称为有理数
D 、0既不是正数也不是负数; 2、在-(-2),-|-7|,-|+1|,|-
中,负数有,)5
11(-|32+( ) A 、1个 B 、2个 C 、3个 D 、4个 3、一个数的倒数是它本身的数是( )
A 、1
B 、-1
C 、±1
D 、0 4、下列计算正确的是( )
A 、(-4)2
=-16 B 、(-3)4
=-34
C 、(-3
4-)31(-D 1251)5
1
43
=-
=、 5、(-0.2)
2002
× 5
2002
+(-1)
2002
+(-1)
2001
的值是( )
A 、3
B 、-2
C 、 -1
D 、1 6、如果两个数的绝对值相等,那么这两个数是( )
A 、互为相反数
B 、相等
C 、积为0
D 、互为相反数或相等 7、下列说法正确的是( )
A 、若两个数互为相反数,则这两个数一定是一个正数,一个负数;
B 、一个数的绝对值一定不小于这个数;
C 、如果两个数互为相反数,则它们的商为-1;
D 、一个正数一定大于它的倒数; 8、若a<0,b<0,则下列各式正确的是( )
A 、a-b<0
B 、a-b>0
C 、a-b=0
D 、(-a)+(-b)>0
9、若0<a<1,则a ,
) (,12
从小到大排列正确的是a a A 、a 2<a<a 1 B 、a < a 1< a 2 C 、a 1<a< a 2 D 、a < a 2
<a
1
10、在数轴上距2.5有3.5个单位长度的点所表示的数是( ) A 、6 B 、-6 C 、-1 D 、-1或6
11、学校为了改善办学条件,从银行贷款100万元,盖起了实验大楼,贷款年息为12%, 房屋折旧每年2%,学校约1400名学生,仅贷款付息和房屋折旧两项,每个学生每年承
受的实验费用为( )
A 、约104元;
B 、1000元
C 、100元
D 、约21.4元 12、当n 为正整数时,(-1)
2n+1
-(-1)2n
的值是( )
A 、0
B 、2
C 、-2
D 、2或-2 二.填空题
13、对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么-3
克表示=_____
14、有理数2,+7.5,-0.03,-0.4,0,
3
1
中,非负数是__________ 15、如果-x=-(-12),那么x= __________ 16、化简| 3.14 -π|= _________ 17、计算:(-5
3
)32()52()31+
-+--= _________ 18、在-(-2),-|-2|,(-2)2
,-22
四个数中,负数有_________个 19、如果x<0,且x 2
=25,那么x= _________
20、把3
2(-3) )5
1(- 32- 0,41,,,
按从小到大排列的顺序是_______________________ 21、计算:-3×22
-(-3×2)2
= _________ 22、若|x|=-x ,则x 是_________数;
23、水池中的水位在某天八个不同时间测得记录事下:(规定向上为正,向下为负,单位:
厘米)+3,-6,-1,+5,-4,+2,-3,-2,那么这天中水池中水位的最终变化情况是___________
24、小R 编制了一个计算程序.当输入任何一个有理数时,显示的结果总等于输入有理数的
平方与1之和.若输入-1,并将显示的结果再次输入,这样显示的结果应当是 . 三、计算题
25、① (-3)×(-9)-8×(-5) ②-63÷7+45÷(-9)
③)325
()5.2()94(321÷-⨯-⨯ ④ (-1)3-2)5
3(41-⨯
⑤-23-3×(-2)3-(-1)4
⑥(-62
)2
1()25.0(|-3|32)2
3
÷-+÷⨯
⑦)115
(833)513(375.316.0)5.3()71
2511(4)32
(13-÷+-⨯-÷⎥⎦
⎤⎢⎣
⎡-⨯-+--÷
⑧331124991644.6588.8(1)233.4888
⨯-⨯+⨯-+⨯
四、解答下列各题
1、已知b a ,互为相反数,d c ,互为倒数,试求20032003)()()(cd b a x cd
b
a b a -++++++的值。

(4分)
2、如果()()013212
2
=-+-++c b a ,求3
33c a abc -+的值.
3、有理数,,a b c 在数轴上对应的点分别为A ,B ,C ,其位置如图所示,试化简
c c b a c b a -++-++
B
C B
A
有理数运算检测二参考答案
一、选择题
二、填空题
13、盒装牛奶低于标准质量3克 14、2 +7.5 0 3
1 15、-1
2 16、π-3.14 17、0 18、2 19、-5 20、3)3(-<32-<2)51(-<0<4
1 21、-48 22、非正数 23、-6厘米 24、5
三、计算题
25、①、67 ②、-14 ③、
92 ④ 、100
109
- ⑤、15 ⑥、2115- ⑦、28
535
- ⑧、1001
四、解答下列各题 1、-1 2、2
1
6- 3、-c。

相关文档
最新文档