信号与系统第2章
信号与系统课件:第二章 LTI系统
2.1 离散时间LTI系统: 卷积和
(1)用移位单位抽样信号表示离散时间信号 (2)卷积和在离散时间信号LTI系统中的表征 (3)卷积和的计算 (4) 离散时间信号LTI系统的性质
(1)用单位抽样信号表示离散时间信号
x[n] ... x[1] n 1 x[0] n x[1] n 1... x[n][0] x[n 1][1]
(1)初始条件为n<0时,y(n)=0,求其单位抽样响应;
(2)初始条件为n≥0时,y(n)=0,求其单位抽样响应。
解:(1)设x(n) (n),且 y(1) h(1) 0 ,必有
y(n) h(n) 0, n 0
依次迭代
y(0) h(0) (0) 1 y(1) 1 0 1
2
当系统的初始状态为零,单位抽样响应h(n)就 能完全代表系统,那么对于线性时不变系统,任意 输入下的系统输出就可以利用卷积和求得。
差分方程在给定输入和边界条件下,可用迭代 的方法求系统的响应,当输入为δ(n)时,输出 (响应)就是单位抽样响应h(n)。
例:常系数差分方程
y(n) x(n) 1 y(n 1) 2
x[n]u[n] x[k]u[n k] x[k]
k
k
(ii)交换律:
yn xnhn hn xn
例子: 线性时不变系统中的阶跃响应 sn
sn unhn hnun
阶跃输入
输 单位抽样信号 入 响应的累加
n
sn hk
k
(iii)分配律:
xnh1n h2 n xnh1n xnh2 n
y(1) h(1) (1) 1 y(0) 0 1 1
2
22
y(2) h(2) (2) 1 y(1) 0 1 1 (1)2
《信号与系统》第2章
5 P 10 P 2
特解: y p ( t ) 2 全解: y ( t ) Ae t cos( 2 t ) 2 确定 A 和 θ : y ( 0 ) A cos 2 3
y ( t ) Ae
t
t
t
y p ( t ) P1 e
( P1 t P1 P0 ) e
t
( P1 t 2 P1 P0 ) e
t
t
( P1 t 2 P1 P0 ) e
3 ( P1 t P1 P0 ) e
2 ( P1 t P0 ) e
t
t
bm f
( t ) b m 1 f
( t ) b1 f
b0 f (t )
或缩写为
i0
n
ai y
(i)
j0
m
bj f
( j)
ai 和 bj 均为常数, an = 1。
3
微分方程的全解的组成
•由齐次解和特解组成; •由自由响应和强迫响应组成; •由稳态响应和瞬态响应组成;
( Pr t Pr 1 t
r r 1
P1 t P0 ) e
t
9
微分方程经典解小结
• 关于齐次解:
– 解的一般形式为指数函数; – 若有多重特征根,则解为多项式与指数函数相乘; – 复根与实根的本质是相同的。
• 关于特解:
– 激励的形式主要有两种:指数函数与多项式; – 相应的响应也有两种形式:指数函数与多项式; – 当与特征根相重时,乘一多项式。
( n 1 )
( t ) a1 y
信号与系统第二章第一讲
则相应于1的k阶重根,有k项:
( A1t k 1 A2t k 2 Ak 1t Ak )e1t ( Ai t k i )e1t
i 1
k
例2-3
信 号 与 系 统
求如下所示的微分方程的齐次解。
Hale Waihona Puke d3 d2 d r (t ) 7 2 r (t ) 16 r (t ) 12r (t ) e(t ) 3 dt dt dt
等式两端各对应幂次的系数应相等,于是有:
信 号 与 系 统
特解为: 联立解得:
3B1 1 4 B1 3B2 2 2 B 2 B 3 B 0 2 3 1
统
线性时不变系统
线性的常系数微分方程
按照元件的约束特性及 系统结构的约束特性
也即:
具体系统物理模型
常系数微分方程建立
(1)元件端口的电压与电流约束关系
iR (t ) R
信 号 与 系 统
vR (t )
C
vR (t ) iR (t ) R
dvC (t ) iC (t ) C dt
vR (t ) Ri R (t )
与
时域经典法就是直接求解系统微分方程的方法。这种方 系 法的优点是直观,物理概念清楚,缺点是求解过程冗繁,应 用上也有局限性。所以在20世纪50年代以前,人们普遍喜欢 统 采用变换域分析方法(例如拉普拉斯变换法),而较少采用时 域经典法。20世纪50年代以后,由于δ(t)函数及计算机的普 遍应用,时域卷积法得到了迅速发展,且不断成熟和完善, 已成为系统分析的重要方法之一。时域分析法是各种变换域 分析法的基础。
信 号 与 系 统
is (t )
《信号与系统》第2章1
信号与系统讲稿
二. 系统模型的建立是有一定条件的:
1. 对于同一物理系统在不同条件之下,可以得到不 同形式的数学模型。(参考书中P29) 2. 对于不同的物理系统,经过抽象和近似有可能得到 形式上完全相同的数学模型。(参考书中P29)
建立数学模型
解数学模型
对解加于物理解释
三. 时域分析方法
时域分析:在分析过程中,所涉及到的函数都是时间的 函数。 (1) 经典方法:求解微分方程 (2) 卷积积分。(重点内容)
在 t = 0 时刻换开关,由于电感的电流不能跳变,所以: i( 0+ ) = i( 0 ) = 0 A
di(t ) 而i (0 ) dt
L 1 1 u ( t ) u L (t ) u L (0 ) L t 0 t 0 t 0 L
且u L (0 ) 20 u C (0 )
信号与系统讲稿
对于电阻,有信号就有可能发生跳变。 第一种情况:在没有冲激电流(或阶跃电压)强迫 作用于电容的情况下,电容两端电压uC( t )不发生跳变; 在没有冲激电压(或阶跃电流)强迫作用于电感的情 况下,流过电感的电流iL( t )不发生跳变。 即: uC( 0+ ) = uC( 0 )、iL( 0+ ) = iL( 0 ) 第二种情况:在有冲激电流(或阶跃电压)强迫作 用于电容以及有冲激电压(或阶跃电流)强迫作用于 电感时, uC(0)和iL( 0 )发生跳变,这种情况只能借助 于对微分方程在[ 0,0+ ]内取积分或用奇异函数平衡 法来决定。 (2) 利用方程和起始条件uC( 0 )、iL( 0 ),通过奇异 函数平衡法决定初始条件。
1 i R (t ) u R (t ) 或 u R (t ) R i R (t ) R
信号与线性系统分析第2章
e t
cos t sin t
Pe t (不等于特征根) t (P t P )e (等于特征单根) 1 0
(Pr t r Pr 1t r 1 P0 )e t (等于r重特征根)
例:f1(t), f2(t)如图,求f1(t)* f2(t) 解: f1(t) = 2ε (t) –2ε (t –1) f2(t) = ε (t+1) –ε (t –1) f1(t)* f2(t) = 2 ε (t)* ε (t+1) –2 ε (t)* ε (t –1) –2ε (t –1)* ε (t+1) +2ε (t –1)* ε (t –1) 由于ε (t)* ε (t) = tε (t) 据时移特性,有 f1(t)* f2(t) = 2 (t+1) ε (t+1) - 2 (t –1) ε (t –1) –2 tε (t) +2 (t –2) ε (t –2)
f (t ) f1 ( ) f 2 (t )d
为f1(t)与f2(t)的卷积积分,简称卷积;记为 f(t)= f1(t)*f2(t) 注意:积分是在虚设的变量τ下进行的,τ为积分变量, t为参变量。结果仍为t 的函数。
y zs (t )
f ( )h(t ) d f (t ) * ) d
▲ ■ 第 13 页
2 .任意信号作用下的零状态响应
f ( t) 根据h(t)的定义: δ(t)
LTI系统 零状态
yzs(t) h(t) h(t -τ) f (τ) h(t -τ)
由时不变性:
信号与系统王明泉版本~第二章习题解答
第2章 线性时不变连续系统的时域分析2.1 学习要求(1)会建立描述系统激励与响应关系的微分方程;(2)深刻理解系统的完全响应可分解为:零输入响应与零状态响应,自由响应与强迫响应,瞬态响应与稳态响应;(3)深刻理解系统的零输入线性与零状态线性,并根据关系求解相关的响应; (4)会根据系统微分方程和初始条件求解上述几种响应; (5)深刻理解单位冲激响应的意义,并会求解;(6)深刻理解系统起始状态与初始状态的区别,会根据系统微分方程和输入判断0时刻的跳变情况; (7)理解卷积运算在信号与系统中的物理意义和运算规律,会计算信号的卷积。
; 2.2 本章重点(1)系统(电子、机械)数学模型(微分方程)的建立; (2)用时域经典法求系统的响应; (3)系统的单位冲激响应及其求解;(4)卷积的定义、性质及运算,特别是()t δ函数形式与其它信号的卷积; (5)利用零输入线性与零状态线性,求解系统的响应。
2.3 本章的知识结构2.4 本章的内容摘要2.4.1系统微分方程的建立电阻:)(1)(t v Rt i R R =电感:dtt di L t v L L )()(= )(d )(1)(0t i v Lt i L tL L +=⎰∞-ττ 电容:dtt dv C t i C C )()(= ⎰+=tt L C C t i i Ct v 0)(d )(1)(0ττ 2.4.2 系统微分方程的求解 齐次解和特解。
齐次解为满足齐次方程t n t t h e c e c e c t y 32121)(λλλ+⋅⋅⋅++=当特征根有重根时,如1λ有k 重根,则响应于1λ的重根部分将有k 项,形如t k t k t k t k h e c te c e t c e t c t y 111112211)(λλλλ++⋅⋅⋅++=--- 当特征根有一对单复根,即bi a +=2,1λ,则微分方程的齐次解bt e c bt e c t y at at h sin cos )(21+= 当特征根有一对m 重复根,即共有m 重ib a ±=2,1λ的复根,则微分方程的齐次解bt e t c bt te c bt c t y at m m at h cos cos cos )(121-+⋅⋅⋅++= bt e t d bt te d bt e d at m m at at sin sin sin 121-+⋅⋅⋅+++ 特解的函数形式与激励函数的形式有关。
信号与系统教案第2章
2.1 LTI连续系统的响应
一、微分方程的经典解
许多实际的系统可以用线性系统来模拟。一个线性系 统其激励与响应之间的关系可以用下列形式的微分方 程来描述:
y(n)(t) + an-1y (n-1)(t) + …+ a1y(1)(t) + a0y (t) = bmf(m)(t) + bm-1f (m-1)(t) + …+ b1f(1)(t) + b0f (t)
第2-7页
2.1 LTI连续系统的响应
齐次解的函数形式仅与系统本身的特性有关,而与激励 f(t)的函数形式无关,称为系统的固有响应或自由响应; 特解的函数形式由激励确定,称为强迫响应。 例1: 描述某系统的微分方程为
y”(t) + 5y’(t) + 6y(t) = f(t) 求(1)当f(t) = 2e-t,t≥0;y(0)=2,y’(0)= -1时的全解;
et[C cos( t) D sin( t)], 或 A cos( t )
其中Ae j C jD
第2-6页
2.1 LTI连续系统的响应
表2- 不同激励所对应的特解
激励 f (t)
tm
e t
cos( t) 或 sin( t)
特解 yp (t) Pmt m Pm-1t m1 P1t P0 所有的特征根均不等于0;
第2-13页
2.1 LTI连续系统的响应
通常,对于具体的系统,初始状态一般容易求得。这样 为求解微分方程,就需要从已知的初始状态y(j)(0-)设法 求得y(j)(0+)。下列举例说明。
例2:描述某系统的微分方程为 y”(t) + 3y’(t) + 2y(t) = 2f’(t) + 6f(t)
信号与系统-第2章
f (t)
K
两式相加:
cosωt =
1 2
(e
jωt
+
e
jωt )
(2-4)
0 K
t
两式相减:
sinωt =
1 2j
(e
jωt
-e
jωt )
(2-5)
(3) 复指数信号: f(t) = Ke st = Ke (σ+ jω)t
= Keσt (cosωt + j sinωt)
当 σ > 0 时为增幅振荡 ω = 0 时为实指数信号 σ < 0 时为衰减振荡
2
01
t
f(
1 2
t)
=
1 2
t
0
0<t <4 其它
f(12 t)
2 0
4t
注意: 平移、反折和展缩都是用新的时间变量去代换原来的
时间变量, 而信号幅度不变.
t +2 -2<t<0 例2-5:已知 f(t) = -2t + 2 0<t<1
f (t)
2
0
其它
-2 0 1
t
求 f(2t-1),
f(
1 2
(1) 相加和相乘
信号相加: f t f1t f2 t fn t 信号相乘: f t f1t f2 t fn t
0 t<0 例2-1:已知 f1(t) = sint t ≥ 0 , f2(t) =-sint, 求和积.
解: f1(t) + f2(t) =
-sint 0
t<0 t≥0
0
t<0
f1(t) f2(t) = -sin2t t ≥ 0 也可通过波形相加和相乘.
∞ t=0 作用: 方便信号运算.
信号与系统第2章
第二章 傅立叶变换
(5) 微分特性 如果 那么
(6)积分特性 如果 那么
如果F(0)=0
第二章 傅立叶变换
(7)卷积定理 1.时域卷积定理 如果 那么 (8)频域卷积定理 如果
那么
第二章 傅立叶变换
11周期信号的傅里叶变换
周期信号的频谱------用傅里叶级数表示。 非周期信号的频谱——用傅里叶变换表示。 周期信号的频谱可以用傅里叶变换表示吗? (1)正弦、余弦信号的傅里叶变换 直流信号的博立叶变换为
n1 ) 2 n1 2
2 E sin( An T
2 E sin( An T
2
)
2
这里
2 1 T
Hale Waihona Puke n1第二章 2 E sin( An T
傅立叶变换
2
)
2
若: 2 An 0 (1) 2 (2) 2
该式表明:周期信号f(t)的傅里叶变换F(ω )是由一些冲击函数组成的, 并位于基波ω 1的整数倍处,冲击强度为f(t)的指数傅里叶级数的系数Cn 的2π 倍。
第二章 傅立叶变换
例4. 求周期单位冲激序列的傅里叶级数与傅里叶变换。
傅里叶级数为
第二章 傅立叶变换
例5. 求周期矩形脉冲信号的傅里叶级数和傅里叶变换 矩形脉冲信号f(t)的 傅里叶系数为:
第二章 傅立叶变换
例1已知矩形脉冲f1(t)如图(a)所示,其相位谱如图(b)所示, 将f1(t)右移τ /2得到如图(c)所示f2(t),试画出其相位谱。
由题意可知
根据时移特性,可得f2(t)的频谱函数 为
第二章 傅立叶变换
f2(t)幅度谱没有变化,其相位谱比图(b)滞后τ ω /2、如图(d)所示。要
信号与系统第2章信号描述及其分析1
图2.2.3 谐波逐次叠加后的图形 (a)1次 (b)1,3次 (c)1,3,5次
机电工程学院
黄石理工学院机电工程学院
Sun Chuan 68215
第2章 信号描述及其分析
(2) 从以上两例可看出,三角波信号的频谱比方波信号的频谱 衰减得快,这说明三角波的频率结构主要由低频成分组成,而 方波中所含高频成分比较多。这一特点反映到时域波形上,表 现为含高频成分多的时域波形(方波)的变化比含高频成分少的时 域波形(三角波)的变化要剧烈得多。因此,可根据时域波形变化 剧烈程度,大概判断它的频谱成分。
本节小结 本节主要介绍了信号的分类。由于不同类型的信号其处 理方法不同,所以必须善于区分不同类型的信号。
机电工程学院
黄石理工学院机电工程学院
Sun Chuan 68215
第2章 信号描述及其分析
§2 周期信号与离散频谱
信号的时域描述与时域分析 本课程所研究的信号 一般是随时间变化的物理量,抽象为以时间为自变量表达 的函数,称为信号的时域描述。求取信号幅值的特征参数 以及信号波形在不同时刻的相似性和关联性,称为信号的 时域分析。时域描述是信号最直接的描述方法,它只能反 映信号的幅值随时间变化的特征,而不能明显表示出信号 的频率构成。因此必须研究信号中蕴涵的频率结构和各频 率成分的幅值、相位关系。
本章重点及难点 本章重点为信号的分析,其中信号频
谱的求取为主要内容。难点为傅里叶变换。
机电工程学院
黄石理工学院机电工程学院
Sun Chuan 68215
第2章 信号描述及其分析
首先应清楚如下三个方面:
信号与信息 信号与信息并非同一概念。 信号分析和信号处理 信号分析和信号处理并没有明确的界 限,通常把研究信号的构成和特征称为信号分析,把信号经过 必要的变换以获得所需信息的过程称为信号处理。 对信号进行分析与处理的原因 在一般情况下,仅通过对信 号波形的直接观察,很难获取所需要的信息,需要对信号进行 必要的分析和处理。
信号与系统课件(郑君里版)第二章
e ,t≥0;y(0)=2,y’(0)= 2 t ,t≥0;y(0)= 1, e
t
-1
y’(0)=0时的全解。
解: (1) 特征方程为
2 + 5λ+ 6 = 0
其特征根λ1= – 2,λ2= – 3。 齐次解为
yh (t ) C1e2t C2e2t
由表2-2可知,当f(t) = 2 e t
y fh (t ) C f 1e
2t
C f 2e
t
其特解为常数 3 , 于是有
y f (t ) C f 1e2t C f 2et 3
C1 1 C 2 4
根据初始值求得:
y f (t ) e2t 4et 3,t 0
四.系统响应划分
自由响应+强迫响应 (Natural+forced) 暂态响应+稳态响应 (Transient+Steady-state) 零输入响应+零状态响应 (Zero-input+Zero-state)
零输入响应
2.2 冲激响应和阶跃响应
一.冲激响应 1.定义 系统在单位冲激信号δ(t) 作用下产生的零状态响 应,称为单位冲激响应,简称冲激响应,一般用h(t)表 示。
t
ht
H
[例2.2.1] 描述某系统的微分方程为y”(t)+5y’(t)+6y(t)=f(t)求其 冲激响应h(t)。
相互关系
零输入响应是自由响应的一部分,零状态响应有自由响 应的一部分和强迫响应构成 。
y (t ) e 2t 3 y x (t ) y f (t ) (2e 2t 4e t ) (e 2t 4e t 3),t 0
信号与系统第二章_连续时间系统时域分析(青岛大学)
n
rzi (t) Azikekt k 1
(b)
r(k zi
)
(0
)
r(k) (0 )
k 0,1,L ,(n 1)
系数Azik可直接由 r(k) (0 ) 来确定。
例:已知描述某二阶LTI连续时间系统的动态方程
d2 dt 2
r(t)
5
d dt
r(t)
6r(t)
e(t)
起始状态 r(0 ) 1,r(0 ) ,2激励信号
(t)
2
p3
5
2p p2
5
p
3
e(t)
2
d3 dt3
vo
(t)
5
d2 dt 2
vo
(t)
5
d dt
vo
(t)
3vo
(t)
2
d dt
e(t)
总结: (1)引入算子符号后,RLC 电路可借助纯电阻电路的分析方法;
(2)是否可消去公共因子的原则:微分方程的阶数应等于电路 阶数(独立储能元件的个数)。
§2.3 微分方程的经典解法 r(t) rh (t) rp (t)
r(0 ) r(0 ) 1
(4)由 0状态确定待定系数
r(t) A1et A2e2t 0.5e3t
rr((00))
A1 A1
A2 0.5 1 2A2 1.5
3
A1 A2
5.5 5
全响应 r(t) 5.5et 5e2t 0.5e3t ,t 0
(一)经典法求解微分方程步骤:
r(t) 0 u(t) r(0 ) r(0 )
代入
d2 dt 2
r(t)
3
d dt
r(t)
信号与系统 第2章(3-5)
X
n = −∞
∑
k
x[n ]
1 k
n = −∞
∑ x[n]
2 1
k
3
单位阶跃序列可 用单位脉冲序列 的求和表示: 的求和表示:
0
k
k
u[ k ] =
n = −∞
∑ δ [n]
2.5 确定信号的时域分解
X
一、信号分解为直流分量与交流分量 二、信号分解为奇分量与偶分量之和 三、信号分解为实部分量与虚部分量 四、连续信号分解为冲激信号的线性组合 五、离散信号分解为脉冲序列的线性组合 六、信号分解为正交信号集
d
u[k ] =
u( t ) =
∫d ∫
t
−∞
δ (τ ) τ
n =−∞
∑ δ [ n] ∑ u [n]
k
k
u( t ) = d r ( t ) t r (t ) =
−∞
u[k ] = r[k + 1] − r[k ]
u(τ ) τ
d
r [ k + 1] =
n = −∞
2.4 离散时间信号的基本运算
一、序列相加与相乘
2. 序列相乘 序列相乘
x1[ k ]
0 1 k
2 1 y[k]=x1[k]× x2[k] 2 1.5
X
将若干序列同序号的数值相乘。 将若干序列同序号的数值相乘。
y[k ] = x1 [k ] × x2 [k ] × … × xn [k ]
x2 [ k ]
0
k
0
k
2.4.2 序列的相加、相乘、差分与求和
x[k] = x D C [k] + x A C [k]
k = N1
信号与系统-线性系统分析__第二章
一.微分方程的经典解法
• n阶常系数线性微分方程
n
m
aiy(i) (t) bjf (j) (t)
i0
j0
(an 1)
y(n) (t) an-1y(n-1)(t) a0y(t)
bmf (m) (t) bm-1f (m-1)(t) b0f(t)
微分方程的全解由齐次解yh(t)和特解yp(t)组成
上例中,可令f(t)=10ejt,得解为 yp(t)=(1−j)ejt=cost+sint+j(sint−cost)
▪ 求微分方程也就是确定解的形式与全部待定系数。 ▪ 解的形式根据表2−1和表2−2确定,待定系数由初始
条件求出。
11
• 用算子方法求微分方程
微分算子:p d dt
积分算子:1 t ( )d
Pet (i) 或 et[Prtr+Pr−1tr−1+…+P0]
Pcos(t)+Qsin(t) 或 Aetcos(t+)
5
f(t)为常数1时,则特解为b0/a0。 考察函数f(t)在t0时作用,则全解的定义域[0,)。
全解由齐次解和特解组成,待定常数由初始条件y(0)、
y(1)(0)、…、y(n−1)(0)确定。
j1
j1
自由响应:由系统 本身的特性确定的 响应形式
强迫响应:由激 励信号确定的响 应形式
当输入信号含有阶跃函数或有始的周期函数时,系 统的全响应可分解为瞬态响应和稳态响应。
18
例:微分方程为 y''(t)+3y'(t)+2y(t)=2f '(t)+6f(t);
初始状态y(0−)=2,y'(0−)=1;输入函数f(t)=(t)。 求零输入响应和零状态响应。
信号与系统 (2)
0 1
t0 t0
u(t)
t
(
t0 )d
u(t
t0
)
23
2.3 阶跃信号和冲激信号
u(t)与 (t)的关系:
t
( )d u(t)
d u(t) (t)
dt
t
(
t0 )d
u(t
t0 )
d dt
u(t
t0
)
(t
t0
)
(t)
(1)
0
t
u(t)
1
0
t
24
2.3 阶跃信号和冲激信号
即:
0 t 0
vc (t) 1
u(t) t 0
如果开关S在t = t0 时闭合, 则电容上的电压为u(t - t0) 。 u(t - t0)波形如下图所示:
u(t- t0 ) 1
0
t0
t
14
2.3 阶跃信号和冲激信号
u(t)与R(t)的关系:
u(t) dR(t) dt
t
R(t) u( )d
t
波形如图:
9
2.2 常用连续信号
Sat 的性质:
(1)Sat 是偶函数,在 t 正负两方向振幅都逐渐
衰减。
(2)
Sa(t)dt
0
2
Sa(t)dt
10
2.2 常用连续信号
4. 复指数信号 如果指数信号的指数因子为复数,则称为复指数信号,
其表达式为 f (t) Kest Ke( j )t Ket cos t jKet sin t 复指数信号概括了多种情况,可以利用复指数信号来
1
2t 3 1及 2t 3 1
t
1
《信号与系统》第二版第二章:LTI连续时间系统的时域分析
零状态(zero state)响应 yzs (t ) :不考虑起始时刻系统储能的作用,即Y(0-) ≡0,由系统的外加激励信号 v (t ) = v (t )u (t ) ≠ 0 所产生的响应。
零输入响应 yzi (t ) :
5
《信号与系统》
第二章:LTI 连续时间系统的时域分析
∏(p −αi )
i =1
(αi 为互异特征根)
= N (p) ⎡⎣eαnt ∗ ∗ eα1t ∗ v (t )⎤⎦
(2-19)
n
∑ yzs (t ) = 齐次解 Aieαit +特解 B (t ) i =1
(2-20)
特解 B (t ) 反映系统输入对输出的强迫。
非零状态线性系统: 定义(非零状态线性系统):系统 T 的初始状态为X(0-)≠0
令: D (p) pn + an−1pn−1 + ... + a1p + a0
N (p) bmpm + ... + b1p + b0
4
《信号与系统》
有:
第二章:LTI 连续时间系统的时域分析
y
(t)
=
N (p) D(p)
v(t
)
H (p)v(t)
(2-13)
其中,
H
(p)
=
N (p) D(p)
称为系统算子。
≤ ∫ ∫ f (τ ) g (t −τ ) dτ dt ΩΩ
= ∫ f (τ ) ∫ g (t −τ ) dtdτ
Ω
Ω
=∫
f (τ )
g (t ) dτ = 1
f (t) 1
g (t ) 1
信号与系统第二章
§2.1 经典时域解法
2 连续时间信号与系统的时域分析
2.1.1 微分方程式的建立与求解
1.物理系统的模型
•许多实际系统可以用线性系统来模拟。
•若系统的参数不随时间而改变,则该系统可以用
线性常系数微分方程来描述。
2 连续时间信号与系统的时域分析
•根据实际系统的物理特性列写系统的微分方程。 •对于电路系统,主要是根据元件特性约束和网络
2 连续时间信号与系统的时域分析
2 冲激函数匹配法 配平的原理:t =0 时刻微分方程左右两端的δ(t) 及各阶导数应该平衡.
【例】
d y t 3 y t 3 t 已知y0 , 求y0 dt
ut : 表示0 到0 相对单位跳变函数
该过程可借助数学描述
所以系统响应的完全解为
需要注意的: 特解的函数形式由系统所加的激励决定,齐次解 的函数形式完全取决于特征方程的根。 由于构成系统的各元件本身所遵从的规律、系统 的结构与参数决定了微分方程的阶次与系数,因此, 齐次解只与系统本身特性有关。
2 连续时间信号与系统的时域分析
2.1.2 从 到 状态的转换
2 连续时间信号与系统的时域分析
齐次解:由特征方程→求出特征根→写出齐次解形式 注意重根情况处理方法。 特 解:根据微分方程右端函数式形式,设含待定系 数的特解函数式→代入原方程,比较系数 定出特解。
完全解:齐次解和特解相加, 齐次解中的待定系数可通过初始条件求得.
在系统分析中,响应区间定义为激励信号 加 入后系统的状态变化区间。系统响应的求解区间为
a 3 即 b 9 c 9
即 y0 y0 9
2 连续时间信号与系统的时域分析
冲激函数匹配法实现过程中应注意的问题: (1) 对于冲激函数只匹配 及其各阶导数项, 微分方程两端这些函数项都对应相等。 (2) 匹配从方程左端 的最高阶项开始,首 先使方程右端冲激函数最高阶次项得到匹配,在已 匹配好的高阶次冲激函数项系数的条件下,再匹配 低阶项。 (3) 每次匹配方程低阶冲激函数项时,如果方 程左端所有同阶次冲激函数各项系数之和不能和右 端匹配,则由左端 高阶项中补偿。
信号与系统(教案) 第二章
二、图解机理
用图形方式理解卷积运算过程,包括以下6个步骤: Step1:换元。画出f1(t)与f2(t)波形,将波形图中的t轴 改换成τ轴,分别得到f1(τ)和f2(τ)。 Step2:翻转。将f2(τ)波形以纵轴为中心轴翻 180°,得 到f2(-τ)波形。 4
信号与系统
2.2
卷积积分
Step3:平移。给定t值,将f2(-τ)波形沿τ轴平移|t|。
卷积积分是一种数学运算,它有许多重要的性质 (或运算规则),灵活地运用它们能简化卷积运算。 下面讨论均设卷积积分是收敛的(或存在的)。
性质1.卷积代数 满足乘法的三律: 1. 交换律: f1(t)* f2(t) =f2(t)* f1(t) 2. 分配律: f1(t)*[ f2(t)+ f3(t)] =f1(t)* f2(t)+ f1(t)* f3(t) 3. 结合律: [f1(t)* f2(t)]* f3(t)] =f1(t)*[ f2(t) * f3(t)]
1.奇异信号
单位冲激信号 (t), 单位阶跃信号 (t).
2.正弦信号
也称为虚指数信号。 f (t ) A cos( t ) A [e j (t ) e j (t ) ] 2
式 中A、和分 别 为 正 弦 信 号 的 振 幅 角 频 率 和 初 相 。 、 f ( t )是 周 期 信 号 , 其 周 期 2 T=
1 0
f 1(t)
2
t
14
信号与系统 例:f1(t), f2(t)如图,求f1(t)* f2(t) 解: f1(t) = 2ε (t) –2ε (t –1) f2(t) = ε (t+1) –ε (t –1)
2.2 卷积积分 2.2 卷积积分
信号与系统第二章2
( p 1) y x1 (t ) c10 e
t
( p 2) 2 y x 2 (t ) (c20 c21t )e 2t
所以:
yx (t ) yx1 (t ) yx 2 (t ) c10e (c20 c21t )e
(2.4-16)
t
2t
其一阶和二阶导函数为
连 续 系 统 系统法:完全响应 y(t) 零输入响应 y x (t ) 零状态响应 y f (t ) 经典法:全响应 y (t ) 齐次解 yh (t ) 特解 y p (t ) 时 域 分 析 法
一、系统初始条件
LTI连续系统,设初始观察 t0 0, 则 时刻 y(t ) yx (t ) y f (t ) (完全响应的分解性)
即微、积分运算次序不能随意颠倒。 显然,对于零初始条件信号,则不受规则(2)、(3)的限制。
二、算子方程与传输算子
n阶LT I 续 系 统 微 分 方 程 连
y (t ) an 1 y
(n)
( n 1)
(t ) a1 y (t ) a0 y (t )
(1)
bm f ( m ) (t ) bm1 f ( m1) (t ) b1 f (1) (t ) b0 f (t )
解 :由节点电压法列出u1(t)的方程为
p 1 1 2 2 2 2 p u1 (t ) f (t )
( p 2 p 2)u1(t ) 2( p 1) f (t )
2
所以u1(t)对f(t)的传输算子为:
2( p 1) H ( p) 2 p 2p 2
t
' 两 边 乘e t , 整 理 得 d [ y x (t )e t ] c0 dt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
件,由此可以得出 y(0)。进一步,又可以通过 y(0) 和 y(−1), y(−2),"", y(−N +1) 求得 y(1),依次类推可求出 所有n ≥ 0 时的解。
若将差分方程改写为:
∑ ∑ y[n −
N]
=
1 aN
⎡ ⎢⎣
M k =0
bk
x[n
−
k
]
−
N −1 k =0
ak
y[n
−
k
]⎤⎥⎦
y′(t) = x′(t) ∗ h(t) = h(t) ∗[δ (t) − δ (t − T )] = h(t) − h(t − T )
y′(t )
2T
T
0 T
−T
2T 3T
−2T
y(t)
利用积分特性即可得:
3T2 2
∫ y(t) = t y′(τ )dτ −∞
1T2 2
0
T
t
2T
t
3T
二.LTI系统的性质 LTI 系统可以由它的单位冲激/脉冲响应来表
∑ y[n] = M bk x[n − k] a k =0 0
∫ ∫ ∫ [ t x(τ )dτ ]∗ h(t) = x(t) ∗[ t h(τ )dτ ] = [ t y(τ )dτ ]
−∞
−∞
−∞
②若 x(t) ∗ h(t) = y(t) ,则 x(t − t0 ) ∗ h(t) = x(t) ∗ h(t − t0 ) = y(t − t0 )
卷积和满足差分、求和及时移特性:
信号 x(t) 所产生的响应,与一个单位冲激响应 是x(t)的LTI系统对输入信号 h(t) 所产生的响应 相同。
2. 分配律:
x[n]∗[h1[n] + h2[n]] = x[n]∗ h1[n] + x[n]∗ h2[n] x(t) ∗[h1(t) + h2 (t)] = x(t) ∗ h1(t) + x(t) ∗ h2 (t)
如果一个因果的LTI系统由LCCDE描述,且方程 具有零初始条件,就称该系统初始是静止的或最初是 松弛的。
如果LCCDE具有一组不全为零的初始条件,则可 以证明它所描述的系统是增量线性的。
二. 线性常系数差分方程: (Linear Constant-Coefficient Difference Equation)
2
所以,无记忆系统的单位脉冲/冲激响应为:
h[n] = kδ [n] h(t) = kδ (t)
此时,x[n]∗ h[n] = kx[n] x(t) ∗ h(t) = kx(t) 当k = 1时系统是恒等系统。
如果LTI系统的单位冲激/脉冲响应不满足上述要 求,则系统是记忆的。 2. 可逆性:
如果LTI系统是可逆的,一定存在一个逆系统,且 逆系统也是LTI系统,它们级联起来构成一个恒等系 统。
h(t) dt < ∞
−∞
这是LTI系统稳定的充分必要条件。
5. LTI系统的单位阶跃响应:
在工程实际中,也常用单位阶跃响应来描述LTI 系统。单位阶跃响应就是系统对 u(t)或 u[n]所产生 的响应。因此有:
s(t) = u(t) ∗ h(t) s[n] = u[n]∗ h[n]
∫ s(t) = t h(τ )dτ −∞
k =−∞
∫ y(t ) = x(t) ∗ h(t) = ∞ x(τ )h(t − τ )dτ −∞
∫= ∞ x(t − τ )h(τ )dτ = h(t) ∗ x(t) −∞
h[n]
x[n]
x(t) x[n]
h(t)
y(t) y[n]
⇒
h(t) h[n]
x(t)
y(t) y[n]
结论: 一个单位冲激响应是 h(t)的LTI系统对输入
x[n]∗ h1[n]∗ h2[n] = x[n]∗ h2[n]∗ h1[n] x(t) ∗ h1(t) ∗ h2 (t) = x(t) ∗ h2 (t) ∗ h1(t)
x[n] x(t) h1[n]
h1 (t )
y[n] h2[n] y(t) h2 (t )
=
x[n] x(t) h2[n]
h2 (t)
y[n] h1[n] y(t) h1 (t )
产生以上结论的前提条件:
①系统必须是LTI系统;
②所有涉及到的卷积运算必须收敛。
1
如: x(t) 平方
y(t) = 2x2 (t) 乘2
若交换级联次序,即成为:
x(t) 乘2
y(t) = 4x2(t)
平方
显然与原来是不等价的。因为系统不是LTI系统。
又如:若 h1[n] = δ[n] − δ[n −1], h2[n] = u[n] , 虽然系统都是LTI系统。当 x[n] = 1时,如果交换
级联次序,则由于 x[n]∗u[n]不收敛,因而也是不
允许的。 x[n] = 1
h1[n]
0
h2 [ n ]
y[n] = 0
4. 卷积运算还有如下性质: 卷积积分满足微分、积分及时移特性:
①若 x(t) ∗ h(t) = y(t) ,则
x′(t) ∗ h(t) = x(t) ∗ h′(t) = y′(t)
① 若x(n) ∗ h(n) = y(n),则
[x[n]− x[n−1]]∗h[n] = x[n]∗[h[n]−h[n−1]]
= y[n]− y[n −1]
n
n
n
[ ∑ x[k]]∗ h[n] = x[n]∗[ ∑ h[k]] = ∑ y[k]
k =−∞
k =−∞
k =−∞
② 若 x[n]∗ h[n] = y[n],则
时,在任何时刻 n, y[n]都只能取决于 n 时刻及其
以前的输入,即和式中所有 k > n的项都必须为零, 即: h[n − k] = 0, k > n
或:
h[n] = 0, n < 0
对连续时间系统有: h(t) = 0, t < 0 这是LTI系统具有因果性的充分必要条件。
4. 稳定性: ∞ 根据稳定性的定义,由 y[n] = ∑ h[k]x[n − k], k =−∞
h(t) = d s(t) dt
n
s[n] = ∑ h[k] k =−∞
h[n] = s[n] − s[n −1]
LTI系统的特性也可以用它的单位阶跃响应来描述。
2.4 用微分和差分方程描述的因果LTI系统
( Causal LTI Systems Described by Differential and Difference Equations ) 在工程实际中有相当普遍的一类系统,其数学模型
可以用线性常系数微分方程或线性常系数差分方程来 描述。分析这类LTI系统,就是要求解线性常系数微 分方程或差分方程。
一.线性常系数微分方程
( Linear Constant-Coefficient Differential Equation )
∑ ∑ N
ak
k =0
d k y(t) dt k
=
M
bk
x[n] h1[n]
h2[n] y[n] = [x[n]∗h1[n]]∗h2[n]
⇒
x(t) x[n]
h1(t) ∗ h2 (t)
y(t) = x(t) ∗[h1(t) ∗ h2 (t)] y[n] = x[n]∗[h1[n]∗ h2[n]]
h1[n]∗ h2[n]
结论:
• 两个LTI系统级联时,系统总的单位冲激(脉冲)响 应等于各子系统单位冲激(脉冲)响应的卷积。 • 由于卷积运算满足交换律,因此,系统级联的先后 次序可以调换。
累加器是可逆的LTI系统,其 h[n] = u[n] ,其逆 系统是 g[n] = δ[n] − δ[n −1] ,显然也有:
h[n]∗ g[n] = u[n]∗[δ[n] − δ[n −1]] = u[n] − u[n −1] = δ[n]
但差分器是不可逆的。微分器也是不可逆的。
3. 因果性: ∞ 由 y[n] = ∑ x[k]h[n − k ] ,当LTI系统是因果系统 k =−∞
一般的线性常系数差分方程可表示为:
N
M
∑ ak y[n − k] = ∑ bk x[n − k]
k =0
k =0
与微分方程一样,它的解法也可以通过求出一个特
解 yp[n]和通解,即齐次解 yh[n]来进行,其过程与解 微分方程类似。
要确定齐次解中的待定常数,也需要有一组附加条
件。同样地,当LCCDE具有一组全部为零的初始条
若 x[n]有界,则 x[n − k] ≤ A ;若系统稳定,则要
求 y[n] 必有界,由
∞
∞
∞
y[n] = ∑ h[k]x[n − k] ≤ ∑ h[k] x[n − k] ≤ A ∑ h[k]
k =−∞
k =−∞
k =−∞
∞
可知,必须有: ∑ h[n] < ∞
n=−∞
∞
∫ 对连续时间系统,相应有:
2.3 线性时不变系统的性质
( Properties of Linear Time-Invariant Systems) 一. 卷积积分与卷积和的性质
1. 交换律:
∞
y[n] = x[n]∗ h[n] = ∑ x[k]h[n − k]
k =−∞
∞
= ∑ x[n − k]h[k] = h[n]∗ x[n]
=0
的解。欲求得齐次解,可根
N
据齐次方程建立一个特征方程:∑ a k λ k = 0 求出
k =0
其特征根。在特征根均为单阶根时,可得出齐次解
的形式为:
N