重庆市2016年初中毕业暨高中招生考试数学模拟试题(C)含

合集下载

重庆一中2016届中考数学三模试题附答案解析

重庆一中2016届中考数学三模试题附答案解析

2016年重庆一中中考数学三模试卷一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.﹣的倒数为()A.B.3 C.﹣ D.﹣32.下列图形中,是中心对称图形的是()A.B.C.D.3.下列调查中,最适合使用普查的是()A.调查重庆某日生产的考试专用2B铅笔质量B.调查全国中学生对《奔跑吧.兄弟》节目的喜爱程度C.调查某公司生产的一批牛奶的保质期D.调查某校初二(2)班女生暑假旅游计划4.如果有意义,那么x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x<25.已知△ABC∽△DEF,且周长之比为1:9,则△ABC与△DEF的高的比为()A.1:3 B.1:9 C.1:18 D.1:816.如图所示,AB∥CD,NP平分∠MNB,已知∠1=20°,则∠2=()A.20° B.30° C.40° D.50°7.下列计算结果正确的是()A.(﹣2x2)3=﹣6x6B.x2•x3=x6C.6x4÷3x3=2x D.x2+x3=2x58.当a,b互为相反数时,代数式a2+ab﹣2的值为()A.2 B.0 C.﹣2 D.﹣19.如图所示,以正方形ABCD的顶点A为圆心的弧恰好与对角线BD相切,以顶点B为圆心,正方形的边长为半径的弧,已知正方形的边长为2,则图中阴影部分的面积为()A.π﹣2 B.C. D.10.如图所示,图(1)中含“○”的矩形有1个,图(2)中含“○”的矩形有7个,图(3)中含“○”的矩形有17个,按此规律,图(6)中含“○”的矩形有()A.70 B.71 C.72 D.7311.中考结束后,小明和好朋友一起前往三亚旅游.他们租住的宾馆AB坐落在坡度为i=1:2.4的斜坡上.某天,小明在宾馆顶楼的海景房A处向外看风景,发现宾馆前的一座雕像C的俯角为76°(雕像的高度忽略不计),远处海面上一艘即将靠岸的轮船E的俯角为27°.已知雕像C距离海岸线D的距离CD为260米,与宾馆AB的水平距离为36米,问此时轮船E距离海岸线D的距离ED的长为()(参考数据:tan76°≈4.0,tan27°≈0.5,sin76°≈0.97,sin27°≈0.45.A.262 B.212 C.244 D.27612.使得关于x的不等式组有解,且使分式方程有非负整数解的所有的m的和是()A.﹣1 B.2 C.﹣7 D.0二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.2015年,在硅谷排名前150位上市科技公司中苹果一家独大,当年获得的利润为53700000000美元,占这150位科技公司整体利润的10%,请将数字53700000000用科学记数法表示为.14.计算: = .15.如图,点A,D,B为⊙O上的三点,∠AOB=120°,且过A的直线交BD延长线于点C,连接AD,且AD=CD,则∠C的度数为.16.从1,2,3,4四个数中任取一个数作为AC的长度,又从4,5中任取一个数作为BC的长度,AB=6,则AB、AC、BC能构成三角形的概率是.17.甲、乙两车分别从A、B两地同时出发,相向而行,甲车从A地行驶到B地后,立即按原速度返回A地,乙车从B地行驶到A地,两车到达A地均停止运动.两车之间的距离y(单位:千米)与乙车行驶时间x(单位:小时)之间的函数关系如图所示,问两车第二次相遇时乙车行驶的时间为小时.18.已知,在正方形ABCD中,点G、F在AD上,E为AB的中点,CG⊥EF于点H,若AD=4AG,BH=,则DH= .三、解答题:(本大题2个小题,每小题7分,共14分)解答题时每小题必须给出必要的演算过程,请将解答过程书写在答题卡中对应的位置上.19.已知,如图,在△ABC中,点D为线段BC上一点,BD=AC,过点D作DE∥AC且DE=BC,求证:∠E=∠CBA.20.学校教务处为了了解学生下午参加体育活动的情况,采用随机抽样的方式进行问卷调查,调查结果分为“篮球”、“足球”、“乒乓球”、“跳绳”“体育舞蹈”、“其他”六类,分别用A、B、C、D、E、F表示.根据调查结果绘制了如图所示两幅不完整的统计图.结合图中所给出的信息,请补全条形统计图,并根据抽样调查估计全校3600名学生中选择跳绳和体育舞蹈的总人数.四、解答题:(本大题4个小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(1)(a+b)(a﹣2b)﹣(a﹣b)2﹣b(a﹣b).(2).22.如图,已知一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与x轴、y轴交于点C、D两点,点B的横坐标为1,OC=OD,点P在反比例函数图象上且到x轴、y轴距离相等.(1)求一次函数的解析式;(2)求△APB的面积.23.某山区中学为建立阅览室,需筹集30000元资金用于购买书桌、书架等设施和图书.(1)学校计划,购买图书的资金不少于购买书桌、书架等设施资金的1倍,问最多用多少资金购买书桌、书架等设施;(2)经初步统计,毕业于此学校的校友中有300人自愿集资,那么平均每人需集资100元,乡政府了解情况后,赠送了一批阅览室设施和图书,这样只需共集资20000元.经过进一步宣传,自愿集资的校友在300人的基础上增加了a%,则平均每人集资在100元的基础上减少了,求a的值.24.当一个多位数位数为偶数时,在其中间位插入一位数k,(0≤k≤9,且k为整数)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)若一个三位关联数是原来两位数的9倍,请找出满足这样的三位关联数;(2)对于任何一个位数为偶数的多位数,中间插入数字m,得其关联数(0≤m≤9,且m为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.五、解答题:(本大题2个小题,每小题12分,共24分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上25.已知,在△ABC中,∠ACB=90°,CA=CD,CG⊥AD于点H,交AB于点G,E为AB上一点,连接CE交AD 于点F.(1)如图1,若CE⊥AB于点E,HG=1,CH=5,求CF的长;(2)如图2,若AC=AE,∠GEH=∠ECH,求证:CE=HE;(3)如图3,若E为AB的中点,作A关于CE的对称点A′,连接CA′,EA′,DA′,请直接写出∠CEH,∠A′CD,∠EA′D之间的等量关系.26.如图1,抛物线y=﹣x2﹣4x+5与x轴交于点A、B两点,与y轴交于点C,点D为抛物线的顶点.(1)求直线AC的解析式及顶点D的坐标;(2)连接CD,点P是直线AC上方抛物线上一动点(不与点A、C重合),过P作PE∥x轴交直线AC于点E,作PF∥CD交直线AC于点F,当线段PE+PF取最大值时,在抛物线对称轴上找一点L,在y轴上找一点K,连接OL,LK,PK,求线段OL+LK+PK的最小值,并求出此时点L的坐标.(3)如图2,点M(﹣2,﹣1)为抛物线对称轴上一点,点N(2,7)为直线AC上一点,点G为直线AC与抛物线对称轴的交点,连接MN,AM.点H是线段MN上的一个动点,连接GH,将△MGH沿GH翻折得到△M′GH (点M的对称点为M′),问是否存在点H,使得△M′GH与△NGH重合部分的图形为直角三角形,若存在,请求出NH的长,若不存在,请说明理由.2016年重庆一中中考数学三模试卷参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.﹣的倒数为()A.B.3 C.﹣ D.﹣3【考点】倒数.【分析】根据倒数的定义进行解答即可.【解答】解:∵(﹣3)×(﹣)=1,∴﹣的倒数是﹣3.故选D.【点评】本题考查的是倒数的定义,即如果两个数的乘积等于1,那么这两个数互为倒数.2.下列图形中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称的定义,结合所给图形即可作出判断.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.【点评】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.3.下列调查中,最适合使用普查的是()A.调查重庆某日生产的考试专用2B铅笔质量B.调查全国中学生对《奔跑吧.兄弟》节目的喜爱程度C.调查某公司生产的一批牛奶的保质期D.调查某校初二(2)班女生暑假旅游计划【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查重庆某日生产的考试专用2B铅笔质量,调查具有破坏性,适合抽样调查,故A错误;B、调查全国中学生对《奔跑吧.兄弟》节目的喜爱程度,调查范围广适合抽样调查,故B错误;C、调查某公司生产的一批牛奶的保质期,调查具有破坏性,适合抽样调查,故C错误;D、调查某校初二(2)班女生暑假旅游计划,适合普查,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.如果有意义,那么x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x<2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0,解得x≥2.故选B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.5.已知△ABC∽△DEF,且周长之比为1:9,则△ABC与△DEF的高的比为()A.1:3 B.1:9 C.1:18 D.1:81【考点】相似三角形的性质.【分析】利用相似三角形对应的高线的比等于相似比即可得到答案.【解答】解:∵△ABC与△DEF的周长之比为1:9,∴两三角形的相似比为1:9,∴△ABC与△DEF对应的高的比1:9,故选B.【点评】本题考查对相似三角形性质.注意相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.6.如图所示,AB∥CD,NP平分∠MNB,已知∠1=20°,则∠2=()A.20° B.30° C.40° D.50°【考点】平行线的性质.【分析】先利用两直线平行,内错角相等求出∠BNP,再根据角平分线定义和两直线平行,同位角相等即可求出∠2的度数.【解答】解:∵AB∥CD,∠1=20°,∴∠BNP=∠1=20°,∵NP平分∠MNB,∴∠MNB=2∠BNP=2×20°=40°,∵AB∥CD,∴∠2=∠MNP=40°,故选C.【点评】本题主要考查平行线的性质和角平分线的定义,熟练掌握几何概念是解题的关键.7.下列计算结果正确的是()A.(﹣2x2)3=﹣6x6B.x2•x3=x6C.6x4÷3x3=2x D.x2+x3=2x5【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用合并同类项法则以及单项式除以单项式运算法则和积的乘方运算法则、同底数幂的乘法运算法则化简,进而判断得出答案.【解答】解:A、(﹣2x2)3=﹣8x6,故此选项错误;B、x2•x3=x5,故此选项错误;C、6x4÷3x3=2x,故此选项正确;D、x2+x3,无法计算,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及单项式除以单项式运算和积的乘方运算、同底数幂的乘法运算法则等知识,正确掌握相关运算法则是解题关键.8.当a,b互为相反数时,代数式a2+ab﹣2的值为()A.2 B.0 C.﹣2 D.﹣1【考点】因式分解-提公因式法.【专题】计算题;因式分解.【分析】由互为相反数两数之和为0得到a+b=0,原式变形后代入计算即可求出值.【解答】解:由题意得到a+b=0,则原式=a(a+b)﹣2=0﹣2=﹣2,故选C【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.9.如图所示,以正方形ABCD的顶点A为圆心的弧恰好与对角线BD相切,以顶点B为圆心,正方形的边长为半径的弧,已知正方形的边长为2,则图中阴影部分的面积为()A.π﹣2 B.C. D.【考点】切线的性质;正方形的性质;扇形面积的计算.【分析】连接AC交BD于O,由正方形的性质得出OA=OB=BD,AC⊥BD,∠BAD=90°,AB=AD=2,∠BAO=∠ABF=45°,由勾股定理求出BD,得出OA=OB=,求出△AOB的面积、扇形AOE的面积、扇形ABF的面积,即可得出图中阴影部分的面积.【解答】解:连接AC交BD于O,如图所示:∵四边形ABCD是正方形,∴OA=OB=BD,AC⊥BD,∠BAD=90°,AB=AD=2,∠BAO=∠ABF=45°,∴BD===2,∴OA=OB=,∴△AOB的面积=××=1,∵以正方形ABCD的顶点A为圆心的弧恰好与对角线BD相切,AC⊥BD,∴O为切点,∵扇形AOE的面积==,扇形ABF的面积==,∴图中阴影部分的面积=﹣(1﹣)=﹣1;故选:D.【点评】本题考查了切线的性质、正方形的性质、勾股定理、扇形面积的计算;熟练掌握切线的性质和正方形的性质,求出扇形的面积是解决问题的关键.10.如图所示,图(1)中含“○”的矩形有1个,图(2)中含“○”的矩形有7个,图(3)中含“○”的矩形有17个,按此规律,图(6)中含“○”的矩形有()A.70 B.71 C.72 D.73【考点】规律型:图形的变化类.【分析】①先计算每个图形中单个矩形的个数:图(1):12=1,图2:22=4,则图(6):62=36;②由1个矩形中含“○”有2个,由2个矩形中含“○”有:2+2=4个(发现与2的因数有关系),由3个矩形中含“○”有:2+2=4个,…,由36个矩形中含“○”有1个,最后相加为71个.【解答】解:图(6)中,62=36,1个矩形:1×2=2个,2个矩形:1×2:2个,2×1:2个,3个矩形:1×3:2个3×1:2个4个矩形:1×4:2个4×1:2个2×2:2个5个矩形:1×5:2个5×1:2个6个矩形:1×6:2个6×1:2个2×3:2个3×2:2个8个矩形:2×4:2个4×2:2个9个矩形:3×3:2个10个矩形:2×5:2个5×2:2个12个矩形:2×6:2个6×2:2个3×4:2个4×3:2个15个矩形:3×5:2个5×3:2个16个矩形:4×4:2个18个矩形;3×6:2个6×3:2个20个矩形:4×5:2个5×4:2个24个矩形:4×6:2个6×4:2个25个矩形:5×5:2个30个矩形:5×6:2个6×5:2个36个矩形:6×6:1个,总计和为71个;故选B.【点评】这是一个图形变化类的规律题,这类题属于常考题型,但分值都不高;做好此类题要从第一个图形入手,分析第一个图形结论的得出,此题不是完全数字的变化,还有图形的变化,相结合才能得出结论,最后发现与矩形个数的因数有关,依次计算即可.11.中考结束后,小明和好朋友一起前往三亚旅游.他们租住的宾馆AB坐落在坡度为i=1:2.4的斜坡上.某天,小明在宾馆顶楼的海景房A处向外看风景,发现宾馆前的一座雕像C的俯角为76°(雕像的高度忽略不计),远处海面上一艘即将靠岸的轮船E的俯角为27°.已知雕像C距离海岸线D的距离CD为260米,与宾馆AB的水平距离为36米,问此时轮船E距离海岸线D的距离ED的长为()(参考数据:tan76°≈4.0,tan27°≈0.5,sin76°≈0.97,sin27°≈0.45.A.262 B.212 C.244 D.276【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】作AB⊥ED交ED的延长线于H,作CG⊥AB交AB的延长线于G,根据坡度的概念求出BG,根据勾股定理求出BC,得到BD,根据平行线的性质分别求出DH、BH,根据正切的概念计算即可.【解答】解:作AB⊥ED交ED的延长线于H,作CG⊥AB交AB的延长线于G,∵宾馆AB坐落在坡度为i=1:2.4的斜坡上,CG=36米,∴BG==15米,由勾股定理得,BC==39米,∴BD=CD+BC=299米,∵CG∥DH,∴==,即==,解得,DH=276,BH=115,由题意得,∠ACG=76°,则tan∠ACG=,则AG=36×4=144,∴AH=AG+BH﹣BG=244米,则EH===488,∴ED=EH﹣DH=488﹣276=212米,故选:B.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,掌握坡度的概念、仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.12.使得关于x的不等式组有解,且使分式方程有非负整数解的所有的m的和是()A.﹣1 B.2 C.﹣7 D.0【考点】分式方程的解;不等式的解集.【分析】根据不等式组的解集的情况得出关于m的不等式,求得m的解集,再解分式方程得出x,根据x是非负整数得出m所有的m的和.【解答】解:∵关于x的不等式组有解,∴1﹣2m>m﹣2,解得m<1,由得x=,∵分式方程有非负整数解,∴x=是非负整数,∵m<1,∴m=﹣5,﹣2,∴﹣5﹣2=﹣7,故选C.【点评】本题考查了分式方程的解以及不等式的解集,求得m的取值范围以及解分式方程是解题的关键.二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.2015年,在硅谷排名前150位上市科技公司中苹果一家独大,当年获得的利润为53700000000美元,占这150位科技公司整体利润的10%,请将数字53700000000用科学记数法表示为 5.37×1010.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数字53700000000用科学记数法表示为5.37×1010,故答案为:5.37×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.计算: = ﹣6 .【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题;推理填空题.【分析】根据实数的运算顺序,首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=1﹣4﹣3=﹣3﹣3=﹣6故答案为:﹣6.【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.15.如图,点A,D,B为⊙O上的三点,∠AOB=120°,且过A的直线交BD延长线于点C,连接AD,且AD=CD,则∠C的度数为30°.【考点】圆周角定理.【分析】由等腰三角形的性质得出∠C=∠DAC,由圆周角定理求出∠ADB=∠AOB=60°,再由三角形的外角性质即可得出结果.【解答】解:∵AD=CD,∴∠C=∠DAC,∵∠ADB=∠AOB=60°,∴∠C=∠DAC=∠ADB=30°;故答案为:30°.【点评】本题考查了圆周角定理、等腰三角形的性质、三角形的外角性质.此题难度适中,熟练掌握圆周角定理和等腰三角形的性质是解决问题的关键.16.从1,2,3,4四个数中任取一个数作为AC的长度,又从4,5中任取一个数作为BC的长度,AB=6,则AB、AC、BC能构成三角形的概率是.【考点】列表法与树状图法;三角形三边关系.【分析】根据题意画出树状图,再利用三角形三边关系得出符合题意的个数,进而求出答案.【解答】解:如图所示:,一共有8种可能,只有6,4,3;6,4,4;6,5,2;6,5,3;6,5,4这5种可以组成三角形,故AB、AC、BC能构成三角形的概率是:.故答案为:.【点评】此题主要考查了树状图法求概率以及三角形三边关系,正确列举出所有的可能是解题关键.17.甲、乙两车分别从A、B两地同时出发,相向而行,甲车从A地行驶到B地后,立即按原速度返回A地,乙车从B地行驶到A地,两车到达A地均停止运动.两车之间的距离y(单位:千米)与乙车行驶时间x(单位:小时)之间的函数关系如图所示,问两车第二次相遇时乙车行驶的时间为小时.【考点】一次函数的应用.【分析】先根据函数图象提供的信息,求得乙车的速度和甲车的速度,再根据甲车到达B地需要的时间,求得乙车行驶的距离,最后根据甲车返回后与乙车第二次相遇,求得所需的时间即可.【解答】解:根据函数图象可得,A、B两地相距100km,乙车从B地行驶到A地用10h,∴乙车的速度v乙=100÷10=10(km/h),根据两车第一次相遇用3h可得,甲车的速度v甲=﹣10=(km/h),∴甲车到达B地需要:100÷=(h),此时,乙车行驶的距离为:10×=(km),设甲车从B地返回与乙车再次相遇需要t小时,依题意得t=10t+,解得t=,∴两车第二次相遇时乙车行驶的时间为: +=.故答案为:【点评】本题以行程问题为背景,主要考查了一次函数的应用,解决问题的关键是根据函数图象获得关键的信息进行计算求解.在相遇问题中,要注意区分相向而行和同向而行不同的计算方式.18.已知,在正方形ABCD中,点G、F在AD上,E为AB的中点,CG⊥EF于点H,若AD=4AG,BH=,则DH= .【考点】正方形的性质.【分析】如图,设正方形ABCD的边长为12a,作HM⊥AB于M,MH的延长线交CD于N.由△AFE∽△DCG,得==,推出AF=8a,EF=10a,GF=5a,同理△FHG∽△FAE,得=,推出FH=4a,HE=6a,由MH∥AF,得到==,推出EM=a,HM=a,想办法用a的代数式表示BH、HD,列出方程求出a即可解决问题.【解答】解:如图,设正方形ABCD的边长为12a,作HM⊥AB于M,MH的延长线交CD于N.∵AB=AD=BC=CD=12a,AE=EB=6a,AG=3a,GD=9a,∠A=∠GDC=90°,EF⊥CG,∴∠AFE+∠DGC=90°,∠DGC+∠DCG=90°,∴∠AFE=∠GCD,∴△AFE∽△DCG,∴==,∴AF=8a,EF=10a,GF=5a,同理△FHG∽△FAE,∴=,∴FH=4a,HE=6a,∵MH∥AF,∴==,∴EM=a,HM=a,∴AM=DN=a.HN=a,DH==a,BM=,HB==a,∵HB=,∴a=,∴a=,∴DH=×=.故答案为.【点评】本题考查正方形的性质、新三角形的判定和性质、勾股定理、平行线等分线段定理等知识,解题的关键是学会利用参数解决问题,学会用方程的思想思考问题,属于中考填空题中的压轴题.三、解答题:(本大题2个小题,每小题7分,共14分)解答题时每小题必须给出必要的演算过程,请将解答过程书写在答题卡中对应的位置上.19.已知,如图,在△ABC中,点D为线段BC上一点,BD=AC,过点D作DE∥AC且DE=BC,求证:∠E=∠CBA.【考点】全等三角形的判定与性质;平行线的性质.【专题】证明题.【分析】根据平行线的性质可得∠C=∠EDB,再证明△EBD≌△BAC,根据全等三角形的性质可得∠E=∠CBA.【解答】证明:∵DE∥AC,∴∠C=∠EDB,在△EBD和△BAC中,∴△EBD≌△BAC(SAS),∴∠E=∠CBA.【点评】此题主要考查了全等三角形的判定和性质,关键是掌握全等三角形的判定定理:SSS、ASA、SAS、AAS、HL,掌握全等三角形对应边相等,对应角相等.20.学校教务处为了了解学生下午参加体育活动的情况,采用随机抽样的方式进行问卷调查,调查结果分为“篮球”、“足球”、“乒乓球”、“跳绳”“体育舞蹈”、“其他”六类,分别用A、B、C、D、E、F表示.根据调查结果绘制了如图所示两幅不完整的统计图.结合图中所给出的信息,请补全条形统计图,并根据抽样调查估计全校3600名学生中选择跳绳和体育舞蹈的总人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】根据条形图和扇形图得到A的人数和占的百分比,求出调查的人数,计算画图即可.【解答】解:由条形图可知,A的人数是15人,由扇形图可知A占的百分比为,25%,则调查的人数为:15÷25%=60,C占的百分比为9÷60=15%,E的人数为60×10%=6人,F的人数为60×10%=6人,D的人数为60﹣15﹣12﹣9﹣6﹣6=12人,补全条形统计图如图:全校3600名学生中选择跳绳和体育舞蹈的总人数为:3600×=1080人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.四、解答题:(本大题4个小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(1)(a+b)(a﹣2b)﹣(a﹣b)2﹣b(a﹣b).(2).【考点】分式的混合运算;单项式乘多项式;多项式乘多项式;完全平方公式.【分析】(1)根据完全平方公式、多项式乘多项式法则化简即可.(2)先通分,除法转化为乘法,约分化简即可.【解答】解:(1)原式=a2﹣2ab+ab﹣2b2﹣a2+2ab﹣b2﹣ab+b2=﹣2b2.(2)原式=•=,•=1﹣x【点评】本题考查分式的混合运算、乘法公式等知识,解题的关键是熟练应用乘法公式,掌握分式混合运算法则,属于中考常考题型.22.如图,已知一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与x轴、y轴交于点C、D两点,点B的横坐标为1,OC=OD,点P在反比例函数图象上且到x轴、y轴距离相等.(1)求一次函数的解析式;(2)求△APB的面积.【考点】反比例函数与一次函数的交点问题;待定系数法求一次函数解析式;相似三角形的判定与性质.【分析】(1)过点B作BE⊥OD,根据反比例函数求得点B的坐标,再根据△BDE∽△CDO求得点C、D的坐标,最后利用C、D两点的坐标求得一次函数解析式;(2)过点P作y轴的平行线,将△ABP分割成两部分,根据解方程组求得交点A的坐标,再结合一次函数求得PF的长,最后计算△APB的面积.【解答】解:(1)过点B作BE⊥OD,垂足为E,则由BE∥CO,可得△BDE∽△CDO∵OC=OD∴BE=DE又∵点B的横坐标为1,且B在反比例函数的图象上∴B(1,﹣4),即BE=1,OE=4∴OD=4﹣1=3=OC,即C(﹣3,0),D(0,﹣3)将C、D的坐标代入一次函数y=kx+b(k≠0),可得,解得∴一次函数的解析式为y=﹣x﹣3(2)过点P作y轴的平行线,交直线AB于点F,则S△APB=S△APF+S△PFB∵点P在反比例函数的图象上,且到x轴、y轴距离相等∴P(﹣2,2)在y=﹣x﹣3中,当x=﹣2时,y=﹣1,即F(﹣2,﹣1)∴PF=2﹣(﹣1)=3解方程组,可得,∴A(﹣4,1)∴△APF中PF边上的高为2,△BPF中PF边上的高为3∴S△APB=S△APF+S△PFB=×3×2+×3×3=3+4.5=7.5【点评】本题主要考查了反比例函数与一次函数的交点问题,需要掌握根据待定系数法求一次函数解析式的方法以及相似三角形的运用.解答此类试题时注意:①求一次函数解析式时需要知道图象上两个点的坐标;②当三角形的边与坐标系不平行或不垂直时,可以运用割补法求三角形的面积.23.某山区中学为建立阅览室,需筹集30000元资金用于购买书桌、书架等设施和图书.(1)学校计划,购买图书的资金不少于购买书桌、书架等设施资金的1倍,问最多用多少资金购买书桌、书架等设施;(2)经初步统计,毕业于此学校的校友中有300人自愿集资,那么平均每人需集资100元,乡政府了解情况后,赠送了一批阅览室设施和图书,这样只需共集资20000元.经过进一步宣传,自愿集资的校友在300人的基础上增加了a%,则平均每人集资在100元的基础上减少了,求a的值.【考点】一元二次方程的应用;一元一次不等式的应用.【分析】(1)设购买书桌、书架等设施的资金为x元,根据“购买图书的资金不少于购买书桌、书架等设施资金的1倍”列不等式求解可得;(2)根据“调整后的人数×每人的集资额=20000”列一元二次方程求解可得.【解答】解:(1)设购买书桌、书架等设施的资金为x元,根据题意得:30000﹣x≥2x,解得:x≤10000,答:最多用10000元购买书桌、书架等设施;(2)根据题意,得:(1+a%)300×(1﹣)×100=20000,解得:a%=0.5=50%或a%=﹣0.6(舍),即a=50.【点评】本题主要考查一元一次不等式和一元二次方程的应用,理解题意找到题目蕴含的相等关系和不等关系是解决问题的关键.24.当一个多位数位数为偶数时,在其中间位插入一位数k,(0≤k≤9,且k为整数)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)若一个三位关联数是原来两位数的9倍,请找出满足这样的三位关联数;(2)对于任何一个位数为偶数的多位数,中间插入数字m,得其关联数(0≤m≤9,且m为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.【考点】约数与倍数;有理数的乘法.。

2016年重庆市中考数学试卷含答案

2016年重庆市中考数学试卷含答案

()
A. 3
B. 2
C. 3
D. 1
2
2
第Ⅱ卷(非选择题 共 102 分)
二、填空题(本大题 6 个小题,每小题 4 分,共 24 分.请把答案填在题中的横线上) 13.据报道,2015 年某市城镇非私营单位就业人员年平均工资超过 60 500 元,将数 60 500
用科学记数法表示为
.
14.计算: 4 (2)0
数学试卷 第 8页(共 20页)
由.
重庆市 2016 年初中毕业暨高中招生考试
数学答案解析
第Ⅰ卷
一、选择题 1.【答案】A 【解析】2 1 0 2 ,最小的数为-2,故选 A. 【考点】实数的大小比较 2.【答案】D 【解析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,
数学试卷 第 6页(共 20页)
24.(本小题满分 10 分) 我们知道,任意一个正整数 n 都可以进行这样的分解 n p q ( p , q 是正整数,且 p≤q ),在 n 的所有这种分解中,如果 p , q 两因数之差的绝对值最小,我们就称 p q 是 n 的最佳分解,并规定: F(n) p .例如 12 可以分解成112 , 2 6 或 3 4 ,因为 q 12 1>6 2>4 3 ,所以 3 4 是 12 的最佳分解,所以 F(12) 3 . 4 (1)如果一个正整数 a 是另外一个正整数 b 的平方,我们称正整数 a 是完全平方数.求 证:对任意一个完全平方数 m ,总有 F (m) 1 ; (2)如果一个两位正整数 t , t 10x y (1≤x≤y≤9 , x , y 为自然数),交换其个位上
.
17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1 500

重庆市第八中学2016年中考数学一模试卷(含解析)

重庆市第八中学2016年中考数学一模试卷(含解析)

2016年重庆八中中考数学一模试卷一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案的标号涂黑.1.﹣2的相反数是()A.2 B.﹣2 C.D.2.下列图形是中心对称图形的是()A.B.C.D.3.计算的结果是()A.1 B.﹣1 C.D.4.下列计算结果正确的是()A.8x6÷2x3=4x2B.x2+x3=x5C.(﹣3x2y)3=﹣9x6y3 D.x•x2=x35.下列调查中,最适合采用普查方式的是()A.调查一批汽车的使用寿命B.调查重庆全市市民“五•一”期间计划外出旅游C.调查某航班的旅客是否携带了违禁物品D.调查全国初三学生的视力情况6.函数中,自变量x的取值范围是()A.x>4 B.x≥﹣2且x≠4 C.x>﹣2且x≠4 D.x≠47.如图,l1∥l2,l3⊥l4,∠1=42°,那么∠2的度数为()A.48° B.42° C.38° D.21°8.已知x=2是一元二次方程(m﹣2)x2+4x﹣m2=0的一个根,则m的值为()A.2 B.0或2 C.0或4 D.09.如图,AB是⊙O的直径,CD是⊙O上的点,∠DCB=30°,过点D作⊙O的切线交AB的延长线于E,若AB=4,则DE的长为()A .2B .4C .D .10.观察下列一组图形中点的个数,其中第1个图形中共有3个点,第2个图形中共有8个点,第3个图形中共有15个点,按此规律第6个图形中共有点的个数是( )A .42B .48C .56D .7211.甲、乙两位运动员在一段2000米长的笔直公路上进行跑步比赛,比赛开始时甲在起点,乙在甲的前面200米,他们同时同向出发匀速前进,甲的速度是8米/秒,乙的速度是6米/秒,先到终点者在终点原地等待.设甲、乙两人之间的距离是y 米,比赛时间是x 秒,当两人都到达终点计时结束,整个过程中y 与之间的函数图象是( )A .B .C .D .12.如图,平行四边形ABCD 的顶点C 在y 轴正半轴上,CD 平行于x 轴,直线AC 交x 轴于点E ,BC ⊥AC ,连接BE ,反比例函数(x >0)的图象经过点D .已知S △BCE =2,则k 的值是( )A .2B .﹣2C .3D .4二、填空题:(本题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡中对应的横线上13.3月20日,2016长安汽车重庆国际马拉松鸣枪开跑,本届重马不仅是2016年全国马拉松锦标赛三站中的一站,同时还是2016年巴西里约奥运会马拉松唯一一站选拔赛,比赛分为全程、半程、迷你三大项目,吸引了31900多名选手参加.把数“31900”用科学记数法表示为.14.计算: = .15.如图,已知△ABC中,DE∥BC,连接BE,△ADE的面积是△BDE面积的,则S△ADE:S△= .ABC16.如图,矩形ABCD中,点O在BC上,OB=2OC=2,以O为圆心OB的长半径画弧,这条弧恰好经过点D,则图中阴影部分的面积为.17.从﹣2,﹣1,0,1,2,3,4这7个数中任选一个数作为a的值,则使得关于x的分式方程有整数解,且关于x的一次函数y=(a+1)x+a﹣4的图象不经过第二象限的概率是.18.如图,正方形ABCD中,AB=4,点E是BC上靠近点B的四等分点,点F是CD的中点,连接AE、BF将△ABE着点E按顺时针方向旋转,使点B落在BF上的B1处位置处,点A经过旋转落在点A1位置处,连接AA1交BF于点N,则AN的长为.三、解答题:(本大题共2个小题,每小题7分,共14分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.19.如图,点A、B、C、D在同一直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.20.2016年春节联欢晚会分为A(语言类)、B(歌舞类)、C(魔术类)、D(杂技类)四类节目.为了了解某养老院老人对这几类节目的喜好程度,民政部门在该养老院随机抽取部分老人进行了问卷调查,规定每位老人只能选一类自己最喜欢的节目,并制成了以下两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)补全条形统计图;(2)已知该养老院共有230位老人,请你估计该养老院喜欢语言类节目的老人大约有多少人?21.化简下列各式:(1)(a+b)(a﹣2b)﹣(a﹣b)2(2).四、解答题:(本大题共4个小题,每小题10分,共40分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.22.如图,小明为了测量大楼AB的高度,他从点C出发,沿着斜坡面CD走104米到点D 处,测得大楼顶部点A的仰角为37°,大楼底部点B的俯角为45°,已知斜坡CD的坡度为i=1:2.4.(参考书据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)(1)求点D距水平面BC的高度为多少米;(2)求大楼AB的高度约为多少米.23.某中学在开学前去商场购进A、B两种品牌的足球,购买A品牌足球共花费3000元,购买B品牌足球共花费1600元,且购买A品牌足球数量是购买B品牌足球的3倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌足球各需多少元?(2)为了进一步发展“校园足球”,学校在开学后再次购进了A、B两种品牌的足球,每种品牌的足球不少于15个,总花费恰好为2268元,且在购买时,商场对两种品牌的足球的销售单价进行了调整,A品牌足球销售单价比第一次购买时提高了8%,B品牌足球按第一次购买时销售单价的9折出售.那么此次有哪些购买方案?24.如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上数大1,那么我们把这样的自然数叫做“妙数”.例如:321,6543,98,…都是“妙数”.(1)若某个“妙数”恰好等于其个位数的153倍,则这个“妙数”为.(2)证明:任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果一定能被11整除.(3)在某个三位“妙数”的左侧放置一个一位自然数m作为千位上的数字,从而得到一新的四位自然数A,且m大于自然数A百位上的数字,否存在一个一位自然数n,使得自然数(9A+n)各数位上的数字全都相同?若存在请求出m和n的值;若不存在,请说明理由.五、解答题:(本大题共2个小题,每小题12分,共24分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.25.在△ABC中,∠ABC=2∠ACB,延长AB至点D,使BD=BC,点E是直线BC上一点,点F 是直线AC上一点,连接DE.连接EF,且∠DEF=∠DBC.(1)如图1,若∠D=∠EFC=15°,AB=,求AC的长.(2)如图2,当∠BAC=45°,点E为线段BC的延长线上,点F在线段AC的延长线上时,求证:CF=BE.(3)如图3,当∠BAC=90°,点E为线段CB的延长线上,点F在线段CA的延长线上时,猜想线段CF与线段BE的数量关系,并证明猜想的结论.26.如图1,抛物线与x轴相交于A、B两点(点A在点B的右侧),已知C(0,).连接AC.(1)求直线AC的解析式.(2)点P是x轴下方的抛物线上一动点,过点P作PE⊥x轴交直线AC于点E,交x轴于点F,过点P作PG⊥AE于点G,线段PG交x轴于点H.设l=EP﹣FH,求l的最大值.(3)如图2,在(2)的条件下,点M是x轴上一动点,连接EM、PM,将△EPM沿直线EM 折叠为△EP1M,连接AP,AP1.当△APP1是等腰三角形时,试求出点M的坐标.2016年重庆八中中考数学一模试卷参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案的标号涂黑.1.﹣2的相反数是()A.2 B.﹣2 C.D.【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选A2.下列图形是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.3.计算的结果是()A.1 B.﹣1 C.D.【考点】二次根式的加减法.【分析】先进行二次根式的化简,然后合并同类二次根式求解.【解答】解:原式=2﹣3=﹣.故选D.4.下列计算结果正确的是()A.8x6÷2x3=4x2B.x2+x3=x5C.(﹣3x2y)3=﹣9x6y3 D.x•x2=x3【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用合并同类项法则以及单项式除以单项式运算法则和积的乘方运算法则化简、同底数幂的乘法运算法则,进而判断得出答案.【解答】解:A、8x6÷2x3=4x3,故此选项错误;B、x2+x3,无法计算,故此选项错误;C、(﹣3x2y)3=﹣27x6y3,故此选项错误;D、x•x2=x3,故此选项正确;故选:D.5.下列调查中,最适合采用普查方式的是()A.调查一批汽车的使用寿命B.调查重庆全市市民“五•一”期间计划外出旅游C.调查某航班的旅客是否携带了违禁物品D.调查全国初三学生的视力情况【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查一批汽车的使用寿命,调查具有破坏性,适合抽样调查,故A错误;B、调查重庆全市市民“五•一”期间计划外出旅游,调查范围广适合抽样调查,故B错误;C、调查某航班的旅客是否携带了违禁物品是事关重大的调查,适合普查,故C正确;D、调查全国初三学生的视力情况,调查范围广适合抽样调查,故D错误;故选:C.6.函数中,自变量x的取值范围是()A.x>4 B.x≥﹣2且x≠4 C.x>﹣2且x≠4 D.x≠4【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≥0且x﹣4≠0,解得x≥﹣2且x≠4.故选B.7.如图,l1∥l2,l3⊥l4,∠1=42°,那么∠2的度数为()A.48° B.42° C.38° D.21°【考点】直角三角形的性质;平行线的性质.【分析】先根据两直线平行,同位角相等求出∠3,再根据直角三角形两锐角互余即可求出∠2.【解答】解:如图,∵l1∥l2,∠1=42°,∴∠3=∠1=42°,∵l3⊥l4,∴∠2=90°﹣∠3=48°.故选A.8.已知x=2是一元二次方程(m﹣2)x2+4x﹣m2=0的一个根,则m的值为()A.2 B.0或2 C.0或4 D.0【考点】一元二次方程的解.【分析】把x=2代入一元二次方程(m﹣2)x2+4x﹣m2=0中即可得到关于m的方程,解此方程即可求出m的值.【解答】解:∵x=2是一元二次方程(m﹣2)x2+4x﹣m2=0的一个根,∴4(m﹣2)+8﹣m2=0,即m2﹣4m=0,解得:m=0或m=4.故选:C.9.如图,AB是⊙O的直径,CD是⊙O上的点,∠DCB=30°,过点D作⊙O的切线交AB的延长线于E,若AB=4,则DE的长为()A.2 B.4 C.D.【考点】切线的性质;圆周角定理.【分析】连接OD.由同弧所对的圆心角是圆周角的2倍可求得∠BOD=60°,然后由切线的性质可证明∠ODE=90°,根据三角形的内角和是180°可求得∠E=30°,依据含30°直角三角形的性质可知OE=2OD=4,再利用勾股定理,即可解答.【解答】解:如图,连接OD.∵∠DCB=30°,∴∠BOD=60°.∵DE是⊙O的切线,∴∠ODE=90°.∴∠DEO=30°.∴OE=2OD=AB=4,在Rt△ODE中,DE=.10.观察下列一组图形中点的个数,其中第1个图形中共有3个点,第2个图形中共有8个点,第3个图形中共有15个点,按此规律第6个图形中共有点的个数是()A.42 B.48 C.56 D.72【考点】规律型:图形的变化类.【分析】由已知四个图形中点的个数可知,第n个图形中点的数量为n(n+2)个,据此解答可得.【解答】解:∵第1个图形中点的个数为:3×1=3个,第2个图形中点的个数为:4×2=8个,第3个图形中点的个数为:5×3=15个,第4个图形中点的个数为:6×4=24个,…∴第6个图形中点的个数为:8×6=48个,故选:B.11.甲、乙两位运动员在一段2000米长的笔直公路上进行跑步比赛,比赛开始时甲在起点,乙在甲的前面200米,他们同时同向出发匀速前进,甲的速度是8米/秒,乙的速度是6米/秒,先到终点者在终点原地等待.设甲、乙两人之间的距离是y米,比赛时间是x秒,当两人都到达终点计时结束,整个过程中y与之间的函数图象是()A.B.C.D.【考点】函数的图象.【分析】先算出甲到达终点的时间,由此算出二者之间的最大距离,再算出乙到达终点的时间,由此找出点的坐标,结合点的坐标利用待定系数法求出函数解析式,根据函数解析式分析四个选项即可得出结论.【解答】解:当甲跑到终点时所用的时间为:2000÷8=250(秒),此时甲乙间的距离为:2000﹣200﹣6×250=300(米),乙到达终点时所用的时间为:÷6=300(秒),∴最高点坐标为.设y关于x的函数解析式为y=kx+b,当0≤x≤100时,有,解得:,此时y=﹣2x+200;当100<x≤250时,有,解得:,此时y=2x﹣200;当250<x≤300时,有,解得:,此时y=﹣6x+1800.∴y关于x的函数解析式为y=.∴整个过程中y与之间的函数图象是B.故选B.12.如图,平行四边形ABCD的顶点C在y轴正半轴上,CD平行于x轴,直线AC交x轴于点E,BC⊥AC,连接BE,反比例函数(x>0)的图象经过点D.已知S△BCE=2,则k的值是()A.2 B.﹣2 C.3 D.4【考点】反比例函数图象上点的坐标特征;平行四边形的性质.【分析】设点D的坐标为(m,n)(m>0,n>0),则CD=m,OC=n.由平行线的性质结合平行四边形的性质即可得出∠ACD=∠OEC,∠DAC=90°=∠COE,由此即可得出△COE∽△DAC,再根据相似三角形的性质即可得出,即,结合三角形的面积公式即可得出mn=2S△BCE=4.根据点D的坐标利用反比例函数图象上点的坐标特征即可得出结论.【解答】解:设点D的坐标为(m,n)(m>0,n>0),则CD=m,OC=n,∵CD∥x轴,∴∠ACD=∠OEC.∵四边形ABCD为平行四边形,BC⊥AC,∴DA⊥AC,AD=BC,∴∠DAC=90°=∠COE,∴△COE∽△DAC,∴,即,∴mn=BC•CE.∵S△BCE=BC•CE=2,∴mn=2S△BCE=4.∵点D在反比例函数y=(x>0)的图象上,∴k=mn=4.故选D.二、填空题:(本题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡中对应的横线上13.3月20日,2016长安汽车重庆国际马拉松鸣枪开跑,本届重马不仅是2016年全国马拉松锦标赛三站中的一站,同时还是2016年巴西里约奥运会马拉松唯一一站选拔赛,比赛分为全程、半程、迷你三大项目,吸引了31900多名选手参加.把数“31900”用科学记数法表示为 3.19×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将31900用科学记数法表示为3.19×104.故答案为:3.19×104.14.计算: = ﹣.【考点】实数的运算;负整数指数幂.【分析】直接利用绝对值的性质以及负整数指数幂的性质分别化简求出答案.【解答】解:原式=2﹣+=2﹣﹣2=﹣.故答案为:﹣.15.如图,已知△ABC中,DE∥BC,连接BE,△ADE的面积是△BDE面积的,则S△ADE:S△= 1:9 .ABC【考点】相似三角形的判定与性质.【分析】根据等高的两三角形的面积之比等于对应边之比得出=,求出=,根据相似三角形的判定得出△ADE∽△ABC,根据相似三角形的性质得出即可.【解答】解:∵△ADE的面积是△BDE面积的,∴=,∴=,∵DE∥BC,∴△ADE∽△ABC,∴=()2=()2=,故答案为:1:9.16.如图,矩形ABCD中,点O在BC上,OB=2OC=2,以O为圆心OB的长半径画弧,这条弧恰好经过点D,则图中阴影部分的面积为﹣.【考点】扇形面积的计算;矩形的性质.【分析】作OP⊥AD于P,根据矩形的性质得到△ODE为等边三角形,根据三角形的面积公式、扇形的面积公式计算即可.【解答】解:作OP⊥AD于P,由题意得,OB=OE=OD,∴OD=2OC=2,∴∠ODC=30°,则∠ODE=60°,∴△ODE为等边三角形,∴△ODE的面积为,则阴影部分的面积为:﹣=﹣,故答案为:﹣.17.从﹣2,﹣1,0,1,2,3,4这7个数中任选一个数作为a的值,则使得关于x的分式方程有整数解,且关于x的一次函数y=(a+1)x+a﹣4的图象不经过第二象限的概率是.【考点】概率公式;分式方程的解;一次函数图象与系数的关系.【分析】首先使得关于x的分式方程有整数解,且关于x的一次函数y=(a+1)x+a﹣4的图象不经过第二象限的数,然后直接利用概率公式求解即可求得答案.【解答】解:∵关于x的分式方程有整数解,∴3﹣ax+3(x﹣3)=﹣x,解得:x=,∵x≠3,∴x≠1,∴当a=﹣2,2,3时,分式方程有整数解;∵关于x的一次函数y=(a+1)x+a﹣4的图象不经过第二象限,∴a+1>0,a﹣4≤0,∴﹣1<a≤4,∴当a=0,1,2,3,4时,关于x的一次函数y=(a+1)x+a﹣4的图象不经过第二象限;综上,当a=2,3时,使得关于x的分式方程有整数解,且关于x的一次函数y=(a+1)x+a﹣4的图象不经过第二象限;∴使得关于x的分式方程有整数解,且关于x的一次函数y=(a+1)x+a﹣4的图象不经过第二象限的概率是:.故答案为:.18.如图,正方形ABCD中,AB=4,点E是BC上靠近点B的四等分点,点F是CD的中点,连接AE、BF将△ABE着点E按顺时针方向旋转,使点B落在BF上的B1处位置处,点A经过旋转落在点A1位置处,连接AA1交BF于点N,则AN的长为.【考点】旋转的性质;正方形的性质.【分析】先找出辅助线判断出点P是BB1的中点,由旋转得到△BCF∽△APE,再判断出A,B1,M三点共线,再由B1Q=,A1Q==AB1最后用勾股定理计算即可.【解答】解:如图,作EP⊥BF,A1Q⊥BF,取BC的中点M,连接AB1,B1M,∴点P是BB1的中点,∵E是BM中点,∴EP∥MB1,∴MB1⊥BB1,由旋转得,△BCF∽△APE,∴BP=,EP=,∵PB1=PB=,∴BB1=,∵sin ∠FBC===,∴∠AB 1B=90°,∴A ,B 1,M 三点共线,∴AB 1=,∵∠B 1A 1Q=∠BB 1E=∠FBC ,∴△B 1QA 1∽△FCB ,∴B 1Q=,A 1Q==AB 1,∴△AB 1N ≌△A 1QN ,∴B 1N=B 1Q=,根据勾股定理得,AN=,故答案为:.三、解答题:(本大题共2个小题,每小题7分,共14分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.19.如图,点A 、B 、C 、D 在同一直线上,BE ∥DF ,∠A=∠F ,AB=FD .求证:AE=FC .【考点】全等三角形的判定与性质.【分析】根据BE ∥DF ,可得∠ABE=∠D ,再利用ASA 求证△ABC 和△FDC 全等即可.【解答】证明:∵BE ∥DF ,∴∠ABE=∠D ,在△ABE 和△FDC 中,∠ABE=∠D ,AB=FD ,∠A=∠F∴△ABE ≌△FDC (ASA ),∴AE=FC .20.2016年春节联欢晚会分为A (语言类)、B (歌舞类)、C (魔术类)、D (杂技类)四类节目.为了了解某养老院老人对这几类节目的喜好程度,民政部门在该养老院随机抽取部分老人进行了问卷调查,规定每位老人只能选一类自己最喜欢的节目,并制成了以下两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)补全条形统计图;(2)已知该养老院共有230位老人,请你估计该养老院喜欢语言类节目的老人大约有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据B类的人数和所占的百分比求出总人数,再乘以D类所占的百分比,从而补全统计图;(2)用该养老院的总人数乘以该养老院喜欢语言类节目所占的百分比,从而得出答案.【解答】解:(1)D类节目类型的人数是:×10%=5(人),补图如下:(2)根据题意得:230×=69(人),答:该养老院喜欢语言类节目的老人大约有69人.21.化简下列各式:(1)(a+b)(a﹣2b)﹣(a﹣b)2(2).【考点】分式的混合运算;多项式乘多项式;完全平方公式.【分析】(1)根据多项式乘以多项式、完全平方公式可以对原式进行化简;(2)先化简括号内的式子,然后根据分式的除法进行计算即可解答本题.【解答】解:(1)(a+b)(a﹣2b)﹣(a﹣b)2=a2﹣ab﹣2b2﹣a2+2ab﹣b2=ab﹣3b2;(2)=[﹣]÷=×===.四、解答题:(本大题共4个小题,每小题10分,共40分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.22.如图,小明为了测量大楼AB的高度,他从点C出发,沿着斜坡面CD走104米到点D 处,测得大楼顶部点A的仰角为37°,大楼底部点B的俯角为45°,已知斜坡CD的坡度为i=1:2.4.(参考书据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)(1)求点D距水平面BC的高度为多少米;(2)求大楼AB的高度约为多少米.【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】(1)作DE⊥AB于E,作DF⊥BC于F,y由CD的坡度为i=1:2.4,CD=104米,得到=1:2.4,根据勾股定理列方程,即可得到结论;(2)根据矩形的性质得到BE=40m,由等腰直角三角形的性质得到DE=BE=40m,根据三角函数的定义即可得到结果.【解答】解:(1)作DE⊥AB于E,作DF⊥BC于F,∵CD的坡度为i=1:2.4,CD=104米,∴=1:2.4,∴=104,∴DF=40(米);(2)∵DF=40m,∴BE=40m,∵∠BDE=45°,∴DE=BE=40m,在Rt△ADE中,∠ADE=37°,∴AE=tan37°•40=30(米)∴AB=AE+BE=70m.23.某中学在开学前去商场购进A、B两种品牌的足球,购买A品牌足球共花费3000元,购买B品牌足球共花费1600元,且购买A品牌足球数量是购买B品牌足球的3倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌足球各需多少元?(2)为了进一步发展“校园足球”,学校在开学后再次购进了A、B两种品牌的足球,每种品牌的足球不少于15个,总花费恰好为2268元,且在购买时,商场对两种品牌的足球的销售单价进行了调整,A品牌足球销售单价比第一次购买时提高了8%,B品牌足球按第一次购买时销售单价的9折出售.那么此次有哪些购买方案?【考点】分式方程的应用;一元一次不等式组的应用.【分析】(1)设一个A品牌的足球需x元,则一个B品牌的足球需x+30元,根据购买A品牌足球数量是购买B品牌足球数量的3倍,列出方程解答即可;(2)设此次可购买,m个B品牌足球,购进A牌足球n个,根据总花费恰好为2268元,列出等式,得出m与n的关系式,进而利用每种品牌的足球不少于15个,得出不等关系求出n的取值范围,即可分析得出答案.【解答】解:(1)设购买一个A品牌足球需要x元,由题意得:=,解得:x=50,经检验:x=50是原分式方程的解,x+30=80,答:购买一个A品牌足球需要50元,购买一个B品牌足球需要80元;(2)调整价格后,购买一个A型足球需:50(1+8%)=54(元),购买一个B型足球需:80×0.9=72(元),设此次购买m个A型足球和n个B型足球,则:54m+72n=2268,则m=42﹣n,由,解得15≤n,∵m=42﹣n为整数,n为整数,∴n能被3整除,∴n=15或18,当n=15时,m=42﹣×15=22,当n=18时,m=18,∴方案一:购买22个A型足球和15个B型足球;方案二:购买18个A型足球和18个B型足球.24.如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上数大1,那么我们把这样的自然数叫做“妙数”.例如:321,6543,98,…都是“妙数”.(1)若某个“妙数”恰好等于其个位数的153倍,则这个“妙数”为765 .(2)证明:任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果一定能被11整除.(3)在某个三位“妙数”的左侧放置一个一位自然数m作为千位上的数字,从而得到一新的四位自然数A,且m大于自然数A百位上的数字,否存在一个一位自然数n,使得自然数(9A+n)各数位上的数字全都相同?若存在请求出m和n的值;若不存在,请说明理由.【考点】因式分解的应用.【分析】(1)设这个“妙数”个位数字为a,根据题意判断“妙数”的尾位数,从而得知这个“妙数”为3位数,列出方程100(x+2)+10(x+1)+x=153x,求解可得;(2)设四位“妙数”的个位为x、两位“妙数”的个位为y,分别表示出四位“妙数”和两位“妙数”,再将四位“妙数”减去任意一个两位“妙数”之差再加上1的结果除以11判断结果是否为整数即可;(3)设三位“妙数”的个位为z,可知A=1000m+111z+210,继而可得9A+n=9000m+999z+1890+n=1000(9m+z+1)+800+90+n﹣z,由﹣8≤n﹣z≤9、1000(9m+z+1)≤1000(9×9+9+1)=91000知其百位数一定是8,且该数为5位数,若存在则该数为88888,从而得出即9m+z=87、n﹣z=﹣2,由m>z+2知z<m﹣2,而z=87﹣9m<m﹣2,解之可得m>8.9,即可得m值,进一步即可得答案.【解答】解:(1)设这个“妙数”个位数字为a,若这个“妙数”为4位数,则其个位数字最大为6,根据题意可知这个“妙数”最大为6×153=918,不合题意;∴这个“妙数”为3位数,根据题意得:100(x+2)+10(x+1)+x=153x,解得:x=5,则这个“妙数”为765,故答案为:765;(2)由题意,设四位“妙数”的个位为x,则此数为1000(x+3)+100(x+2)+10(x+1)+x=1111x+3210,设两位“妙数”的个位为y,则此数为10(y+1)+y=11y+10,∴==101x ﹣y+291,∵x 、y 为整数,∴101x ﹣y+291也为整数,∴任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果一定能被11整除;(3)设三位“妙数”的个位为z ,由题意,得:A=1000m+100(z+2)+10(z+1)+z=1000m+111z+210,∴9A+n=9000m+999z+1890+n=9000m+1000z+1890+n ﹣z=1000(9m+z+1)+800+90+n ﹣z ,∵m 、n 是一位自然数,0≤z ≤9,且z 为整数,∴﹣8≤n ﹣z ≤9,∵9A+n 的百位为8,且1000(9m+z+1)≤1000(9×9+9+1)=91000,∴9A+n 为五位数,且9A+n=88888,∴,∴9m+z=87,n ﹣z=﹣2,∵m >z+2,∴z <m ﹣2,∴z=87﹣9m <m ﹣2,∴m >8.9,∵m 是一个自然数,∴m=9,于是z=6,n=4,答:m=9,n=4.五、解答题:(本大题共2个小题,每小题12分,共24分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.25.在△ABC 中,∠ABC=2∠ACB ,延长AB 至点D ,使BD=BC ,点E 是直线BC 上一点,点F 是直线AC 上一点,连接DE .连接EF ,且∠DEF=∠DBC .(1)如图1,若∠D=∠EFC=15°,AB=,求AC 的长.(2)如图2,当∠BAC=45°,点E 为线段BC 的延长线上,点F 在线段AC 的延长线上时,求证:CF=BE .(3)如图3,当∠BAC=90°,点E 为线段CB 的延长线上,点F 在线段CA 的延长线上时,猜想线段CF 与线段BE 的数量关系,并证明猜想的结论.【考点】三角形综合题.【分析】(1)首先证明∠FEC=∠F=15°,推出∠ACB=30°,由此即可解决问题.(2)如图2中,连接CD,作EM⊥EB交AF于M,作FN⊥BE于N,AF交DE于点O.∴由△EMC≌△ECD,推出EF=DE,再由△EFN≌△DEB,推出DB=EN=BC,推出BE=CN,推出△CFN是等腰直角三角形,由此即可解决问题.(3)CF=BE.如图3中,连接CD、DF、作NE⊥CE交AD的延长线于N,在线段CE上截取一点M,使得FM=FE.只要证明△EDN≌△CMF,推出NE=CF,即可解决问题.【解答】(1)解:在△BDE中,∠D+∠DBE+∠BED=180°,∵∠DEB+∠DEF+∠FEC=180°,∠DEF=∠DBC,∴∠D=∠FEC=∠F=15°,∴∠ACB=∠F+∠CEF=30°,在Rt△ABC中,∵∠BAC=90°,AB=,∠ACB=30°,∴BC=2AB=2,∴AC===3.(2)证明:如图2中,连接CD,作EM⊥EB交AF于M,作FN⊥BE于N,AF交DE于点O.∵∠BAC=45°,∠ABC=2∠ACB,∴∠ABC=90°,∠ACB=∠MCE=∠EMC=45°,∴EM=EC,∵BD=DC,∴∠BDC=∠BCD=45°,∴∠DCE=∠EMF=135°,∵∠DEF=∠DBC=90°,∠FCD=∠DCA=90°,∴∠OEF=∠OCD,∵∠EOF=∠COD,∴∠OFE=∠ODC,在△EMF和△ECD中,,∴△EMC≌△ECD,∴EF=DE,∵∠DEB+∠FEN=90°,∠EFN+∠FEN=90°,∴∠EFN=∠DEB,在△EFN和△DEB中,,∴△EFN≌△DEB,∴DB=EN=BC,∴BE=CN,∵△CFN是等腰直角三角形,∴CF=CN=BE.(3)结论:CF=BE.理由:如图3中,连接CD、DF、作NE⊥CE交AD的延长线于N,在线段CE上截取一点M,使得FM=FE.∵∠BAC=90°,∠ABC=2∠ACB,∴∠ABC=60°,∠ACB=30°,∵DB=BC,∴∠DBC=120°,∠BDC=∠BCD=30°,∴∠DBC=∠DEF=120°,∠DCA=∠DCB+∠ACB=60°,∴∠DEF+∠DCF=180°,∴E、F、C、D四点共圆,∵∠DCE=∠ECF,∴=,∴DE=EF=FM,∵∠NEB=90°,∠NBE=∠ABC=60°,∴∠N=∠ACM=30°,∵∠DBC=∠BDE+∠DEB=∠DEB+∠FEM=∠DEB+∠FME,∴∠BDE=∠FME,∴∠NDE=∠FMC,在△EDN和△FMC中,,∴△EDN≌△CMF,∴NE=CF,在Rt△NEB中,∵∠NEB=90°,∠N=30°,∴NE=BE,∴CF=BE.26.如图1,抛物线与x轴相交于A、B两点(点A在点B的右侧),已知C(0,).连接AC.(1)求直线AC的解析式.(2)点P是x轴下方的抛物线上一动点,过点P作PE⊥x轴交直线AC于点E,交x轴于点F,过点P作PG⊥AE于点G,线段PG交x轴于点H.设l=EP﹣FH,求l的最大值.(3)如图2,在(2)的条件下,点M是x轴上一动点,连接EM、PM,将△EPM沿直线EM 折叠为△EP1M,连接AP,AP1.当△APP1是等腰三角形时,试求出点M的坐标.【考点】二次函数综合题.【分析】(1)先令y=0求抛物线与x轴交点坐标,利用待定系数法求直线AC的解析式;(2)如图1中,设点P(m, m2+m﹣3),则E(m,﹣m+),构建关于x的二次函数,利用二次函数的性质即可解决问题.(3)如图2中,分四种情形讨论即可①当P1P=P1A时,②AP=AP2时,③当P3P=P3A时,④当P4P=PA时,画出图形,求出点M坐标即可.【解答】解:(1)当y=0时, x2+x﹣3=0,解得x1=﹣3,x2=2,∵点A在点B的右侧,∴A(2,0)、B(﹣3,0);设直线AC的解析式为y=kx+b,。

2016年重庆中考考考前模拟数学试题(含答案)

2016年重庆中考考考前模拟数学试题(含答案)

第1页 共8页初2016级中考考前模拟数 学 试 题(本试题共五个大题,26个小题,满分150分,时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答. 2.作答前认真阅读答题卡上的注意事项.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a-- 一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑. 1. 3的相反数是( ) A .3 B .13C .-3D .-132.计算()x x ⋅-322的结果是( )A .52x - B .52x C .62x - D .62x 3. 下列图形中,是中心对称图形但不是轴对称图形的是( )4. 分式方程x x =-+2311的解是 ( ) A . x =5 B . x =-5 C . x =1 D . 原方程无解 5. 如图,直线AB //CD ,直线EF 分别交直线AB 、CD 于点E 、F ,EG 平分∠AEF 交CD 于点G ,若∠1=36°, 则∠2的大小是( )A .68°B .70°C.71° D .72°6. 如图,在ABC ∆中,点D 、E 分别在AB 、AC 边上,BC DE //, 若AE AC =34,AD =9,则AB 等于( ) A . 10 B .11 C . 12 D .167. 某校九年级(1)班有7个合作学习小组,各学习小组的人数分别为:5,6,6,x ,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( )A .6B .7C .8D .9第6题图第5题图第2页 共8页8. 如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,22.5A ∠=︒,4OC =, 则CD 的长为( ) A. B .4C.D .89. 若关于x 的一元二次方程2320x x m -+=有两个不相等的实数根,则实数m 的取值范围是( )A .98m >B .98m ³C . 98m £D .98m <10.如图,已知矩形OABC ,A (4,0),C (0,4),动点P 从点A 出发,沿A ﹣B ﹣C ﹣O 的路线勻速运动,设动点P 的运动路程为t ,△OAP 的面积为S ,则下列能大致反映S 与t 之间关系的图象是( )A .B .C .D .11. 如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第7个图形需要黑色棋子的个数是( )A .48B .64C .63D .8012. 如图,反比例函数ky x=(x <0)的图象上到原点O 的距离最小的点为A ,连OA ,将线段OA 平移到线段CD ,点O 的对应点C (1,2)且点D 也在反比例函数ky x=(x <0)的图象上时,则k 的值为( )A .2- B .-6 C .-4 D .6二、填空题 (本大题6个小题,每小题4分,共24分)在每小题中,请将答案填在答题卡相应位置的横线上. 13. 第十八届中国(重庆)国际投资暨全球采购会上,重庆共签约528个项目,签约金额602 000 000 000元.把数字602 000 000 000用科学记数法表示为 .14.计算:))______-=02113.15. 已知△ABC ∽△DEF ,△ABC 的周长为1,△DEF 的周长为2,则△ABC 与△DEF 的面积之比为 .第8题图第12题图第3页 共8页16. 如图,在边长为2的等边ABC ∆中,以BC 为直径的半圆分别交AB 、AC 于点D 、E ,则图中阴影部分的面积是 。

重庆市2016年初中毕业暨高中招生考试(文档版,有部分答案)

重庆市2016年初中毕业暨高中招生考试(文档版,有部分答案)

重庆市2016年初中毕业暨高中招生考试(全真模拟)数学试题(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答; 2.作答前认真阅读答题卡上的注意事项. 参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为⎪⎪⎭⎫⎝⎛--a b ac a b 44,22,对称轴为直线ab x 2-=.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑. 1.在―3,―1,0,2这四数中,最小的数是( ) A .-3B .-1C .0D .22.计算32a a -的结果正确的是( ) A .5a -B .a -C .aD .13.下列四组数分别是三条线段的长度,能构成三角形的是( ) A .1,1,2B .1,3,4C .2,3,6D .4,5,84.已知关于x 的方程250x a --=的解是2x =-,那么a 的值为( ) A .-9B .-1C .1D .95.如图,直线a 、b 被直线c 所截,a ∥b ,∠1=∠2,若∠4则∠3等于( ) A .30°B .50°C .65°D .115°6.若()210x -=,则x y +的值是( ) A .-3 B .-1 C .17.如图,在ABC △中,点D 在边AB 上,B D =2AD ,DE ∥BC 交AC 于点E ,若线段DE =10,那么线段BC 的长为( ) A .15B .20C .30D .408.为了调查某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm )为:16,9,14,11,12,10,16,8,17,19,则这组数据的中位数和极差分别是( ) A .11,11B .12,11C .13,11D .13,169.如图,AB 是⊙O 的直径,弦CD ⊥AB ,DE ⊥CE 于E ,∠AOD =60°,CD =S 阴影=( )A23π B2π CDπ 10.如图,下列图案均是长度相同的火柴并按一定的规律拼接而成:第1个图案需7根火柴,第2个图案需13根火柴,第3个图案需21根火柴,…,依此规律,第8个图案需( )根火柴……第1个图第2个图第3个图 第4个图 A .90B .91C .92D .9311.某超市从一楼到二楼有一自动扶梯,如图是自动扶梯的侧面示意图,已知自动扶梯AB 的坡度为1:2.4,AB 的长度为13米,MN 是二楼楼顶,MN ∥PQ ,C 是MN 上处在自动扶梯顶端B 点正上方的一点,BC ⊥MN ,在自动扶梯底端A 处侧得C 点的仰角为 42°,则二楼的层高BC 约为(精确到0.1米,sin 420.67≈ ,tan 420.90≈ )( )A .10.8米B .8.9米C .8.0米D .5.8米12.如果关于x 的方程2420ax x +-=有两个不相等的实数根,且关于x 的分式方程11222ax x x --=--有正数解,则符合条件的整数a 的值是( ) A .-1 B .0 C .1 D .2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答卷中对应的横线上.13.若一个多边形的内角和为720°,则这个多边形的边数是_________14.计算:212sin 302-⎛⎫-+- ⎪⎝⎭__________15.如图所示,在⊙O 中,∠CBO =45°,∠CAO =15°,则∠AOB 的度数是_________ 16.现有6个质地,大小完全相同的小球上分别标有数字-1,0.5,23,112,1,2.先将标有数字-1,0.5,112的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里,现分别从这两个盒子里各随机取出一个小球,则取出的两个小球上的数字互为倒数的概率为_______17.地铁一号线的列车匀速通过某隧道时,列车在隧道内的长度y (米)与列车行驶时间x (秒)之间的关系用图像描述如图所示,有下列结论:①列车的长度为120米;②列车的速度为30米/秒;③列车整体在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是__________(填正确结论的序号)第15题图 第17题图 第18题图18.如图,已知正方形ABCDAC 、BD 交于点O ,点E 在BC 上,且CE=2BE ,过B 点作BF ⊥AE 于点F ,连接OF ,则线段OF 的长度为 。

2016年重庆中考数学真题卷含答案解析

2016年重庆中考数学真题卷含答案解析

重庆市2016年初中毕业暨高中招生考试数学试题(含答案全解全析)(满分:150分时间:120分钟)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-b2a ,4ac-b24a),对称轴为x=-b2a.第Ⅰ卷(选择题,共48分)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D 的四个答案,其中只有一个是正确的.1.在实数-2,2,0,-1中,最小的数是( )A.-2B.2C.0D.-12.下列图形中是轴对称图形的是( )3.计算a3·a2正确的是( )A.aB.a5C.a6D.a94.下列调查中,最适合采用全面调查(普查)方式的是( )A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查5.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于( )A.120°B.110°C.100°D.80°6.若a=2,b=-1,则a+2b+3的值为( )A.-1B.3C.6D.57.函数y=1x+2中,x的取值范围是( )A.x≠0B.x>-2C.x<-2D.x≠-28.△ABC与△DEF的相似比为1∶4,则△ABC与△DEF的周长比为( )A.1∶2B.1∶3C.1∶4D.1∶169.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=√2,则图中阴影部分的面积是( )A.π4B.12+π4C.π2D.12+π210.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,……,按此规律排列下去,第⑦个图形中小圆圈的个数为( )A.64B.77C.80D.8511.某数学兴趣小组同学进行测量大树CD 高度的综合实践活动.如图,在点A 处测得直立于地面的大树顶端C 的仰角为36°.然后沿在同一剖面的斜坡AB 行走13米至坡顶B 处,然后再沿水平方向行走6米至大树底端D 处,斜面AB 的坡度(或坡比)i=1∶2.4,那么大树CD 的高度约为(参考数据: sin 36°≈0.59,cos 36°≈0.81,tan 36°≈0.73)( )A.8.1米B.17.2米C.19.7米D.25.5米12.从-3,-1,12,1,3这五个数中,随机抽取一个数,记为a.若数a 使关于x 的不等式组{13(2x +7)≥3,x -a <0无解,且使关于x 的分式方程x x -3-a -23-x =-1有整数解,那么这5个数中所有满足条件的a 的值之和是( ) A.-3B.-2C.-32D.12第Ⅱ卷(非选择题,共102分)二、填空题:(本大题6个小题,每小题4分,共24分)13.据报道,2015年某市城镇非私营单位就业人员年平均工资超过60 500元,将数60 500用科学记数法表示为 . 14.计算:√4+(-2)0= .15.如图,OA,OB 是☉O 的半径,点C 在☉O 上,连接AC,BC.若∠AOB=120°,则∠ACB= 度.16.从数-2,-12,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n.若k=mn,则正比例函数y=kx 的图象经过第三、第一象限的概率是 .17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1 500米,先到终点的人原地休息.已知甲先出发30秒后,乙才出发.在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示.则乙到终点时,甲距终点的距离是米.18.正方形ABCD中,对角线AC,BD相交于点O,DE平分∠ADO交AC于点E,把△ADE沿AD翻折,得到△ADE',点F是DE的中点,连接AF,BF,E'F.若AE=√2,则四边形ABFE'的面积是.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形.19.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.20.为响应“全民阅读”号召,某校在七年级800名学生中随机抽取100名学生,对该年级学生在2015年全年阅读中外名著的情况进行调查.整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图.其中阅读了6本的人数占被调查人数的30%.根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2015年全年阅读中外名著的总本数.七年级部分学生阅读中外名著本数条形统计图四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形.21.计算:(1)(a+b)2-b(2a+b);(2)(2-2xx+1+x-1)÷x2-xx+1.22.在平面直角坐标系中,一次函数y=ax+b(a ≠0)的图象与反比例函数y=kx (k ≠0)的图象交于第二、第四象限内的A 、B 两点,与y 轴交于C 点.过点A 作AH ⊥y 轴,垂足为H,OH=3,tan ∠AOH=43,点B 的坐标为(m,-2). (1)求△AHO 的周长;(2)求该反比例函数和一次函数的解析式.23.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元? (2)5月20日猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉,并规定其销售价在5月20日每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的34,两种猪肉销售的总金额比5月20日提高了110a%,求a 的值.24.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这.例如12种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=pq.可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=34(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”.求所有“吉祥数”中F(t)的最大值.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形.25.在△ABC中,∠B=45°,∠C=30°.点D是BC上一点,连接AD.过点A作AG⊥AD.在AG上取点F,连接DF.延长DA至E,使AE=AF,连接EG,DG,CG,且GE=DF.(1)若AB=2√2,求BC的长;(2)如图1,当点G 在AC 上时,求证:BD=12CG;(3)如图2,当点G 在AC 的垂直平分线上时,直接..写出ABCG的值.26.如图1,在平面直角坐标系中,抛物线y=-13x 2+2√33x+3与x 轴交于A,B 两点(点A 在点B 左侧),与y轴交于点C,抛物线的顶点为点E. (1)判断△ABC 的形状,并说明理由;(2)经过B,C 两点的直线交抛物线的对称轴于点D,点P 为直线BC 上方抛物线上的一动点,当△PCD 的面积最大时,点Q 从点P 出发,先沿适当的路径运动到抛物线的对称轴上点M 处,再沿垂直于抛物线对称轴的方向运动到y 轴上的点N 处,最后沿适当的路径运动到点A 处停止.当点Q 的运动路径最短时,求点N 的坐标及点Q 经过的最短路径的长;(3)如图2,平移抛物线,使抛物线的顶点E 在射线AE 上移动,点E 平移后的对应点为点E',点A 的对应点为点A'.将△AOC 绕点O 顺时针旋转至△A 1OC 1的位置,点A,C 的对应点分别为点A 1,C 1,且点A 1恰好落在AC 上,连接C 1A',C 1E'.△A'C 1E'是否能为等腰三角形?若能,请求出所有符合条件的点E'的坐标;若不能,请说明理由.答案全解全析:一、选择题1.A 在实数中,负数小于正数、0,两个负数,绝对值大的反而小,所以-2,2,0,-1中,最小的数是-2,故选A.2.D 根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,知选项D中的图形是轴对称图形,符合题意,故选D.3.B 根据“同底数幂相乘,底数不变,指数相加”得a3·a2=a3+2=a5.故选B.4.B 事关重大的调查往往选用普查,所以对乘坐飞机的旅客是否携带违禁物品的调查,应采用全面调查,故选B.评析本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要调查的对象的特征灵活选用.一般来说,对于具有破坏性的调查、无法进行普查的调查、普查的意义或价值不大的调查,应选择抽样调查;对于精确度要求高的调查、事关重大的调查往往选用普查.5.C ∵AB∥CD,∴∠1+∠DFE=180°,∵∠DFE=∠2=80°,∴∠1=180°-80°=100°.故选C.6.B 当a=2,b=-1时,原式=2+2×(-1)+3=3,故选B.7.D 由分式有意义的条件得x+2≠0,解得x≠-2.故选D.8.C 因为△ABC与△DEF的相似比为1∶4,所以由相似三角形周长的比等于相似比,得△ABC与△DEF 的周长比为1∶4,故选C. 9.A ∵AB 为直径,∴∠ACB=90°.又∵AC=BC=√2,∴△ACB 为等腰直角三角形, ∴OC ⊥AB,△AOC 和△BOC 都是等腰直角三角形, ∴S △AOC =S △BOC ,OA=1, ∴S 阴影部分=S 扇形AOC =90·π·12360=π4.故选A.评析 求阴影部分的面积往往都是求不规则图形的面积,所以把不规则图形的面积转化为规则图形的面积是解决这类问题的主要思路.几种常用的方法:(1)将待求面积的图形分割成几个规则图形后,将规则图形的面积相加;(2)将阴影中部分图形等积变形后移位,组成规则图形求解;(3)将待求面积的图形分割后,利用平移、旋转将部分图形移位,最后组成规则图形求解. 10.D 通过观察,第①个图形中小圆圈的个数为(1+2)×22+12=4,第②个图形中小圆圈的个数为(1+3)×32+22=10,第③个图形中小圆圈的个数为(1+4)×42+32=19,第④个图形中小圆圈的个数为(1+5)×52+42=31,以此类推,第个图形中小圆圈的个数为(n+2)(n+1)2+n 2,当n=7时,(7+2)×(7+1)2+72=85,故第⑦个图形中小圆圈的个数为85.故选D. 11.A 作BF ⊥AE 于F,如图所示,易知四边形BDEF 为矩形,则FE=BD=6米,DE=BF, ∵斜面AB 的坡度i=1∶2.4,∴AF=2.4BF, 设BF=x 米,则AF=2.4x 米,在Rt △ABF 中,x 2+(2.4x)2=132,解得x=5,∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米,在Rt △ACE 中,CE=AE ·tan 36°≈18×0.73=13.14米,∴CD=CE-DE=13.14-5≈8.1米,故选A.12.B 由{13(2x +7)≥3,x -a <0解得{x ≥1,x <a , ∵不等式组{13(2x +7)≥3,x -a <0无解,∴a ≤1, 由x x -3-a -23-x =-1,得x=5-a 2, 由题意得x=5-a 2为整数,5-a 2≠3,又a ≤1, ∴在-3,-1,12,1,3中,a 只能取-3或1,∴所有满足条件的a 的值之和是-2,故选B.二、填空题13.答案 6.05×104解析 利用科学记数法表示一个比较大的数就是将该数表示为a ×10n (1≤a<10,n 为正整数)的形式,确定n 时遵循:n 等于原数的整数位数减去1.易知60 500=6.05×104.14.答案 3解析 √4+(-2)0=2+1=3.15.答案 60解析 根据圆周角定理,知∠ACB=12∠AOB=12×120°=60°.16.答案 16解析 画树状图如下:共有12种情况,当正比例函数y=kx 的图象经过第三、第一象限时,k>0,∵k=mn,∴mn>0,∴符合条件的情况有2种,∴正比例函数y=kx 的图象经过第三、第一象限的概率是212=16. 17.答案 175解析 由题图得,甲的速度为75÷30=2.5米/秒,设乙的速度为m 米/秒,则(m-2.5)×(180-30)=75,解得m=3,故乙从起点跑到终点所用的时间为1 5003=500(秒),所以乙到终点时,甲跑的路程是2.5×(500+30)=1 325(米),甲距终点的距离是1 500-1 325=175(米).评析 本题考查了函数图象的应用,求解此类题时要善于从抽象的函数图象中找出实际的量,然后根据实际情况列出方程(组)进行求解.18.答案 6+3√22解析 如图,连接EB 、EE',设EE'交AD 于点N.作EM ⊥AB 于M,易知四边形AMEN 为正方形.∵AE=√2,∴AM=EM=EN=AN=1,∵ED 平分∠ADO,EN ⊥DA,EO ⊥DB,∴EO=EN=1,∴AO=√2+1,∴AB=√2AO=2+√2,∵四边形ABCD 是正方形,∴根据对称性及翻折的性质,得△ADE ≌△ADE'≌△ABE,∴AE=AE',∠DAE=∠DAE'=45°,∴△AEE'为等腰直角三角形,∵AB=2+√2,EM=1,∴S △AEB =12AB ·EM=1+√22, ∴S △AED =S △ADE'=S △AEB =1+√22,∴S △BDE =S △ADB -S △AEB -S △AED =12×(2+√2)2-2×(1+√22)=1+√2,S 四边形AEDE'=2S △AED =2+√2, ∵S △AEE'=12×(√2)2=1,∴S △DEE'=(2+√2)-1=1+√2,∵DF=EF,∴S △EFE'=12S △DEE'=1+√22,∵DF=EF,S △BDE =1+√2,∴S △FEB =12S △BDE =1+√22,∴S 四边形ABFE'=S △AEE'+S △EFE'+S △AEB +S △EFB =1+1+√22+1+√22+1+√22=6+3√22. 评析 本题考查正方形的性质、翻折(轴对称)的性质、全等三角形的性质、角平分线的性质等,解题的关键是转化思想的应用.三、解答题19.证明 ∵CE ∥DF,∴∠ACE=∠D.(3分)在△ACE 和△FDB 中,∵EC=BD,∠ACE=∠D,AC=FD,(5分)∴△ACE ≌△FDB.(6分)∴AE=FB.(7分)20.解析 补全条形统计图,如图所示.七年级部分学生阅读中外名著本数条形统计图(4分)被抽查学生阅读中外名著的本数的平均数为5×20+6×30+7×35+8×15100=6.45(本).七年级800名学生阅读中外名著的总本数约为6.45×800=5 160(本).答:根据调查数据,估计该校七年级全体学生在2015年全年阅读中外名著的总本数约为5 160本.(7分)四、解答题21.解析 (1)原式=a 2+2ab+b 2-2ab-b 2(3分)=a 2.(5分)(2)原式=2-2x+(x+1)(x -1)x+1·x+1x (x -1)(7分) =x 2-2x+1x+1·x+1x (x -1)(8分) =(x -1)2x+1·x+1x (x -1)(9分) =x -1x .(10分)22.解析 (1)∵AH ⊥y 轴于H,∴∠AHO=90°.∵tan ∠AOH=AH OH =43,OH=3,∴AH=4.(2分)在Rt △AHO 中,OA=2+OH 22+32分)∴△AHO 的周长为3+4+5=12.(5分)(2)由(1)知,点A 的坐标为(-4,3),∵点A 在反比例函数y=k x (k ≠0)的图象上,∴3=k -4.∴k=-12. ∴反比例函数的解析式为y=-12x .(7分)∵点B(m,-2)在反比例函数y=-12x 的图象上, ∴-12m =-2.∴m=6. ∴点B 的坐标为(6,-2).(8分)∵点A(-4,3),B(6,-2)在一次函数y=ax+b(a ≠0)的图象上,∴{-4a +b =3,6a +b =-2.解这个方程组,得{a =-12,b =1.∴一次函数的解析式为y=-12x+1.(10分)23.解析 (1)设今年年初的猪肉价格为每千克x 元.根据题意,得2.5×(1+60%)x ≥100.(3分)解这个不等式,得x ≥25.∴今年年初猪肉的最低价格为每千克25元.(4分)(2)设5月20日该超市猪肉的销售量为1,根据题意,得40×14(1+a%)+40(1-a%)×34(1+a%)=40(1+110a %). 令a%=y,原方程可化为40×14(1+y)+40(1-y)×34(1+y)=40(1+110y).(7分)整理这个方程,得5y 2-y=0.解这个方程,得y 1=0,y 2=0.2.∴a 1=0(不合题意,舍去),a 2=20.(9分)∴a 的值是20.(10分)24.解析 (1)证明:对任意一个完全平方数m,设m=n 2(n 为正整数).∵|n-n|=0,∴n ×n 是m 的最佳分解.∴对任意一个完全平方数m,总有F(m)=n n =1.(3分) (2)设交换t 的个位上的数与十位上的数得到的新数为t',则t'=10y+x.∵t 为“吉祥数”,∴t'-t=(10y+x)-(10x+y)=9(y-x)=18.∴y=x+2.(6分)∵1≤x ≤y ≤9,x,y 为自然数,∴“吉祥数”有:13,24,35,46,57,68,79.(7分)易知F(13)=113,F(24)=46=23,F(35)=57,F(46)=223,F(57)=319,F(68)=417,F(79)=179.∵57>23>417>319>223>113>179,∴所有“吉祥数”中F(t)的最大值是57.(10分)五、解答题25.解析 (1)过点A 作AH ⊥BC 于H.∴∠AHB=∠AHC=90°.在Rt △AHB 中,∵AB=2√2,∠B=45°,∴BH=AB ·cos B=2√2×√22=2.AH=AB·sin B=2√2×√2=2.(1分)2在Rt△AHC中,∵∠C=30°,∴AC=2AH=4.=2√3.(2分)∴CH=AC·cos C=4×√32∴BC=BH+CH=2+2√3.(3分)(2)证明:∵AG⊥AD,∴∠DAF=∠EAG=90°.在Rt△DAF和Rt△GAE中,∵AF=AE,DF=GE,∴Rt△DAF≌Rt△GAE.∴AD=AG.(4分)过点A作AP⊥AB交BC于点P,连接PG.∴∠BAP=90°,即∠BAD+∠DAP=90°.∵∠DAG=90°,即∠DAP+∠PAG=90°.∴∠BAD=∠PAG.∵∠B=45°,∠BAP=90°,∴∠APB=∠B=45°.∴AB=AP.在△ABD和△APG中,∵AB=AP,∠BAD=∠PAG,AD=AG,∴△ABD≌△APG.∴BD=PG,∠B=∠APG.(8分)∴∠APG=45°.∴∠BPG=∠APB+∠APG=45°+45°=90°.∴∠CPG=90°.在Rt △CPG 中,∠C=30°.∴PG=12CG.(9分)∴BD=12CG.(10分) (3)AB CG =√3+12.(12分)26.解析 (1)△ABC 为直角三角形.理由如下:当y=0时,-13x 2+2√33x+3=0, 解这个方程,得x 1=-√3,x 2=3√3.∴点A(-√3,0),B(3√3,0).∴OA=√3,OB=3√3.当x=0时,y=3,∴点C(0,3),∴OC=3.在Rt △AOC 中,AC 2=OA 2+OC 2=(√3)2+32=12.在Rt △BOC 中,BC 2=OB 2+OC 2=(3√3)2+32=36.又∵AB 2=[3√3-(-√3)]2=48,12+36=48,∴AC 2+BC 2=AB 2.∴△ABC 为直角三角形.(3分)(2)如图,∵点B(3√3,0),C(0,3),∴直线BC 的解析式为y=-√33x+3.过点P 作PG ∥y 轴交直线BC 于点G.设点P (a ,-13a 2+2√33a +3),则点G (a ,-√33a +3), ∴PG=(-13a 2+2√33a +3)-(-√33a +3)=-13a 2+√3a. 设D 点横坐标为x D ,C 点横坐标为x C .S △PCD =12×(x D -x C )×PG =12×√3×(-13a 2+√3a) =-√36(a -3√32)2+9√38. ∵0<a<3√3,∴当a=3√32时,△PCD 的面积最大, 此时点P (3√32,154).(5分)将点P 向左平移√3个单位至点P',连接AP'交y 轴于点N,过点N 作NM ⊥抛物线对称轴于点M,连接PM.点Q 沿P →M →N →A 运动,所走的路径最短,即最短路径的长为PM+MN+NA 的长.(6分) ∵点P (3√32,154),∴点P'(√32,154). 又∵点A(-√3,0),∴直线AP'的解析式为y=5√36x+52. 当x=0时,y=52,∴点N (0,52).过点P'作P'H ⊥x 轴于点H,则有HA=3√32,P'H=154,AP'=3√374. ∴点Q 运动的最短路径的长为PM+MN+AN=3√374+√3=3√37+4√34.(8分) (3)如图,在Rt △AOC 中,∵tan ∠OAC=OC OA =√3=√3,∴∠OAC=60°.∵OA=OA 1,∴△OAA 1为等边三角形.∴∠AOA 1=60°. ∴∠BOC 1=30°.又由OC 1=OC=3,得点C 1(3√32,32). ∵点A(-√3,0),E(√3,4),∴AE=2√7. ∴A'E'=AE=2√7.∵直线AE 的解析式为y=2√33x+2, 设点E'(a ,2√33a +2),则点A'(a -2√3,2√3a 3-2).(9分) ∴C 1E'2=(a -3√32)2+(2√33a +2-32)2=73a 2-7√33a+7. C 1A'2=(a -2√3-3√32)2+(2√33a -2-32)2=73a 2-35√33a+49.若C 1A'=C 1E',则有C 1A'2=C 1E'2, 即73a 2-7√33a+7=73a 2-35√33a+49. 解这个方程,得a=3√32,∴点E'(3√32,5). 若A'C 1=A'E',则有A'C 12=A'E'2,即73a 2-35√33a+49=28. 解这个方程,得a 1=5√3+√392,a 2=5√3-√392. ∴点E'(5√3+√392,7+√13)或(5√3-√392,7-√13). 若E'A'=E'C 1,则有E'A'2=E'C 12,即73a 2-7√33a+7=28.解这个方程,得a 1=√3+√392,a 2=√3-√392(舍去). ∴点E'(√3+√392,3+√13).综上所述,符合条件的点E'的坐标为3√32,5或5√3+√392,7+√13或5√3-√392,7-√13或 √3+√392,3+√13.(12分)评析 此题是二次函数综合题,主要考查了二次函数的图象与性质,等边三角形的判定和性质,勾股定理的逆定理,等腰三角形的性质.问题(2)先求出当S △PCD 最大时的点P 的坐标,然后判断出点Q 运动的最短路径,最后求最短路径的长,问题(3)主要涉及分类讨论思想,在分类的时候要注意考虑各种情况,不能遗漏.。

重庆市2016届中考数学标准测试卷含答案解析

重庆市2016届中考数学标准测试卷含答案解析

2016年重庆市中考数学标准测试卷一、选择题1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米 D.2×10﹣4米3.计算:(﹣a2)3()A.a6B.﹣a6C.a5D.﹣a54.如果是二次根式,那么x,y应满足的条件是()A.x≥1,y≥0 B.(x﹣1)•y≥0 C.≥0 D.x≥1,y>05.如图,已知AB⊥GH,CD⊥GH,直线CD,EF,GH相交于一点O,若∠1=42°,则∠2等于()A.130°B.138°C.140°D.142°6.2015年7月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是357.对于非零的两个实数a,b,规定a*b=﹣,若5*(3x﹣1)=2,则x的值为()A.B.C.D.﹣8.在如图所示的矩形ABCD中,已知MN丄MC,且M为AD的中点,AN=2,tan∠MCN=,则AB等于()A.32 B.28 C.36 D.409.如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A﹣B﹣C﹣O的路线勻速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()A.B.C.D.10.在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y1≠y2时,取y1,y2中的较大值记为N;当y1=y2时,N=y1=y2.则下列说法:①当0<x<2时,N=y1;②N随x的增大而增大的取值范围是x<0;③取y1,y2中的较小值记为M,则使得M大于4的x值不存在;④若N=2,则x=2﹣或x=1.其中正确的有()A.1个B.2个C.3个D.4个11.观察图中菱形四个顶点所标的数字规律,可知数2015应标在()A.第502个菱形的左边B.第502个菱形的右边C.第504个菱形的左边D.第503个菱形的右边12.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A.6 B.9 C.10 D.12二、填空题(本大题有6小题,每小题4分,共24分)13.的倒数是.14.如图所示,在△ABC中,DE∥BC,若AD=1,DB=2,则=.15.如图,已知正方形ABCD的边长为12,BM=CN=5,CM,DN交于点O.则下列结论:①DN⊥MC;②DN垂直平分MC;③sin∠OCD=;④S△ODC=S中,四边形BMON正确的有(填写序号)16.今年某市中考增加了体育测试科目,考生考试顺序和考试项目(考生从考试的各个項目中抽取一項作为考试項目)由抽签的方式决定,具体操作流程是①每位考生从写有A,B,C的三个小球中随机抽取一个小球确定考试组別;②再从写有“引体向上””立定跳远”“800米”的抽签纸中抽取一个考试项目进行测试,则考生小明抽到A组“引体向上”的概率是.17.已知正方形ABCD的边长为a,分别以B,D为圆心,以a为半径画弧,如图所示,则阴影部分的面积为.18.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=.三、解答题19.计算:(+1)0+(﹣1)2015+sin45°﹣()﹣1.20.如图,在锐角三角形ABC中,AB=10,AC=2,sinB=.(1)求tanC;(2)求线段BC的长.四、解答题(共4小题,每小题10分,共40分)21.先化简,再求值:(﹣)÷(﹣),其中x=,y=1.22.中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因:①红绿灯设置不科学,交通管理混乱;②侥幸心态;③执法力度不够;④从众心理.该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调査了名行人;(2)求图1中④所在扇形的圆心角,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.23.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?24.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,过点D作DH丄AB于H,交AO 于G,连接0H.(1)求证:AG•GO=HG•GD;(2)若∠ABC=120°,AB=6,求OG的长.五、解答题(共2小题,每小题12分,共24分)25.如图,已知抛物线y=﹣(x+2)(x﹣a)(a>0)与x轴交于点A,B(点A在点B右侧),与y轴交于点C,抛物线过点N(6,一4).(1)求实数a的值;(2)在抛物线的对称轴上找一点H,使得BH+CH最小,求出点H的坐标;(3)若把题干中“抛物线过点N(6,﹣4)”这一条件去掉,试问在第四象限内,抛物线上是否存在点F,使得以点B,A,F为顶点的三角形与△BAC相似?若存在,求a的值;若不存在,请说明理由.26.如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.2016年重庆市中考数学标准测试卷参考答案与试题解析一、选择题1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米 D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米=0.00002米=2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.计算:(﹣a2)3()A.a6B.﹣a6C.a5D.﹣a5【考点】幂的乘方与积的乘方.【分析】根据积的乘方计算即可.【解答】解:(﹣a2)3=﹣a6,故选B.【点评】此题考查积的乘方,关键是根据法则进行计算.4.如果是二次根式,那么x,y应满足的条件是()A.x≥1,y≥0 B.(x﹣1)•y≥0 C.≥0 D.x≥1,y>0【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式即可.【解答】解:根据二次根式有意义的条件可知,x,y满足≥0时,是二次根式.故选:C.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.5.如图,已知AB⊥GH,CD⊥GH,直线CD,EF,GH相交于一点O,若∠1=42°,则∠2等于()A.130°B.138°C.140°D.142°【考点】平行线的判定与性质;垂线.【分析】根据平行线的判定推出AB∥CD,根据平行线的性质求出∠BPF,即可求出∠2的度数.【解答】解:如图:∵AB⊥GH,CD⊥GH,∴∠GMB=∠GOD=90°,∴AB∥CD,∴∠BPF=∠1=42°,∴∠2=180°﹣∠BPF=180°﹣42°=138°,故选B.【点评】本题考查了邻补角和平行线的性质和判定的应用,能正确运用平行线的性质和判定定理进行推理是解此题的关键.6.2015年7月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是35【考点】极差;加权平均数;中位数;众数.【分析】根据极差、众数、平均数和中位数的定义对每一项进行分析即可.【解答】解:A、31出现了3次,出现的次数最多,则众数是31,故本选项错误;B、把这些数从小到大排列为30,31,31,31,33,33,35,最中间的数是31,则中位数是31,故本选项正确;C、这组数据的平均数是(30+31+31+31+33+33+35)÷7=32,故本选项错误;D、极差是:35﹣30=5,故本选项错误;故选B.【点评】本题考查了极差、众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数;求极差的方法是用一组数据中的最大值减去最小值.7.对于非零的两个实数a,b,规定a*b=﹣,若5*(3x﹣1)=2,则x的值为()A.B.C.D.﹣【考点】解分式方程.【专题】新定义.【分析】根据规定5*(3x﹣1)可化成﹣,再根据解分式方程的步骤即可得出答案.【解答】解:根据题意得:﹣=2,解得:x=;经检验x=是原方程的解;故选B.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.在如图所示的矩形ABCD中,已知MN丄MC,且M为AD的中点,AN=2,tan∠MCN=,则AB等于()A.32 B.28 C.36 D.40【考点】矩形的性质.【分析】通过证得△AMN∽△DCM,对应边成比例即可求得.【解答】解:∵MN丄MC,tan∠MCN=,∴=,∵∠AMN+∠DMC=90°,∠AMN+∠ANM=90°,∴∠ANM=∠DMC,∵∠A=∠D=90°,∴△AMN∽△DCM,∴==,∵AN=2,∴MD=8,∵M为AD的中点,∴AM=8,∵△AMN∽△DCM,∴==,∴=,∴DC=32,∴AB=32.故选A.【点评】本题考查了矩形的性质,三角形相似的判定和性质以及解直角三角形等,证得三角形相似是解题的关键.9.如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A﹣B﹣C﹣O的路线勻速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】分三段求解:①当P在AB上运动时;②当P在BC上时;③当P在CO上时;分别求出S关于t的函数关系式即可选出答案.【解答】解:∵A(4,0)、C(0,4),∴OA=AB=BC=OC=4,①当P由点A向点B运动,即0≤t≤4,S=OA•AP=2t;②当P由点A向点B运动,即4<t≤8,S=OA•AP=8;③当P由点A向点B运动,即8<t≤12,S=OA•AP=2(12﹣t)=﹣2t+24;结合图象可知,符合题意的是A.故选:A.【点评】本题主要考查了动点问题的函数图象,解题的关键是根据图形求出S关于t的函数关系式.10.在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y1≠y2时,取y1,y2中的较大值记为N;当y1=y2时,N=y1=y2.则下列说法:①当0<x<2时,N=y1;②N随x的增大而增大的取值范围是x<0;③取y1,y2中的较小值记为M,则使得M大于4的x值不存在;④若N=2,则x=2﹣或x=1.其中正确的有()A.1个B.2个C.3个D.4个【考点】二次函数的性质.【专题】探究型.【分析】根据函数图象和题意,可以判断题目中①②③④的正确与否,从而解答本题,得到正确的选项.【解答】解:由题意和图象可知:x≤0时,N=y2,M=y1;0<x≤2时,N=y1,M=y2;x>2时,M=y1,N=y2∴当0<x<2时,N=y1,故①正确;由图象可知,N的值随x的增大而增大,x为全体实数,故②错误;因为二次函数的最大值为4,而M为y1,y2中的较小值,故M的最大值为4,故③正确;由图象和题意可知,N=2时,0<x<2,N=y1,故对应的x值只有一个,故④错误.由上可得,①③正确,②④错误.故选项A错误,选项B正确,选项C错误,选项D错误.故选B.【点评】本题考查二次函数和一次函数的图象的相关知识,关键是会看函数的图象,能弄懂题意,能找出所求问题需要的条件.11.观察图中菱形四个顶点所标的数字规律,可知数2015应标在()A.第502个菱形的左边B.第502个菱形的右边C.第504个菱形的左边D.第503个菱形的右边【考点】规律型:图形的变化类.【分析】由题意可知:四个数字以下、左、上、右的顺序依次循环,由此用2015除以4根据余数判定得出答案即可.【解答】解:由已知图形可知,每四个数字一循环,∵2015÷4=503…3,∴在第504个图形上,余数是3,则与第一个图形中3的位置相同,即在左边.故选:C.【点评】此题考查图形的变化规律,找出数字循环的规律,利用规律解决问题.12.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A .6B .9C .10D .12【考点】反比例函数图象上点的坐标特征.【分析】过点B 作BE ⊥x 轴于E ,延长线段BA ,交y 轴于F ,得出四边形AFOD 是矩形,四边形OEBF 是矩形,得出S 矩形AFOD =3,S 矩形OEBF =k ,根据平行线分线段成比例定理证得AB=2OD ,即OE=3OD ,即可求得矩形OEBF 的面积,根据反比例函数系数k 的几何意义即可求得k 的值.【解答】解:过点B 作BE ⊥x 轴于E ,延长线段BA ,交y 轴于F ,∵AB ∥x 轴,∴AF ⊥y 轴,∴四边形AFOD 是矩形,四边形OEBF 是矩形,∴AF=OD ,BF=OE ,∴AB=DE ,∵点A 在双曲线y=上,∴S 矩形AFOD =3,同理S 矩形OEBF =k ,∵AB ∥OD ,∴==,∴AB=2OD ,∴DE=2OD ,∴S 矩形OEBF =3S 矩形AFOD =9,∴k=9,故选B .【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,矩形的判定和性质,平行线分线段成比例定理,作出辅助线,构建矩形是解题的关键.二、填空题(本大题有6小题,每小题4分,共24分)13.的倒数是.【考点】倒数.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:根据倒数的定义得:的倒数是.故答案为:.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.14.如图所示,在△ABC中,DE∥BC,若AD=1,DB=2,则=.【考点】相似三角形的判定与性质.【分析】先根据DE∥BC得出△ADE∽△ACB,由相似三角形的性质求出两个相似三角形的面积比,进而求出的值.【解答】解:DE∥BC,∴△ADE∽△ABC,∴=()2=()2,∵AD=1,DB=2,∴,∴.故答案为:.【点评】本题主要考查了相似三角形的判定和性质,本题的关键是利用相似三角形的面积比等于相似比的平方求值.15.如图,已知正方形ABCD的边长为12,BM=CN=5,CM,DN交于点O.则下列结论:①DN⊥MC;②DN垂直平分MC;③sin∠OCD=;④S△ODC=S中,四边形BMON正确的有①③④(填写序号)【考点】正方形的性质;全等三角形的判定与性质;勾股定理;解直角三角形.【分析】根据正方形的性质得出BC=CD,∠ABC=∠BCD=90°,然后根据SAS证得△BMC≌△CND,得出∠MCB=∠NDC.进而即可证得∠DOC=90°,即DN⊥MC;根据勾股定理求得DN,然后根据NC•CD=ND•OC,求得OC=,OM=13﹣=,则OC≠OM,因为∠DNC+∠NDC=90°,∠ODC+∠OCD=90°,得出∠OCD=∠DNC,所以sin∠OCD=sin∠DNC==;由△BMC≌△CND,=S△ODC.得出S△BMC=S△CND,求得S△BMC﹣S△CNC=S△CND﹣S△CNC,即S四边形BMON【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠BCD=90°,在△BMC和△CND中,,∴△BMC≌△CND,∴∠MCB=∠NDC.又∠MCN+∠MCD=90°,∴∠MCD+∠NDC=90°,∴∠DOC=90°,∴DN⊥MC,故①正确;在Rt△CDN中,∵CD=12,CN=5,∴DN==13.又∵∠BCD=90°,∠COD=90°∴NC•CD=ND•OC,∴OC=,OM=13﹣=,∴OC≠OM,故②错误;∵∠DNC+∠NDC=90°,∠ODC+∠OCD=90°,∴∠OCD=∠DNC,∴sin∠OCD=sin∠DNC==,故③正确;∵△BMC≌△CND,∴S△BMC=S△CNDS△BMC﹣S△CNC=S△CND﹣S△CNC,即S=S△ODC,故④正确.四边形BMON综上,正确的结论是①③④.故答案为①③④.【点评】本题考查了正方形的性质,三角形全等的判定和性质,勾股定理的应用,解直角三角形以及三角形面积等,熟练掌握待定系数法是解题的关键.16.今年某市中考增加了体育测试科目,考生考试顺序和考试项目(考生从考试的各个項目中抽取一項作为考试項目)由抽签的方式决定,具体操作流程是①每位考生从写有A,B,C的三个小球中随机抽取一个小球确定考试组別;②再从写有“引体向上””立定跳远”“800米”的抽签纸中抽取一个考试项目进行测试,则考生小明抽到A 组“引体向上”的概率是 . 【考点】列表法与树状图法. 【分析】分别用D ,E ,F 表示“引体向上””立定跳远”“800米”,据题意画出树状图,然后由树状图即可求得所有等可能的结果;再利用概率公式求解即可求得答案.【解答】解:分别用D ,E ,F 表示“引体向上””立定跳远”“800米”,画树状图得:∵共有9种等可能的结果,∴小明抽到A 组“引体向上”的概率=.故答案为.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.已知正方形ABCD 的边长为a ,分别以B ,D 为圆心,以a 为半径画弧,如图所示,则阴影部分的面积为 (π﹣1)a 2 .【考点】列代数式.【专题】计算题.【分析】根据圆的面积公式和利用S 扇形ABC +S 扇形ADC =S 阴影部分+S 正方形ABCD 进行计算.【解答】解:∵S 扇形ABC +S 扇形ADC =S 阴影部分+S 正方形ABCD ,=2וπ•a2﹣a2=(π﹣1)a2.∴S阴影部分故答案为(π﹣1)a2.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.本题的根据是利用面积的和差计算阴影部分的面积.18.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=40°.【考点】圆周角定理.【分析】首先连接CD,由AD是⊙O的直径,根据直径所对的圆周角是直角,可求得∠ACD=90°,又由圆周角定理,可得∠D=∠ABC=50°,继而求得答案.【解答】解:连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠ABC=50°,∴∠CAD=90°﹣∠D=40°.故答案为:40°.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.三、解答题19.计算:(+1)0+(﹣1)2015+sin45°﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用零指数幂法则计算,第二项利用乘方的意义计算,第三项利用特殊角的三角函数值计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=1﹣1+1﹣3=﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,在锐角三角形ABC中,AB=10,AC=2,sinB=.(1)求tanC;(2)求线段BC的长.【考点】解直角三角形;勾股定理.【分析】(1)过点A作AD⊥BC于D,根据已知条件可得出AD,再利用勾股定理得出CD,进而得出tanC;(2)在Rt△ABD中,利用勾股定理求出BD=8,结合CD的长度,即可得出BC的长.【解答】解:(1)如图,过点A作AD⊥BC于D,在Rt△ABD中,AB=10,sinB==,∴=,∴AD=6,在Rt△ACD中,由勾股定理得CD2=AC2﹣AD2,∴CD2=(2)2﹣62=16,∴CD=4,∴tanC===;(2)在Rt△ABD中,AB=10,AD=6,∴由勾股定理得BD=8,由(1)得CD=4,∴BC=BD+CD=12.【点评】本题考查了解直角三角形以及勾股定理,要熟练掌握好边角之间的关系.四、解答题(共4小题,每小题10分,共40分)21.先化简,再求值:(﹣)÷(﹣),其中x=,y=1.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x=,y=1代入进行计算即可.【解答】解:原式=[﹣][﹣]=•=•=﹣,当x=,y=1是,原式=﹣=2﹣3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因:①红绿灯设置不科学,交通管理混乱;②侥幸心态;③执法力度不够;④从众心理.该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调査了200名行人;(2)求图1中④所在扇形的圆心角,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.【考点】条形统计图;扇形统计图.【分析】(1)根据①种的人数除以①所占的百分比,可得答案;(2)④种情况的人数除以总人数乘以圆周角,可得答案,总人数乘以第③种情况所占的百分比,可得第③种情况的人数,根据总人数减去第①种情况的人数,减去第③种情况的人数,减法第④种情况的人数,可得第②中情况的人数;(3)根据概率的意义:④的人数除以总人数,可得答案.【解答】解:(1)2÷%=200(名);(2)④所在扇形的圆心角×360°=126°,③的人数200×9%=18人,②的人数200﹣18﹣2﹣70=110人,第②种情况110人,第③种情况18,补全图形如图:.(3)p==,他属于第②种情况的概率为.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x 斤,总运费为W 元,试写出W 与x 的函数关系式,怎样安排调运方案才能使每天的总运费最省?【考点】一次函数的应用.【分析】(1)设从甲养殖场调运鸡蛋x 斤,从乙养殖场调运鸡蛋y 斤,根据题意列方程组即可得到结论;(2)从甲养殖场调运了x 斤鸡蛋,从乙养殖场调运了(1200﹣x )斤鸡蛋,根据题意列方程组得到300≤x ≤800,总运费W=200×0.012+140×0.015×(1200﹣x )=0.3x+2520,(300≤x ≤800),根据一次函数的性质得到W 随想的增大而增大,于是得到当x=300时,W 最小=2610元,【解答】解:(1)设从甲养殖场调运鸡蛋x 斤,从乙养殖场调运鸡蛋y 斤,根据题意得:,解得:, ∵500<800,700<900,∴符合条件.答:从甲、乙两养殖场各调运了500斤,700斤鸡蛋;(2)从甲养殖场调运了x 斤鸡蛋,从乙养殖场调运了(1200﹣x )斤鸡蛋,根据题意得:,解得:300≤x ≤800,总运费W=200×0.012x+140×0.015×(1200﹣x )=0.3x+2520,(300≤x ≤800),∵W 随x 的增大而增大,=2610元,∴当x=300时,W最小∴每天从甲养殖场调运了300斤鸡蛋,从乙养殖场调运了900斤鸡蛋,每天的总运费最省.【点评】本题考查了二元一次方程组与一次函数的实际应用.此题难度适中,解题的关键是理解题意,抓住等量关系.24.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,过点D作DH丄AB于H,交AO 于G,连接0H.(1)求证:AG•GO=HG•GD;(2)若∠ABC=120°,AB=6,求OG的长.【考点】相似三角形的判定与性质;菱形的性质.【分析】(1)根据菱形的性质得到AC⊥BD,由于DH⊥AB于H,于是得到∠DHA=∠DOG=90°,推出△AGH∽△DGO,根据相似三角形的性质得到,于是得到结论;(2)根据已知条件得到∠DAB=60°,AB=AD=6,得到△ABD是等边三角形,根据菱形的性质得到AC⊥DB,OD=OB=BD=3,得到∠ODG=30°,解直角三角形即可得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∵DH⊥AB于H,∴∠DHA=∠DOG=90°,∵∠AGH=∠DGO,∴△AGH∽△DGO,∴,∴AG•GO=HG•GD;(2)解:∵四边形ABCD是菱形,∠ABC=120°,∴∠DAB=60°,AB=AD=6,∴△ABD是等边三角形,∵AC⊥DB,OD=OB=BD=3,∵DH⊥AB,∴∠ODG=30°,∴OG=OD•tan30°=.【点评】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,熟记个性质定理是解题的关键.五、解答题(共2小题,每小题12分,共24分)25.如图,已知抛物线y=﹣(x+2)(x﹣a)(a>0)与x轴交于点A,B(点A在点B右侧),与y轴交于点C,抛物线过点N(6,一4).(1)求实数a的值;(2)在抛物线的对称轴上找一点H,使得BH+CH最小,求出点H的坐标;(3)若把题干中“抛物线过点N(6,﹣4)”这一条件去掉,试问在第四象限内,抛物线上是否存在点F,使得以点B,A,F为顶点的三角形与△BAC相似?若存在,求a的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将N点坐标代入即可求得;(2)由于A、B关于对称轴对称,所以相当于求AH+CH的最小值,根据两点之间线段最短,当A、H、C三点共线时AH+CH最小,即连接AC与对称轴的交点就是H,求出AC解析式,再与对称轴方程联立即可求得;(3)分两种情况:①作BF∥AC交抛物线于点F,先求出BF解析式,再与抛物线方程联立求出F 点坐标,再用两点间的距离公式表示出BF的长度,接着利用相似比例关系列出方程求解;②在x 轴下方作∠ABF=∠ABC=45°,同样先求出BF解析式,再求出F点坐标,进而表示出BF长度,最后利用相似比例关系列方程求解.算的过程中,可能有一种情况无解,舍去就是了.【解答】解:(1)∵抛物线y=﹣(x+2)(x﹣a)(a>0)过点N(6,一4),∴﹣4=,解得,a=4,即实数a的值为4;(2)∵a=4∴令y=0,得x1=﹣2,x2=4;令x=0,得y=2∴点A的坐标为(4,0),点B的坐标为(﹣2,0),点C的坐标为(0,2)∵点A和点B关于抛物线的对称轴x=对称,∴在抛物线的对称轴上找一点H,使得BH+CH最小,即AH+CH最小,连接AC,则AC与抛物线的对称轴x=1的交点即为所求如下图所示:设过点A(4,0),C(0,2)的直线解析式为:y=kx+b则解得k=,b=2∴y=令x=1代入y=,得y=∴点H的坐标为(1,)即点H的坐标为(1,)时,使得BH+CH最小;(3)①作BF∥AC交抛物线于点F,如图:则∠FBA=∠BAC,由y=﹣(x+2)(x﹣a)=﹣,令x=0,则y=2,∴C(0,2),又∵A(a,0),∴AC的解析式为y=,设BF的解析式为y=,∵BF过点B(﹣2,0),∴b=,∴BF的解析式为:y=,∴,解得:F(a+2,﹣2﹣),∴BF=∵△BFA∽△ABC,∴AB2=BF•AC,∴,化简整理得:16=0,不存在这种情形,即这种情况不存满足要求的F点;②∵B(﹣2,0),C(2,0),∴BC的解析式为y=x+2,∠ABC=45°,在x轴下方作∠ABF=∠ABC=45°,如图:∴BF⊥BC,∴BF的解析式为y=﹣x﹣2,∴,解得:F(2a,﹣2a﹣2),∴BF=,∵△BFA∽△BAC,∴AB2=BF•BC,∴,整理得:a2﹣4a﹣4=0,解得a=或a=(舍去),综上所述,a=时,以点B,A,F为顶点的三角形与△BAC相似.【点评】考查了二次函数综合题,解决二次函数问题应注意对称性的应用,若已知三点坐标,可设一般式;若已知顶点坐标,可设顶点式;若已知抛物线与x轴两交点坐标,可设两点式,从而简化运算,整个问题围绕二次函数展开,并将二次函数、三角形等多个问题紧密地结合在一起,无论是题设的给出还是思维方式的考查都很新颖.一道考题不仅考查了二次函数、三角形相似等初中数学中的重点内容,还考查了待定系数法等数学思想方法,这是中考试卷的创新题型和发展趋势,代数知识与几何知识得到了很好的整合,是一个典型的在知识网络交汇点处设计的热点试题.26.如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.【考点】四边形综合题.【分析】(1)利用直角三角形中30°角所对的直角边等于斜边的一半求得平行四边形的定和高,再利用底乘以高计算面积;(2)结合∠EMC=90°以及平行四边形的性质,可证明四边形DCEF是平行四边形,再通过计算得到平行四边形CDFE的一组邻边相等即可证得结论;(3)探究△BEM为等腰三角形,要分三种情况进行讨论:EB=EM,EB=BM,EM=BM.通过相应的计算表示出BE,EM,BM,然后利用边相等建立方程进行求解.【解答】解:(1)∵∠DAC=30°,∠ACD=90°,AD=8,∴CD=4,AC=4.又∵四边形ABCD为平行四边形,∴四边形ABCD的面积为4×4=16.。

2016年重庆市中考数学标准测试卷

2016年重庆市中考数学标准测试卷

2016年重庆市中考数学标准测试卷一、选择题(每小题4分,共48分)1.(4分)(2016•重庆模拟)下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.(4分)(2016•安陆市模拟)雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米 D.2×10﹣4米3.(4分)(2016•重庆模拟)计算:(﹣a2)3()A.a6B.﹣a6C.a5D.﹣a54.(4分)(2016•重庆模拟)如果是二次根式,那么x,y应满足的条件是()A.x≥1,y≥0 B.(x﹣1)•y≥0 C.≥0 D.x≥1,y>05.(4分)(2016•重庆模拟)如图,已知AB⊥GH,CD⊥GH,直线CD,EF,GH相交于一点O,若∠1=42°,则∠2等于()A.130°B.138°C.140°D.142°6.(4分)(2016•重庆模拟)2015年7月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是357.(4分)(2016•重庆模拟)对于非零的两个实数a,b,规定a*b=﹣,若5*(3x﹣1)=2,则x的值为()A.B.C.D.﹣8.(4分)(2016•重庆模拟)在如图所示的矩形ABCD中,已知MN丄MC,且M为AD 的中点,AN=2,tan∠MCN=,则AB等于()A.32 B.28 C.36 D.409.(4分)(2016•重庆模拟)如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A﹣B﹣C﹣O的路线勻速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()A.B.C.D.10.(4分)(2016•重庆模拟)在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y1≠y2时,取y1,y2中的较大值记为N;当y1=y2时,N=y1=y2.则下列说法:①当0<x <2时,N=y1;②N随x的增大而增大的取值范围是x<0;③取y1,y2中的较小值记为M,则使得M大于4的x值不存在;④若N=2,则x=2﹣或x=1.其中正确的有()A.1个B.2个C.3个D.4个11.(4分)(2016•重庆模拟)观察图中菱形四个顶点所标的数字规律,可知数2015应标在()A.第502个菱形的左边B.第502个菱形的右边C.第504个菱形的左边D.第503个菱形的右边12.(4分)(2016•重庆模拟)如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A.6 B.9 C.10 D.12二、填空题(本大题有6小题,每小题4分,共24分)13.(4分)(2016•重庆模拟)的倒数是.14.(4分)(2016•重庆模拟)如图所示,在△ABC中,DE∥BC,若AD=1,DB=2,则=.15.(4分)(2016•重庆模拟)如图,已知正方形ABCD的边长为12,BM=CN=5,CM,DN交于点O.则下列结论:①DN⊥MC;②DN垂直平分MC;③sin∠OCD=;④S△ODC=S四边形BMON中,正确的有(填写序号)16.(4分)(2016•重庆模拟)今年某市中考增加了体育测试科目,考生考试顺序和考试项目(考生从考试的各个項目中抽取一項作为考试項目)由抽签的方式决定,具体操作流程是①每位考生从写有A,B,C的三个小球中随机抽取一个小球确定考试组別;②再从写有“引体向上””立定跳远”“800米”的抽签纸中抽取一个考试项目进行测试,则考生小明抽到A组“引体向上”的概率是.17.(4分)(2016•重庆模拟)已知正方形ABCD的边长为a,分别以B,D为圆心,以a 为半径画弧,如图所示,则阴影部分的面积为.18.(4分)(2016•重庆模拟)如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=.三、解答题(每小题7分,共14分)19.(7分)(2016•重庆模拟)计算:(+1)0+(﹣1)2015+sin45°﹣()﹣1.20.(7分)(2016•重庆模拟)如图,在锐角三角形ABC中,AB=10,AC=2,sinB=.(1)求tanC;(2)求线段BC的长.四、解答题(共4小题,每小题10分,共40分)21.(10分)(2016•重庆模拟)先化简,再求值:(﹣)÷(﹣),其中x=,y=1.22.(10分)(2016•重庆模拟)中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因:①红绿灯设置不科学,交通管理混乱;②侥幸心态;③执法力度不够;④从众心理.该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调査了名行人;(2)求图1中④所在扇形的圆心角,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.23.(10分)(2016•重庆模拟)受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?24.(10分)(2016•重庆模拟)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,过点D作DH丄AB于H,交AO于G,连接0H.(1)求证:AG•GO=HG•GD;(2)若∠ABC=120°,AB=6,求OG的长.五、解答题(共2小题,每小题12分,共24分)25.(12分)(2016•重庆模拟)如图,已知抛物线y=﹣(x+2)(x﹣a)(a>0)与x轴交于点A,B(点A在点B右侧),与y轴交于点C,抛物线过点N(6,一4).(1)求实数a的值;(2)在抛物线的对称轴上找一点H,使得BH+CH最小,求出点H的坐标;(3)若把题干中“抛物线过点N(6,﹣4)”这一条件去掉,试问在第四象限内,抛物线上是否存在点F,使得以点B,A,F为顶点的三角形与△BAC相似?若存在,求a的值;若不存在,请说明理由.26.(12分)(2016•重庆模拟)如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.2016年重庆市中考数学标准测试卷参考答案与试题解析一、选择题(每小题4分,共48分)1.(4分)(2016•重庆模拟)下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.2.(4分)(2016•安陆市模拟)雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米 D.2×10﹣4米【解答】解:20微米=20÷1 000 000米=0.00002米=2×10﹣5米,故选:C.3.(4分)(2016•重庆模拟)计算:(﹣a2)3()A.a6B.﹣a6C.a5D.﹣a5【解答】解:(﹣a2)3=﹣a6,故选B.4.(4分)(2016•重庆模拟)如果是二次根式,那么x,y应满足的条件是()A.x≥1,y≥0 B.(x﹣1)•y≥0 C.≥0 D.x≥1,y>0【解答】解:根据二次根式有意义的条件可知,x,y满足≥0时,是二次根式.故选:C.5.(4分)(2016•重庆模拟)如图,已知AB⊥GH,CD⊥GH,直线CD,EF,GH相交于一点O,若∠1=42°,则∠2等于()A.130°B.138°C.140°D.142°【解答】解:如图:∵AB⊥GH,CD⊥GH,∴∠GMB=∠GOD=90°,∴AB∥CD,∴∠BPF=∠1=42°,∴∠2=180°﹣∠BPF=180°﹣42°=138°,故选B.6.(4分)(2016•重庆模拟)2015年7月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是35【解答】解:A、31出现了3次,出现的次数最多,则众数是31,故本选项错误;B、把这些数从小到大排列为30,31,31,31,33,33,35,最中间的数是31,则中位数是31,故本选项正确;C、这组数据的平均数是(30+31+31+31+33+33+35)÷7=32,故本选项错误;D、极差是:35﹣30=5,故本选项错误;故选B.7.(4分)(2016•重庆模拟)对于非零的两个实数a,b,规定a*b=﹣,若5*(3x﹣1)=2,则x的值为()A.B.C.D.﹣【解答】解:根据题意得:﹣=2,解得:x=;经检验x=是原方程的解;故选B.8.(4分)(2016•重庆模拟)在如图所示的矩形ABCD中,已知MN丄MC,且M为AD 的中点,AN=2,tan∠MCN=,则AB等于()A.32 B.28 C.36 D.40【解答】解:∵MN丄MC,tan∠MCN=,∴=,∵∠AMN+∠DMC=90°,∠AMN+∠ANM=90°,∴∠ANM=∠DMC,∵∠A=∠D=90°,∴△AMN∽△DCM,∴==,∵AN=2,∴MD=8,∵M为AD的中点,∴AM=8,∵△AMN∽△DCM,∴==,∴=,∴DC=32,∴AB=32.故选A.9.(4分)(2016•重庆模拟)如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A﹣B﹣C﹣O的路线勻速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()A.B.C.D.【解答】解:∵A(4,0)、C(0,4),∴OA=AB=BC=OC=4,①当P由点A向点B运动,即0≤t≤4,S=OA•AP=2t;②当P由点A向点B运动,即4<t≤8,S=OA•AP=8;③当P由点A向点B运动,即8<t≤12,S=OA•AP=2(12﹣t)=﹣2t+24;结合图象可知,符合题意的是A.故选:A.10.(4分)(2016•重庆模拟)在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y1≠y2时,取y1,y2中的较大值记为N;当y1=y2时,N=y1=y2.则下列说法:①当0<x <2时,N=y1;②N随x的增大而增大的取值范围是x<0;③取y1,y2中的较小值记为M,则使得M大于4的x值不存在;④若N=2,则x=2﹣或x=1.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:由题意和图象可知:x≤0时,N=y2,M=y1;0<x≤2时,N=y1,M=y2;x>2时,M=y1,N=y2∴当0<x<2时,N=y1,故①正确;由图象可知,N的值随x的增大而增大,x为全体实数,故②错误;因为二次函数的最大值为4,而M为y1,y2中的较小值,故M的最大值为4,故③正确;由图象和题意可知,N=2时,0<x<2,N=y1,故对应的x值只有一个,故④错误.由上可得,①③正确,②④错误.故选项A错误,选项B正确,选项C错误,选项D错误.故选B.11.(4分)(2016•重庆模拟)观察图中菱形四个顶点所标的数字规律,可知数2015应标在()A.第502个菱形的左边B.第502个菱形的右边C.第504个菱形的左边D.第503个菱形的右边【解答】解:由已知图形可知,每四个数字一循环,∵2015÷4=503…3,∴在第504个图形上,余数是3,则与第一个图形中3的位置相同,即在左边.故选:C.12.(4分)(2016•重庆模拟)如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A.6 B.9 C.10 D.12【解答】解:过点B作BE⊥x轴于E,延长线段BA,交y轴于F,∵AB∥x轴,∴AF⊥y轴,∴四边形AFOD是矩形,四边形OEBF是矩形,∴AF=OD,BF=OE,∴AB=DE,∵点A在双曲线y=上,∴S矩形AFOD=3,同理S矩形OEBF=k,∵AB∥OD,∴==,∴AB=2OD,∴DE=2OD,∴S矩形OEBF=3S矩形AFOD=9,∴k=9,故选B.二、填空题(本大题有6小题,每小题4分,共24分)13.(4分)(2016•重庆模拟)的倒数是.【解答】解:根据倒数的定义得:的倒数是.故答案为:.14.(4分)(2016•重庆模拟)如图所示,在△ABC中,DE∥BC,若AD=1,DB=2,则=.【解答】解:DE∥BC,∴△ADE∽△ABC,∴=()2=()2,∵AD=1,DB=2,∴,∴.故答案为:.15.(4分)(2016•重庆模拟)如图,已知正方形ABCD的边长为12,BM=CN=5,CM,DN交于点O.则下列结论:①DN⊥MC;②DN垂直平分MC;③sin∠OCD=;④S△ODC=S四边形BMON中,正确的有①③④(填写序号)【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠BCD=90°,在△BMC和△CND中,,∴△BMC≌△CND,∴∠MCB=∠NDC.又∠MCN+∠MCD=90°,∴∠MCD+∠NDC=90°,∴∠DOC=90°,∴DN⊥MC,故①正确;在Rt△CDN中,∵CD=12,CN=5,∴DN==13.又∵∠BCD=90°,∠COD=90°∴NC•CD=ND•OC,∴OC=,OM=13﹣=,∴OC≠OM,故②错误;∵∠DNC+∠NDC=90°,∠ODC+∠OCD=90°,∴∠OCD=∠DNC,∴sin∠OCD=sin∠DNC==,故③正确;∵△BMC≌△CND,∴S△BMC=S△CNDS△BMC﹣S△CNC=S△CND﹣S△CNC,即S四边形BMON=S△ODC,故④正确.综上,正确的结论是①③④.故答案为①③④.16.(4分)(2016•重庆模拟)今年某市中考增加了体育测试科目,考生考试顺序和考试项目(考生从考试的各个項目中抽取一項作为考试項目)由抽签的方式决定,具体操作流程是①每位考生从写有A,B,C的三个小球中随机抽取一个小球确定考试组別;②再从写有“引体向上””立定跳远”“800米”的抽签纸中抽取一个考试项目进行测试,则考生小明抽到A组“引体向上”的概率是.【解答】解:分别用D,E,F表示“引体向上””立定跳远”“800米”,画树状图得:∵共有9种等可能的结果,∴小明抽到A组“引体向上”的概率=.故答案为.17.(4分)(2016•重庆模拟)已知正方形ABCD的边长为a,分别以B,D为圆心,以a 为半径画弧,如图所示,则阴影部分的面积为(π﹣1)a2.【解答】解:∵S扇形ABC+S扇形ADC=S阴影部分+S正方形ABCD,∴S阴影部分=2וπ•a2﹣a2=(π﹣1)a2.故答案为(π﹣1)a2.18.(4分)(2016•重庆模拟)如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=40°.【解答】解:连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠ABC=50°,∴∠CAD=90°﹣∠D=40°.故答案为:40°.三、解答题(每小题7分,共14分)19.(7分)(2016•重庆模拟)计算:(+1)0+(﹣1)2015+sin45°﹣()﹣1.【解答】解:原式=1﹣1+1﹣3=﹣2.20.(7分)(2016•重庆模拟)如图,在锐角三角形ABC中,AB=10,AC=2,sinB=.(1)求tanC;(2)求线段BC的长.【解答】解:(1)如图,过点A作AD⊥BC于D,在Rt△ABD中,AB=10,sinB==,∴=,∴AD=6,在Rt△ACD中,由勾股定理得CD2=AC2﹣AD2,∴CD2=(2)2﹣62=16,∴CD=4,∴tanC===;(2)在Rt△ABD中,AB=10,AD=6,∴由勾股定理得BD=8,由(1)得CD=4,∴BC=BD+CD=12.四、解答题(共4小题,每小题10分,共40分)21.(10分)(2016•重庆模拟)先化简,再求值:(﹣)÷(﹣),其中x=,y=1.【解答】解:原式=[﹣][﹣] =•=•=﹣,当x=,y=1是,原式=﹣=2﹣3.22.(10分)(2016•重庆模拟)中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因:①红绿灯设置不科学,交通管理混乱;②侥幸心态;③执法力度不够;④从众心理.该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调査了200名行人;(2)求图1中④所在扇形的圆心角,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.【解答】解:(1)2÷%=200(名);(2)④所在扇形的圆心角×360°=126°,③的人数200×9%=18人,②的人数200﹣18﹣2﹣70=110人,第②种情况110人,第③种情况18,补全图形如图:.(3)p==,他属于第②种情况的概率为.23.(10分)(2016•重庆模拟)受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?【解答】解:(1)设从甲养殖场调运鸡蛋x斤,从乙养殖场调运鸡蛋y斤,根据题意得:,解得:,∵500<800,700<900,∴符合条件.答:从甲、乙两养殖场各调运了500斤,700斤鸡蛋;(2)从甲养殖场调运了x斤鸡蛋,从乙养殖场调运了(1200﹣x)斤鸡蛋,根据题意得:,解得:300≤x≤800,总运费W=200×0.012x+140×0.015×(1200﹣x)=0.3x+2520,(300≤x≤800),∵W随x的增大而增大,∴当x=300时,W最小=2610元,∴每天从甲养殖场调运了300斤鸡蛋,从乙养殖场调运了900斤鸡蛋,每天的总运费最省.24.(10分)(2016•重庆模拟)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,过点D作DH丄AB于H,交AO于G,连接0H.(1)求证:AG•GO=HG•GD;(2)若∠ABC=120°,AB=6,求OG的长.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∵DH⊥AB于H,∴∠DHA=∠DOG=90°,∵∠AGH=∠DGO,∴△AGH∽△DGO,∴,∴AG•GO=HG•GD;(2)解:∵四边形ABCD是菱形,∠ABC=120°,∴∠DAB=60°,AB=AD=6,∴△ABD是等边三角形,∵AC⊥DB,OD=OB=BD=3,∵DH⊥AB,∴∠ODG=30°,∴OG=OD•tan30°=.五、解答题(共2小题,每小题12分,共24分)25.(12分)(2016•重庆模拟)如图,已知抛物线y=﹣(x+2)(x﹣a)(a>0)与x轴交于点A,B(点A在点B右侧),与y轴交于点C,抛物线过点N(6,一4).(1)求实数a的值;(2)在抛物线的对称轴上找一点H,使得BH+CH最小,求出点H的坐标;(3)若把题干中“抛物线过点N(6,﹣4)”这一条件去掉,试问在第四象限内,抛物线上是否存在点F,使得以点B,A,F为顶点的三角形与△BAC相似?若存在,求a的值;若不存在,请说明理由.【解答】解:(1)∵抛物线y=﹣(x+2)(x﹣a)(a>0)过点N(6,一4),∴﹣4=,解得,a=4,即实数a的值为4;(2)∵a=4∴令y=0,得x1=﹣2,x2=4;令x=0,得y=2∴点A的坐标为(4,0),点B的坐标为(﹣2,0),点C的坐标为(0,2)∵点A和点B关于抛物线的对称轴x=对称,∴在抛物线的对称轴上找一点H,使得BH+CH最小,即AH+CH最小,连接AC,则AC 与抛物线的对称轴x=1的交点即为所求如下图所示:设过点A(4,0),C(0,2)的直线解析式为:y=kx+b则解得k=,b=2∴y=令x=1代入y=,得y=∴点H的坐标为(1,)即点H的坐标为(1,)时,使得BH+CH最小;(3)①作BF∥AC交抛物线于点F,如图:则∠FBA=∠BAC,由y=﹣(x+2)(x﹣a)=﹣,令x=0,则y=2,∴C(0,2),又∵A(a,0),∴AC的解析式为y=,设BF的解析式为y=,∵BF过点B(﹣2,0),∴b=,∴BF的解析式为:y=,∴,解得:F(a+2,﹣2﹣),∴BF=∵△BFA∽△ABC,∴AB2=BF•AC,∴,化简整理得:16=0,不存在这种情形,即这种情况不存满足要求的F点;②∵B(﹣2,0),C(2,0),∴BC的解析式为y=x+2,∠ABC=45°,在x轴下方作∠ABF=∠ABC=45°,如图:∴BF⊥BC,∴BF的解析式为y=﹣x﹣2,∴,解得:F(2a,﹣2a﹣2),∴BF=,∵△BFA∽△BAC,∴AB2=BF•BC,∴,整理得:a2﹣4a﹣4=0,解得a=或a=(舍去),综上所述,a=时,以点B,A,F为顶点的三角形与△BAC相似.26.(12分)(2016•重庆模拟)如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.【解答】解:(1)∵∠DAC=30°,∠ACD=90°,AD=8,∴CD=4,AC=4.又∵四边形ABCD为平行四边形,∴四边形ABCD的面积为4×4=16.(2)如图1,当∠EMC=90°时,四边形DCEF是菱形.∵∠EMC=∠ACD=90°,∴DC∥EF.∵BC∥AD,∴四边形DCEF是平行四边形,∠BCA=∠DAC.由(1)可知:CD=4,AC=4.∵点M为AC的中点,∴CM=2.在Rt△EMC中,∠CME=90°,∠BCA=30°.∴CE=2ME,可得ME2+(2)2=(2ME)2,解得:ME=2.∴CE=2ME=4.∴CE=DC.又∵四边形DCEF是平行四边形,∴四边形DCEF是菱形.(3)点E在运动过程中能使△BEM为等腰三角形.理由:如图2,过点B作BG⊥AD与点G,过点E作EH⊥AD于点H,连接DM.∵DC∥AB,∠ACD=90°,∴∠CAB=90°.∴∠BAG=180°﹣30°﹣90°=60°.∴∠ABG=30°.∴AG==2,BG=2.∵点E的运动速度为每秒1个单位,运动时间为t秒,∴CE=t,BE=8﹣t.在△CEM和△AFM中,∴△CEM≌△AFM.∴ME=MF,CE=AF=t.∴HF=HG﹣AF﹣AG=BE﹣AF﹣AG=8﹣t﹣2﹣t=6﹣2t.∵EH=BG=2,∴在Rt△EHF中,ME===.∵M为平行四边形ABCD对角线AC的中点,∴D,M,B共线,且DM=BM.∵在Rt△DBG中,DG=AD+AG=10,BG=2,∴BM==2.要使△BEM为等腰三角形,应分以下三种情况:当EB=EM时,有,解得:t=5.2.当EB=BM时,有8﹣t=2,解得:t=8﹣2.当EM=BM时,由题意可知点E与点B重合,此时点B、E、M不构成三角形.综上所述,当t=5.2或t=8﹣2时,△BEM为等腰三角形.参与本试卷答题和审题的老师有:ZJX;sd2011;1987483819;1286697702;zjx111;lantin;守拙;73zzx;张国明;HLing;王学峰;wd1899;gsls;zcx;sks;张其铎;2300680618;LG;梁宝华(排名不分先后)菁优网2016年4月8日。

重庆市2016届中考数学模拟试卷(C)含答案解析

重庆市2016届中考数学模拟试卷(C)含答案解析

2016年重庆市中考数学模拟试卷(C卷)一、选择题(每小题4分,共48分)1.﹣16的倒数是()A.﹣B.C.﹣16D.162.下列欧洲足球俱乐部标志中,是中心对称图形的是()A.B.C.D.3.计算3x3•(﹣2x2)的结果是()A.﹣6x5B.﹣6x6C.﹣x5D.x54.学习了《数据的分析》后,某同学对学习小组内甲、乙、丙、丁四名同学的数学学月考成绩进行了统计,发现他们的平均成绩都是121分,方差分别为S甲2=16.3,S乙2=17.1,S丙2=19.4,S丁2=14.5,则数学成绩最稳定的同学是()A.甲B.乙C.丙D.丁5.在平面直角坐标系中,下列各点在第四象限的是()A.(2,1)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)6.方程x2+2x﹣3=0的两根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相同的实数根D.不能确定7.正多边形的一个外角的度数为36°,则这个正多边形的边数为()A.6B.8C.10D.128.估计+1的值()A.在2到3之间B.在3到4之间C.在4到5之间D.在5到6之间9.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A.35°B.45°C.55°D.75°10.下列图形都是由同样大小的矩形按一定的规律组成,其中,第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,…,按此规律,第⑥个图形中矩形的个数为()A.30B.25C.28D.3111.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A.B.C.D.12.如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,DF⊥AB交AC于点G,反比例函数y=(x>0)经过线段DC的中点E,若BD=4,则AG的长为()A.B.+2C.2+1D.+1二、填空题(每小题4分,共24分)13.计算﹣sin45°=.14.函数y=的自变量x的取值范围为.15.在某时刻的阳光照耀下,身高160cm的阿美的影长为80cm,她身旁的旗杆影长10m,则旗杆高为m.16.如图,Rt△ABC中,∠C=90°,∠A=30°,点O在斜边AB上,半径为2的⊙O过点B,切AC 边于点D,交BC边于点E.则由线段CD、CE及DE围成的阴影部分的面积为.17.小红准备了五张形状、大小完全相同的不透明卡片,正面分别写﹣3、﹣1、0、1、3,将这五张卡片的正面朝下在桌面上,从中任意抽取一张,将卡片上的数字记为m,再从剩下的卡片中任取一张卡片并把数字记为n,恰好使得关于x、y的二元一次方程组有整数解,且点(m,n)落在双曲线上的概率为.18.在矩形ABCD中,BC=4,BG与对角线AC垂直且分别交AC,AD及射线CD于点E,F,G,当点F为AD中点时,AB=.三、解答题19.解不等式:2(x+3)﹣4>0,并把解集在下列的数轴上(如图)表示出来.20.达州市某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级,绘制了两种不完整统计图.根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有人,扇形统计图中m=,n=,并把条形统计图补充完整.(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图,求A等级中一男一女参加比赛的概率.(男生分别用代码A1、A2表示,女生分别用代码B1、B2表示)21.先化简,再求值:÷(x﹣2﹣)﹣,其中x为方程5x+1=2(x﹣1)的解.22.我市准备在相距2千米的M,N两工厂间修一条笔直的公路,但在M地北偏东45°方向、N地北偏西60°方向的P处,有一个半径为0.6千米的住宅小区(如图),问修筑公路时,这个小区是否有居民需要搬迁?(参考数据:≈1.41,≈1.73)23.小王到某中式快餐店用餐,该快餐店的招牌餐是卤肉套饭和红烧肉套饭,其中每份红烧肉套饭比卤肉套饭贵了3元钱,小王发现若用150元买卤肉套饭数量是用90元买到的红烧肉套饭数量的两倍.(1)请帮小王计算一份卤肉套饭和一份红烧肉套饭售价各多少元?(2)该快餐店决定将成本为10元的卤肉套饭与成本为11.5元的红烧肉套饭采取送餐上门的销售形式,将每份卤肉套饭和红烧肉套饭在原售价基础上分别涨价20%和25%,这样一来,快餐店平均每天要多支出20元的交通成本(每月按30天算)和每份0.5元的打包成本.而该店每月只外送500份套餐,问:至多送出多少份卤肉套饭可产生不低于3600元的利润?24.深化理解:新定义:对非负实数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n﹣≤x<n+,则<x>=n;反之,当n为非负整数时,如果<x>=n,则n﹣≤x<n+.例如:<0>=<0.48>=0,<0.64>=<1.49>=1,<2>=2,<3.5>=<4.12>=4,…试解决下列问题:填空:①<π>=(π为圆周率);②如果<x﹣1>=3,则实数x的取值范围为.若关于x的不等式组的整数解恰有3个,求a的取值范围.①关于x的分式方程+2=有正整数解,求m的取值范围;②求满足<x>=x 的所有非负实数x的值.25.如图1,正方形ABCD中,AC是对角线,等腰Rt△CMN中,∠CMN=90°,CM=MN,点M在CD边上,连接AN,点E是AN的中点,连接BE.(1)若CM=2,AB=6,求AE的值;(2)求证:2BE=AC+CN;(3)当等腰Rt△CMN的点M落在正方形ABCD的BC边上,如图2,连接AN,点E是AN的中点,连接BE,延长NM交AC于点F.请探究线段BE、AC、CN的数量关系,并证明你的结论.26.已知如图:抛物线y=﹣x2+2x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D为抛物线的顶点,过点D的对称轴交x轴于点E.(1)如图1,连接BD,试求出直线BD的解析式;(2)如图2,点P为抛物线第一象限上一动点,连接BP,CP,AC,当四边形PBAC的面积最大时,线段CP交BD于点F,求此时DF:BF的值;(3)如图3,已知点K(0,﹣2),连接BK,将△BOK沿着y轴上下平移(包括△BOK),在平移的过程中直线BK交x轴于点M,交y轴于点N,则在抛物线的对称轴上是否存在点G,使得△GMN 是以MN为直角边的等腰直角三角形?若存在,请直接写出点G的坐标;若不存在,请说明理由.2016年重庆市中考数学模拟试卷(C卷)参考答案与试题解析一、选择题(每小题4分,共48分)1.﹣16的倒数是()A.﹣B.C.﹣16D.16【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:﹣16的倒数是﹣,故选:A.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列欧洲足球俱乐部标志中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形.故错误;B、不是中心对称图形.故错误;C、不是中心对称图形.故错误;D、是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.计算3x3•(﹣2x2)的结果是()A.﹣6x5B.﹣6x6C.﹣x5D.x5【考点】单项式乘单项式.【分析】直接利用单项式乘以单项式运算法则化简求出答案.【解答】解:3x3•(﹣2x2)=﹣6x5.故选:A.【点评】此题主要考查了单项式乘以单项式,正掌握运算法则是解题关键.4.学习了《数据的分析》后,某同学对学习小组内甲、乙、丙、丁四名同学的数学学月考成绩进行了统计,发现他们的平均成绩都是121分,方差分别为S甲2=16.3,S乙2=17.1,S丙2=19.4,S丁2=14.5,则数学成绩最稳定的同学是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:因为S丙2=19.4>S乙2=17.1>S甲2=16.3>S丁2=14.5,方差最小的为丁,所以成绩比较稳定的是丁,故选D.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.在平面直角坐标系中,下列各点在第四象限的是()A.(2,1)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)【考点】点的坐标.【分析】根据第四象限内的点的横坐标大于零,纵坐标小于零,可得答案.【解答】解:由第四象限内的点的横坐标大于零,纵坐标小于零,得故选:B.【点评】本题考查了点的坐标,熟记各象限内点的坐标特征是解题关键.6.方程x2+2x﹣3=0的两根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相同的实数根D.不能确定【考点】根的判别式.【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵a=1,b=2,c=﹣3∴△=b2﹣4ac=22﹣4×1×(﹣3)=16>0∴方程有两个不等的实数根故选B【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.正多边形的一个外角的度数为36°,则这个正多边形的边数为()A.6B.8C.10D.12【考点】多边形内角与外角.【分析】多边形的外角和是360°,正多边形的每个外角都相等,且一个外角的度数为36°,由此即可求出答案.【解答】解:360÷36=10,则正多边形的边数为10.故选C.【点评】本题主要考查了多边形的外角和定理,已知正多边形的外角求正多边形的边数是一个考试中经常出现的问题.8.估计+1的值()A.在2到3之间B.在3到4之间C.在4到5之间D.在5到6之间【考点】估算无理数的大小.【分析】首先利用夹逼法估算出无理数的取值范围,再利用不等式的性质确定的取值范围.【解答】解:∵9<11<16,∴3,∴4<5,故选C.【点评】本题主要考查了估算无理数的大小,利用夹逼法首先算出的取值范围是解答此题的关键.9.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A.35°B.45°C.55°D.75°【考点】圆周角定理.【分析】首先连接AD,由直径所对的圆周角是直角,即可求得∠ADB=90°,由直角三角形的性质,求得∠A的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠BCD的度数.【解答】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=55°,∴∠A=90°﹣∠ABD=35°,∴∠BCD=∠A=35°.故选A.【点评】此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意掌握辅助线的作法,注意直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.10.下列图形都是由同样大小的矩形按一定的规律组成,其中,第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,…,按此规律,第⑥个图形中矩形的个数为()A.30B.25C.28D.31【考点】规律型:图形的变化类.【分析】由于图①有矩形有6个=5×1+1,图②矩形有11个=5×2+1,图③矩形有16=5×3+1,第n 个图形矩形的个数是5n+1把n=6代入求出即可.【解答】解:∵图①有矩形有6个=5×1+1,图②矩形有11个=5×2+1,图③矩形有16=5×3+1,…∴第n个图形矩形的个数是5n+1当n=6时,5×6+1=31个,故选:D.【点评】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.11.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A.B.C.D.【考点】函数的图象.【分析】根据匀速行驶,可得路程随时间匀速增加,根据原地休息,路程不变,根据加速返回,可得路程随时间逐渐减少,可得答案.【解答】解:由题意,得以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选:C.【点评】本意考查了函数图象,根据题意判断路程与时间的关系是解题关键,注意休息时路程不变.12.如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,DF⊥AB交AC于点G,反比例函数y=(x>0)经过线段DC的中点E,若BD=4,则AG的长为()A.B.+2C.2+1D.+1【考点】反比例函数图象上点的坐标特征;菱形的性质.【分析】过E作y轴和x的垂线EM,EN,证明四边形MENO是矩形,设E(b,a),根据反比例函数图象上点的坐标特点可得ab=,进而可计算出CO长,根据三角函数可得∠DCO=30°,再根据菱形的性质可得∠DAB=∠DCB=2∠DCO=60°,∠1=30°,AO=CO=2,然后利用勾股定理计算出DG长,进而可得AG长.【解答】解:过E作y轴和x的垂线EM,EN,设E(b,a),∵反比例函数y=(x>0)经过点E,∴ab=,∵四边形ABCD是菱形,∴BD⊥AC,DO=BD=2,∵EN⊥x,EM⊥y,∴四边形MENO是矩形,∴ME∥x,EN∥y,∵E为CD的中点,∴DO•CO=4,∴CO=2,∴tan∠DCO==.∴∠DCO=30°,∵四边形ABCD是菱形,∴∠DAB=∠DCB=2∠DCO=60°,∠1=30°,AO=CO=2,∵DF⊥AB,∴∠2=30°,∴DG=AG,设DG=r,则AG=r,GO=2﹣r,∵AD=AB,∠DAB=60°,∴△ABD是等边三角形,∴∠ADB=60°,∴∠3=30°,在Rt△DOG中,DG2=GO2+DO2,∴r2=(2﹣r)2+22,解得:r=,∴AG=.故选A.【点评】此题主要考查了反比例函数和菱形的综合运用,关键是掌握菱形的性质:菱形对角线互相垂直平分,且平分每一组对角,反比例函数图象上的点横纵坐标之积=k二、填空题(每小题4分,共24分)13.计算﹣sin45°=.【考点】实数的运算;特殊角的三角函数值.【分析】先根据二次根式的化简及特殊角的三角函数值计算出各数,再合并同类项即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.14.函数y=的自变量x的取值范围为x≥﹣1.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.在某时刻的阳光照耀下,身高160cm的阿美的影长为80cm,她身旁的旗杆影长10m,则旗杆高为20m.【考点】相似三角形的应用.【专题】压轴题.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:据相同时刻的物高与影长成比例,设旗杆的高度为x(m)则160:80=x:10,解得x=20(m).故填20.【点评】命题立意:考查相似三角形的应用.16.如图,Rt △ABC 中,∠C=90°,∠A=30°,点O 在斜边AB 上,半径为2的⊙O 过点B ,切AC边于点D ,交BC 边于点E .则由线段CD 、CE 及DE 围成的阴影部分的面积为﹣π .【考点】扇形面积的计算. 【专题】压轴题.【分析】可连接OD 、OE ,用梯形OECD 和扇形ODE 的面积差来求出阴影部分的面积.过E 作EF ⊥OD 于F ,可在Rt △OEF 中,根据OE 的长和∠OEF 的度数,求得OF 的长,即可得出FD 即CE 的长,也就能求出梯形OECD 的面积.扇形ODE 中,扇形的圆心角易求得为60°,已知了圆的半径长,即可求出扇形ODE 的面积.由此可求出阴影部分的面积.【解答】解:连接OD ,OE ,则OD ⊥AC ,过点E 作EF ⊥OD 于F . 在Rt △OEF 中,OE=2,∠OEF=30°.∴OF=1,EF=.∴S 阴=S 梯形OECD ﹣S 扇形EOD =.【点评】此题主要考查阴影部分面积的求法.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.17.小红准备了五张形状、大小完全相同的不透明卡片,正面分别写﹣3、﹣1、0、1、3,将这五张卡片的正面朝下在桌面上,从中任意抽取一张,将卡片上的数字记为m ,再从剩下的卡片中任取一张卡片并把数字记为n,恰好使得关于x、y的二元一次方程组有整数解,且点(m,n)落在双曲线上的概率为.【考点】列表法与树状图法;二元一次方程组的解;反比例函数图象上点的坐标特征.【分析】列表或树状图将所有等可能的结果列举出来,然后利用概率公式求解即可.【解答】解:列表如下:∵共有20种等可能的结果,其中使得关于x、y的二元一次方程组有整数解,且点(m,n)落在双曲线上的有(﹣3,1),(﹣1,3),(3,﹣1)3种情况,∴使得关于x、y的二元一次方程组有整数解,且点(m,n)落在双曲线上的概率为,故答案为:.【点评】本题考查了列表法与树状图的知识,解题的关键是能够将所有等可能的结果列举出来,难度不大.18.在矩形ABCD中,BC=4,BG与对角线AC垂直且分别交AC,AD及射线CD于点E,F,G,当点F为AD中点时,AB=2.【考点】矩形的性质.【分析】证明△AEF∽△CEB,且相似比为1:2,得到EC=2AE,BE=2EF,即AC=3AE,BF=3EF,在三角形ABC和三角形ABF中,分别利用勾股定理得到AC2=AB2+BC2,BF2=AF2+AB2,将各自的值代入,两等式左右两边分别相加,得到9(AE2+FE2)=2x2+20,又在直角三角形ABE中,利用勾股定理得到AE2+FE2=AF2=22=4,列出关于x的方程,求出方程的解即可.【解答】解:∵点F为AD中点,四边形ABCD是矩形,∴AF=AD=2,AD=BC=4,∵矩形ABCD中,AD∥BC,∴∠EAF=∠ECB,∠AFE=∠CBE,∴△AEF∽△CEB,∴===,∴CE=2AE,BE=2FE,∴AC=3AE,BF=3FE,∵矩形ABCD中,∠ABC=∠BAF=90°,∴在Rt△ABC和Rt△BAF中,AB=x,分别由勾股定理得:AC2=AB2+BC2,BF2=AF2+AB2,即(3AE)2=x2+42,(3FE)2=22+x2,两式相加,得9(AE2+FE2)=2x2+20,又∵AC⊥BG,∴在Rt△AEF中,根据勾股定理得:AE2+FE2=AF2=4,∴36=2x2+20,解得:x=2或x=﹣2(舍去),∴x=2,即AB=2;故答案为:2.【点评】此题考查了相似三角形的判定与性质、矩形的性质以及勾股定理;掌握矩形的性质和三角形相似的判定与性质是解决问题的关键.三、解答题19.解不等式:2(x+3)﹣4>0,并把解集在下列的数轴上(如图)表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】首先去括号,再合并同类项,移项,再把x的系数化为1即可求出不等式组的解集,再在数轴上表示即可.【解答】解:2(x+3)﹣4>0,去括号得:2x+6﹣4>0,合并同类项得:2x+2>0,移项得:2x>﹣2,把x的系数化为1得:x>﹣1,在数轴上表示为:.【点评】此题主要考查了解一元一次不等式,解答这类题学生往往在解题时不注意去括号、移项要改变符号这一点而出错.做题过程中同学们一定要注意.20.达州市某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级,绘制了两种不完整统计图.根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有40人,扇形统计图中m=20,n=40,并把条形统计图补充完整.(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图,求A等级中一男一女参加比赛的概率.(男生分别用代码A1、A2表示,女生分别用代码B1、B2表示)【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据题意得:参加演讲比赛的学生共有:4÷10%=40(人),然后由扇形统计图的知识,可求得m,n的值,继而补全统计图;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与A等级中一男一女参加比赛的情况,再利用概率公式即可求得答案.【解答】解:(1)根据题意得:参加演讲比赛的学生共有:4÷10%=40(人),∵n%=×100%=30%,∴m%=1﹣40%﹣10%﹣30%=20%,∴m=20,n=30;如图:故答案为:40,20,40;(2)画树状图得:∵共有12种等可能的结果,A等级中一男一女参加比赛的有8种情况,∴A等级中一男一女参加比赛的概率为:=.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.21.先化简,再求值:÷(x﹣2﹣)﹣,其中x为方程5x+1=2(x﹣1)的解.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再求出x的值,代入原式进行计算即可.【解答】解:原式=÷﹣=•﹣=﹣=﹣,由方程5x+1=2(x﹣1),解得:x=﹣1,∴当x=﹣1时,原式=﹣=.【点评】本题主要考查分式的化简求值及解方程的能力,熟练运用分式的运算法则与分式的性质化简原式是解题的关键.22.我市准备在相距2千米的M,N两工厂间修一条笔直的公路,但在M地北偏东45°方向、N地北偏西60°方向的P处,有一个半径为0.6千米的住宅小区(如图),问修筑公路时,这个小区是否有居民需要搬迁?(参考数据:≈1.41,≈1.73)【考点】解直角三角形的应用-方向角问题.【分析】根据题意,在△MNP 中,∠MNP=30°,∠PMN=45°,MN=2千米,是否搬迁看P 点到MN 的距离与0.6的大小关系,若距离大于0.6千米则不需搬迁,反之则需搬迁,因此求P 点到MN 的距离,作PD ⊥MN 于D 点.【解答】解:过点P 作PD ⊥MN 于D∴MD=PD •cot45°=PD ,ND=PD •cot30°=PD ,∵MD+ND=MN=2,即PD+PD=2,∴PD==﹣1≈1.73﹣1=0.73>0.6. 答:修的公路不会穿越住宅小区,故该小区居民不需搬迁.【点评】考查了解直角三角形的应用﹣方向角问题,“化斜为直”是解三角形的基本思路,常需作垂线(高),原则上不破坏特殊角(30°、45°、60°).23.小王到某中式快餐店用餐,该快餐店的招牌餐是卤肉套饭和红烧肉套饭,其中每份红烧肉套饭比卤肉套饭贵了3元钱,小王发现若用150元买卤肉套饭数量是用90元买到的红烧肉套饭数量的两倍.(1)请帮小王计算一份卤肉套饭和一份红烧肉套饭售价各多少元?(2)该快餐店决定将成本为10元的卤肉套饭与成本为11.5元的红烧肉套饭采取送餐上门的销售形式,将每份卤肉套饭和红烧肉套饭在原售价基础上分别涨价20%和25%,这样一来,快餐店平均每天要多支出20元的交通成本(每月按30天算)和每份0.5元的打包成本.而该店每月只外送500份套餐,问:至多送出多少份卤肉套饭可产生不低于3600元的利润?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设卤肉饭售价为x 元/份,红烧肉套饭售价为(x+3)元/份,根据用150元买卤肉套饭数量是用90元买到的红烧肉套饭数量的两倍,列方程求解;(2)设送出去卤肉饭y 份,则送出去的红烧肉套饭为份,根据总利润不低于3600元,列不等式求解.【解答】解:(1)设卤肉饭售价为x 元/份,红烧肉套饭售价为(x+3)元/份,由题意,得: =×2,解得:x=15,经检验:x=15是原方程的根.答:卤肉饭的售价为15元/份,红烧肉套饭售价为18元/份.(2)设送出去卤肉饭y份,则送出去的红烧肉套饭为份,由题意得,(15×1.2﹣10)y+(18×1.25﹣11.5)﹣20×30﹣0.5×500≥3600,解得:y≤350.答:至多送出去卤肉饭350份可产生不低于3600元的利润.24.深化理解:新定义:对非负实数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n﹣≤x<n+,则<x>=n;反之,当n为非负整数时,如果<x>=n,则n﹣≤x<n+.例如:<0>=<0.48>=0,<0.64>=<1.49>=1,<2>=2,<3.5>=<4.12>=4,…试解决下列问题:填空:①<π>=3(π为圆周率);②如果<x﹣1>=3,则实数x的取值范围为 3.5≤x<4.5.若关于x的不等式组的整数解恰有3个,求a的取值范围.①关于x的分式方程+2=有正整数解,求m的取值范围;②求满足<x>=x 的所有非负实数x的值.【考点】一元一次不等式组的应用;分式方程的解.【分析】①利用对非负实数x“四舍五入”到个位的值记为<x>,进而得出<π>的值;②利用对非负实数x“四舍五入”到个位的值记为<x>,进而得出x的取值范围;首先将<a>看作一个字母,解不等式组进而根据整数解的个数得出a的取值范围;①先解方程,得出x=,再根据2﹣<m>是整数,x是正整数,得到2﹣<m>=1或2,进而得出<m>=0,则0≤m<0.5;②利用<x>=x,设x=k,k为整数,得出关于k的不等关系求出即可.【解答】解:①由题意可得:<π>=3;故答案为:3,②∵<x﹣1>=3,∴2.5≤x﹣1<3.5,∴3.5≤x<4.5;故答案为:3.5≤x<4.5;解不等式组得:﹣1≤x<<a>,由不等式组整数解恰有3个得,1<<a>≤2,故1.5≤a<2.5;①解方程得x=,∵2﹣<m>是整数,x是正整数,∴2﹣<m>=1或2,2﹣<m>=1时,x=2是增根,舍去.∴2﹣<m>=2,∴<m>=0,∴0≤m<0.5.②∵x≥0,x为整数,设x=k,k为整数,则x=k,∴<k>=k,∴k﹣≤k<k+,k≥0,∴0≤k≤2,∴k=0,1,2,则x=0,,.25.如图1,正方形ABCD中,AC是对角线,等腰Rt△CMN中,∠CMN=90°,CM=MN,点M在CD边上,连接AN,点E是AN的中点,连接BE.(1)若CM=2,AB=6,求AE的值;(2)求证:2BE=AC+CN;(3)当等腰Rt△CMN的点M落在正方形ABCD的BC边上,如图2,连接AN,点E是AN的中点,连接BE,延长NM交AC于点F.请探究线段BE、AC、CN的数量关系,并证明你的结论.【考点】四边形综合题.【分析】(1)根据正方形的性质和等腰直角三角形的性质知∠ACN=90°,运用勾股定理计算即可;(2)延长NC与AB的延长线交于一点G,AC+CN转化为GN,运用三角形的中位线性质易得证;(3)类比(2)易得BE=(AC﹣CN).【解答】解:(1)∵四边形ABCD是正方形,AB=6,∴AC=6,∵等腰Rt△CMN中,∠CMN=90°,CM=MN,CM=2,∴CN=2,∵∠ACN=90°,∴AN===4,∵点E是AN的中点,∴AE=2;(2)如图①,延长NC与AB的延长线交于一点G,则△ACG是等腰直角三角形,B为AG的中点,∴AC=CG∴GN=AC+CN,∵点E是AN的中点,∴BE=GN∴BE=AC+CN;(3)BE=(AC﹣CN)如图②,延长CN与AB的延长线交于一点G,则△ACG是等腰直角三角形,B为AG的中点,∴AC=CG,∴GN=AC﹣CN,∵点E是AN的中点,∴BE=GN,∴BE=(AC﹣CN).【点评】本题考查了正方形和等腰直角三角形的性质,勾股定理,三角形的中位线性质,把AN+CN 转化为一条线段是问题解决的关键.26.已知如图:抛物线y=﹣x2+2x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D为抛物线的顶点,过点D的对称轴交x轴于点E.(1)如图1,连接BD,试求出直线BD的解析式;(2)如图2,点P为抛物线第一象限上一动点,连接BP,CP,AC,当四边形PBAC的面积最大时,线段CP交BD于点F,求此时DF:BF的值;(3)如图3,已知点K(0,﹣2),连接BK,将△BOK沿着y轴上下平移(包括△BOK),在平移的过程中直线BK交x轴于点M,交y轴于点N,则在抛物线的对称轴上是否存在点G,使得△GMN 是以MN为直角边的等腰直角三角形?若存在,请直接写出点G的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)先求出B、D两点的坐标,利用待定系数法求直线BD的解析式;(2)作辅助线将四边形PBAC的面积分成三部分:两直角三角形和一个直角梯形,设点P的坐标和四边形PBAC的面积为S,利用等量关系列等式,化简后是关于S与m的二次函数,S有最大值即是顶点坐标,求出点P的坐标及直线PC的解析式,并求交点F的坐标,最后求出DF和BF的长和比值;(3)分二种情况进行讨论:①点M在对称轴的右侧时,设点G(2,y),求直线BK和MN的解析式,并表示出点M和N人坐标;根据△GMN是以MN为直角边的等腰直角三角形得出两直角三角形全等,由对应边相等列方程组可求出b和y的值,写出点G的坐标(2,);②点M在对称轴的左侧时,同理可求出点G的坐标为(2,﹣)或(2,﹣3).【解答】(1)令y=﹣x2+2x+中y=0,则﹣x2+2x+=0,则得x1=﹣1,x2=5,∴A(﹣1,0),B(5,0),对称轴x=﹣=2,当x=2时,y=﹣×22+2×2+=,∴D(2,),设直线BD的解析式为y=kx+b(k≠0),把点B(5,0),D(2,)代入得:,解得,∴BD的解析式为y=;(2)如图2所示,过P作PG⊥x轴,垂足为G,。

重庆市南开中学2016届九年级中考第一次模拟考试数学试题解析(解析版)

重庆市南开中学2016届九年级中考第一次模拟考试数学试题解析(解析版)

重庆市南开中学2016届九年级中考第一次模拟考试数学试题一、选择题:(本大题共12个小题,每小题4分,共48分),在每小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑1.下列实数是无理数的是()A.﹣1 B.0 C.πD.1 3【答案】C【解析】试题分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定:A、是整数,是有理数,故A选项错误;B、是整数,是有理数,故B选项错误;C、是无理数,故C选项正确;D、是分数,是有理数,故D选项错误.故选:C.考点:无理数2.如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于()A.30° B.45° C.60° D.90°【答案】A【解析】试题分析:由直角三角板的特点可得:∠C=30°,然后根据两直线平行内错角相等,即可求∠CAE=∠C=30°.故选A.考点:平行线的性质3.将点(1,﹣2)向右平移3个单位得到新的点的坐标为()A.(1,﹣5)B.(4,﹣2)C.(1,1)D.(﹣2,2)【答案】B【解析】试题分析:将点P(1,﹣2)向右平移3个单位,则点横坐标加3,纵坐标不变,即新的坐标为(4,﹣2).故选B.考点:坐标与图形变化-平移4.剪纸是中国的民间艺术,剪纸方法很多,如图是一种剪纸方法的图示(先将纸折叠,然后再剪,展开后即得到图案):下列四副图案中,不能用上述方法剪出的是()【答案】C【解析】试题分析:由题意知,剪出的图形一定是轴对称图形,四个选项中,只有C不是轴对称图形,所以C不能用上述方法剪出.故选C.考点:剪纸问题5.下列计算正确的是()A.(a2)3=a5B.(ab2)2=ab4C.a4÷a=a4D.a2•a2=a4【答案】D【解析】试题分析: A、利用幂的乘方运算法则 ,可得(a2)3=a6,故此选项错误;B、利用积的乘方运算法则,可得(ab2)2=a2b4,故此选项错误;C、用同底数幂的乘除运算法则,可得a4÷a=a3,故此选项错误;D、用同底数幂的乘除运算法则,可得a2•a2=a4,正确.故选:D.考点:1、同底数幂的除法;2、同底数幂的乘法;3、幂的乘方与积的乘方6.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8,OC=5,则OD的长为()A.1 B.2 C.2.5 D.3【答案】D【解析】试题分析:首先连接OB,由垂径定理即可求得BD=4,然后由勾股定理,在Rt△BOD中,=.故选D.考点:垂径定理7.下列说法正确的是()A.四个数2、3、5、4的中位数为4B.了解重庆初三学生备战中考复习情况,应采用普查C.小明共投篮25次,进了10个球,则小明进球的概率是0.4D.从初三体考成绩中抽取100名学生的体考成绩,这100名考生是总体的一个样本【答案】C【解析】试题分析: A、四个数2、3、5、4的中位数为3.5;故本选项错误;B、了解重庆初三学生备战中考复习情况,应采用抽查;故本选项错误;C、小明共投篮25次,进了10个球,则小明进球的概率是0.4;故本选项正确;D、从初三体考成绩中抽取100名学生的体考成绩,这100名考生的体考成绩是总体的一个样本;故本选项错误;故选:C.考点:1、概率公式;2、全面调查与抽样调查;3、总体、个体、样本、样本容量;4、中位数8.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是()A.54个B.90个C.102个D.114个【答案】B考点:规律型:图形的变化类9.关于x的方式方程232x mx+=-的解是正数,则m可能是()A.﹣4 B.﹣5 C.﹣6 D.﹣7【答案】B【解析】试题分析:先求出x=m+6,再根据解为正数列出关于m的不等式m+6>0及m+6≠2,求得m的取值范围为m>﹣6且m≠﹣4,再得出可能的m的值-5.故选B.考点:分式方程的解.10.甲、乙两组工人同时加工某种零件,乙组在工作中有一次停产更换设备,之后乙组的工作效率是原来的1.2倍,甲、乙两组加工出的零件合在一起装箱,每200件装一箱,零件装箱的时间忽略不计,两组各自加工零件的数量y(件)与时间x(时)的函数图象如图,以下说法错误的是()A.甲组加工零件数量y与时间x的关系式为y甲=40x B.乙组加工零件总量m=280C.经过122小时恰好装满第1箱D.经过344小时恰好装满第2箱【答案】D【解析】试题分析:∵图象经过原点及(6,240),设解析式为y=kx,则6k=240,解得k=40,∴甲组加工零件数量y与时间x的关系式为y甲=40x(0<x≤6),故(A)正确;∵乙2小时加工100件,∴乙的加工速度是每小时50件,∵乙组更换设备后,乙组的工作效率是原来的1.2倍,∴乙组的工作效率是每小时加工:50×1.2=60件,∴m=100+60×(6﹣3)=280,故(B)正确;乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为:y=100+60(x﹣3)=60x﹣80,当0≤x≤2时,40x+50x=200,解得:x=209(不合题意);当2<x≤3时,100+40x=200,解得:x=52(符合题意);∴经过122小时恰好装满第1箱,故(C)正确;∵当3<x≤6时,40x+(60x﹣80)=200×2,解得x=4.8(符合题意);∴经过4.8小时恰好装满第2箱,故(D)错误.故选:D考点:一次函数的应用11.如图,在平行四边形ABCD中,点P为边AB上一点,将△CBP沿CP翻折,点B的对应点B′恰好落在DA的延长线上,且PB′⊥AD,若CD=3,BC=4,则BP的长度为()A.43B.53C.34D.54【答案】A【解析】试题分析:由由折叠的性质可得:PB′=PB,∠PB′C=∠B,又由在平行四边形ABCD中,PB′⊥AD,求得△B′CD是直角三角形,继而求得DB′=5,然后设BP=x,则PB′=x,PA=3﹣x,在Rt△AB′P中,利用勾股定理即可求得x2+12=(3﹣x)2,x=43,即BP=43.故选A.考点:1、翻折变换(折叠问题);2、平行四边形的性质12.如图,抛物线y=2x2+bx+c的顶点在△OAB的边OB、AB上运动(不经过点O,点A),已知A(0,2),B (﹣2,1),则下列说法错误的是()A .0<b ≤8B .0<c ≤9C .1+2c >bD .b 2<8c ﹣16【答案】D【解析】试题分析:根据对称轴为x=﹣4b ,可得﹣2≤﹣4b <0, ∴0<b ≤8,A 正确;∵x=﹣2,y=1,∴8﹣2b+c=1,∴2b=7+c ,∵0<2b ≤16,∴0<7+c ≤16,又c >0,∴0<c ≤9,B 正确; 当x=﹣12时,y >0, ∴12﹣12b+c >0, ∴1+2c >b ,C 正确;∵抛物线与x 轴无交点,∴b 2﹣4ac <0,∴b 2﹣8c <0,D 错误,故选:D .考点:二次函数图象与系数的关系二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.2016年9月19日,重庆市第五届运动会开幕式将在溶陵区拉开大幕,组委会面向社会公开征集了主题门号、会徽、会歌,吉祥物等元素,共收到有效作品1600余件,数据1600用科学记数法表示为 .【答案】1.6×103【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.因此数据1600用科学记数法表示为1.6×103.考点:科学记数法—表示较大的数14.若实数a,b+|b+3|=0,则ab= .【答案】﹣6【解析】试题分析:根据非负数的性质可得:a﹣2=0,b+3=0,解得a=2,b=﹣3,则ab=﹣6.考点:非负数的意义15.两张形状大小背面完全相同的卡片上分别标有数字﹣4、﹣3、0、2,将卡片洗匀后背面朝上放在桌面上,从中任意抽取两张,则所抽卡片的数字都是方程x2+2x﹣8=0的解的概率是.【答案】1 6【解析】试题分析:首先解方程x2+2x﹣8=0,即(x﹣2)(x+4)=0,解得:x1=2,x2=﹣4,进而用树状图表示出所有的可能,如图所示:,由树状图可得一共有12种可能,符合题意的有2种情况,故所抽卡片的数字都是方程x2+2x﹣8=0的解的概率是:21 126=.考点:1、一元二次方程,2、概率—树状图16.如图,已知等边△ABC的三边分别与⊙O相切于点D、E、F,若AB=则图中阴影部分的面积为.(结果保留π)【答案】1 2π【解析】试题分析:根据等边△ABC的三边分别与⊙O相切于点D、E、F,于是得到BD=BE,CE=CF,∠B=∠C=60°,BC=AB=,推出△BDE和△CEF是等边三角形,根据等边三角形的性质得到∠BED=∠CEF=60°,,然后由扇形的面积公式即可得到阴影部分的面积=12π.考点:1、扇形面积的计算;2、等边三角形的性质;3、切线的性质17.如图,某社区一建筑物上,悬挂“创文明小区,建和谐社会”的宣传条幅AB,小明站在位于建筑物正前方的台阶上D点处测得条幅顶端A的仰角为36.5°,朝着条幅的方向走到台阶下的E点处,测得条幅顶端A的仰角为64°,已知台阶DE的坡度为1:2,DC=2米,则条幅AB的长度为米.(结果精确到0.1米,参考数据sin36.5°≈0.6,tan36.5°≈0.75,sin64°≈0.9,tan64°≈2.1)【答案】7.8【解析】试题分析:作DF⊥AB于点F,如右图所示,由题意可得,DF=CB,∵台阶DE的坡度为1:2,DC=2米,∴CE=2CD=4米,∵∠AFD=90°,∠ADF=36.5°,DC=2米,tan∠ADF=AF DF,∴tan36.5°=2AB DF-, 即DF=2tan 36.5AB -, 又∵∠ABE=90°,∠AEB=64°,CE=4米,CB=DF ,tan ∠AEB=AB BE, ∴BE=tan 64AB , 即DF ﹣4=tan 64AB , ∴2tan 36.5AB -﹣4=tan 64AB , 解得,AB ≈7.8米.考点:1、解直角三角形的应用-仰角俯角问题;2、解直角三角形的应用-坡度坡角问题18.如图,正方形ABCD ,以AB 为腰向外作等腰△ABE ,连接DE 交AB 于点F ,∠BAE 的平分线交EF 于点G ,过D 点作AG 的垂线交GA 的延长线于点H ,已知tan ∠EDA=34,S △AEF =9,则AH 的长为 .【解析】试题分析:由于△AEB 是等腰三角形,AG 是△AEB 的平分线,所以延长AG 交EB 于点I ,连接BG ,由题意可证明∠HGD=∠HDG=45°,∠BGF=90°,所以∠GBF=∠ADF ,利用设AH=x 后,用锐角三角形函数可表示出、x ,利用△AEF 的面积可求出△AHD 的面积AIB ADH S S 6==,进而列出方程12×7x 2=6,即可求出.考点:1、正方形的性质;2、等腰三角形的性质;3解直角三角形三、解答题:(本大题共2个小题,每小题7分,共14分),解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程中写在答题卡中对应的位置上19.计算:20160213(1)(3)()2π----⨯-. 【答案】3【解析】 试题分析:根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式20160213(1)(3)()2π----⨯-的值是多少即可.试题解析:20160213(1)(3)()2π----⨯- =3﹣1×1﹣3+4=3﹣1﹣3+4=3考点:1、实数的运算;2、零指数幂;3、负整数指数幂20.2016年3月20日上午8时,重庆国际马拉松赛在南滨路鸣枪开赛,来自30个国家和地区的3万多名跑者朝着快乐奔跑,最终埃塞俄比亚选手夺得男子组冠军,而女子全程前三名则由中国选手包揽.某校课外活动小组为了调查该校学生对“马拉松”喜爱的情况,随机对该校学生进行了调查,调查的结果分为“非常喜欢”、“比较喜欢”、“基本喜欢”、“不太喜欢”四个等级,分别记作A 、B 、C 、D .根据调查结果绘制成了两幅不完整的统计图,请解答下列总量:请你补全两种统计图并估算该校600名学生中“非常喜欢”马拉松的人数.【答案】270考点:1、条形统计图;2、用样本估计总体;3、扇形统计图四、解答题:(本大题共4个小题,每小题10分,共40分),解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程中写在答题卡中对应的位置上21.化简:(1)(a ﹣2b )(a+2b )﹣(2a ﹣b )2(2)22122()121x x x x x x x x ----÷+++. 【答案】(1)-3a 2-5b 2+4ab ;(2)21x x+ 【解析】试题分析:(1)根据平方差公式和完全平方公式可以解答本题;(2)先化简括号内的式子,然后根据分式的除法可以解答本题.试题解析:(1)(a-2b )(a+2b )-(2a-b )2=a 2-4b 2-4a 2+4ab-b 2=-3a 2-5b 2+4ab ; (2)22122()121x x x x x x x x ----÷+++ =2(1)(1)(2)(1)(1)(21)x x x x x x x x x -+--+⨯+- =22212(1)(1)(21)x x x x x x x x --++⨯+- =221(1)(1)(21)x x x x x x -+⨯+- =21x x+. 考点:1、分式的混合运算;2、完全平方公式;3、平方差公式 22.如图,已知一次函数y 1=kx+b (k ≠0)的图象与反比例函数28y x =-的图象交于A 、B 两点,与坐标轴交于M 、N 两点.且点A 的横坐标和点B 的纵坐标都是﹣2.(1)求一次函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出y 1>y 2时x 的取值范围.【答案】(1)y 1=﹣x+2,(2)6;(3)x <﹣2或0<x <4【解析】试题分析:(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(2)将两条坐标轴作为△AOB 的分割线,求得△AOB 的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.试题解析:(1)设点A 坐标为(﹣2,m ),点B 坐标为(n ,﹣2)∵一次函数y 1=kx+b (k ≠0)的图象与反比例函数y 2=﹣8x 的图象交于A 、B 两点 ∴将A (﹣2,m )B (n ,﹣2)代入反比例函数y 2=﹣8x可得,m=4,n=4 ∴将A (﹣2,4)、B (4,﹣2)代入一次函数y 1=kx+b ,可得4224k b k b =-+⎧⎨-=+⎩,解得12k b =-⎧⎨=⎩ ∴一次函数的解析式为y 1=﹣x+2;,(2)在一次函数y 1=﹣x+2中,当x=0时,y=2,即N (0,2);当y=0时,x=2,即M (2,0)∴AOB AON MON MOB S S S S =++=12×2×2+12×2×2+12×2×2=2+2+2=6; (3)根据图象可得,当y 1>y 2时,x 的取值范围为:x <﹣2或0<x <4考点:1、一次函数,2、反比例函数,3、三角形的面积23.富士康科技机关作为全球最大电子产品制造商,在“机器换人”的建设方面取得巨大进展,今年一月份它在大陆某“工业40”厂区的生产线上有A 、B 两种机器去组装小米5手机外壳(以下简称“外壳)”.每小时一台A 种机器人比一台B 种机器人多组装50个外壳,每小时10台A 种机器人和5台B 种机器人共组装3500个外壳.(1)求今年一月份每小时一台A 种机器人,一台B 种机器人分别能组装多少个外壳;(2)因市场销售火爆,二月份小米手机厂商决定在该厂区追加订单,该厂区随机对A 、B 两种机器人进行技术升级,二月底升级工作全面完成,升级后A 种机器人每小时组装的外壳数量增加12%,B 种机器人每小时组装的外壳数量增加15%,已知三月份投入生产的A 种机器人的台数比B 重机器人台数的2倍还多18台,且A 、B 两种机器人每小时组装的外壳数量之和不低于27160个,那么三月份该厂区最少应安排多少台B 种机器人投入生产.【答案】(1)250,200;(2)27【解析】试题分析:(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以列出相应的一元一次不等式,从而可以解答本题.试题解析:(1)设今年一月份每小时一台A 种机器人能组装x 个外壳,一台B 种机器人能组装y 个外壳, 501053500x y x y =+⎧⎨+=⎩, 解得,250200x y =⎧⎨=⎩, 即今年一月份每小时一台A 种机器人能组装250个外壳,一台B 种机器人能组装200个外壳;(2)设三月份该厂区最少应安排x 台B 种机器人投入生产,250(1+12%)(2x+18)+200(1+15%)x≥27160,解得,x≥26.2,即三月份该厂区最少应安排27台B种机器人投入生产.考点:1、一元一次不等式的应用;2、二元一次方程组的应用24.如果一个自然数可以表示为两个连续奇数的立方差,那么我们就称这个自然数为“麻辣数”.如:2=13﹣(﹣1)3,26=33﹣13,所以2、26均为“麻辣数”.【立方差公式a3﹣b3=(a﹣b)(a2+ab+b2)】(1)请判断98和169是否为“麻辣数”,并说明理由;(2)在小组合作学习中,小明提出新问题:“求出在不超过2016的自然数中,所有的‘麻辣数’之和为多少?”小组的成员胡图图略加思索后说:“这个难不倒图图,我们知道奇数可以用2k+1表示…,再结合立方差公式…”,请你顺着胡图图的思路,写出完整的求解过程.【答案】(1)不是(2)6860【解析】试题分析:(1)根据相邻两个奇数的立方差,可得答案;(2)根据相邻两个奇数的立方差,麻辣数的定义,可得答案.试题解析:设k为整数,则2k+1、2k﹣1为两个连续奇数,设M为“麻辣数”,则M=(2k+1)3﹣(2k﹣1)3=24k2+2;(1)98=53﹣33,故98是麻辣数;M=24k2+2是偶数,故169不是麻辣数;(2)令M≤2016,则24k2+2≤2016,解得k2≤100712<84,故k2=0,1,4,9,16,25,36,49,64,81,故M的和为24×(0+1+4+9+16+25+36+49+64+81)+2×10=6860.考点:平方差公式五、解答题:(本题共2小题,每小题12分,共24分,解答时每小题必须给出必要的演算过程或推理步骤) 25.如图,四边形ABCD为矩形,连接AC,AD=2CD,点E在AD边上.(1)如图1,若∠ECD=30°,CE=4,求△AEC的面积;(2)如图2,延长BA至点F使得AF=2CD,连接FE并延长交CD于点G,过点D作DH⊥EG于点H,连接AH,求证:AH+DH;(3)如图3,将线段AE 绕点A 旋转一定的角度α(0°<α<360°)得到线段AE′,连接CE′,点N 始终为CE′的中点,连接DN ,已知CD=AE=4,直接写出DN 的取值范围.【答案】(1)12﹣(2)证明见解析(3)<DN ≤【解析】试题分析:(1)根据30°的直角三角形求CD 和ED ,再利用面积公式求△AEC 的面积;(2)作辅助线,构建全等三角形,证明△AFM ≌△ADH ,得AM=AH ,FM=DH ,则△MAH 是等腰直角三角形,有AH ,根据线段的和代入得结论;(3)根据将线段AE 绕点A 旋转一定的角度α(0°<α<30°)得到线段AE′,先计算当AE 旋转时DN 的最小值和最大值,当α=0°时,DN 最小;当α=180°时,DN 最大,分别计算,写出结论. 试题解析:(1)在Rt △EDC 中,∵∠EDC=30°,∴ED=12EC=12×4=2,cos30°=DC EC,,∴AE=2DC ﹣﹣2,∴AEC S =12×AE ×DC=12(2)×﹣; (2)过A 作AM ⊥AH ,交FG 于M ,∴∠MAH=∠MAD+∠DAH=90°,又∵∠FAD=∠MAD+∠FAM=90°,∴∠FAM=∠DAH ,∵AF∥CD,∴∠F=∠FGD∵DH⊥EG,∴∠DHE=∠HDG+∠FGD=90°,∠EDG=∠EDH+∠HDG=90°,∴∠FGD=∠EDH,∴∠F=∠EDH,又∵AF=2CD,AD=2CD,∴AF=AD,∴△AFM≌△ADH,∴AM=AH,FM=DH,∴△MAH是等腰直角三角形,∴AH,∵FH=MH+FM,∴AH+DH;(3)∵线段AE绕点A旋转一定的角度α(0°<α<306°)得到线段AE′,∴E′的运动轨迹是一个以点A为圆心半径为4的圆,当α=0°时,点E′在AD中点,如图3,∵四边形ABCD为矩形,CD=AE=4,AD=2CD,∴∠CDE′=90°,DE′=CD=4,∴△CDE′是等腰三角形,又∵N 是CE′的中点,∴CE′⊥DN ,此时DN 的值最小为;当α=180°时,E′在AD 的延长线上,DN 最长,过N 作CD 垂线交CD 于点M ,∵DE′=AE′+AD=12,CD=4,∵MN ⊥DC ,DE′⊥DC ,∴MN ∥DE′,∴△CDE′∽△CMN , ∴''MN CN DE CE ==12, ∴MN=6,则CM=DM=2,∴在Rt △DMN 中,∵0°<α<360°∴<DN ≤考点:四边形综合题26.已知抛物线y=﹣13x 2+13x+4交x 轴于点A 、B ,交y 轴于点C ,连接AC 、BC .(1)求交点A、B的坐标以及直线BC的解析式;(2)如图1,动点P从点B出发以每秒5个单位的速度向点O运动,过点P作y轴的平行线交线段BC于点M,交抛物线于点N,过点N作NC⊥BC交BC于点K,当△MNK与△MPB的面积比为1:2时,求动点P的运动时间t的值;(3)如图2,动点P 从点B出发以每秒5个单位的速度向点A运动,同时另一个动点Q从点A出发沿AC 以相同速度向终点C运动,且P、Q同时停止,分别以PQ、BP为边在x轴上方作正方形PQEF和正方形BPGH (正方形顶点按顺时针顺序),当正方形PQEF和正方形BPGH重叠部分是一个轴对称图形时,请求出此时轴对称图形的面积.【答案】(1)y=﹣x+4(2)PB=1,t=15(3)①1125242②494【解析】试题分析:(1)令y=0,解方程﹣13x2+13x+4=0,即可求出A、B坐标,再利用待定系数法求出直线BC.(2)如图1中,设P(a,0),只要证明MN=PB,列出方程即可解决问题.(3)①如图2中,当轴对称图形为筝型时,列出方程求出运动时间即可,②如图3中,当轴对称图形是正方形时,列出方程求出时间即可.试题解析:(1)令y=0,则﹣13x2+13x+4=0,解得x=4或﹣3,∴点A坐标(﹣3,0),点B坐标(4,0),设直线BC解析式为y=kx+b,把B(4,0).C(0,4)代入得440bk b=⎧⎨+=⎩,解得14kb=-⎧⎨=⎩,∴直线BC解析式为y=﹣x+4.(2)如图1中,∵PN∥OC,NK⊥BC,∴∠MPB=∠MKN=90°,∵∠PMB=∠NMK,∴△MNK∽△MPB,∵△MNK与△MPB的面积比为1:2,∴MN,∵OB=OC,∴∠PBM=45°,∴B,∴MN=PB,设P(a,0),则MN=﹣13a2+13a+4+a﹣4=﹣13a2+43a,BP=4﹣a,∴﹣13a2+43a=4﹣a,解得a=3或4(舍弃),∴PB=1,t=15.(3)如图2中,当轴对称图形为筝型时,PF=PG,GM=FM,∵BP=PG=AQ,PQ=PF,∴AQ=PQ=5t,过点Q作QN⊥AP,则AN=NP,由△AQN∽△ACQ,∴AQ AN AC AO=,∴553t AN=,∴AN=3t,∴AP=2AN=6t,∵AP+BP=AB,∴5t+6t=7,∴t=7 11,∴PB=PF=35 11,由△ACO∽△FPR∽△MFT,∴FP AC FR AO=,∴FR=2111,TF=1411,∴FM AC TF AO=,∴FM=35 22,∴S=2×12×PF×FM=1125242.②如图3中,当轴对称图形是正方形时,3t+5t=7,∴t=78,∴S=494.考点:二次函数综合题。

重庆市2016年中考数学试题和答案

重庆市2016年中考数学试题和答案

分,考试时间
共有17颗星,。

,按此规律,图形8中星星的颗数是(C)A.43 B.45 C.51 D.53
2
某办公大楼正前方有一根高度是
到大楼前梯砍底边的距离
A.30.6米 D.39.4
a,b
为增强学生体质,某中学在体育课中加强了学生的长跑训练。

在一次女子
解析:根据坐标分别求出中间实线和虚线的解析式,联立解方程即可求得交点坐标,横坐标即为所求
(第18题)
千克猪肉至少要花
日猪肉价格为每千克
我们知道,任意一个正整数
对任意一个完t=35
在BC
D
中的△
探索
可得BF=DE=CE,∠FBN=∠NDE,
则∠ACE=90°-∠DCB
∠ABF=∠BDE-∠ABN=∠180°-∠
AF=AE
作x
AB
解:(1)C(2,-1).
,可得由,带入二次函数解析式可得。

重庆市初中毕业暨高中招生考试数学试卷(A)含答案

重庆市初中毕业暨高中招生考试数学试卷(A)含答案

重庆市2016年初中毕业暨高中招生考试数学试卷(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括辅助线)请一律用黑色签字笔完成;4.考试结束,由监考人员将试题和答题卡一并回收.参考公式:抛物线)0(a 2≠++=c bx ax y 的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22,对称轴为a bx 2-= 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A 、B 、C 、D 的四个答案,其中只有一个是正确的,请讲答题卡上题号右侧正确答案所对应的框涂黑. 1、在实数2-,2,0,1-中,最小的数是() A.2- B.2C.0D.1-2.下列图形中是轴对称的是()A BCD3.计算23a a ⋅正确的是()A.aB.5a C.6a D.9a4.下列调查中,最适合采用全面调查(普查)方式的是() A.对重庆市直辖区内长江流域水质情况的调查 B.对乘坐飞机的旅客是否携带违禁物品的调查 C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查5.如图,AB//CD ,直线l 交AB 于点E ,交CD 于点F ,若∠2=80°,则∠1等于()A.120°B.110°C.100°D.80°6.若1,2==b a ,则32++b a 的值为() A.-1 B.3 C.6 D.57.函数21+=x y 中,x 的取值范围是()A.0≠xB.2->xC.2-<xD.2≠x8.△ABC 与△DEF 的相似比为1:4,则△ABC 与△DEF 的周长比为() A.1:2 B.1:3 C.1:4D.1:16 9.如图,以AB 为直径,点O 为圆心的半径经过点C ,若2==BC AB ,则图中阴影部分的面积是()A.4πB.421π+ C.2πD.221π+10.下列图形都是有同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列下去,第⑦个图形中小圆圈的个数为()A.64B.77C.80D.8511.某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图在点A 处测得直立于地面的大树顶端C 的仰角为36°,然后沿同一剖面的斜坡AB 行走13米至坡顶B 处,然后再沿水平方向行走6米至大树脚底点D 处,斜面AB 的坡度(或坡比)i=1:2.4,那么大树CD 的高度约为()(参考数据:sin36°≈0.95,cos36°≈0.81,tan36°≈0.73)A.8.1米B.17.2米C.19.7米D.25.5米12.从3,1,21,1-,3-这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组⎪⎩⎪⎨⎧<-≥+03)72(31a x x 无解,且使关于x 的分式方程1323-=----xa x x 有整数解,那么这5个数中所有满足条件的a 的值之和是() A.-3B.-2C.23-D.21 二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上。

2016年重庆市中考数学标准测试卷

2016年重庆市中考数学标准测试卷

2016年重庆市中考数学标准测试卷一、选择题(每小题4分,共48分)1.(4分)(2016•重庆模拟)下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.(4分)(2016•安陆市模拟)雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米 D.2×10﹣4米3.(4分)(2016•重庆模拟)计算:(﹣a2)3()A.a6B.﹣a6C.a5D.﹣a54.(4分)(2016•重庆模拟)如果是二次根式,那么x,y应满足的条件是()A.x≥1,y≥0 B.(x﹣1)•y≥0 C.≥0 D.x≥1,y>05.(4分)(2016•重庆模拟)如图,已知AB⊥GH,CD⊥GH,直线CD,EF,GH相交于一点O,若∠1=42°,则∠2等于()A.130°B.138°C.140°D.142°6.(4分)(2016•重庆模拟)2015年7月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是357.(4分)(2016•重庆模拟)对于非零的两个实数a,b,规定a*b=﹣,若5*(3x﹣1)=2,则x的值为()A.B.C.D.﹣8.(4分)(2016•重庆模拟)在如图所示的矩形ABCD中,已知MN丄MC,且M为AD 的中点,AN=2,tan∠MCN=,则AB等于()A.32 B.28 C.36 D.409.(4分)(2016•重庆模拟)如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A﹣B﹣C﹣O的路线勻速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()A.B.C.D.10.(4分)(2016•重庆模拟)在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y1≠y2时,取y1,y2中的较大值记为N;当y1=y2时,N=y1=y2.则下列说法:①当0<x <2时,N=y1;②N随x的增大而增大的取值范围是x<0;③取y1,y2中的较小值记为M,则使得M大于4的x值不存在;④若N=2,则x=2﹣或x=1.其中正确的有()A.1个B.2个C.3个D.4个11.(4分)(2016•重庆模拟)观察图中菱形四个顶点所标的数字规律,可知数2015应标在()A.第502个菱形的左边B.第502个菱形的右边C.第504个菱形的左边D.第503个菱形的右边12.(4分)(2016•重庆模拟)如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A.6 B.9 C.10 D.12二、填空题(本大题有6小题,每小题4分,共24分)13.(4分)(2016•重庆模拟)的倒数是.14.(4分)(2016•重庆模拟)如图所示,在△ABC中,DE∥BC,若AD=1,DB=2,则=.15.(4分)(2016•重庆模拟)如图,已知正方形ABCD的边长为12,BM=CN=5,CM,DN交于点O.则下列结论:①DN⊥MC;②DN垂直平分MC;③sin∠OCD=;④S△ODC=S四边形BMON中,正确的有(填写序号)16.(4分)(2016•重庆模拟)今年某市中考增加了体育测试科目,考生考试顺序和考试项目(考生从考试的各个項目中抽取一項作为考试項目)由抽签的方式决定,具体操作流程是①每位考生从写有A,B,C的三个小球中随机抽取一个小球确定考试组別;②再从写有“引体向上””立定跳远”“800米”的抽签纸中抽取一个考试项目进行测试,则考生小明抽到A组“引体向上”的概率是.17.(4分)(2016•重庆模拟)已知正方形ABCD的边长为a,分别以B,D为圆心,以a 为半径画弧,如图所示,则阴影部分的面积为.18.(4分)(2016•重庆模拟)如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=.三、解答题(每小题7分,共14分)19.(7分)(2016•重庆模拟)计算:(+1)0+(﹣1)2015+sin45°﹣()﹣1.20.(7分)(2016•重庆模拟)如图,在锐角三角形ABC中,AB=10,AC=2,sinB=.(1)求tanC;(2)求线段BC的长.四、解答题(共4小题,每小题10分,共40分)21.(10分)(2016•重庆模拟)先化简,再求值:(﹣)÷(﹣),其中x=,y=1.22.(10分)(2016•重庆模拟)中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因:①红绿灯设置不科学,交通管理混乱;②侥幸心态;③执法力度不够;④从众心理.该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调査了名行人;(2)求图1中④所在扇形的圆心角,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.23.(10分)(2016•重庆模拟)受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?24.(10分)(2016•重庆模拟)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,过点D作DH丄AB于H,交AO于G,连接0H.(1)求证:AG•GO=HG•GD;(2)若∠ABC=120°,AB=6,求OG的长.五、解答题(共2小题,每小题12分,共24分)25.(12分)(2016•重庆模拟)如图,已知抛物线y=﹣(x+2)(x﹣a)(a>0)与x轴交于点A,B(点A在点B右侧),与y轴交于点C,抛物线过点N(6,一4).(1)求实数a的值;(2)在抛物线的对称轴上找一点H,使得BH+CH最小,求出点H的坐标;(3)若把题干中“抛物线过点N(6,﹣4)”这一条件去掉,试问在第四象限内,抛物线上是否存在点F,使得以点B,A,F为顶点的三角形与△BAC相似?若存在,求a的值;若不存在,请说明理由.26.(12分)(2016•重庆模拟)如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.2016年重庆市中考数学标准测试卷参考答案与试题解析一、选择题(每小题4分,共48分)1.(4分)(2016•重庆模拟)下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.2.(4分)(2016•安陆市模拟)雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米 D.2×10﹣4米【解答】解:20微米=20÷1 000 000米=0.00002米=2×10﹣5米,故选:C.3.(4分)(2016•重庆模拟)计算:(﹣a2)3()A.a6B.﹣a6C.a5D.﹣a5【解答】解:(﹣a2)3=﹣a6,故选B.4.(4分)(2016•重庆模拟)如果是二次根式,那么x,y应满足的条件是()A.x≥1,y≥0 B.(x﹣1)•y≥0 C.≥0 D.x≥1,y>0【解答】解:根据二次根式有意义的条件可知,x,y满足≥0时,是二次根式.故选:C.5.(4分)(2016•重庆模拟)如图,已知AB⊥GH,CD⊥GH,直线CD,EF,GH相交于一点O,若∠1=42°,则∠2等于()A.130°B.138°C.140°D.142°【解答】解:如图:∵AB⊥GH,CD⊥GH,∴∠GMB=∠GOD=90°,∴AB∥CD,∴∠BPF=∠1=42°,∴∠2=180°﹣∠BPF=180°﹣42°=138°,故选B.6.(4分)(2016•重庆模拟)2015年7月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是35【解答】解:A、31出现了3次,出现的次数最多,则众数是31,故本选项错误;B、把这些数从小到大排列为30,31,31,31,33,33,35,最中间的数是31,则中位数是31,故本选项正确;C、这组数据的平均数是(30+31+31+31+33+33+35)÷7=32,故本选项错误;D、极差是:35﹣30=5,故本选项错误;故选B.7.(4分)(2016•重庆模拟)对于非零的两个实数a,b,规定a*b=﹣,若5*(3x﹣1)=2,则x的值为()A.B.C.D.﹣【解答】解:根据题意得:﹣=2,解得:x=;经检验x=是原方程的解;故选B.8.(4分)(2016•重庆模拟)在如图所示的矩形ABCD中,已知MN丄MC,且M为AD 的中点,AN=2,tan∠MCN=,则AB等于()A.32 B.28 C.36 D.40【解答】解:∵MN丄MC,tan∠MCN=,∴=,∵∠AMN+∠DMC=90°,∠AMN+∠ANM=90°,∴∠ANM=∠DMC,∵∠A=∠D=90°,∴△AMN∽△DCM,∴==,∵AN=2,∴MD=8,∵M为AD的中点,∴AM=8,∵△AMN∽△DCM,∴==,∴=,∴DC=32,∴AB=32.故选A.9.(4分)(2016•重庆模拟)如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A﹣B﹣C﹣O的路线勻速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()A.B.C.D.【解答】解:∵A(4,0)、C(0,4),∴OA=AB=BC=OC=4,①当P由点A向点B运动,即0≤t≤4,S=OA•AP=2t;②当P由点A向点B运动,即4<t≤8,S=OA•AP=8;③当P由点A向点B运动,即8<t≤12,S=OA•AP=2(12﹣t)=﹣2t+24;结合图象可知,符合题意的是A.故选:A.10.(4分)(2016•重庆模拟)在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y1≠y2时,取y1,y2中的较大值记为N;当y1=y2时,N=y1=y2.则下列说法:①当0<x <2时,N=y1;②N随x的增大而增大的取值范围是x<0;③取y1,y2中的较小值记为M,则使得M大于4的x值不存在;④若N=2,则x=2﹣或x=1.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:由题意和图象可知:x≤0时,N=y2,M=y1;0<x≤2时,N=y1,M=y2;x>2时,M=y1,N=y2∴当0<x<2时,N=y1,故①正确;由图象可知,N的值随x的增大而增大,x为全体实数,故②错误;因为二次函数的最大值为4,而M为y1,y2中的较小值,故M的最大值为4,故③正确;由图象和题意可知,N=2时,0<x<2,N=y1,故对应的x值只有一个,故④错误.由上可得,①③正确,②④错误.故选项A错误,选项B正确,选项C错误,选项D错误.故选B.11.(4分)(2016•重庆模拟)观察图中菱形四个顶点所标的数字规律,可知数2015应标在()A.第502个菱形的左边B.第502个菱形的右边C.第504个菱形的左边D.第503个菱形的右边【解答】解:由已知图形可知,每四个数字一循环,∵2015÷4=503…3,∴在第504个图形上,余数是3,则与第一个图形中3的位置相同,即在左边.故选:C.12.(4分)(2016•重庆模拟)如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A.6 B.9 C.10 D.12【解答】解:过点B作BE⊥x轴于E,延长线段BA,交y轴于F,∵AB∥x轴,∴AF⊥y轴,∴四边形AFOD是矩形,四边形OEBF是矩形,∴AF=OD,BF=OE,∴AB=DE,∵点A在双曲线y=上,∴S矩形AFOD=3,同理S矩形OEBF=k,∵AB∥OD,∴==,∴AB=2OD,∴DE=2OD,∴S矩形OEBF=3S矩形AFOD=9,∴k=9,故选B.二、填空题(本大题有6小题,每小题4分,共24分)13.(4分)(2016•重庆模拟)的倒数是.【解答】解:根据倒数的定义得:的倒数是.故答案为:.14.(4分)(2016•重庆模拟)如图所示,在△ABC中,DE∥BC,若AD=1,DB=2,则=.【解答】解:DE∥BC,∴△ADE∽△ABC,∴=()2=()2,∵AD=1,DB=2,∴,∴.故答案为:.15.(4分)(2016•重庆模拟)如图,已知正方形ABCD的边长为12,BM=CN=5,CM,DN交于点O.则下列结论:①DN⊥MC;②DN垂直平分MC;③sin∠OCD=;④S△ODC=S四边形BMON中,正确的有①③④(填写序号)【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠BCD=90°,在△BMC和△CND中,,∴△BMC≌△CND,∴∠MCB=∠NDC.又∠MCN+∠MCD=90°,∴∠MCD+∠NDC=90°,∴∠DOC=90°,∴DN⊥MC,故①正确;在Rt△CDN中,∵CD=12,CN=5,∴DN==13.又∵∠BCD=90°,∠COD=90°∴NC•CD=ND•OC,∴OC=,OM=13﹣=,∴OC≠OM,故②错误;∵∠DNC+∠NDC=90°,∠ODC+∠OCD=90°,∴∠OCD=∠DNC,∴sin∠OCD=sin∠DNC==,故③正确;∵△BMC≌△CND,∴S△BMC=S△CNDS△BMC﹣S△CNC=S△CND﹣S△CNC,即S四边形BMON=S△ODC,故④正确.综上,正确的结论是①③④.故答案为①③④.16.(4分)(2016•重庆模拟)今年某市中考增加了体育测试科目,考生考试顺序和考试项目(考生从考试的各个項目中抽取一項作为考试項目)由抽签的方式决定,具体操作流程是①每位考生从写有A,B,C的三个小球中随机抽取一个小球确定考试组別;②再从写有“引体向上””立定跳远”“800米”的抽签纸中抽取一个考试项目进行测试,则考生小明抽到A组“引体向上”的概率是.【解答】解:分别用D,E,F表示“引体向上””立定跳远”“800米”,画树状图得:∵共有9种等可能的结果,∴小明抽到A组“引体向上”的概率=.故答案为.17.(4分)(2016•重庆模拟)已知正方形ABCD的边长为a,分别以B,D为圆心,以a 为半径画弧,如图所示,则阴影部分的面积为(π﹣1)a2.【解答】解:∵S扇形ABC+S扇形ADC=S阴影部分+S正方形ABCD,∴S阴影部分=2וπ•a2﹣a2=(π﹣1)a2.故答案为(π﹣1)a2.18.(4分)(2016•重庆模拟)如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=40°.【解答】解:连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠ABC=50°,∴∠CAD=90°﹣∠D=40°.故答案为:40°.三、解答题(每小题7分,共14分)19.(7分)(2016•重庆模拟)计算:(+1)0+(﹣1)2015+sin45°﹣()﹣1.【解答】解:原式=1﹣1+1﹣3=﹣2.20.(7分)(2016•重庆模拟)如图,在锐角三角形ABC中,AB=10,AC=2,sinB=.(1)求tanC;(2)求线段BC的长.【解答】解:(1)如图,过点A作AD⊥BC于D,在Rt△ABD中,AB=10,sinB==,∴=,∴AD=6,在Rt△ACD中,由勾股定理得CD2=AC2﹣AD2,∴CD2=(2)2﹣62=16,∴CD=4,∴tanC===;(2)在Rt△ABD中,AB=10,AD=6,∴由勾股定理得BD=8,由(1)得CD=4,∴BC=BD+CD=12.四、解答题(共4小题,每小题10分,共40分)21.(10分)(2016•重庆模拟)先化简,再求值:(﹣)÷(﹣),其中x=,y=1.【解答】解:原式=[﹣][﹣] =•=•=﹣,当x=,y=1是,原式=﹣=2﹣3.22.(10分)(2016•重庆模拟)中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因:①红绿灯设置不科学,交通管理混乱;②侥幸心态;③执法力度不够;④从众心理.该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调査了200名行人;(2)求图1中④所在扇形的圆心角,并补全图2;(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.【解答】解:(1)2÷%=200(名);(2)④所在扇形的圆心角×360°=126°,③的人数200×9%=18人,②的人数200﹣18﹣2﹣70=110人,第②种情况110人,第③种情况18,补全图形如图:.(3)p==,他属于第②种情况的概率为.23.(10分)(2016•重庆模拟)受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?【解答】解:(1)设从甲养殖场调运鸡蛋x斤,从乙养殖场调运鸡蛋y斤,根据题意得:,解得:,∵500<800,700<900,∴符合条件.答:从甲、乙两养殖场各调运了500斤,700斤鸡蛋;(2)从甲养殖场调运了x斤鸡蛋,从乙养殖场调运了(1200﹣x)斤鸡蛋,根据题意得:,解得:300≤x≤800,总运费W=200×0.012x+140×0.015×(1200﹣x)=0.3x+2520,(300≤x≤800),∵W随x的增大而增大,∴当x=300时,W最小=2610元,∴每天从甲养殖场调运了300斤鸡蛋,从乙养殖场调运了900斤鸡蛋,每天的总运费最省.24.(10分)(2016•重庆模拟)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,过点D作DH丄AB于H,交AO于G,连接0H.(1)求证:AG•GO=HG•GD;(2)若∠ABC=120°,AB=6,求OG的长.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∵DH⊥AB于H,∴∠DHA=∠DOG=90°,∵∠AGH=∠DGO,∴△AGH∽△DGO,∴,∴AG•GO=HG•GD;(2)解:∵四边形ABCD是菱形,∠ABC=120°,∴∠DAB=60°,AB=AD=6,∴△ABD是等边三角形,∵AC⊥DB,OD=OB=BD=3,∵DH⊥AB,∴∠ODG=30°,∴OG=OD•tan30°=.五、解答题(共2小题,每小题12分,共24分)25.(12分)(2016•重庆模拟)如图,已知抛物线y=﹣(x+2)(x﹣a)(a>0)与x轴交于点A,B(点A在点B右侧),与y轴交于点C,抛物线过点N(6,一4).(1)求实数a的值;(2)在抛物线的对称轴上找一点H,使得BH+CH最小,求出点H的坐标;(3)若把题干中“抛物线过点N(6,﹣4)”这一条件去掉,试问在第四象限内,抛物线上是否存在点F,使得以点B,A,F为顶点的三角形与△BAC相似?若存在,求a的值;若不存在,请说明理由.【解答】解:(1)∵抛物线y=﹣(x+2)(x﹣a)(a>0)过点N(6,一4),∴﹣4=,解得,a=4,即实数a的值为4;(2)∵a=4∴令y=0,得x1=﹣2,x2=4;令x=0,得y=2∴点A的坐标为(4,0),点B的坐标为(﹣2,0),点C的坐标为(0,2)∵点A和点B关于抛物线的对称轴x=对称,∴在抛物线的对称轴上找一点H,使得BH+CH最小,即AH+CH最小,连接AC,则AC 与抛物线的对称轴x=1的交点即为所求如下图所示:设过点A(4,0),C(0,2)的直线解析式为:y=kx+b则解得k=,b=2∴y=令x=1代入y=,得y=∴点H的坐标为(1,)即点H的坐标为(1,)时,使得BH+CH最小;(3)①作BF∥AC交抛物线于点F,如图:则∠FBA=∠BAC,由y=﹣(x+2)(x﹣a)=﹣,令x=0,则y=2,∴C(0,2),又∵A(a,0),∴AC的解析式为y=,设BF的解析式为y=,∵BF过点B(﹣2,0),∴b=,∴BF的解析式为:y=,∴,解得:F(a+2,﹣2﹣),∴BF=∵△BFA∽△ABC,∴AB2=BF•AC,∴,化简整理得:16=0,不存在这种情形,即这种情况不存满足要求的F点;②∵B(﹣2,0),C(2,0),∴BC的解析式为y=x+2,∠ABC=45°,在x轴下方作∠ABF=∠ABC=45°,如图:∴BF⊥BC,∴BF的解析式为y=﹣x﹣2,∴,解得:F(2a,﹣2a﹣2),∴BF=,∵△BFA∽△BAC,∴AB2=BF•BC,∴,整理得:a2﹣4a﹣4=0,解得a=或a=(舍去),综上所述,a=时,以点B,A,F为顶点的三角形与△BAC相似.26.(12分)(2016•重庆模拟)如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.【解答】解:(1)∵∠DAC=30°,∠ACD=90°,AD=8,∴CD=4,AC=4.又∵四边形ABCD为平行四边形,∴四边形ABCD的面积为4×4=16.(2)如图1,当∠EMC=90°时,四边形DCEF是菱形.∵∠EMC=∠ACD=90°,∴DC∥EF.∵BC∥AD,∴四边形DCEF是平行四边形,∠BCA=∠DAC.由(1)可知:CD=4,AC=4.∵点M为AC的中点,∴CM=2.在Rt△EMC中,∠CME=90°,∠BCA=30°.∴CE=2ME,可得ME2+(2)2=(2ME)2,解得:ME=2.∴CE=2ME=4.∴CE=DC.又∵四边形DCEF是平行四边形,∴四边形DCEF是菱形.(3)点E在运动过程中能使△BEM为等腰三角形.理由:如图2,过点B作BG⊥AD与点G,过点E作EH⊥AD于点H,连接DM.∵DC∥AB,∠ACD=90°,∴∠CAB=90°.∴∠BAG=180°﹣30°﹣90°=60°.∴∠ABG=30°.∴AG==2,BG=2.∵点E的运动速度为每秒1个单位,运动时间为t秒,∴CE=t,BE=8﹣t.在△CEM和△AFM中,∴△CEM≌△AFM.∴ME=MF,CE=AF=t.∴HF=HG﹣AF﹣AG=BE﹣AF﹣AG=8﹣t﹣2﹣t=6﹣2t.∵EH=BG=2,∴在Rt△EHF中,ME===.∵M为平行四边形ABCD对角线AC的中点,∴D,M,B共线,且DM=BM.∵在Rt△DBG中,DG=AD+AG=10,BG=2,∴BM==2.要使△BEM为等腰三角形,应分以下三种情况:当EB=EM时,有,解得:t=5.2.当EB=BM时,有8﹣t=2,解得:t=8﹣2.当EM=BM时,由题意可知点E与点B重合,此时点B、E、M不构成三角形.综上所述,当t=5.2或t=8﹣2时,△BEM为等腰三角形.参与本试卷答题和审题的老师有:ZJX;sd2011;1987483819;1286697702;zjx111;lantin;守拙;73zzx;张国明;HLing;王学峰;wd1899;gsls;zcx;sks;张其铎;2300680618;LG;梁宝华(排名不分先后)菁优网2016年4月8日。

重庆市初中毕业暨高中招生考试数学模拟试题及答案

重庆市初中毕业暨高中招生考试数学模拟试题及答案

数学模拟试题(全卷共五个大题,满分150分,考试时间120分钟)b 4ac — b 2参考公式:抛物线 y = ax 2 • bx • c (a = 0)的顶点坐标为(- 一, ----------- ),2a 4a对称轴为x —.2a一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面, 都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将 答题卡上题号右侧正确答案所对应的方框涂黑。

1.在1,- 1,0,2这四个数中,最小的数的是()4 1A 、一B 、一 1C 、0D 、242.下列图形是中心对称图形而不是轴对称图形的是()A. a 6b 3B. a 2b 3C. a 5b 34. 下列调查中,最适合采用普查方式的是( A. 调查一批灯泡的使用寿命B. 调查全国人民对延迟退休政策的态度C .调查某航班的旅客是否携带了违禁物品D .调查全国人民对里约奥运会的收视情况 5、( 2015浙江嘉兴,6, 4分)与无理数^31最接近的整数是()A. 4B. 5C. 6D. 7如图,在L ABCD 中,E 为CD 上一点,连接 AE 、S DEF : S ,ABF = 4: 25,则 DE : EC —(代数式[•有意义,则x+1x >2 B . X >- 2 C . (重庆市西南大学附中 2016-2017学年九年级(上)入学数学试卷)A . 0B . 1C . 2(重庆市西南大学附中如图,在边长为6的菱形ABCD 中,/ DAB=60,以点D 为圆心,菱形的高 DF重庆市20XX 年初中毕业暨高中招生考试6、 A 、 2: 5 B 、 2: 3 C 、 3: 5 D 、 3: X 的取值范围是(7.9.x >- 2 且 X M 0 D .2 且 X M - 1X >-8、 .若 b= + .+1, 则a -3b+1的值为(D . 32016-2017学年九年级(上)入学数学试卷)A. 96 B . ③②为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是( A )A. 18*怎-9nB. 18- 3n C .航-* D . 1&W - 3n(重庆市西南大学附中2016-2017学年九年级(上)入学数学试卷)10 .如图是由火柴棒搭成的几何图案,其中图形①中有4根火柴,图形②中有12根火柴,图形③中有24根火柴,则图形⑧中火柴的根数是(112 C. 144 D. 180(重庆市西南大学附中2016-20仃学年九年级(上)入学数学试卷)11.为了弘扬九十五中学办学理念,我校将立己立人,尽善尽美”的校训印在旗帜上,放置在教学楼的顶部(如图所示)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档