七年级数学第三单元检测试题
七年级上册数学第三章测试卷
七年级上册数学第三章测试卷一、选择题(每题 3 分,共30 分)1.下列方程中,是一元一次方程的是()。
A. x + 2y = 1B. 3x - 2 = 4x - 3C. x² - 2x + 1 = 0D. 2/x + 1 = 3答案:B。
2.方程2x - 1 = 3 的解是()。
A. x = 1B. x = 2C. x = 3D. x = 4答案:B。
3.若x = 2 是方程3x + a = 7 的解,则a 的值为()。
A. -1B. 1C. 5D. -5答案:A。
4.把方程2x - 3 = 1 + 4x 的项移到等号左边,常数项移到等号右边,可得()。
A. 2x - 4x = 1 + 3B. 2x + 4x = 1 - 3C. 2x - 4x = 1 - 3D. 2x + 4x = 1 + 3答案:A。
5.方程3x - 1 = x 的解是()。
A. x = 1/2B. x = 1C. x = 2D. x = 3答案:A。
6.若代数式3x - 2 与2x + 1 的值相等,则x 的值为()。
A. 1B. 3C. -1D. -3答案:B。
7.一个长方形的周长为26cm,若这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为x cm,则可列方程为()。
A. x - 1 = (26 - x) + 2B. x - 1 = (13 - x) + 2C. x + 1 = (26 - x) - 2D. x + 1 = (13 - x) - 2答案:B。
8.甲、乙两人从相距240 千米的两地同时出发,相向而行,3 小时相遇。
已知甲每小时行50 千米,设乙每小时行x 千米,则可列方程为()。
A. 3(50 + x) = 240B. 3(50 - x) = 240C. 50×3 + x = 240D. 50×3 - x = 240答案:A。
9.某商品进价为100 元,标价为150 元,现按标价的八折出售,则此商品的利润为()元。
(好题)初中数学七年级数学上册第三单元《整式及其运算》检测(有答案解析)
一、选择题1.下列图形都是由同样大小的笑脸按一定的规律组成,其中第①个图形一共有2个笑脸,第②个图形一共有8个笑脸,第③个图形一共有18 个笑脸…按此规律,则第⑥个图形中笑脸的个数为( )A .98B .72C .50D .362.下列合并同类项正确的是 ( ) A .22232x y yx x y -=- B .224x yxy +=C .43xy xy -=D .23x x x +=3.已知3a b +=,2c d -=,则()()a c b d +--+的值是( ) A .5B .5-C .1D .1-4.求23201312222+++++的值,可令220131222S =++++,则23201422222S =++++,因此2014221S S -=-.仿照以上推理,计算出23201315555+++++的值为( )A .201451- B .201351-C .2014514-D .2013514-5.有依次排列的3个数:3,9,6,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,3-,6,这称为第一次操作:做第二次同样的操作后也可产生一个新数串:3,3,6,3.9,12-,3-,9,6,继续依次操作下去,问:从数串3,9,6开始操作第200次以后所产生的那个新数串的所有数之和是( ) A .600B .618C .680D .7186.如图所示,直线,AB CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为1,2,3,4,5,6---….那么标记为“2021”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上7.数学课上,张老师出示了这样一道题目:“当1,22a b ==-时,求已知323237333101a a b a a b a ++---的值”.解完这道题后,小茗同学发现:“1,22a b ==-是多余的条件”.师生讨论后,一致认为小茗的发现是正确的.受此启发,张老师又出示了一道题目:无论,x y 取任何值,多项式222412(34)x ax y x x by +-+-+--的值都不变,则系数,a b 的值分别为( ) A .6,2a b == B .2,6a b ==C .6,2a b =-=D .6,2a b ==-8.若x≠-1,则把-11x +称为x 的“和1负倒数”,如:2的“和1负倒数”为-13,-3的“和1负倒数”为12,若123x =,2x 是1x 的“和1负倒数”,3x 是2x 的“和1负倒数”,…依此类推,则2020x 的值为( ) A .23B .-35C .75D .-529.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( ) A .18B .12C .9D .710.按如图所示的运算程序,能使输出的结果为32的是( )A .2x =,4y =B .2x =,4y =-C .4x =,2y =D .4x =-,2y =11.下列各选项中的两个单项式,是同类项的是( ) A .3和2B .2a -和25-C .215a b -和212ab D .2ab 和2xy12.如图,直线上的四个点A ,B ,C ,D 分别代表四个小区,其中A 小区和B 小区相距am ,B 小区和C 小区相距200m ,C 小区和D 小区相距am ,某公司的员工在A 小区有30人,B 小区有5人.C 小区有20人,D 小区有6人,现公司计划在A ,B ,C ,D 四个小区中选一个作为班车停靠点,为使所有员工步行到停靠点的路程总和最小,那么停靠点的位置应设在( )A .A 小区B .B 小区C .C 小区D .D 小区二、填空题13.已知x 2+3x =1,则式子2x 2+6x+2的值为_____.14.现有一列数1a ,2a ,…,100a ,其中39a =,77a =-,981a =-,且满足任意相邻三个数的和为同一常数,则12100a a a +++的值为__________.15.按如图所示的程序计算,若开始输入的x 的值为16,我们发现第1次得到的结果为8,第2次得到的结果为4,……,请你探索第2021次得到的结果为________.16.数轴上三个点表示的数分别为 p 、r 、s .若 p-r =5,s-p =2,则 s-r 等于____. 17.已知m 、n 满足|2m+4|+(n-3)2=0,则(m+n)2020=_______.18.下列单项式:-x ,2x 2,-3x 3,4x 4,… -19x 19,20x 20, …根据你发现的规律,第2021个单项式是______________.19.用相同的黑色棋子如图所示的方式摆放,第1个图由6个棋子组成,第2个图由15个棋子组成,第3个图由28个棋子组成……按照这样的规律排列下去,第6个图由__________个棋子组成……20.若多项式2225264x kxy y x xy +---+中不含xy 项,则k =______.三、解答题21.先化简,再求值:2222211233358()35x x xy y x xy y ⎛⎫ --+-++⎝+⎪⎭,其中2x =-,1y =22.(1)化简:﹣4(a 3﹣3b 2)+(﹣2b 2+5a 3);(2)先化简,再求值:2ab +6(12a 2b +ab 2)﹣[3a 2b ﹣2(1﹣ab ﹣2ab 2)],其中a 为最大的负整数,b 为最小的正整数.23.先化简,再求值:22222(32)43a b a b abc ac ac abc ⎡⎤-----⎣⎦,其中1=1,3,2a b c =-=. 24.如图所示,结合表格中的数据回答问题:梯形个数 1 2 3 4 5 …图形周长5 8 11 14 17 …n ,试写出I 与n 的函数解析式: (2)求当n=11时,图形的周长.25.如图所示是一个长为x 米,宽为y 米的长方形休闲广场,在它的四角各修建一块半径均为r 米的四分之一圆形的花坛(阴影部分),其余部分作为空地. (1)用代数式表示空地的面积;(2)若长方形休闲广场的长为100米,宽为40米,四分之一圆形花坛的半径为15米,求长方形广场空地的面积.(π取3)26.阅读下面的材料,解决有关问题:在如图1的“数表”中,数字按一定规律排列,我们分别在“数表”中涂抹出两个“H”,在每个“H”所覆盖的7个数字中,将最上端两数的和与最下端两数的和相减,计算结果称为“H 值”.(计算与发现)分别计算图1中的两个不同位置的“H”所对应的“H值”:(2+4)−(20+22)=;(24+26)−(42+44)=,我们可以初步发现:__________________________;(探究与证明)图2是从图1中截出的一部分,在“H”所覆盖的7个数字中,若设中心数为x,则A、B、C、D所对应的数可分别表示为,,,(用含x的代数式表示),并请你利用整式的运算,对(计算与发现)中发现的规律进行验证.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据题意求找出其中的规律,即可求出第⑥个图形中笑脸的个数.【详解】解:第①个图形一共有2个笑脸,第②个图形一共有:2+(3×2)=8个笑脸,第③个图形一共有8+(5×2)=18个笑脸,……第n个图形一共有:1×2+3×2+5×2+7×2+…+2(2n-1)=2[1+3+5+…+(2n-1)],=[1+(2n-1)]×n=2n2,则第⑥个图形一共有:2×62=72个笑脸;故选:B.【点睛】本题考查了规律型:图形变化类,把图形分成三部分进行考虑,并找出第n个图形的个数的表达式是解题的关键.2.A解析:A【分析】先判断是否是同类项,后合并即可.【详解】∵222-=-,x y yx x y32∴选项A正确;∵2x 与2y 不是同类项,无法计算, ∴选项B 错误; ∵43xy xy xy -=, ∴选项C 错误;∵2x 与x 不是同类项,无法计算, ∴选项D 错误; 故选A. 【点睛】本题考查了整式的加减,熟练判断同类项并灵活进行合并同类项是解题的关键.3.A解析:A 【分析】先把()()a c b d +--+变形为()()a b c d ++-,然后再整体代入即可. 【详解】解:∵3a b +=,2c d -=, ∴()()a c b d +--+ =()()a b c d ++- =3+2 =5. 故选:A . 【点睛】本题主要考查了代数式求值,解答此题的关键是灵活运用整体代入法.4.C解析:C 【分析】类比题目中所给的解题方法解答即可. 【详解】解:设a =1+5+52+53+ (52013)则5a =5(1+5+52+53+…+52013)=5+52+53+…+52013+52014,∴5a -a =(5+52+53+…+52013+52014)-(1+5+52+53+…+52013)=52014-1,即a =2014514-.故选:C . 【点睛】本题是阅读理解题,类比题目中所给的解题方法是解决问题的基本思路.5.B解析:B 【分析】首先具体地算出每一次操作以后所产生的那个新数串的所有数之和,从中发现规律,进而得出操作第200次以后所产生的那个新数串的所有数之和. 【详解】解:设A=3,B=9,C=6,操作第n 次以后所产生的那个新数串的所有数之和为S n . n=1时,S 1=A+(B-A )+B+(C-B )+C=B+2C=(A+B+C )+1×(C-A ),n=2时,S 2=A+(B-2A )+(B-A )+A+B+(C-2B )+(C-B )+B+C=-A+B+3C=(A+B+C )+2×(C-A ), …故n=200时,S 200=(A+B+C )+200×(C-A )=-199A+B+201C=-199×3+9+201×6=618, 故选:B . 【点睛】本题考查找规律-数字的变化,本题中理解每一次操作的方法是前提,得出每一次操作以后所产生的那个新数串的所有数之和的规律是关键.6.A解析:A 【分析】由图可观察出奇数项在OA 或OB 射线上,根据每四条射线为一组,即可得出答案. 【详解】解:观察图形的变化可知:奇数项:1、3、5、7,…,2n-1(n 为正整数), 偶数项:-2、-4、-6、-8,…,-2n (n 为正整数), ∵2021是奇数项, ∴2n-1=2021, ∴n =1011,∵每四条射线为一组,始边为OC , ∴1011÷4=252...3,∴标记为“2021”的点在射线OA 上, 故选:A . 【点睛】本题考查了规律型图形的变化类,解决本题的关键是观察图形的变化寻找规律.7.A解析:A 【分析】对多项式222412(34)x ax y x x by +-+-+--去括号,合并同类项,再由无论x ,y 取任何值,多项式222412(34)x ax y x x by +-+-+--的值都不变,可得关于a 和b 的方程,求解即可. 【详解】解:222412(34)x ax y x x by +-+-+--=222412862x ax y x x by -+-+-++ =(246))9(a x b y --++∵无论,x y 取任何值,多项式222412(34)x ax y x x by +-+-+--的值都不变, ∴60a -=,240b -=, ∴6a =,2b = 故选:A . 【点睛】本题考查了整式的加减-化简求值,熟练掌握相关运算法则是解题的关键.8.A解析:A 【分析】根据和1负倒数的定义分别计算出x 1,x 2,x 3,x 4…,则得到从x 1开始每3个值就循环,据此求解可得. 【详解】 解:∵x 1=23, ∴x 2=132513-=-+,x 3=153215-=--,x 4=125312-=-,……∴此数列每3个数为一周期循环, ∵2020÷3=673…1,∴x 2020=x 1=23, 故选:A . 【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9.D解析:D 【分析】将x 2﹣2x 当成一个整体,在第一个代数式中可求得x 2﹣2x =1,将其代入后面的代数式即能求得结果.解:∵3x 2﹣6x +6=9,即3(x 2﹣2x )=3, ∴x 2﹣2x =1, ∴x 2﹣2x +6=1+6=7. 故选:D . 【点睛】本题考查了代数式求值,解题的关键是将x 2﹣2x 当成一个整体来对待.10.A解析:A 【分析】先比较x ,y 的大小,后选择计算途径中的代数式,代入求值即可. 【详解】 ∵x=2,y=4, ∴x <y ,∴2xy =224⨯=32,故A 符合题意; ∵x=2,y= -4, ∴x >y ,∴22()[2(4)]x y ⋅=⨯-=64,故B 不符合题意; ∵x=4,y=2, ∴x >y ,∴22()(42)x y ⋅=⨯=64,故C 不符合题意; ∵x= -4,y=2, ∴x <y ,∴2xy =242-⨯=-16,故D 不符合题意; 故选A. 【点睛】本题考查了代数式的程序型计算,准确理解程序的意义是解题的关键.11.A解析:A 【分析】根据同类项的定义:所含字母相同,相同字母的指数相同即可判断.两个常数也是同类项. 【详解】解:A. 3和2是常数,是同类项,故A 正确;B. 2a -和25-所含字母不同,故不是同类项,故B 错误;C.215a b -和212ab 相同字母的指数不同,故不是同类项,故C 错误; D. 2ab 和2xy 所含字母不同,故不是同类项,故D 错误.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.要注意,两个常数是同类项.12.B解析:B 【分析】分别列出停靠点设在不同小区时,所有员工步行路程总和的代数式,选出其中最小的那个. 【详解】解:若停靠点设在A 小区,则所有员工步行路程总和是:()()52020062200375200a a a a ++++=+(米), 若停靠点设在B 小区,则所有员工步行路程总和是:()30200206200365200a a a +⨯++=+(米), 若停靠点设在C 小区,则所有员工步行路程总和是:()3020020056367000a a a ++⨯+=+(米), 若停靠点设在D 小区,则所有员工步行路程总和是:()()302200520020857000a a a a ++++=+(米), 其中365200a +是最小的,故停靠点应该设在B 小区. 故选:B . 【点睛】本题考查列代数式,解题的关键是根据题意列出路程和的代数式,然后比较大小.二、填空题13.4【分析】将所求代数式进行适当的变形后将x2+3x =1整体代入即可求出答案【详解】解:∵x2+3x =1∴原式=2(x2+3x )+2=2×1+2=4故答案为:4【点睛】本题考查了求代数式的值将原式化为解析:4 【分析】将所求代数式进行适当的变形后,将x 2+3x =1整体代入即可求出答案. 【详解】 解:∵x 2+3x =1,∴原式=2(x 2+3x )+2=2×1+2=4. 故答案为:4. 【点睛】本题考查了求代数式的值,将原式化为2(x 2+3x )+2是解题的关键.14.26【分析】由题意易得则有同理可得进而可得这列数是每三个一循环则由可得然后依次规律可求解【详解】解:由题意得:∴同理可得:∴这列数是每三个一循环∵∴∴∵∴;故答案为26【点睛】本题主要考查有理数的运 解析:26【分析】由题意易得123234a a a a a a ++=++,则有14a a =,同理可得25a a =,36a a =,进而可得这列数是每三个一循环,则由39a =,77a =-,981a =-可得17a =-,21a =-,39a =,然后依次规律可求解.【详解】解:由题意得:123234a a a a a a ++=++,∴14a a =,同理可得:25a a =,36a a =,∴这列数是每三个一循环,∵39a =,77a =-,981a =-,∴177a a ==-,2981a a ==-,39a =,∴1231a a a ++=,∵1003331÷=⋅⋅⋅⋅⋅∴()12100331726a a a +++=⨯+-=; 故答案为26.【点睛】本题主要考查有理数的运算,关键是由题意得到数字的规律,然后进行有理数的运算即可. 15.6【分析】把x =16代入程序中计算以此类推得到一般性规律求出第2021次得到的结果即可【详解】解:第1次得到的结果为16×=8第2次得到的结果为8×=4第3次得到的结果为4×=2第4次得到的结果为2解析:6【分析】把x =16代入程序中计算,以此类推得到一般性规律,求出第2021次得到的结果即可.【详解】解:第1次得到的结果为16×12=8, 第2次得到的结果为8×12=4, 第3次得到的结果为4×12=2, 第4次得到的结果为2×12=1, 第5次得到的结果为1+5=6,第6次得到的结果为6×12=3, 第7次得到的结果为3+5=8, 第8次得到的结果为8×12=4, 第9次得到的结果为4×12=2, 第10次得到的结果为2×12=1, 第11次的到的结果为1+5=6,第12次得到的结果为6×12=3, ……∴结果是8,4,2,1,6,3六个为周期循环,∵2021÷6=335…5,∴第2021次得到的结果为6,故答案为:6.【点睛】此题考查了数字的变化规律、代数式求值,由题意得出规律是解本题的关键. 16.7【分析】利用已知将两式相加进而求出答案【详解】∵p−r =5s−p =2∴p−r +s−p =5+2则s−r =7故答案为:7【点睛】此题主要考查了代数式求值正确利用已知条件相加求出是解题关键解析:7【分析】利用已知将两式相加进而求出答案.【详解】∵p−r =5,s−p =2,∴p−r +s−p =5+2,则s−r =7.故答案为:7【点睛】此题主要考查了代数式求值,正确利用已知条件相加求出是解题关键.17.1【分析】由绝对值和平方的非负性先求出mn 的值然后代入计算即可得到答案【详解】解:∴∴∴;故答案为:1【点睛】本题考查了求代数式的值绝对值的非负性乘方的运算解题的关键是正确求出mn 的值解析:1【分析】由绝对值和平方的非负性,先求出m 、n 的值,然后代入计算即可得到答案.【详解】 解:224(3)0m n ++-=,∴ 240m +=,30n -=,∴2m =-,3n =,∴20202020()(23)1m n +=-+=;故答案为:1.【点睛】本题考查了求代数式的值,绝对值的非负性,乘方的运算,解题的关键是正确求出m 、n 的值.18.【分析】根据单项式之间的规律第n 个单项式是即可求出结果【详解】解:第n 个单项式的系数是第n 个单项式的次数是∴第n 个单项式是∴第2021个单项式是故答案是:【点睛】本题考查找规律解题的关键是找出题目中 解析:20212021x -【分析】根据单项式之间的规律,第n 个单项式是()1nn nx -,即可求出结果.【详解】解:第n 个单项式的系数是()1n n -,第n 个单项式的次数是n ,∴第n 个单项式是()1n n nx -, ∴第2021个单项式是20212021x -.故答案是:20212021x -.【点睛】本题考查找规律,解题的关键是找出题目中单项式之间的规律,并用代数式表示出来. 19.91【分析】根据前3个图形中棋子的个数归纳类推出一般规律由此即可得出答案【详解】由图可知第1个图形中棋子的个数为第2个图形中棋子的个数为第3个图形中棋子的个数为归纳类推得:第n 个图形中棋子的个数为其 解析:91【分析】根据前3个图形中棋子的个数归纳类推出一般规律,由此即可得出答案.【详解】由图可知,第1个图形中棋子的个数为623(11)(211)=⨯=+⨯⨯+,第2个图形中棋子的个数为1535(21)(221)=⨯=+⨯⨯+,第3个图形中棋子的个数为2847(31)(231)=⨯=+⨯⨯+,归纳类推得:第n 个图形中棋子的个数为(1)(21)n n ++,其中n 为正整数,则第6个图形中棋子的个数为(61)(261)71391+⨯⨯+=⨯=,故答案为:91.【点睛】本题考查了用代数式表示图形的规律,正确归纳类推出一般规律是解题关键.20.3【分析】先将多项式合并同类项再令xy 项的系数为0【详解】解:∵x2+2kxy-5y2-2x-6xy+4=x2+(2k-6)xy-5y2-2x+4又∵多项式x2+2kxy-5y2-2x-6xy+4中解析:3【分析】先将多项式合并同类项,再令xy 项的系数为0.【详解】解:∵x 2+2kxy-5y 2-2x-6xy+4=x 2+(2k-6)xy-5y 2-2x+4又∵多项式x 2+2kxy-5y 2-2x-6xy+4中不含xy 的项,∴2k-6=0,解得k=3,故答案为:3.【点睛】本题考查了合并同类项和解一元一次方程,能正确合并同类项是解题的关键.三、解答题21.2223x y -+;53- 【分析】先去括号,再根据整式的加减运算法则化简,再代入数值计算即可.【详解】 解:原式2222213823333535x x xy y x xy y =---++++ ()2218233333355x xy y ⎛⎫⎛⎫=--++-++ ⎪ ⎪⎝⎭⎝⎭2223x y =-+, 当2x =-,1y =时,原式=22(2)13-⨯-+=53-. 【点睛】 本题考查整式的加减-化简求值、有理数的混合运算,熟练掌握整式的加减运算法则是解答的关键.22.(1)a 3+10b 2;(2)2ab 2+2;0【分析】(1)去括号、合并同类项即可;(2)求出a 、b 的值,再利用去括号、合并同类项化简后代入求值即可.【详解】解:(1)﹣4(a 3﹣3b 2)+(﹣2b 2+5a 3)=﹣4a 3+12b 2﹣2b 2+5a 3=a 3+10b 2;(2)∵a 为最大的负整数,b 为最小的正整数,∴a =﹣1,b =1,∴2ab +6(12a 2b +ab 2)﹣[3a 2b ﹣2(1﹣ab ﹣2ab 2)] =2ab +3a 2b +6ab 2﹣(3a 2b ﹣2+2ab +4ab 2)=2ab +3a 2b +6ab 2﹣3a 2b +2﹣2ab ﹣4ab 2=2ab 2+2=2×(﹣1)×1+2=0.【点睛】 本题考查整式的化简求值,熟练掌握整式的运算法则是解题关键.23.93,2abc - 【分析】先去中括号,然后去小括号,合并同类项进行计算即可,化简后将a 、b 、c 的值代入即可【详解】解:原式2222(644)3a b a b abc ac ac abc =--+-- 2263a b a b abc abc =-+-3abc = .当 1132a b c ==-=,,时, 原式3abc =1931322=⨯⨯-⨯=-(). 【点睛】本题考查了整式的化简,熟练掌握运算法则是解本题的关键;24.(1)l=3n+2;(2)当n=11时,l=35.【分析】(1)周长减去2是梯形个数的3倍,这是共同的规律,用n 具体化即可;(2)把问题转化求代数式的值求解即可.【详解】(1)∵5=3×1+2,8=3×2+2,11=3×3+2,14=3×4+2,17=3×5+2,∴有n 个梯形时,图形的周长为3×5+2,∴l=3n+2;(2)当n=11时,l=3n+2=3×11+2=35.【点睛】本题考查了整式的规律探究,代数式的值,把周长表示成梯形个数的代数式是解题的关键.25.(1)2()xy r π-平方米;(2)3325平方米【分析】(1)根据图形可知:空地的面积等于长方形的面积减去一个半径为r 的圆的面积; (2)把长方形的长和宽以及圆的半径代入(1)中得式子计算即可得到答案.【详解】(1)长方形的长为x 米,宽为y 米,∴长方形的面积为:xy 平方米四角为四分之一圆形,半径为r 米∴四角阴影部分的面积等于半径为r 米的圆的面积、∴四角阴影部分的面积为:2r π平方米∴空地的面积为()2xy r π-平方米(2)当100x =,40y =,15r =,3π=时 ,则221004031540006753325xy r π-=⨯-⨯=-=答:长方形广场空地的面积为3325平方米【点睛】本题考查了列代数式以及代数式求值,解题关键是要熟练掌握长方形,圆形的面积公式,明确空地的面积等于长方形的面积减去一个半径为r 的圆的面积.26.【计算与发现】−36;−36;不同位置的“H”所对应的“H 值”都是−36;【探究与证明】x ﹣10,x+8,x+10,x ﹣8;见解析【分析】【计算与发现】直接根据有理数的加减运算法则计算即可;根据结果即可得出规律;【探究与证明】先分别表示出A 、B 、C 、D 所对应的数,再代入(A+D )−(B+C )即可验证规律.【详解】解:【计算与发现】(2+4)−(20+22)=6-42=-36;(24+26)−(42+44)=50-86=-36;我们可以初步发现:不同位置的“H”所对应的“H 值”都是−36.【探究与证明】A 、B 、C 、D 所对应的数分别为:x ﹣10,x+8,x+10,x ﹣8;(A+D )−(B+C )=(x ﹣10+ x ﹣8)﹣(x+8+ x+10)=2x ﹣18﹣2x ﹣18=−36.【点睛】本题考查了有理数的加减运算及整式的加减的应用,熟练掌握运算法则是解题的关键.。
人教版数学七年级上册第三单元测试题
人教版数学七年级上册第三单元测试题根据您的要求,我生成了一套人教版七年级上册第三单元的数学测试题。
该测试题旨在帮助学生掌握该单元的重点和难点。
请注意,以下测试题只是为了练习和巩固知识,不保证其完整性和准确性。
人教版七年级上册数学第三单元测试题一、选择题1. 下列说法正确的是 ( )A. 若$a = b$,则$a = b$B. 若$a^{2} = b^{2}$,则$a = b$C. 若$a = a$,则$a > 0$D. 若$a = -a$,则$a \leq 0$2. 绝对值等于3的数是 _______.A. ±3B. 3C. -3D. 以上答案都不对3. 下列各数中,绝对值最小的数是 ( )A. -3B. -2C. 0D. 24. 若$a + 1 \neq 0$,则式子$\frac{1}{a} + a$的值为 ( )A.$0$B.$1$或$- 1$C.$2$D.$1$5. 下列说法中正确的是 ( )A. 绝对值等于它本身的数是非正数B. 倒数等于它本身的数是±1C. 算术平方根等于它本身的数是 0 和 1D. 立方根等于它本身的数是±1 和 0二、填空题6. 绝对值小于3的所有整数是____.7. 一个数的倒数是它本身,这个数是____.8. 如果$a = -a$,那么$a$ _______.9. 一个数的平方是4,这个数是____;一个数的立方是6,这个数是____.10. 若$ab > 0$,则式子$\frac{1}{a}$ + $b$ =____.11. 一个数的相反数是它本身,这个数是____.三、解答题12. 如果$x - 2 + y + \frac{3}{4} = 0$,求5x + y的值.13. 数轴点A、B所表示的数为$- 1$、$3$,则A、B两点间的距离是____.14. 若$x + 2 + x - 3$的最小值是____,____.15. 下列各式中:①$- - \frac{2}{3} = \frac{2}{3}$;②$- ( - 5) = - 5$;③$- - 2 \cdot 3 = - 6$;④$- ( - \frac{1}{2}) \times ( - \frac{1}{3}) = \frac{1}{6}$;⑤$- - \frac{1}{4} \div ( - \frac{1}{5}) = - \frac{5}{4}$.其中正确的是( )A.$0$个B.$1$个C.$2$个D.$3$个16. 如果两个数的和除以它们的最小公倍数所得的商为8,那么这两个数的乘积除以它们的最大公约数所得的商为 _______.。
七年级上册数学第三单元试卷【含答案】
七年级上册数学第三单元试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么它的体积是多少?A. 240立方厘米B. 120立方厘米C. 60立方厘米D. 48立方厘米4. 下列哪个数是偶数?A. 101B. 102C. 103D. 1045. 如果一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是多少?A. 22厘米B. 32厘米C. 34厘米D. 44厘米二、判断题(每题1分,共5分)1. 两个质数的和一定是偶数。
()2. 任何两个奇数的和都是偶数。
()3. 一个长方体的六个面都是长方形。
()4. 一个等腰三角形的两个底角相等。
()5. 任何两个偶数的和都是偶数。
()三、填空题(每题1分,共5分)1. 100以内最大的质数是______。
2. 一个三角形的内角和等于______度。
3. 一个长方体的长、宽、高分别是6厘米、4厘米和3厘米,那么它的表面积是______平方厘米。
4. 如果一个数的因数只有1和它本身,那么这个数是______。
5. 一个等腰三角形的底边长是8厘米,腰长是10厘米,那么这个三角形的周长是______厘米。
四、简答题(每题2分,共10分)1. 请写出100以内所有的质数。
2. 请简述长方体和正方体的区别。
3. 请解释等腰三角形和等边三角形的区别。
4. 请写出偶数和奇数的定义。
5. 请简述三角形内角和定理。
五、应用题(每题2分,共10分)1. 一个长方体的长、宽、高分别是8厘米、6厘米和4厘米,求它的体积和表面积。
2. 一个等腰三角形的底边长是10厘米,腰长是12厘米,求这个三角形的周长。
人教版七年级上册数学第三章检测试卷(附答案)
人教版七年级上册数学第三章检测试卷(附答案)一、单选题(共5题;共10分)1.若与kx-1=15的解相同则k的值为().A. 2B. 8C. -2D. 62.已知a=b,则下列等式不成立的是()A. a﹣=b﹣B. 5﹣a=5﹣bC. ﹣4a﹣1=﹣1﹣4bD. +2= ﹣23.下列说法正确的是()A. 半圆是弧,弧也是半圆B. 三点确定一个圆C. 平分弦的直径垂直于弦D. 直径是同一圆中最长的弦4.七年级男生入住的一楼有x间,如果每间住6人,恰好空出一间;如果每间住5人就有4人没有房间住,则一楼共有()间.A. .7B. .8C. .9D. 105.李阿姨存入银行2000元,定期一年,到期后扣除20%的利息税后得到本息和为2120元,若该种储蓄的年利率为x,那么可得方程()A. 2000(1+x)=2120B. 2000(1+x%)=2120C. 2000(1+x•80%)=2120D. 2000(1+x•20%)=2120二、填空题(共2题;共2分)6.“*”是规定的一种运算法则:a*b=a2-b2,则(-3)*4=________.7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c >0;④2c<3b;⑤b2>4ac;其中正确的结论有________.(填序号)三、计算题(共3题;共25分)8.解方程:(1)10 - x = 3x - 2 (2) = 1 - .9.解方程:4x﹣3(5﹣x)=6;10.(1);(2).四、综合题(共2题;共30分)11.(2011•梧州)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?12.某中学对七年级学生数学学期成绩的评价规定如下:学期评价得分由期末测试成绩(满分100分)和期中测试成绩(满分100分)两部分组成,其中期末测试成绩占70%,期中测试成绩占30%,当学期评价得分大于或等于85分时,该生数学学期成绩评价为优秀.(1)小明的期末测试成绩和期中成绩两项得分之和为170分,学期评价得分为87分,则小明期末测试成绩和期中测试成绩各得多少分?(2)某同学期末测试成绩为75分,他的综合评价得分有可能达到优秀吗?为什么?(3)如果一个同学学期评价得分要达到优秀,他的期末测试成绩至少要多少分(结果保留整数)?答案一、单选题1. B2.D3.D4. D5.C二、填空题6.-77. ③④⑤三、计算题8. (1)解:10 - x = 3x - 2移项,得10+2=3x+x,合并同类项,得4x=12,系数化为1 ,得x=3;(2)解:方程两边都乘以21 ,得3(x-3)=21-7(2-5x),去括号,得3x-9=21-14+35x ,移项合并同类项,得32x=-16,系数化为1 ,得x=-.9.解:4x﹣3(5﹣x)=6,4x﹣15+3x=6,7x=21,x=310.(1)解:,,(2)解:.,四、综合题11. (1)解:设今年甲型号手机每台售价为x元,由题意得,.解得x=1500.经检验x=1500是方程的解,且符合题意.故今年甲型号手机每台售价为1500元.(2)解:设购进甲型号手机m台,由题意得,17600≤1000m+800(20﹣m)≤18400,8≤m≤12.因为m只能取整数,所以m取8、9、10、11、12,共有5种进货方案.(3)解:设总获利W元,购进甲型号手机m台,则W=(1500﹣1000)m+(1400﹣800﹣a)(20﹣m),W=(a﹣100)m+12000﹣20a.所以当a=100时,(2)中所有的方案获利相同.12.(1)解:设小明同学期末测试成绩为x分,期中测试成绩为y分,由题意,得,解得.答:小明同学期末测试成绩为90分,期中测试成绩为80分.(2)解:不可能.由题意可得:85-75×70%=32.5,32.5÷30% >100,故不可能.(3)解:设他的期中测试成绩为满分,即100分,则学期评价得分期中部分为100×30%=30.设期末测试成绩为a分,根据题意,可得30+70%a≥85,解得a≥78.6答:他的期末测试成绩应该至少为79分.。
七年级上册数学第三单元试卷【含答案】
七年级上册数学第三单元试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 30答案:B2. 一个等腰三角形的底边长为8厘米,腰长为5厘米,那么这个三角形的周长是多少厘米?A. 18厘米B. 20厘米C. 22厘米D. 24厘米答案:C3. 下列哪个数是偶数?A. 101B. 102C. 103D. 104答案:D4. 一个正方形的边长为6厘米,那么这个正方形的面积是多少平方厘米?A. 24平方厘米B. 36平方厘米C. 48平方厘米D. 60平方厘米答案:B5. 下列哪个数是奇数?A. 120B. 121C. 122D. 123答案:D二、判断题(每题1分,共5分)1. 两个质数的和一定是偶数。
(×)2. 一个三角形的两边之和一定大于第三边。
(√)3. 一个数的因数一定比这个数小。
(×)4. 两个奇数的和一定是偶数。
(×)5. 两个偶数的和一定是偶数。
(√)三、填空题(每题1分,共5分)1. 23和29之间的质数是______。
答案:292. 一个等边三角形的周长是15厘米,那么它的边长是______厘米。
答案:53. 一个数的最大因数是它本身,这个数是______。
答案:任何数4. 一个正方形的对角线长度是10厘米,那么它的边长是______厘米。
答案:约7.075. 下列哪个数既是偶数又是合数?______答案:4四、简答题(每题2分,共10分)1. 请列举出前五个质数。
答案:2, 3, 5, 7, 112. 请简述等边三角形的性质。
答案:等边三角形的三条边都相等,三个角也都相等,每个角都是60度。
3. 请简述偶数和奇数的区别。
答案:偶数是2的倍数,奇数不是2的倍数。
4. 请简述正方形的性质。
答案:正方形的四条边都相等,四个角也都相等,每个角都是90度。
5. 请简述因数和倍数的区别。
答案:因数是能够整除一个数的数,倍数是一个数的整数倍。
(好题)初中数学七年级数学上册第三单元《一元一次方程》检测(答案解析)
(2)多项式中不含字母的项叫常数项;
(3)多项式里次数最高项的次数,叫做这个多项式的次数.
10.D
解析:D
【分析】
根据N=M+N-M列式即可解决此题.
【详解】
依题意得,N=M+N-M= ;
故选D.
【点睛】
此题考查的是整式的加减,列式是关键,注意括号的运用.
6.D
解析:D
【分析】
根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.
【详解】
A. ,故错误;
B. ,故错误;
C. ,故错误;
D. ,正确.
故选:D
【点睛】
本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.
7.D
解析:D
【分析】
根据合并同类项系数相加字母及指数不变,可得答案.
【详解】
解:A、x3与x2不是同类项,不能合并,故A错误;
B、合并同类项错误,正确的是2x﹣3x=﹣x,故B错误;
C、合并同类项错误,正确的是﹣a2﹣2a2=﹣3a2,故C错误;
D、系数相加字母及指数不变,故D正确;
故选:D.
【点睛】
一、选择题
1.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A—B—C为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为( )
A.5次B.6次C.7次D.8次
2.某养殖场2018年年底的生猪出栏价格是每千克a元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克()
七年级上册数学第三单元测试卷及答案
七年级上册数学第三单元测试卷及答案人教版七年级数学上册第三单元测试题一、填空题(每题2分,共32分)1.在① ;② ;③ ;④ 中,等式有_______,方程有_______.(填入式子的序号)2.如果,那么a=,其根据是.3.方程的解是 _______.4.当x=时,代数式的值是 .5.已知等式是关于x的一元一次方程,则m=____________.6.当x=时,代数式与代数式的值相等.7.根据“ 的倍与的和比的小”,可列方程为______ _.8.若与有相同的解,那么 _______.9.关于方程的解为___________________________.10.若关于x的方程的解是,则代数式的值是_________.11.代数式与互为相反数,则 .12.已知三个连续奇数的和是,则中间的那个数是_______.13.某工厂引进了一批设备,使今年单位成品的成本较去年降低了 .已知今年单位成品的成本为元,则去年单位成品的成本为_______元.14.小李在解方程 (x为未知数)时,误将看作,解得方程的解,则原方程的解为___________________________.15.假定每人的工作效率都相同,如果个人天做个玩具熊,那么个人做个玩具熊需要______天.16.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距______千米.二、解答题(共68分)17.解下列方程(每题2分,共8分)(1) ;Com](2)(3)(4)18.(6分)老师在黑板上出了一道解方程的题,小明马上举手,要求到黑板上做,他是这样做的:…………………①………………………②………………………③…………………………………④…………………………………⑤老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在_________(填编号);然后,你自己细心地解下面的方程:(1) (2)19.(3分)如果方程的解是,求的值.20. (3分)已知等式是关于的一元一次方程(即未知),求这个方程的解.21.(4分)初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,_________________________________?请你将这道作业题补充完整并列出方程解答.22.( 4分)某人共收集邮票若干张,其中是2000年以前的国内外发行的邮票,是2001年国内发行的,是2002年国内发行的,此外尚有不足100张的国外邮票.求该人共有多少张邮票.23.(4分)某商场在元旦期间,开展商品促销活动.将某型号的电视机按进价提高后,打折另送元路费的方式销售,结果每台电视机仍获利元,问每台电视机的进价是多少元?24.(6分)某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹出票款6920元,且每张成人票8元,学生票5元.(1)问成人票与学生票各售出多少张?(2)若票价不变,仍售出1000张票,所得的票款可能是7290元吗?为什么?25.(6分)你坐过出租车吗?请你帮小明算一算.杭州市出租车收费标准是:起步价( 千米以内) 元,超过千米的部分每千米元,小明乘坐了千米的路程.(1)请写出他应该去付费用的表达式;(2)若他支付的费用是元,你能算出他乘坐的路程吗?26.(6分)公园门票价格规定如下表:购票张数 1~50张 51~100张 100张以上每张票的价格 13元 11元 9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足5 0人.]经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?27.(9分)有一些相同的房间需要粉刷,一天3傅去粉刷8个房间,结果其中有40m2墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面.每傅比徒弟一天多刷30m2的墙面.(1)求每个房间需要粉刷的墙面面积;(2)张老板现有36个这样的房间需要粉刷,若请1傅带2名徒弟去,需要几天完成?(3)已知每傅,徒弟每天的工资分别是85元,65元,张老板要求在3天内完成,问如何在这8个人中雇用人员,才合算呢?28.(9分)某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,全部9折优惠;(3)一次购买的超过3万元,其中3万元9折优惠,超过3万元的部分8折优惠.某人因库容原因,第一次在供应商处购买原料付7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,则应付款多少元?可少付款多少元?人教版七年级数学上册第三单元测试题参考答案一、填空题1.②③④,②④2.,等号两边同时加3,等式仍然成立3.4.25.6.7.8.9.或10.11.12.1713.9.614.15.16.21二、解答题17.(1);(2);(3);(4)18.①,(1);(2)19.720.21.略22.152张23.1200元24.(1)成人票640张,学生票360张;(2)不可能25.(1);(2)13千米26:(1):初一(1)班48人,初一(2)班56人;(2):304元;(3):多买3张27.(1)50平方米;(2)5天;(3)师傅2人,徒弟6人28.应付32440元,少付1460元。
(必考题)初中数学七年级数学下册第三单元《变量之间的关系》检测(包含答案解析)
一、选择题1.某品牌热水壶的成本为50元,销售商对其销量与定价的关系进行了调查,结果如下:定价/元708090100110120销量/把801001101008060A.115元B.105元C.95元D.85元2.为了更好地保护水资源,造福人类,某工厂计划建一个容积为200m3的污水处理池,池的底面积S(m2)与其深度h(m)满足关系式:S•h=200,则S关于h的函数图象大致是()A.B.C.D.3.五一节,小丽独自一人去老家玩,家住在车站附近的姑姑到车站去接小丽.因为担心小丽下车后找不到路,姑姑一路小跑来到车站,结果客车晚点,休息一阵后,姑姑接到小丽,和小丽一起慢慢的走回了家.下列图象中,能反映以上过程中小丽姑姑离家的距离s 与时间t的关系的大致图象是()A.B.C.D.4.从甲地到乙地的铁路路程约为615千米,高铁速度为300千米/小时,直达;动车速度为200千米/小时,行驶180千米后,中途要停靠徐州10分钟,若动车先出发半小时,两车与甲地之间的距离y(千米)与动车行驶时间x(小时)之间的函数图象为()A.B.C.D.5.早晨小强从家出发,以v1的速度前往学校,途中在一饮食店吃早点,之后以v2的速度向学校行进.已知v1> v2,如图所示的图象中表示小强从家到学校的时间t(分钟)与路程s(千米)之间的关系的是( )A.A B.B C.C D.D6.小明周六参加绘画兴趣班,爸爸开车送他从家去公交车站,先加速行驶一段时间后匀速行驶,过了一段时间到达公交车站,等待一段时间后上了公交车,公交车一开始先加速,一段时间后又开始匀速行驶,下面可以近似地刻画出小明在这段时间内的速度变化情况的图象是( )A.B.C.D.7.某大剧场地面的一部分为扇形,观众席的座位数按下列方式设置:排数(x)1234…座位数(y)50535659…有下列结论:①排数x是自变量,座位数y是因变量;②排数x是因变量,座位数y是自变量;③y=50+3x;④y=47+3x,其中正确的结论有( )A.1个B.2个C.3个D.4个8.根据图示的程序计算变量y的对应值,若输入变量x的值为-1,则输出的结果为( )A.-2 B.2 C.-1 D.09.小明出校门后先加速行驶一段距离,然后以大小不变的速度行驶,在距家门不远的地方开始减速,最后停下,下面可以近似地刻画出以上情况的是().A.B.C.D.10.气温y(℃)随高度x(km)的变化而变化的情况如下表,由表可知,气温y随着高度x的增大而()高度x/km012345678气温y/℃282216104-2-8-14-20A.升高B.降低C.不变D.以上答案都不对11.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为()A.y=x+2 B.y=x2+2 C.y=2x+D.y=12 x+12.百货大楼进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其长度x 与售价y如下表:长度x/m1234…售价y/元8+0.316+0.624+0.932+1.2…下列用长度x表示售价y的关系式中,正确的是()A.y=8x+0.3 B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x二、填空题13.拖拉机工作时,油箱中的余油量Q(升)与工作时间t(时)的关系式为406Q t=-.当4t=时,Q=_________,从关系式可知道这台拖拉机最多可工作_________小时.14.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间x(小时)的关系式为_____,该汽车最多可行驶_____小时.15.在烧开水时,水温达到100℃就会沸腾,下表是某同学做“观察水的沸腾”实验时所记录的两个变量时间(分)和温度T(℃)的数据:在水烧开之前(即),温度T与时间的关系式为__________.16.下表是某报纸公布的我国“九五”期间国内生产总值(GDP)的统计表,那么这几年间我国国内生产总值平均每年比上一年增长___万亿元.年份19961997199819992000GDP/万亿元 6.67.37.98.28.917.在一个边长为2的正方形中挖去一个边长为x (0<x <2)的小正方形,如果设剩余部分的面积为y ,那么y 关于x 的函数解析式是_____.18.日常生活中,“老人”是一个模糊概念.可用“老人系数”表示一个人的老年化程度.“老人系数”的计算方法如下表: 人的年龄x (岁) x≤60 60<x <80x≥80 “老人系数”6020x - 1按照这样的规定,“老人系数”为0.6的人的年龄是__岁.19.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.20.如图所示表示“龟兔赛跑”时路程与时间的关系,已知龟、兔上午8点从同一地点出发,请你根据图中给出的信息,算出乌龟在___点追上兔子.三、解答题21.如图,已知在Rt ABC 中,90,30,2ACB B AB ∠=︒∠=︒=,点D 在斜边AB 上,将ABC 沿着过点D 的一条直线翻折,使点B 落在射线BC 上的点B '处,连接DB '并延长,交射线AC 于E .(1)当点B'与点C重合时,求BD的长.(2)当点E在 AC的延长线上时,设BD为x,CE为y,求y关于x函数关系式,并写出定义域.(3)连接AB',当AB D'是直角三角形时,请直接写出BD的长.22.正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同图反映了一天24小时内小明体温的变化情况:(1)什么时间体温最低?什么时间体温最高?最低和最高体温各是多少?(2)一天中小明体温T(单位:℃)的范围是多少.(3)哪段时间小明的体温在上升,哪段时间体温在下降.(4)请你说一说小明一天中体温的变化情况.23.某文具店出售书包和文具盒,书包每个定价30元,文具盒每个定价5元.该店制定了两种优惠方案.方案1:买一个书包赠送一个文具盒;方案2:按总价的9折(总价的90%)付款.某班学生需购买8个书包,文具盒若干(不少于8个),如果设文具盒数为x(个),付款数为y(元).(1)分别求出两种优惠方案中y与x之间的关系式;(2)购买文具盒多少个时两种方案付款相同;购买文具盒数大于8个时,两种方案中哪一种更省钱?24.由于持续高温和连日无雨,水库蓄水量普遍下降,如图是某水库的蓄水量V(万立方米)与干旱持续时间t (天)之间的关系图,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万立方米? (2)若水库的蓄水量小于400万立方米时,将发出严重干旱警报,请问持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?25.设路程为s km ,速度为v km/h ,时间t h ,指出下列各式中的常量与变量. (1)v=8s; (2)s=45t ﹣2t 2; (3)vt=100. 26.在数轴上,若点A,B 表示的数分别为3和x,则A,B 之间的距离y 与x 之间的关系式为3y x =-.(1)当x 的值为-5时,求y 的值; (2)根据关系式,完成下表: x -1123456y【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据表格中定价的变化和销量的变化即可解答. 【详解】解:由表中数据可知,定价为90元时,销量达到最大为110把,而销售105把水壶,销量位于100把到110把之间,而当定价在80元到90元时,定价每增加1元,销量增加1把,销量呈递增趋势,当定价在90元到100元时,定价每增加1元,销量减少1把,销量呈递减趋势,故定价约为80+(105-100)÷1=85元,故选:D.【点睛】本题考查了用表格法表示两个变量之间的关系,解答的关键是读懂题意,能从表格中找到有效信息解决问题.2.C解析:C【解析】【分析】首先利用已知得出S与h的函数关系式,进而利用h的取值范围得出函数图象.【详解】解:∵S•h=200,∴S关于h的函数关系式为:S=200,故此函数图象大致是:反比例函数图象,即双曲h线,故选C.【点睛】本题考查函数图象,得出S与h的函数关系式是解题关键.3.A解析:A【解析】【分析】根据每段中路程s随时间t的变化情况即可作出判断.【详解】姑姑在车站休息的一段时间,路程不随时间的变化而变化,因而这一段的图象应该平行于横轴;姑姑一路小跑来到车站,这段是正比例函数关系,回家的过程是一次函数关系,且s岁t 的增大而减小,因而B、D错误;回家的过程比姑姑一路小跑来到车站的过程速度要慢,即s随t的变化要慢,因而图象要平缓,故A正确,C错误.故选A.【点睛】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.4.B解析:B【分析】先根据两车并非同时出发,得出D选项错误;再根据高铁从甲地到乙地的时间以及动车从甲地到乙地的时间,得出两车到达乙地的时间差,结合图形排除A、 C选项,即可得出结论.【详解】解:由题可得,两车并非同时出发,故D选项错误;高铁从甲地到乙地的时间为615÷300=2.05h 动车从甲地到乙地的时间为615÷200+16≈3.24h,动车先出发半小时,∴两车到达乙地的时间差为3.24-2.05-0.5=0.69h,该时间差小于动车从甲地到乙地所需时间的一半,故C选项错误;0.69>0.5,∴两车到达乙地的时间差大于半小时,故A选项错误,动车行驶180千米所需的时间为180÷200=0.9h,而高铁迟出发0.5h,∴0.9>0.5,故B选项符合题意,A选项不合题意.所以B选项是正确的.【点睛】本题主要考查函数与函数的图像.5.A解析:A【解析】由题意可知,符合实际情况的是A选项中的图象,而选项B、C、D中的图象都与实际情况不符.故选A.6.C解析:C【解析】试题分析:先加速行驶,可得速度变快,图象从原点开始,成上升趋势;再匀速行驶,可得速度不变,图象平行于x轴;到达公交车站,汽车减速,速度变慢,直至变为0,图象成下降趋势;根据等车,可得速度为零;根据公交加速,可得速度变快,图象成上升趋势;根据匀速行驶,可得速度不变,图象平行于x轴.由此可知只有选项C符合题意.故选C.点睛:本题考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数值随自变量的增大是增大还是减小.7.B解析:B【解析】根据图表可知随着排数的增大,座位数也增大.所以排数x是自变量,座位数y是因变量;根据图标中的数据可得y=47+3x.故①④正确.则选:B.8.B解析:B 【解析】当x=−1时,y=x 2+1=(−1)2+1=1+1=2, 故选B.9.C解析:C 【解析】从速度变化情况来看,先匀加速行驶,再匀速行驶,最后减速为0, 故选C .【点睛】本题考查了函数的图象,解题的关键是此题主要看速度变化即可,时间只是个先后问题.10.B解析:B 【解析】从表格中的数据可以看出,高度一直在变大,而气温一直在降低. 所以气温y 随高度x 的增大而降低. 故应选B.11.C解析:C 【解析】试题分析:A .2y x =+,x 为任意实数,故错误; B .22y x =+,x 为任意实数,故错误;C .y =20x +≥,即2x ≥-,故正确;D .12y x =+,20x +≠,即2x ≠-,故错误; 故选C .考点:1.函数自变量的取值范围;2.在数轴上表示不等式的解集.12.B解析:B 【分析】本题通过观察表格内的x 与y 的关系,可知y 的值相对x=1时是成倍增长的,由此可得出方程. 【详解】解:依题意得y =(8+0.3)x . 故选B . 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题13.【分析】根据题目意思将t=4代入计算Q 即可得到答案令Q≥0即可求出最多工作的时间【详解】解:当t=4时Q=40-24=16;根据台拖拉机工作时必须有油得到:Q≥0代入得到:解得:故答案为(1)16( 解析:203【分析】根据题目意思,将t=4代入计算Q 即可得到答案,令Q≥0即可求出最多工作的时间. 【详解】解:当t=4时,Q=40-24=16; 根据台拖拉机工作时必须有油得到: Q≥0,代入得到: 4060Q t =-≥, 解得:203t ≤, 故答案为(1). 16 (2). 203【点睛】本题主要考查了一次函数、一次函数在生活中的应用,做题是要注意自变量的取值范围,例如油量不可以为负数.14.y =40﹣5x8【分析】根据:油箱内余油量=原有的油量﹣x 小时消耗的油量可列出函数关系式进而得出行驶的最大路程【详解】依题意得油箱内余油量y (升)与行驶时间x (小时)的关系式为:y =40﹣5x 当y =解析:y =40﹣5x 8【分析】根据:油箱内余油量=原有的油量﹣x 小时消耗的油量,可列出函数关系式,进而得出行驶的最大路程. 【详解】依题意得,油箱内余油量y (升)与行驶时间x (小时)的关系式为:y =40﹣5x , 当y =0时,40﹣5x =0, 解得:x =8,即汽车最多可行驶8小时. 故答案为:y =40﹣5x ,8. 【点睛】本题考查了列函数关系式以及代数式求值.关键是明确油箱内余油量,原有的油量,x 小时消耗的油量,三者之间的数量关系,根据数量关系可列出函数关系式.15.T=7t+30【解析】【分析】由表知开始时温度为30℃再每增加2分钟温度增加14℃即每增加1分钟温度增加7℃可得温度T与时间t的关系式【详解】解:∵开始时温度为30℃每增加1分钟温度增加7℃∴温度T解析:T=7t+30【解析】【分析】由表知开始时温度为30℃,再每增加2分钟,温度增加14℃,即每增加1分钟,温度增加7℃,可得温度T与时间t的关系式.【详解】解:∵开始时温度为30℃,每增加1分钟,温度增加7℃,∴温度T与时间t的关系式为:T=30+7t.故答案为:T=7t+30.【点睛】本题考查了求函数的关系式,关键是得出开始时温度为30℃,每增加1分钟,温度增加7℃.16.575【分析】由表中可知这几年国内生产总值增长的数量用总的增长数量除以年数可以得出这几年我国国内生产总值平均比上一年增长的数量【详解】(07+06+03+07)÷4=0575故答案为0575【点睛】解析:575【分析】由表中可知这几年国内生产总值增长的数量,用总的增长数量除以年数可以得出这几年我国国内生产总值平均比上一年增长的数量【详解】(0.7+0.6+0.3+0.7)÷4=0.575.故答案为0.575.【点睛】本题结合增长率的有关计算考查统计的有关知识.17.y=4-x2【解析】分析:根据剩下部分的面积=大正方形的面积-小正方形的面积得出y与x的函数关系式即可详解:由题意知:剩余面积大正方形面积小正方形面积即y=2²-x²=-x²+4故答案为y=2²-x解析:y=4-x2【解析】分析:根据剩下部分的面积=大正方形的面积-小正方形的面积,得出y与x的函数关系式即可.详解:由题意知:剩余面积大正方形面积小正方形面积,即y=2²-x²=-x²+4.故答案为y=2²-x²=-x²+4(0<x<2).点睛:本题考查了根据实际问题列出二次函数关系式,利用剩下部分的面积=大正方形的面积-小正方形的面积的得出是解答本题的关键.18.72【分析】根据所给的函数关系式所对应的自变量的取值范围发现:当y=06时在60<x <80之间所以将y 的值代入对应的函数解析式即可求得函数的值【详解】解:设人的年龄为x 岁∵老人系数为06∴由表得60解析:72 【分析】根据所给的函数关系式所对应的自变量的取值范围,发现:当y=0.6时,在60<x <80之间,所以将y 的值代入对应的函数解析式即可求得函数的值. 【详解】解:设人的年龄为x 岁, ∵“老人系数”为0.6, ∴由表得60<x <80, 即6020x -=0.6,解得,x=72, 故“老人系数”为0.6的人的年龄是72岁. 故答案为:7219.【解析】小红家与学校的距离为6km 从图象可知她从学校到家用时为3-2=1小时故从学校到家的平均速度等于6÷1=6km/h 故答案为:6【点睛】本题考查了函数的图象分段函数解此题的关键是找到相应的路程与解析:【解析】小红家与学校的距离为6km ,从图象可知她从学校到家用时为3-2=1小时,故从学校到家的平均速度等于6÷1=6 km/h , 故答案为:6.【点睛】本题考查了函数的图象,分段函数,解此题的关键是找到相应的路程与时间,根据速度=路程÷时间得到相应的速度.20.18【解析】两个函数图形的交点的横坐标是10说明10小时后乌龟追上兔子此时的时间为:8+10=18时故答案为18解析:18 【解析】两个函数图形的交点的横坐标是10,说明10小时后,乌龟追上兔子,此时的时间为:8+10=18时. 故答案为18.三、解答题21.(1)BD=1;(2)1(01)y x x =-+<<;(3)23或43. 【分析】(1)由直角三角形中,30°角所对的直角边等于斜边的一半,解得AC 的长,再根据勾股定理解得BC 的长,根据折叠的性质可得DB DB '=,结合三角形外角性质可得60ADB '∠=︒,当点B '与点C 重合时,可证明△ADC 是等边三角形,最后由等边三角形的性质解题即可;(2)过D 作DH BC ⊥于H ,在Rt BDH △中,设BD x =,由含30°角的直角三角形性质解得则3,3BH x BB x '==,在Rt B EC '△中,设EC y =,3B C y '=,最后由BC BB B C ''=+解题即可;(3)设DH a =,先证明60ADB '∠=︒,当AB D '是直角三角形时,再分类讨论①当90AB D '∠=︒时或②当90B AD '∠=︒时,分别利用含30°角的直角三角形性质和勾股定理解得a 的值即可解题. 【详解】解:(1)在Rt △ABC 中,90,30,2ACB B AB ∠=︒∠=︒=,112AC AB ∴==,根据勾股定理得,3BC =, ∵由折叠知,DB DB '=, 30B BB D '∴∠=∠=︒,60ADB B BB D ''∴∠=∠+∠=︒,当点B '与点C 重合时,DC=DB ,60A ADC ∠=∠=︒, ∴△ADC 是等边三角形, ∴AD= AC=1, ∴BD=AB-AD=1;(2)如图1,过D 作DH BC ⊥于H ,在Rt BDH △中,设,30BD x B =∠=︒,则3,3BH BB x '==, 在Rt B EC '△中,设,30EC y EB C '=∠=,则3B C '=,333BC BB B C x y ''∴=+=+=,1(01)y x x ∴=-+<<;(3)设DH a =,在Rt BDH △中,2,3BD a BH a ==,2,23DB BD a BB BH a ''====,由(1)知,60ADB '∠=︒,AB D '△是直角三角形,∴①当90AB D '∠=︒时,如图2,在Rt AB D '△中,9030B AD ADB ''∠=︒-∠=︒,24,323AD B D a AB B D a '''∴====,在Rt ACB '△中,323B C BC BB a ''=-=-, 根据勾股定理得,222AB B C AC ''=+, 即22(23)(323)1a a =-+, 解得13a =, 223BD a ∴==; ②当90B AD '∠=︒时,如图3,同①的方法得,43BD =,综上所述,当AB D '是直角三角形时,满足条件的23BD =或43【点睛】本题考查含30°角的直角三角形、三角形的外角、一次函数、勾股定理、等边三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.22.(1)5时最低,17时最高,最低气温为36.5℃,最高气温为37.5℃.(2)36.5℃至37.5℃之间.(3)5时至17时体温上升,0时至5时和17时至24时体温在下降.(4)见解析 【分析】(1)根据图象进行作答即可; (2)根据图象进行作答即可; (3)根据图象进行作答即可; (4)根据图象进行作答即可.(1)5时最低,17时最高,最低气温为36.5℃,最高气温为37.5℃. (2)36.5℃至37.5℃之间.(3)5时至17时体温上升,0时至5时和17时至24时体温在下降.(4)凌晨0至5时,小明体温在下降,5时体温最低是36.5℃;5至17时,小明体温在上升,17时体温最高是37.5℃;17至24时,小明体温在下降. 【点睛】本题考查了图象与变量的问题,掌握图象与变量的关系是解题的关键.23.(1)方案1:5200y x =+,方案2:92162y x =+;(2)32个;当文具盒数量多于32个时,方案2省钱,当文具盒数量多于8个而少于32个时,方案1省钱. 【分析】(1)对方案1,根据付款数=8个书包的价钱+(x -8)个文具盒的价钱列式解答即可;对方案2:根据付款数=(8个书包的价钱+x 个文具盒的价钱)×90%列式解答即可; (2)先计算出两种付款方案相同时文具盒的个数,再分情况讨论. 【详解】解:(1)方案1:()830585200y x x =⨯+-=+;方案2:()9830590%2162y x x =⨯+⨯=+; (2)若两种方案付款相同,则有952002162x x +=+,解得32x =. 当文具盒数量多于32个时,方案2省钱,当文具盒数量多于8个而少于32个时,方案1省钱. 【点睛】本题考查的是用关系式表示变量之间的关系、一元一次方程的解法和代数式求值,正确理解题意、弄清题目中的数量关系、全面分类是解题的关键.24.(1)水库原蓄水量为1 000万立方米,持续干旱10天后,蓄水量为800万立方米;(2)当v=400时,t=30,∴持续干旱30天后将发出严重干旱警报;(3)持续干旱50天后水库将干涸. 【解析】 【分析】(1)原蓄水量即t =0时v 的值,t=50时,v=0,得v 与t 的函数关系,持续干旱10天后的蓄水量即t =10时v 的值;(2)即找到v =400时,相对应的t 的值;(3)从第10天到第30天,水库下降了800−400=400万立方米,一天下降=20万立方米,第30天的400万立方米还能用=20天,即50天时干涸.解:(1)当t=0时,v=1000∴水库原蓄水量为1000万米3,干涸的速度为1000÷50=20,所以v=1000-20t,当t=10时,v=800,∴水库原蓄水量为1 000万立方米,持续干旱10天后,蓄水量为800万立方米.(2)当v=400时,t=30,∴持续干旱30天后将发出严重干旱警报.(3)从第10天到第30天,水库下降了(800﹣400)万立方米,一天下降=20万立方米,故根据此规律可求出:30+=50天,那么持续干旱50天后水库将干涸.【点睛】本题考查了函数图象的问题,解题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,得到相应的点的意义.25.(1)常量是8,变量是v,s;(2)常量是45,2,变量是s,t;(3)常量是100,变量是v,t.【解析】【分析】根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可直接得到答案.【详解】(1)常量是8,变量是v,s;(2)常量是45,2,变量是s,t;(3)常量是100,变量是v,t.【点睛】本题考查了常量和变量的定义,常量就是在变化过程中不变的量,变量就是可以取到不同数值的量.26.(1) 8.(2)4 3 2 1 0 1 2 3【解析】试题分析:(1)把x=-5代入y=|x-3|进行计算即可得;(2)根据y=|x-3|把相应的x值代入进行计算即可得.试题--=8;(1)当x的值为-5时,y=53(2)填表如下:x-10123456y43210123。
(好题)初中数学七年级数学下册第三单元《变量之间的关系》检测题(含答案解析)
一、选择题1.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s 关于时间t 的图象,那么符合小明行驶情况的图象大致是( ) A .B .C .D .2.下表反映的是某地区电的使用量x (千瓦时)与应交电费y (元)之间的关系,下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是x 的函数B .用电量每增加1千瓦时,电费增加0.55元C .若用电量为8千瓦时,则应交电费4.4元D .y 不是x 的函数3.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( ) A .2yx B .2(12)y x =- C .(12)y x x =- D .2(12)y x =-4.如图是九年级某考生做的水滴入一个玻璃容器的示意图(滴水速度保持不变),能正确反映容器中水的高度(h )与时间(t )之间对应关系的大致图象是( ).A .B .C .D .5.已知A ,B 两地相距4千米,上午8:00,甲从A 地出发步行到B 地,8:20乙从B 地出发骑自行车到A 地,甲、乙两人离A 地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息知,乙到达A 地的时刻为( )A.8:30 B.8:35 C.8:40 D.8:456.对于关系式y=3x+5,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④这个关系式表示的变量之间的关系不能用图象表示;⑤y与x的关系还可以用表格和图象表示,其中正确的是()A.①②③B.①②④C.①③⑤D.①②⑤7.按如图的方式用火柴棒摆放正方形,若用n表示正方形个数,y表示摆放正方形所用火柴棒根数,则y与n之间的关系式为()A.y=3n+1 B.y=4n-1 C.y=4+3n D.y=n+n+(n-1)8.学校计划买100个乒乓球,买的乒乓球的总费用w(元)与单价n(元/个)的关系式w=100n中()A.100是常量,w、n是变量B.100、w是常量,n是变量C.100、n是常量,w是变量D.无法确定9.某校组织学生到距学校6 km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下表:里程收费(元)3千米以下(含3千米)8.003千米以上,每增加1千米 1.80则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为()A.y=8x B.y=1.8x C.y=8+1.8x D.y=2.6+1.8x 10.如图1,在等边三角形ABC中,AB=2,G是BC边上一个动点且不与点B、C重合,H 是AC边上一点,且°.设BG=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图2所示,则这条线段可能是图中的()A.线段CG B.线段AG C.线段AH D.线段CH11.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A.B.C.D.12.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为()A.B.C.D.二、填空题13.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势年份200620072008…入学儿童人数252023302140…(1)上表中_____是自变量,_____是因变量.(2)你预计该地区从_____年起入学儿童的人数不超过1 000人.14.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图所示,则慢车比快车早出发______小时,快车追上慢车行驶了______千米,快车比慢车早______小时到达B地.从A地到B地快车比慢车共少用了______小时.15.如图所示的是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的关系图象.下列说法:①买2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元.其中正确的说法是__.16.甲、乙两人在一条直线道路上分别从相距1500米的A,B两点同时出发,相向而行,当两人相遇后,甲继续向点B前进(甲到达点B时停止运动),乙也立即向B点返回.在整个运动过程中,甲、乙均保持匀速运动.甲、乙两人之间的距离y(米)与乙运动的时间x(秒)之间的关系如图所示.则甲到B点时,乙距B点的距离是_____米.17.下列是关于变量x与y的八个关系式:① y = x;② y2 = x;③ 2x2− y = 0;④ 2x − y2= 0;⑤ y = x3;⑥ y =∣x∣;⑦ x = ∣y∣;⑧ x =2y.其中y不是x的函数的有_____.(填序号)18.小英、爸爸、妈妈同时从家中出发到达同一目的地后都立即返回,小英去时骑自行车,返回时步行;妈妈去时步行,返回时骑自行车;爸爸往返都步行,三人步行的速度不等,小英与妈妈骑车的速度相等,每个人的行走路程与时间的关系分别是下图中的一个,走完一个往返,小英用时____________,爸爸用时____________,妈妈用时____________.19.如图,圆柱的高是3cm,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化中,自变量是______,因变量是______;(2)当底面半径由1cm变化到10cm时,圆柱的体积增加了______cm3.20.函数f(x)=+3-2xx的定义域是________.三、解答题21.如图,圆柱的高是,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化中,自变量是______,因变量是______;(2)写出体积与半径的关系式;(3)当底面半径由变化到时,通过计算说明圆柱的体积增加了多少. 22.已知某函数图象如图所示,请回答下列问题:(1)自变量x的取值范围是(2)函数值y的取值范围是;(3)当x=0时,y的对应值是;(4)当x为时,函数值最大;(5)当y随x增大而增大时,x的取值范围是;(6)当y随x的增大而减少时,x的取值范围是.23.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)之间的部分关系如图象所示.求从关闭进水管起需要多少分钟该容器内的水恰好放完.24.在数轴上,若点A,B表示的数分别为3和x,则A,B之间的距离y与x之间的关系式为y x=-.3(1)当x的值为-5时,求y的值;(2)根据关系式,完成下表:x-10123456y25.已知水池中有800立方米的水,每小时抽出50立方米.(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的关系式及t的取值范围;(2)6小时后池中还有多少水?(3)几小时后,池中还有200立方米的水?26.如图,是一个形如六边形的点阵,它的中心是一个点,算第一层;第二层每边两个点;第三层每边有三个点,依此类推:(1)填写下表:层数 1 2 3 4 5 6 ……该层的点数……所有层的点……数(2)每层点数是如何随层数的变化而变化的?所有层的总点数是如何随层数的变化而变化的?(3)此题中的自变量和因变量分别是什么?(4)写出第n层所对应的点数,以及n层的六边形点阵的总点数;(5)如果某一层的点数是96,它是第几层?(6)有没有一层,它的点数是100?为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.【详解】解:因为开始以正常速度匀速行驶---停下修车---加快速度匀驶,可得S先缓慢减小,再不变,在加速减小.故选D.【点睛】此题主要考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.2.D解析:D【分析】结合表格中数据变化规律进而得出y是x的函数且用电量每增加1千瓦时,电费增加0.55元.【详解】A、x与y都是变量,且x是自变量,y是x的函数,正确,不合题意;B、用电量每增加1千瓦时,电费增加0.55元,正确,不合题意;C、若用电量为8千瓦时,则应交电费4.4元,正确,不合题意;D、y不是x的函数,错误,符合题意.故选:D.【点睛】此题主要考查了函数的概念以及常量与变量,正确获取信息是解题关键.3.C解析:C【分析】根据周长关系求出另一边的长,再用面积公式即可表示y与x的函数.【详解】∵长方形的周长为24cm ,其中一边长为()x cm , ∴另一边为12-x ,故面积2ycm 则长方形中y 与x 的关系式为(12)y x x =-故选C 【点睛】此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.4.D解析:D 【解析】 【分析】先根据容器的上下的大小,判断水上升快慢和对应的图象,再对题中的每一种结论进行判断. 【详解】解:由于容器的形状是下宽上窄,所以水的深度上升是先慢后快. 表现出的函数图形为先缓,后陡. 故选:D . 【点睛】本题考查单式折线统计图,解题关键在于根据容器的上下的大小,判断水上升快慢和对应的图象5.C解析:C 【解析】 【分析】根据甲60分走完全程4千米,求出甲的速度,再由图中两图象的交点可知,两人在走了2千米时相遇,从而可求出甲此时用了0.5小时,则乙用了(0.5-13)小时,所以乙的速度为:2÷16,求出乙走完全程需要时间,此时的时间应加上乙先前迟出发的20分,即可求出答案. 【详解】因为甲60分走完全程4千米,所以甲的速度是4千米/时,由图中看出两人在走了2千米时相遇,那么甲此时用了0.5小时,则乙用了(0.5-13)小时,所以乙的速度为:2÷16=12,所以乙走完全程需要时间为:4÷12=13(时)=20分,此时的时间应加上乙先前迟出发的20分,现在的时间为8点40. 故选C . 【点睛】本题主要考查了函数图象的应用.做题过程中应根据实际情况和具体数据进行分析.本题应注意乙用的时间和具体时间之间的关联.6.D解析:D【解析】【分析】根据一次函数的定义可知,x为自变量,y为函数,也叫因变量;x取全体实数;y随x的变化而变化;可以用三种形式来表示函数:解析法、列表法和图象法.【详解】①x是自变量,y是因变量;正确;②x的数值可以任意选择;正确;③y是变量,它的值与x无关;而y随x的变化而变化;错误;④用关系式表示的不能用图象表示;错误;⑤y与x的关系还可以用列表法和图象法表示,正确.故选D.【点睛】本题考查了一次函数的定义,是基础知识,比较简单.7.A解析:A【解析】观察可知:当n=1时,y=4=3×1+1,当n=2时,y=7=3×2+1,当n=3时,y=10=3×3+1,……所以有n个正方形时,y=3n+1,故选A.【点睛】本题考查了规律型——图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.8.A解析:A【解析】∵买的乒乓球的总费用W(元)与单价n(元/个)的关系式W=100n,∴100是常量,在此式中W、n是变量.故选:A.点睛:此题主要考查了常量与变量,关键是掌握常量和变量的定义.9.D解析:D【解析】∵3千米以上每增加1千米收费1.80元,∴出租车行驶里程数x(x≥3)与收费y之间的关系式为:y=8+1.8(x-3)=1.8x+2.6.故选D.10.D解析:D【解析】若CG的长为y,则y=2-x,故A选项不符合;若AG的长为y,随着x的增大,y是先减小后增大的,故B选项不符合;随着BG的逐渐增大,AH是先减小再增大,故C选项不符合;线段CH随着BG的逐渐增大是先增大后逐渐减小的,故D符合;故选D11.C解析:C【解析】解:由题意,得以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选C.【点评】本意考查了函数图象,根据题意判断路程与时间的关系是解题关键,注意休息时路程不变.12.D解析:D【详解】解:因为进水时水量增加,函数图象的走势向上,所以可以排除B,清洗时水量大致不变,函数图象与x轴平行,排水时水量减少,函数图象的走势向下,排除A,对于C、D,因为题目中明确说明了一开始时洗衣机内无水.故选D.二、填空题13.年份入学儿童人数2014【分析】(1)根据题意每一年的递减人数相等判断出y与x是一次函数关系设y=kx+b再取两组数据代入得到二元一次方程组求出kb 即可得到答案;(2)根据不超过1000人列出不等式解析:年份入学儿童人数 2014【分析】(1)根据题意,每一年的递减人数相等判断出y与x是一次函数关系,设y=kx+b,再取两组数据代入得到二元一次方程组,求出k、b即可得到答案;(2)根据不超过1000人列出不等式,然后求解即可得到答案.【详解】解:(1)从上表可以得到信息,入学儿童的人数随着年份的变化而变化,所以年份是自变量,入学儿童人数是因变量, 故答案为:年份 ;入学儿童人数; (2):①设y=kx+b ,将x=2006,y=2520和x=2007,y=2330代入得到二元一次方程组,2006252020072330k b k b +⎧⎨+⎩==, 190383660k b -⎧⎨⎩==, 所以,y=-190x+383660;∴根据题意得,-190x+383660≤1000, 解得x≥2014,所以,该地区从2014年起入学儿童人数不超过1000人. 故答案为: 2014. 【点睛】本题主要考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,观察出y 与x 是一次函数关系、灵活运用所学知识是解题的关键.14.27646【分析】根据横纵坐标的意义分别分析得出即可【详解】由图象直接可得出:一慢车和一快车沿相同路线从A 地到B 地所行的路程与时间的图象如图则慢车比快车早出发2小时快车追上慢车行驶了276千米快车比解析:276 4 6 【分析】根据横纵坐标的意义,分别分析得出即可. 【详解】由图象直接可得出:一慢车和一快车沿相同路线从A 地到B 地,所行的路程与时间的图象如图,则慢车比快车早出发2小时,快车追上慢车行驶了276千米,快车比慢车早4小时到达B 地,从A 地到B 地快车比慢车共少用了18-(14-2)=6小时. 故答案为2,276,4,6. 【点睛】此题主要考查了函数图象,从图象上获取正确的信息是解题关键.15.①②③【分析】分析图象x=2时y 值相等故买两件时售价一样当买1件时乙家的售价比甲家低买3件时甲家较合算【详解】分析题意和图象可知:①售2件时甲乙两家售价一样故此题正确;②买1件时买乙家的合算故此题正解析:①②③ 【分析】分析图象,x=2时y 值相等,故买两件时售价一样,当买1件时乙家的售价比甲家低.买3件时,甲家较合算.【详解】分析题意和图象可知:①售2件时甲、乙两家售价一样,故此题正确;②买1件时买乙家的合算,故此题正确;③买3件时买甲家的合算,故此题正确;④买乙家的1件售价约为1元,故此题错误.故答案为①②③.【点睛】本题考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.16.5【解析】试题解析:5【解析】试题由题可得,甲从A到达B运动的时间为375秒,∴甲的速度为:1500÷375=4m/s,又∵甲乙两人从出发到相遇的时间为200秒,∴乙的速度为:1500÷200﹣4=3.5m/s,又∵甲从相遇的地点到达B的路程为:175×4=700米,乙在两人相遇后运动175秒的路程为:175×3.5=612.5米,∴甲到B点时,乙距B点的距离为:700﹣612.5=87.5米,故答案为87.5.17.②④⑦【解析】根据函数的定义:在一个变化过程中若有两个变量xy在一定的范围内当变量x每取定一个值时变量y都有唯一确定的值和它对应我们就说变量y是变量x的函数分析可知在上述反映变量y与x的关系式中y不解析:②④⑦【解析】根据函数的定义:“在一个变化过程中,若有两个变量x、y,在一定的范围内当变量x每取定一个值时,变量y都有唯一确定的值和它对应,我们就说变量y是变量x的函数”分析可知,在上述反映变量y与x的关系式中,y不是x的函数的有②④⑦,共3个.故答案为②④⑦.18.min24min26min【解析】∵小英去时骑自行车返回时步行∴小英去的时候速度比回来的快即它去的时候花的时间比回来时少∴小英对应的应该是图(2)因此一个往返的时间是21分钟∵妈妈去时步行返回时骑自解析:min 24 min 26 min【解析】∵小英去时骑自行车,返回时步行,∴小英去的时候速度比回来的快,即它去的时候花的时间比回来时少, ∴小英对应的应该是图(2). 因此一个往返的时间是21分钟. ∵妈妈去时步行,返回时骑自行车, ∴妈妈去的时候的速度比回来时速度慢, 即妈妈去的时候用的时间比回来时长. ∴妈妈对应的是图(1).因此妈妈一个往返需要的时间是26分钟. ∵爸爸往返都是步行, 所以爸爸的往返速度是一样的, 即爸爸往返所花的时间一样, ∴爸爸对应的是图(3).因此爸爸往返用时是24分钟.故答案为: 21 min , 24 min , 26 min.点睛:本题的关键是找准对应的图象,需要我们从题目出发,根据给出的交通工具,根据实际经验来判断所用的时间.19.半径体积297π【解析】(1)由题意可知:在上述变化过程中自变量是圆柱的底面半径因变量是圆柱的体积;(2)设圆柱的底面半径为体积为则由题意可得:∴当时当时∵∴当底面半径由1cm 变化到10cm 时圆柱的解析:半径 体积 297π 【解析】(1)由题意可知:在上述变化过程中,自变量是“圆柱的底面半径”,因变量是“圆柱的体积”;(2)设圆柱的底面半径为r ,体积为v ,则由题意可得:23v r π=, ∴当1r =时,2313v ππ=⨯=, 当10r =时,2310300v ππ=⨯=, ∵3003297πππ-=,∴当底面半径由1cm 变化到10cm 时,圆柱的体积增加了297πcm 3. 故答案为:(1). 半径 (2). 体积 (3). 297π.20.x≥-3且x≠2【解析】由题意可得x+3≥0且x-2≠0即x≥-3且x≠2解析:x≥-3且x≠2 【解析】由题意可得x+3≥0且x-2≠0,即x≥-3且x≠2.三、解答题21.(1)半径;体积;(2);(3).【分析】(1)根据常量和变量的定义来判断自变量、因变量和常量;(2)圆柱体的体积等于底面积乘以高,底面积等于π乘以半径的平方,将它用含有V 和r的关系式表达出来即可;(3)利用圆柱的体积计算方法计算增加的体积即可.【详解】(1)根据函数的定义可知,对于底面半径的每个值,体积按照一定的法则有一个确定的值与之对应,所以自变量是:半径,因变量是:体积.(2)根据圆柱体的体积计算公式:.(3)体积增加了(π×102−π×12)×3=297πcm3.【点睛】本题考查变量之间的关系,(1)考查自变量与因变量,理解自变量与因变量的定义是解题关键;(2)考查用关系式法表示变量之间的关系,在本题中掌握圆柱体体积的计算方法尤为重要;(3)分别代入求值做差即可.22.(1)﹣4≤x≤3;(2)﹣2≤y≤4;(3)3;(4)1;(5)﹣2≤x≤1(6)﹣4≤x≤﹣2和1≤x≤3.【解析】【分析】根据自变量的定义,函数值的定义以及二次函数的最值和增减性,观察函数图象分别写出即可.【详解】解:(1)自变量x的取值范围是﹣4≤x≤3;(2)函数y的取值范围是﹣2≤y≤4;(3)当x=0时,y的对应值是3;(4)当x为1时,函数值最大;(5)当y随x的增大而增大时,x的取值范围是﹣2≤x≤1.(6)当y随x的增大而减少时,x的取值范围是﹣4≤x≤﹣2和1≤x≤3;故答案为(1)﹣4≤x≤3;(2)﹣2≤y≤4;(3)3;(4)1;(5)﹣2≤x≤1(6)﹣4≤x≤﹣2和1≤x≤3.【点睛】本题考查二次函数的性质,函数图象,熟练掌握函数自变量的定义,函数值的定义以及函数的增减性并准确识图是解题关键.23.从关闭进水管起需要8分钟该容器内的水恰好放完.【解析】【分析】先根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论.【详解】解:由函数图象,得:进水管每分钟的进水量为:20÷4=5(升).设出水管每分钟的出水量为 m升,由函数图象,得:20+(5-m)×(12-4)=30.解得:m=15 4∴30÷154=8(分钟).即从关闭进水管起需要8分钟该容器内的水恰好放完.【点睛】本题考查利用函数的图象解决实际问题和用一元一次方程求出水管的出水量的运用,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.24.(1) 8.(2)4 3 2 1 0 1 2 3【解析】试题分析:(1)把x=-5代入y=|x-3|进行计算即可得;(2)根据y=|x-3|把相应的x值代入进行计算即可得.试题(1)当x的值为-5时,y=53--=8;(2)填表如下:25.(1)Q=800-50t(0≤t≤16);(2)6小时后,池中还剩500立方米的水;(3)12小时后,池中还有200立方米的水.【解析】【分析】(1)根据函数的概念和所给的已知条件即可列出关系式,Q=800-50t;(2)根据(1)中的函数关系式,将t=6代入即可得出池中的水;(3)结合已知,可知Q=200,代入函数关系式中即可得出时间t.【详解】(1) 由已知条件知,每小时抽50立方米水,则t小时后抽水50t立方米,而水池中总共有800立方米的水,那么经过t时后,剩余的水为800-50t,故剩余水的体积Q立方米与时间t(时)之间的函数关系式为: Q=800-50t(0≤t≤16);(2)当t=6时,Q=800-50×6=500(立方米),答:6小时后,池中还剩500立方米的水;(3)当Q=200时,800-50t=200,解得t=12,答:12小时后,池中还有200立方米的水.【点睛】本题考查了一次函数的应用,弄清题意,找准各量间的关系是解题的关键.26.(1)见解析;(2)每层点数是随层数增加而增加,所有层的总点数是随层数的增加而增加;;(3) 自变量是层数,因变量是点数;(4) 第n层上的点数为6n-6, n层六边形点阵的总点数为1+3n(n-1);(5)在第17层;(6)没有一层,它的点数为100点,理由见解析【分析】(1)观察点阵可以写出答案;(2)观察由(1)中表格得出结论;(3)根据自变量、因变量的定义即可得出结论;(4)根据六边形有六条边,则第一层有1个点,第二层有2×6-6=6(个)点,第三层有3×6-6=12(个)点,进一步得出第n层有6(n-1)个点,总点数根据求和公式列式计算即可;(5)将96代入6n-6求得答案即可;(4)将100代入6n-6建立方程求解即可判定;【详解】(1)如表:(3)自变量是层数,因变量是点数;(4)第一层上的点数为1;第二层上的点数为6=1×6;第三层上的点数为6+6=2×6;第四层上的点数为6+6+6=3×6;…第n层上的点数为(n-1)×6=6n-6.所以n层六边形点阵的总点数为:1+1×6+2×6+3×6+…+(n-1)×6=1+6[1+2+3+4+…+(n-1)]=1+6[(1+2+3+…+n-1)+(n-1+n-2+…+3+2+1)]÷2=1+6×(1)2n n=1+3n(n-1);(5)第n层有(6n-6)个点,则有6n-6=96,解得n=17,即在第17层;(6)6n-6=100解得n=533,不合题意,所以没有一层,它的点数为100点.【点睛】考查了图形的变化规律,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解.。
七年级上册《数学》第三章测试卷(含答案)
七年级上册《数学》第三章测试卷(时间:45分钟,满分:100分)一、选择题(本大题共8小题,每小题4分,共32分.下列各题给出的四个选项中,只有一项符合题意)1.若2(a+3)的值与4互为相反数,则a 的值为( ) A.1B.-72C.-5D.122.下列说法错误的是( ) A.如果ax=bx,那么a=b B.如果a=b,那么a c 2+1=bc 2+1C.如果a=b,那么ac-d=bc-dD.如果x=3,那么x 2=3x 3.下列方程变形正确的是( ) A.方程3x-2=2x+1,移项,得3x-2x=-1+2 B.方程3-x=2-5(x-1),去括号,得3-x=2-5x-1 C.方程23t=32,未知数系数化为1,得t=1D.方程x-10.2−x 0.5=1化成3x=64.“六一”国际儿童节期间,某商店将单价标为130元的书包按8折出售可获利30%,该书包每个的进价是( ) A.65元 B.80元 C.100元 D.104元5.方程2x+32-x=9x-53+1去分母得( )A.3(2x+3)-x=2(9x-5)+6B.3(2x+3)-6x=2(9x-5)+1C.3(2x+3)-x=2(9x-5)+1D.3(2x+3)-6x=2(9x-5)+66.如图①,天平呈平衡状态,其中左侧盘中有一袋玻璃球,右侧盘中也有一袋玻璃球,还有2个各20 g的砝码.现将左侧袋中一颗玻璃球移至右侧盘,并拿走右侧盘中的1个砝码,天平仍呈平衡状态,如图②.则移动的玻璃球的质量为()A.10 gB.15 gC.20 gD.25 g7.为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文a,b,c对应密文a+1,2b+4,3c+9.例如明文1,2,3对应密文2,8,18.如果接收方收到密文7,18,15,那么解密得到的明文为()A.4,5,6B.6,7,2C.7,2,6D.2,6,78.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.5x-45=7x-3B.5x+45=7x+3C.x+455=x+37D.x-455=x-37二、填空题(本大题共4小题,每小题4分,共16分)9.已知x=2是关于x的方程ax-5x-6=0的解,则a=.10.对于有理数a,b,c,d,现规定一种新的运算|a bc d|=ad-bc.则满足等式|x2x+1321|=1的x的值为.11.当m=时,单项式15x2m-1y2与-8x m+3y2是同类项.12.某赛季中国职业篮球联赛第11轮前四名球队积分榜如下:(1)若一个队胜m 场,则该队的总积分为 ;(2)某队的胜场总积分能否等于它的负场总积分?你的观点是: . 三、解答题(本大题共5小题,共52分) 13.(16分)解下列方程: (1)2x-13−10x-16=2x+14-1;(2)x 0.7−0.17-0.2x 0.03=1.14.(8分)当m 为何值时,式子2m-5m-13的值与式子7-m 2的值的和等于5?15.(8分)一架飞机在两个城市之间飞行,风速为24千米/时,顺风飞行要2小时50分,逆风飞行要3小时,求飞机在静风中的速度.16.(10分)(2020·四川泸州中考)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?17.(10分)某市为促进节约用水,提高用水效率,建设节水型城市,将自来水划分为“家居用水”和“非家居用水”.根据新规定,“家居用水”用水量不超过6 t,按每吨1.2元收费;如果超过6 t,那么未超过部分仍按每吨1.2元收费,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?七年级上册《数学》第三章测试卷答案一、选择题1.C2.A3.D4.B设该书包每个的进价为x元,根据题意列方程,得130×80%-x=30%x,解得x=80.5.D6.A7.B由题意,得a+1=7,2b+4=18,3c+9=15,解得a=6,b=7,c=2.8.B二、填空题9.810.-10根据题意,得x2−2(x+1)3=1,解得x=-10.11.4根据同类项的定义,相同字母的指数相同,得2m-1=m+3,解得m=4.12.(1)m+11(2)不能(1)胜一场得分:2211=2(分),负一场得分:21-10×2=1(分).若一个队胜m场,则总积分为2m+(11-m)=2m+11-m=m+11.(2)设一个队胜了x场,则负了(11-x)场.若这个队的胜场总积分等于负场总积分,则有方程2x-(11-x)=0,解得x=113.其中x(胜场)的值必须是整数,故x=113不符合实际,由此可以判定没有哪个队的胜场总积分等于负场总积分.三、解答题13.解:(1)去分母,得4(2x-1)-2(10x-1)=3(2x+1)-12.去括号,得8x-4-20x+2=6x+3-12.移项、合并同类项,得-18x=-7.系数化为1,得x=718.(2)原方程可转化为10x 7−17-20x 3=1.去分母,得30x-7(17-20x)=21. 去括号,得30x-119+140x=21. 移项、合并同类项,得170x=140. 系数化为1,得x=1417.14.解:根据题意,得2m-5m-13+7-m 2=5.解这个方程,得m=-7.因此当m=-7时,式子2m-5m-13的值与式子7-m 2的值的和等于5.15.解 设飞机在静风中的速度为x 千米/时,则 (x+24)×256=(x-24)×3,解得x=840.答:飞机在静风中的速度是840千米/时.16.解:(1)设甲种奖品购买了x 件,乙种奖品购买了(30-x)件,根据题意,得30x+20(30-x)=800,解得x=20,则30-x=10. 答:甲种奖品购买了20件,乙种奖品购买了10件.(2)设甲种奖品购买了x 件,乙种奖品购买了(30-x)件,设购买两种奖品的总费用为w 元,根据题意,得30-x ≤3x,解得x ≥7.5,w=30x+20(30-x)=10x+600.∵10>0,∴w 随x 的增大而增大,∴x=8时,w 有最小值,为w=10×8+600=680. 答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.17.解:设该用户5月份用水x t,根据题意,得1.4x=6×1.2+2(x-6). 解这个方程,得x=8. 所以8×1.4=11.2(元).答:该用户5月份应交水费11.2元.。
七年级数学第三次单元测试题参考答案
2020—2021学年第二学期第三次单元测试七年级数学试题参 考 答 案一、选择题(每题3分,共30分.)四个选项中,只有一个选项是符合题目要求.1. D2. B3. C4. B5. B6. D7. A8. A9. D 10. D二、填空题(每题3分,共18分.)11. ±3 12. 12<m <4 13. 18. 14. x ≤6 15. 16. (2015,2)三、解答题(共52分.)17. (6分)计算:(1)3279-+- (2))32(323++-)3(3-+-= ……2分 33232++-= ……2分 6-= ……3分 35+= ……3分18. (6分)(1)解:把方程①代入②得:2﹣2y+4y=6,解得:y=2,把y=2代入①得:x=﹣1,则方程组的解为;(2)解:方程①×5-②×3得:-11x=55,即x=-5,把x= - 5代入①得:y= - 6,则方程组的解为. 19.(4分)解:112x ++≥723x +-, 去分母,得6+3(x+1)≥12﹣2(x+7),去括号,得6+3x+3≥12﹣2x ﹣14,移项、合并同类项,得5x ≥﹣11,系数化为1,得.故不等式的非正整数解为 -2,-1,0.20.(6分)解:(1)描点如图:A (-1,0),B (3,-1),C (4,3);(2)分别过点A ,C 作y 轴的平行线,过点B 作x 轴的平行线,围成梯形ADEC ,则梯形ADEC 的面积为∴S 梯形ADCE =12(AD+CE )DE=12(1+4)×5=12.5, S 三角形ADB =12AD ·BD=12×1×4=2, S 三角形BCE =12BE ·CE=12×1×4=2, ∴S 三角形ABC =S 梯形ADCE - S 三角形ADB - S 三角形BCE =12.5 – 2 – 2 = 8.5.21. (10分)解:∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴∠2=∠3(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠C=∠ABD (两直线平行,同位角相等)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代换)∴AC∥DF(内错角相等,两直线平行)22.(5分)解:∵方程组,∵x+y=0,∴y=﹣x,把y=﹣x代入方程组中可得:,解得:,故m的值为8时,方程组的解互为相反数.23.(5分)解:设x人生产镜片,则(60﹣x)人生产镜架.由题意得:200x=2×50×(60﹣x),解得x=20,∴60﹣x=40.答:20人生产镜片,40人生产镜架,才能使每天生产的产品配套.24.(10分)解:(1)购买A型的价格是a万元,购买B型的设备b万元,,解得:.故a的值为12,b的值为10;(2)设购买A型号设备m台,12m+10(10﹣m)≤105,解得:m≤,故所有购买方案为:当A型号为0台,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;(3)由题意可得出:240m+180(10﹣m)≥2040,解得:m≥4,由(1)得A型买的越少越省钱,所以买A型设备4台,B型的6台最省钱.。
人教版七年级上册数学第三章测试卷(附答案)
人教版七年级上册数学第三章测试卷(附答案)人教版七年级上册数学第三章测试卷(附答案)一、单选题(共12题;共36分)1.如果$x=0$是关于$x$的方程$3x-2m=4$的解,则$m$值为()A。
$2$ B。
$-2$ C。
$4$ D。
$-2$2.若$x=-3$是方程$2(x-m)=6$的解,则$m$的值是()A。
$6$ B。
$-6$ C。
$12$ D。
$-2$3.下列方程的变形中正确的是()A.由$x+5=6x-7$得$x-6x=7-5$B.由$-2(x-1)=3$得$-2x-2=3$C.由$2x=-1$得$x=-\frac{1}{2}$D.由$3x+5=12$得$x=2$4.某商品涨价$20\%$后欲恢复原价,则必须下降的百分数约为()A。
$17\%$ B。
$18\%$ C。
$19\%$ D。
$20\%$5.下列等式的变形中,不正确的是()A.若$x=y$,则$x+5=y+5$B.若$(a\neq 0)$,则$\frac{x}{a}=\frac{y}{a}$C.若$-3x=-3y$,则$x=y$D.若$mx=my$,则$x=y$6.解方程,去分母正确的是()A。
$2-(x-1)=1$ B。
$2-3(x-1)=6$ C。
$2-3(x-1)=1$ D。
$3-2(x-1)=6$7.包装厂有$42$名工人,每人平均每天可以生产圆形铁片$120$片或长方形铁片$80$片.为了每天生产的产品刚好制成一个个密封的圆桶,应该分配多少名工人生产圆形铁片,多少名工人生产长方形铁片?设应分配$x$名工人生产长方形铁片,$(42-x)$名工人生产圆形铁片,则下列所列方程正确的是()A。
$120x=2\times 80(42-x)$ B。
$80x=120(42-x)$C。
$2\times 80x=120(42-x)$ D。
$3\times 80x=2\times120(42-x)$8.有一种足球是由$32$块黑白相间的牛皮缝制而成的(如图),黑皮可看作正五边形,白皮可看作正六边形.设白皮有$x$块,则黑皮有$(32-x)$块,要求出黑皮、白皮的块数,列出的方程是()A。
七年级数学上册第三单元测试题(精编)
七年级数学上册第三单元测试题(精编)一、选择题(3分×10=30分)1、现有下列四个式子:1x =13;②x(x+1); ③5x-8>1;④x+7=4x-3,其中属于一元一次方程的有( )A、 1个B、2个C、3个D、4个2、若(m−3)x|m|−2=3是关于x的一元一次方程,则m的值为( )A、 3B、 -3C、±3D、 23、一件标价为600元的上衣,按八折销售仍可获利20元,设这件上衣的成本价位x元,则根据题意,下面所列的方程中,正确的是( )A、600×0.8-x = 20B、600×8-x=20C 、600×0.8= x-20 D、600×8=x-204、有一养殖专业户,饲养的鸡的只数与猪的头数之和是70,而鸡与猪腿数之和是196,问该专业户饲养多少只鸡和多少只猪?设鸡的只数为x,则列出的方程应是( ) A 、 2x+(70-x)=196 B 、 2x+4(70-x)=196C、 4x+2(70-x)=196D.2x+4(70−x)=19625、对方程2(2x-1)-(x-3)=1,去括号正确的是( )A、 4x-1-x-3=1B、 4x-1-x+3=1C、 4x-2-x-3=1D、 4x-2-x+3=16、若x/s与2x−93互为相反数,则x的值为( )A、 3B、 -3C、32D、−327、对于方程1−x−12=2−2x+13去分母得( )A、 1-3(x-1)=2-2(2x+1)B、 6-3(x-1)=12-4x-1C、 6-3(x-1)=12-4x+2D、 6-3(x-1)=12-2(x+1)8、某物品先按批发价a元提高20%零售后,又按零售价降低10%出售,则这一物品最后单价为( )A、 1.1a元B、 0.9a元C、 1.08a元D、 1.2a元9. 一份数学试卷20道选择题,规定做对一题得 5分,一道不做或做错扣1分,某学生得分为70分,则他作对的题数为( )A、 16B、 17C、 18D、 1910、一项工程,甲单独做需10天完成,乙单独做需6天完成,现由甲先做2天,乙再加入合作,完成这项工程共需多少天?设这项工程共需x天,依题意可列方程( )A、x10+x6=1B、x+210+x−26=1C、x10+x−26=1D、2x+x−210+x−26=1。
七年级数学第三章单元测试题及答案
一元一次方程 测试卷一、选择题(每题3分,共30分)1.下列说法中正确的是( )A .含有一个未知数的等式是一元一次方程B .未知数的次数都是1次的方程是一元一次方程C .含有一个未知数,并且未知数的次数都是一次的方程是一元一次方程D .2y-3=1是一元一次方程2.下列四组变形中,变形正确的是( )A .由5x+7=0得5x=-7B .由2x-3=0得2x-3+3=0C .由6x =2得x=13D .由5x=7得x=35 3.下列各方程中,是一元一次方程的是( ) A .3x+2y=5 B .y 2-6y+5=0 C .13x-3=1x D .3x-2=4x-7 4.下列各组方程中,解相同的方程是( )A .x=3与4x+12=0B .x+1=2与(x+1)x=2xC .7x-6=25与715x -=6 D .x=9与x+9=0 5.一件工作,甲单独做20小时完成,乙单独做12小时完成,现由甲独做4小时,剩下的甲、乙合做,还需几小时?设剩下部分要x 小时完成,下列方程正确的是( ) 44.1.120201*********.1.1202012202012x x x x A B x x x x C D =--=+-=++=-+ 6.若关于x 的一元一次方程2332x k x k ---=1的解为x=-1,则k 的值为( ) A .27 B .1 C .-1311D .0 7.一条公路甲队独修需24天,乙队需40天,若甲、•乙两队同时分别从两端开始修,( )天后可将全部修完.A .24B .40C .15D .168.解方程1432x x ---=1去分母正确的是( ) A .2(x-1)-3(4x-1)=1 B .2x-1-12+x=1C .2(x-1)-3(4-x )=6D .2x-2-12-3x=69.某人从甲地到乙地,水路比公路近40千米,但乘轮船比汽车要多用3小时,•已知轮船速度为24千米/时,汽车速度为40千米/时,则水路和公路的长分别为( )A .280千米,240千米B .240千米,280千米C .200千米,240千米D .160千米,200千米10.一组学生去春游,预计共需用120元,后来又有2人参加进来,总费用降下来,•于是每人可少摊3元,设原来这组学生人数为x 人,则有方程为( )A . 120x=(x+2)xB .1202x x =+ 120120120120.3.322C D x x x x-==+++ 二、填空题(每题3分,共30分)11.关于x 的方程(k-1)x-3k=0是一元一次方程,则k_______.12.方程6x+5=3x 的解是________.13.若x=3是方程2x-10=4a 的解,则a=______.14.(1)-3x+2x=_______. (2)5m-m-8m=_______.15.一个两位数,十位数字是9,个位数比十位数字小a ,则该两位数为_______.16.一个长方形周长为108cm ,长比宽2倍多6cm ,则长比宽大_______cm .17.某服装成本为100元,定价比成本高20%,则利润为________元.18.某加工厂出米率为70%的稻谷加工大米,现要加工大米1000t ,设需要这种稻谷xt ,则列出的方程为______.19.当m 值为______时,453m -的值为0.10.敌我两军相距14千米,敌军于1小时前以4千米/小时的速度逃跑,•现我军以7千米/小时的速度追击______小时后可追上敌军.三、解答题(共60分)21.解方程:(1)53-6x=-72x+1; (2)y-12(y-1)=23(y-1);(3)34 [43(12x-14)-8]= 32x+1; (4)0.20.110.30.2x x -+-=.22若关于x 的方程2x-3=1和2x k -=k-3x 有相同的解,求k 的值.23. 已知2y +m=my-m. (1)当m=4时,求y 的值.(2)当y=4时,求m 的值.24.某校八年级近期实行小班教学,若每间教室安排20名学生,则缺少3•间教室;若每间教室安排24名学生,则空出一间教室.问这所学校共有教室多少间?25.如图,有9个方格,要求每个方格填入不同的数,使得每行、每列、•每条对角线上三个数的和相等,问图中的m是多少?26.已知甲数与乙数的比是1:3,甲数与丙数的比是2:5,并且甲数、乙数和丙数的和是130.求这三个数。
七年级数学第三单元考试卷
一、选择题(每题2分,共20分)1. 下列数中,不是有理数的是()A. 3B. -5C. 2/3D. √22. 下列各数中,属于整数的是()A. -1.5B. 3/4C. -2D. √93. 下列代数式中,正确的是()A. a + b = a - bB. a × b = a ÷ bC. a ÷ b = a × bD. a × b = a + b4. 下列各数中,是正数的是()A. -1/2B. 0C. 1/3D. -√45. 下列各数中,绝对值最大的是()A. -5B. 3C. -2D. 16. 下列各数中,能被3整除的是()A. 6B. 8C. 9D. 127. 下列各数中,是偶数的是()A. 2B. 3C. 4D. 58. 下列各数中,是质数的是()A. 7B. 8C. 9D. 109. 下列各数中,是奇数的是()A. 1B. 2C. 3D. 410. 下列各数中,是合数的是()A. 4B. 5C. 6D. 7二、填空题(每题2分,共20分)11. 2的平方根是______,-3的平方根是______。
12. 5的立方根是______,-8的立方根是______。
13. 下列数中,最小的负数是______。
14. 下列数中,最大的正数是______。
15. 下列数中,绝对值最小的数是______。
16. 下列数中,能被5整除的数是______。
17. 下列数中,是3的倍数的数是______。
18. 下列数中,是2的倍数的数是______。
19. 下列数中,是质数的数是______。
20. 下列数中,是合数的数是______。
三、解答题(每题10分,共30分)21. (10分)计算下列各式的值:(1) (-3) × 2 + 5 ÷ 2(2) 4 - 2 × (-3) ÷ 2(3) 3 × (-2) + 5 × 222. (10分)解下列方程:(1) 2x - 3 = 7(2) 3(x + 2) = 2x + 923. (10分)判断下列各数是否为质数,并说明理由:(1) 17(2) 18四、应用题(10分)24. (10分)小明从家出发去图书馆,他先以每小时5公里的速度走了10分钟,然后以每小时4公里的速度走了30分钟。
七年级上册数学第三单元测试卷
七年级上册数学第三单元测试卷一、选择题(每小题3分,共30分)下列运算正确的是()A. 7a - a = 6B.a2⋅a4=a6C.a6÷a2=a3D.2a−2=4a21下列各式由等号左边变到右边变错的有()①x+y=y+x②m−(m+n)=−n③−a+b=−(a−b)④x+(x−y)=2x−yA. 1个B. 2个C. 3个D. 4个下列各数中最小的数是()A.−⋅−5⋅B.−(−4)C.−(+3)D.−⋅+7⋅下列各式中,正确的是()A.⋅−87⋅=−(−87)B.−⋅−87⋅=−87C.−⋅−87⋅=+87D.−⋅−87⋅=87下列运算中,计算结果正确的是()A.3a+2b=5abB.5a2−2b2=3C.7a+a=7a2D.2m3⋅m4=2m7下列各式中,正确的是()A.⋅−2⋅=2B.−⋅−2⋅=−2C.−⋅−(−2)⋅=−2D.−⋅−(−21)⋅=21下列计算正确的是()A.3a+a=3a2B.x6÷x2=x3C.5b−b=4D.2m⋅m4=m5下列说法正确的是()A. 正数和负数统称为有理数B. 一个有理数不是整数就是分数C. 有理数是指整数、分数、正有理数、负有理数和零的统称D. 大于90度且小于180度的角叫做钝角下列说法中,正确的是()A. 正整数和负整数统称为整数B. 正分数和负分数统称为有理数C. 有理数包括正数、0和负数D. 有理数是正数、0和负数的统称下列计算中,错误的是()A.5a−a=4aB.a6÷a2=a4C.2x−2=4x21D.x+(x−y)=x−y二、填空题(每小题3分,共9分)11. 多项式5x3y−2xy3+51xy是____次____项式,最高次项是____,按y的升幂排列为____.12. 如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数____.13. 一个数的立方等于它本身,这个数是____.。
人教版七年级数学上学期第3--4章单元检测试题附答案
人教版七年级数学上学期第三章单元检测试题[建议时间:90分钟 分值:120分]一、选择题(本题共10小题,每小题3分,共30分.每小题给出的四个选项,只有一项是符合题目要求的) 1.下列各式是一元一次方程的是( ) A.s =vtB .(-2)+(-5)=-7 C.x3+1=2x -4 D .2x -3y =152.如果x =1是方程x +2m -5=0的解,那么m 的值是( ) A.-4 B .2 C.-2 D .43.下列运用等式的性质的变形中,正确的是( ) A.如果a =b ,那么a +c =b -c B.如果a c =b c,那么a =b C.如果a =b ,那么a c =b cD.如果a =3,那么a 2=3a 24.对于方程5x -13-2=1+2x2,去分母后得到的方程是( )A.5x -1-2=1+2xB.5x -1-6=3(1+2x )C.2(5x -1)-6=3(1+2x )D.2(5x -1)-12=3(1+2x )5.一艘轮船从甲码头到乙码头顺水航行,用了2小时,从乙码头到甲码头逆水航行,用了2.5小时.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,可列出的方程为( ) A.2x +3=2.5x -3 B.2(x +3)=2.5(x -3) C.2x -3=2.5x +3 D.2(x -3)=2.5(x +3)6.为有效保护日益减少的水资源,某市提倡居民节约用水,并对该市居民用水采取分段收费:若每户每月用水不超过20 m 3,每立方米收费3元;若用水超过20 m 3,超过部分每立方米收费5元.该市某居民家8月份交水费84元,则该居民家8月份的用水量为多少立方米?若设该居民家8月份的用水量为x m 3,则下面所列方程中正确的是( )图1A.3x +5=84 B .3×20+5x =84 C.3×20+5(x -20)=84 D .3x +5(x -20)=847.已知今年甲的年龄比乙的年龄大12岁,4年后甲的年龄恰好是乙的年龄的2倍,则甲今年的年龄是( ) A.20岁 B .16岁 C .15岁 D .12岁 8.定义运算“*”为a *b =ab +2a ,若(3*x )+(x *3)=14,则x 的值为( ) A.-1 B .1 C .-2 D .2 9.若关于x 的方程x -12-1=ax 的解是正整数,则整数a 的值是( )A.-1 B .2 C .-1或0 D .2或010.如图2,正方形ABCD 的边长是2 cm ,一只乌龟从点A 出发以2 cm/s 的速度顺时针沿正方形的边运动,另有一只兔子也从点A 出发以6 cm/s 的速度逆时针沿正方形的边运动,则乌龟和兔子第2020次相遇在( )图2A.点A B .点B C .点C D .点D 二、填空题(本题共6小题,每小题3分,共18分)11.如果方程(k -1)x |k |+3=0是关于x 的一元一次方程,那么k 的值是________. 12.已知4x 2m yn +1与-3x 4y 3是同类项,则m =________,n =________.13.如图3所示的框图表示解方程7y +()3y -5=y -2(7-3y )的流程,其中A 代表的步骤是________,步骤A 对方程进行变形的依据是____________.图314.一个书包的标价为115元,按八折出售仍可获利15%,则该书包的进价为________元. 15.如果关于x 的方程6x +3a =22与3x +5=11的解相同,那么a =________.16.甲、乙两人同时从相距2800米的两地出发,相向而行,甲每分钟走60米,乙每分钟走80米,甲带了一只小狗,狗每分钟跑200米,小狗同甲一起出发,碰到乙后立即掉头朝甲跑去,碰到甲后又立即掉头朝乙跑去,直到两人相遇.这只可爱的小狗一共跑了________米.三、解答题(本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤) 17.(共12分)解方程: (1)4x -3(5-x )=6;(2)2x +13-5x -16=1.18.(8分)在某年全国足球甲级A 组的前11场比赛中,某队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?(列方程解答)19.(8分)一个房间里有4条腿的椅子和3条腿的凳子共16个,如果椅子腿数和凳子腿数加起来共有60条,那么房间里有多少把椅子和多少个凳子?20.(10分)某地下管道由甲队单独铺设需要3天完成,由乙队单独铺设需要5天完成,甲队铺设了15后,为了加快速度,乙队加入,从另一端铺设,则管道铺好时,乙队做了多少天?21.(10分)某超市计划购进甲、乙两种型号的节能灯共1200只,这两种节能灯的进价、售价如下表:-进价(元/只)-售价(元/只)甲型-25-30乙型-45-60(1)如果进货款恰好为46000元,那么购进甲、乙两种型号的节能灯各多少只?(2)该超市为庆祝元旦进行大促销活动,决定对乙型节能灯进行打折销售,要求全部售完后,乙型节能灯的利润率为20%,则乙型节能灯需打几折?22.(12分)下表中有两种移动电话计费方式:说明:月使用费固定收取,主叫不超限定时间不再收费,主叫超时部分加收超时费,被叫免费.(1)若李杰某月主叫通话时间为200分钟,则他按方式一计费需________元;若徐明某月按方式二计费需103.8元,则主叫通话时间为________分钟.(2)是否存在某主叫通话时间t(分),按方式一和方式二的计费相等?若存在,请求出t的值;若不存在,请说明理由.(3)请你通过计算分析后,直接给出当每月主叫通话时间t(分)满足什么条件时,选择方式一省钱;当每月主叫通话时间t(分)满足什么条件时,选择方式二省钱.23.(12分)如图4,数轴上有A,B两点,所表示的有理数分别为a,b,已知AB=12,原点O是线段AB上的一点,且OA=2OB.(1)a=________,b=________;(2)若动点P,Q分别从点A,B同时出发,向右运动,点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,设运动时间为t秒,当点P与点Q重合时,P,Q两点同时停止运动.当t为何值时,2OP-OQ=4?图4参考答案1.C [解析] 只含有一个未知数,并且未知数的次数都是1的方程是一元一次方程.A 项,含有三个未知数,B 项,没有未知数,D 项,含有两个未知数,它们都不是一元一次方程.故选C .2.B3.B [解析] A 项,利用等式的性质1,两边都加c ,得到a +c =b +c ,所以A 不成立;B 项,利用等式的性质2,两边都乘c ,得到a =b ,所以B 成立;C 项,不成立,没有规定c 不为0;D 项,因为a =3,所以a 2=9,3a 2=27,所以a 2≠3a 2.故选B .4.D 5.B 6.C 7.A8.B [解析] 根据题意可知(3*x)+(x*3)=14可化为(3x +6)+(3x +2x)=14,解得x =1.9.C [解析] 解方程可得(1-2a)x =3,因为方程的解为正整数,所以1-2a =1或3,所以a =0或-1. 10.A [解析] 乌龟和兔子第一次在点D 处相遇,第二次在点C 处相遇,第三次在点B 处相遇,第四次在点A 处相遇,第五次在点D 处相遇……可以发现每四次一循环.因为2020÷4=505,所以乌龟和兔子第2020次相遇在点A.11.-1 [解析] 因为方程(k -1)x |k|+3=0是关于x 的一元一次方程,所以|k|=1,且k -1≠0,解得k =-1. 12.2 2 [解析] 依题意,得2m =4,n +1=3,解得m =2,n =2.13.移项 等式的性质114.80 [解析] 设书包的进价为x 元,根据题意,得115×0.8=x +15%x ,解得x =80. 15.10316.4000 [解析] 设甲、乙二人从出发到相遇用了t 分钟.根据题意,得(60+80)t =2800, 解得t =20.则小狗跑的路程是200×20=4000(米).17.解:(1)去括号,得4x -15+3x =6.移项,得4x +3x =6+15. 合并同类项,得7x =21. 系数化为1,得x =3.(2)去分母,得2(2x +1)-(5x -1)=6.移项,得4x -5x =6-2-1. 合并同类项,得-x =3. 系数化为1,得x =-3.18.解:设该队共胜了x 场,则平了(11-x)场.依题意,得3x +(11-x)=23, 解得x =6.答:该队共胜了6场.19.解:设房间里有x 把椅子,则有(16-x)个凳子.依题意,得4x +3(16-x)=60, 解得x =12. 16-x =16-12=4.答:房间里有12把椅子和4个凳子.20.解:设乙队做了x 天.根据题意,得15+⎝ ⎛⎭⎪⎫13+15x =1,解得x =32,即乙队做了32天.21.解:(1)设购进甲型节能灯x 只,则购进乙型节能灯(1200-x)只.根据题意,得25x +45(1200-x)=46000, 解得x =400.所以1200-400=800(只).答:购进甲型节能灯400只,乙型节能灯800只. (2)设乙型节能灯需打y 折.根据题意,得60×y10-45=45×20%,解得y =9.所以乙型节能灯需打9折.22.解:(1)若李杰某月主叫通话时间为200分钟,则他按方式一计费需:65+0.25×(200-160)=75(元).设主叫通话时间为x 分钟时,按方式二计费需103.8元. 根据题意,得100+0.19(x -380)=103.8, 解得x =400.(2)存在.①当t≤160时,方式一计费65元,方式二计费100元,所以不存在方式一与方式二计费相等的情况;②当160<t≤380时,若两种方式计费一样多,则65+0.25×(t-160)=100, 解得t =300,符合题意;③当t >380时,若两种方式计费一样多,则 65+0.25×(t-160)=100+0.19(t -380), 解得t =1403,不合题意,舍去.故当主叫通话时间为300分钟时,按方式一和方式二的计费相等.(3)当每月主叫通话时间少于300分钟时,选择方式一省钱;当每月主叫通话时间多于300分钟时,选择方式二省钱.23.解:(1)-8 4(2)根据题意,可知t 秒后点P ,Q 表示的数分别为-8+2t ,4+t , 则OP =|-8+2t|,OQ =4+t. 因为2OP -OQ =4,所以2|-8+2t|-(4+t)=4.当点P 与点Q 重合时,-8+2t =4+t , 解得t =12.①当4≤t≤12时,有2(-8+2t)-(4+t)=4,解得t =8; ②当0≤t<4时,有2(8-2t)-(4+t)=4,解得t =85.故当t 的值为8或85时,2OP -OQ =4.人教版七年级数学上学期第四章单元检测试题[建议时间:90分钟 分值:120分]一、选择题(本题共10小题,每小题3分,共30分.每小题给出的四个选项,只有一项是符合题目要求的) 1.对于直线AB ,线段CD ,射线EF ,其中能相交的是图1中的( )图12.如图2,将直角三角形ABC 绕斜边AC (AC 与水平面垂直)所在直线旋转一周后形成的立体图形是图3中的( )图2图33.若∠α=30°,则∠α的补角是( )A.30° B .60° C .120° D .150°4.一个立体图形从正面看、从左面看、从上面看都是正方形,那么这个立体图形是( ) A.长方体 B .正方体 C .四棱锥 D .六棱柱5.兴隆通往半壁山的公路经过八品叶梁盘旋而上,现在要沿着山脚打山洞而过,这样通往两地的时间将大大缩短,在数学中也就是“把弯曲的公路改直,就能缩短路程”,这其中蕴含的数学道理是( ) A.两点确定一条直线B.连接两点间的线段的长度,叫做这两点的距离C.两点之间,线段最短D.两点之间,直线最短6.如图4,CB =12AB ,AB =13AE .若CB =2 cm ,则AE 的长为( )图4A.12 cm B .8 cm C .10 cm D .6 cm 7.在15°,65°,75°,135°的角中,能用一副三角尺画出来的有( )图5A.1个 B .2个 C .3个 D .4个8.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图5所示的立体图形,其展开图正确的为( )图69.把一副三角尺ABC与BDE按如图7所示的方式拼在一起,其中A,D,B三点在同一直线上,BM为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN的度数是( )图7A.30° B.45° C.55° D.60°10.如图8,点C,O,B在同一条直线上,∠AOB=90°,∠AOE=∠DOB,则下列结论:①∠EOD=90°;②∠COE=∠AOD;③∠COE=∠DOB;④∠COE+∠DOB=90°.其中正确的个数是( )图8A.1 B.2 C.3 D.4二、填空题(本题共6小题,每小题3分,共18分)11.图9是一个正方体的展开图,把展开图折叠成正方体后,“美”字相对面上的字是________.图912.计算:(1)49.9°=________°________′;(2)25°42′=________°;(3)18°46′55″+27°17′24″=__________.13.如图10所示,小颖看小明的方向是__________,小明看小颖的方向____________.图1014.如图11,早晨6:30时,时针和分针所夹锐角的度数是________.图1115.有两根木条,一根长60 cm,另一根长100 cm,将它们的一端重合,放在同一条直线上,此时两根木条的中点间的距离是____________.16.如图12,从边长为(a+4)(a>0)的正方形纸片中剪去一个边长为(a+1)的正方形,剩余部分沿虚线又剪拼成一个长方形ABCD(不重叠无缝隙),则长方形ABCD的周长是_______.图12三、解答题(本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(8分)按要求作图.(1)如图13①,已知线段a,b,用尺规作线段CD,使CD=2a+b.(2)如图13②,在平面上有A,B,C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于点B,C),连接AD.图1318.(8分)若一个角的补角等于这个角的余角的5倍,求这个角的度数.19.(8分)如图14,已知B,C两点在线段AD上,AB∶BC∶CD=2∶4∶3,M是AD的中点.若CD=6,求线段MC的长.图1420.(10分)已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,求∠DOM的度数.21.(10分)如图15,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)求∠BOD的度数;(2)请说明OE平分∠BOC.图1522.(14分)如图16①,已知线段AB=12 cm,C为AB上的一个动点(不与点A,B重合),D,E分别是AC,BC的中点.(1)若C恰好是AB的中点,则DE=________ cm;(2)若AC=4 cm,求DE的长;(3)试利用“字母代替数”的方法,设AC=a cm(0<a<12),请说明无论a取何值,DE的长不变;(4)知识迁移:如图②,已知∠AOB=120°,过角的内部任意一点C画射线OC,若OD,OE分别平分∠AOC和∠BOC,试说明∠DOE的度数与射线OC的位置无关.图1623.(14分)如图17,已知A,B两点在数轴上,点A表示的数为-10,O为数轴的原点,OB=3OA,点M以每秒3个单位长度的速度从点A出发向右运动,点N以每秒2个单位长度的速度从点O出发向右运动(点M,N同时出发).(1)数轴上点B表示的数是________;(2)经过几秒,点M,N到原点O的距离相等?(3)当点M运动到什么位置时,AM=2BN?图17参考答案1.B2.B [解析] 可用排除法.A ,D 两项必须是由三角形绕直角边旋转才能得到,C 项是由长方形旋转得到的. 3.D [解析] 180°-30°=150°.故选D . 4.B 5.C 6.A7.C [解析] 15°=45°-30°,65°的角不能画出,75°=30°+45°,135°=45°+90°, 所以能用一副三角尺画出来的角有15°,75°,135°的角,共3个. 8.B9.B [解析] 因为BM 为∠ABC 的平分线, 所以∠DBM=∠CBM=12∠ABC=12×60°=30°.因为BN 为∠CBE 的平分线,所以∠NBC=12∠CBE=12×(90°+60°)=75°.所以∠MBN=∠NBC-∠CBM=75°-30°=45°.故选B .10.C [解析] 因为∠AOB=90°,所以∠AOD+∠DOB=90°.因为∠AOE=∠DOB,所以∠AOE+∠AOD=90°,即∠EOD =90°,故①正确;因为∠AOB =90°,所以∠AOC=90°,即∠AOD+∠DOB=∠AOE+∠COE. 因为∠AOE=∠DOB,所以∠COE=∠AOD;故②正确;∠COE 与∠DOB 的大小无法确定,故③错误;因 为∠EOD=90°,所以∠COE+∠BOD=180°-∠EOD=90°,所以④正确.故选C . 11.州12.(1)49 54 (2)25.7 (3)46°4′19″ 13.北偏东70° 南偏西70°14.15° [解析] 因为时针12小时转一圈,每分钟转动的角度为360°÷12÷60=0.5°,所以时针1小时转动 30°.所以6:30时,分针指向刻度6,时针和分针所夹锐角的度数是30°×12=15°.故答案是15°.15.80 cm 或20 cm [解析] 设较长的木条为AB =100 cm ,较短的木条为BC =60 cm ,M ,N 分别为AB ,BC 的中点, 则BM =12AB =12×100=50(cm ),BN =12BC =12×60=30(cm ).①若BC 不在线段AB 上,则MN =BM +BN =50+30=80(cm ); ②若BC 在线段AB 上,则MN =BM -BN =50-30=20(cm ). 综上所述,两根木条的中点间的距离是80 cm 或20 cm .16.4a +16 [解析] 根据题意,得长方形的宽为(a +4)-(a +1)=3,长方形的长为a +4+a +1,则拼成的长方形的周长为2(a +4+a +1+3)=2(2a +8)=4a +16.故答案为4a +16. 17.解:(1)如图①,CD 即为所作.(2)①如图②,直线AC ,线段BC ,射线AB 即为所作. ②如图②,线段AD 即为所作.18.解:设这个角的度数为x ,则它的余角的度数为90°-x ,补角的度数为180°-x.根据题意,得180°-x =5(90°-x), 解得x =67.5°, 故这个角的度数为67.5°.19.解:因为B ,C 两点在线段AD 上,AB ∶BC ∶CD =2∶4∶3,所以AB =29AD ,BC =49AD ,CD =13AD.又因为CD =6,所以AD =18.因为M 是AD 的中点,所以MD =12AD =9.所以MC =MD -CD =9-6=3.20.解:因为∠AOB=20°,∠AOC =4∠AOB,所以∠AOC=80°.因为OD 平分∠AOB,OM 平分∠AOC,所以∠AOD=∠BOD=12∠AOB=10°,∠AOM =∠COM=12∠AOC=40°.(1)当∠AOB 在∠AOC 的内部时,如图①, 则∠DOM=∠AOM-∠AOD=40°-10°=30°;(2)当∠AOB 在∠AOC 的外部时,如图②, 则∠DOM=∠AOM+∠AOD=40°+10°=50°. 综上所述,∠DOM 的度数为30°或50°.21.解:(1)因为∠AOC=50°,OD 平分∠AOC,所以∠AOD=∠DOC=12∠AOC=25°.所以∠BOD=180°-∠AOD=155°. (2)因为∠DOE=90°,∠DOC =25°,所以∠COE=∠DOE-∠DOC=90°-25°=65°. 又因为∠BOE=∠BOD-∠DOE=155°-90°=65°, 所以∠COE=∠BOE,即OE 平分∠BOC.22.解:(1)因为AB =12 cm ,C 为AB 的中点,所以AC =BC =12AB =6 cm .因为D ,E 分别是AC ,BC 的中点, 所以CD =12AC =3 cm ,CE =12BC =3 cm .所以DE =CD +CE =3+3=6(cm ). 故答案为6.(2)因为AB =12 cm ,AC =4 cm , 所以BC =AB -AC =12-4=8(cm ). 因为D ,E 分别是AC ,BC 的中点, 所以CD =12AC =2 cm ,CE =12BC =4 cm .所以DE =CD +CE =2+4=6(cm ). (3)因为AC =a cm ,AB =12 cm , 所以BC =AB -AC =(12-a)cm . 因为D ,E 分别是AC ,BC 的中点, 所以CD =12AC =12a cm ,CE =12BC =12(12-a)cm .所以DE =CD +CE =12a +12(12-a)=6(cm ).所以无论a 取何值,DE 的长不变,始终为6 cm . (4)因为OD ,OE 分别平分∠AOC 和∠BOC, 所以∠DOC=12∠AOC,∠COE =12∠BOC.所以∠DOE=∠DOC+∠COE=12(∠AOC+∠BOC)=12∠AOB.因为∠AOB=120°,所以∠DOE=60°. 所以∠DOE 的度数与射线OC 的位置无关.23.解:(1)30(2)设经过x 秒,点M ,N 到原点O 的距离相等.①若点M ,N 在点O 的两侧,则10-3x =2x ,解得x =2; ②若点M ,N 重合,则3x -10=2x ,解得x =10.综上所述,经过2秒或10秒,点M ,N 到原点O 的距离相等. (3)设经过y 秒,AM =2BN.①若点N 在点B 的左侧,则3y =2(30-2y),解得y =607,3×607-10=1107; ②若点N 在点B 的右侧,则3y =2(2y -30), 解得y =60,3×60-10=170. 综上所述,当点M 运动到表示1107或170的点的位置时,AM =2BN.。
数学七年级第三单元测试卷
考试时间:120分钟满分:100分一、选择题(每题2分,共20分)1. 下列数中,有理数是()A. √3B. πC. 0.1010010001...D. 22. 已知数a,b满足a+b=3,ab=2,则a²+b²的值为()A. 7B. 9C. 11D. 133. 下列方程中,一元一次方程是()A. 2x²-3x+1=0B. 3(x-2)=4C. 5x+2y=12D. x³-2x+1=04. 若m²=1,则m的值为()A. ±1B. ±2C. ±3D. ±45. 下列图形中,中心对称图形是()A. 等腰三角形B. 正方形C. 等边三角形D. 梯形6. 已知一个长方形的长为6cm,宽为4cm,则其面积为()A. 24cm²B. 36cm²C. 48cm²D. 60cm²7. 下列命题中,正确的是()A. 两个平行四边形一定相似B. 两个矩形一定相似C. 两个等腰三角形一定相似D. 两个等边三角形一定相似8. 若x+y=7,xy=12,则x²+y²的值为()A. 33B. 49C. 56D. 659. 下列各式中,绝对值最小的是()A. |3|B. |-3|C. |0|D. |1|10. 已知a,b是方程2x²-5x+2=0的两根,则a²+b²的值为()A. 9B. 11C. 13D. 15二、填空题(每题2分,共20分)11. 已知x²-5x+6=0,则x的值为______。
12. 若a,b是方程3x²-4x+1=0的两根,则a+b的值为______。
13. 在直角坐标系中,点A(2,3)关于x轴的对称点为______。
14. 若m,n是方程x²-5x+6=0的两根,则m+n的值为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学第三单元检测试题(一)
一、填空题(39分)
1、若a,b 互为相反数,p,q 互为倒数,则代数式5a-7pq+5b 的值
2、若a =4,b =5,则a-b=
3、若a<0,b<0,则a-(-b) 0, -a-(-b) 0。
4、若x 2=a ,则x 的相反数的平方等于 ;若x 3
=b ,则x 的相反数的立方等于 5、若一个数的平方等于这个数的本身,则这个数是 ,若一个数的立方等于这个数的本身,则这个数是 。
6、在(-2)6中,底数是 ,指数是 ,运算结果是 。
在-26中,底数是 ,指数是 。
结果是 二、选择题(25分)
1、下列说法正确的是( )
A 、非负有理数都是整数
B 、正有理数和负有理数统称有理数
C 、0不是整数
D 正分数和负分数统称分数。
2、(-2)3与-23 ( )
A 相等
B 、互为相反数。
C 互为倒数。
D 、它们的和为16 3、若a =1,则a 4= ( ) A 、1 B 、-1 。
C 、0 D 、 1
名
姓
级
班
4、下列结论正确的是( )
A 、平方是它本身的只有0.
B 、立方等于它本身的数是±1
C 、绝对值等于它本身的是正数。
D 倒数等于它本身的是±1。
5、下列说法正确的是( )
A 、两个有理数的差一定小于被减数。
B 、两个有理数的和一定比这两个差大。
C 、绝对值相等的两个数之差为零
D 、零减去一个数等于加上这个数的相反数。
三、计算题(写出必要的过程)(36分)
1、(-3)2⨯(-95-3
2) 2、 2-(-3.7)÷(-4
3-1.1)
3、32⨯(-2
1)3-0.52⨯(-2)3 4、5--72-(-3
1)-)6(5-÷
5、-3
1
-(-2
1) 6、(-2.5)⨯(-5
2)+(-6
5)÷(-2
5)
7、-14-12⨯(-4
5
+2
1)+(-13
1)2÷
274 8、-3-[-22+(23-4)÷(-13
1
)]。