Amber振动试验控制系统说明书
振动台说明书
爱固仪器 爱固仪器模拟运输振动试验台☆ 使 用 说 明 书 ☆东莞市爱固检测仪器有限公司--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------前言感謝貴司選擇了本公司的產品,本公司不僅給貴司提供質量優良的產品,而且將提供可 靠的售後服務。
為確保使用人員之人身安全及儀器的完好性,在使用本儀器前請充分閱覽此操作手冊, 確實留意其使用上的注意事項。
本操作手冊詳細介紹此儀器之設計原理、依據標準、構造、 操作規範、注意事项、品质保证等內容。
在本操作手冊中如有提及之各種 “試驗規定”、 “標準”時均只作參考用,如貴司覺得有異議請自行檢閱相關標準或資料。
特別聲明: 特別聲明:本操作手冊不能作為向本公司提出任何要求的依據。
本操作手冊的解釋權在本公司。
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------目錄目 錄 - - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - 1 安 全 上 的 注 意 - -- - - - - - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - 2 壹 ﹑ 概 論 - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - 3 貳 ﹑ 依 據 標 準 - -- - - - - - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - 3 參 ﹑ 儀 器 說 明 - -- - - - - - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - 3 - 4 一 ﹑ 儀 器 結 構 - -- - - - - - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - 4 二 ﹑ 儀 器 規 格 - -- - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - 4 肆 ﹑ 儀 器 安 裝 - -- - - - - - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - 5 伍 ﹑ 試 驗 步 驟 - -- - - - - - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - 5 陆 ﹑ 注 意 事 項 - -- - - - - - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - 5 柒 、 品 質 保 證 - -- - - - - - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - 6 捌 ﹑ 備 註 - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - 7--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------安全上的注意1. 安全上的記號: 在本手冊中,關於安全上的注意事項以及使用儀器時有下列重要的各顯示事項,爲了防止 意外事故及危險,請務必遵守下列危險﹑警告﹑注意的記言:危險: 危險:此顯示的項目,表示爲如不遵照,操作者有可能受到傷害。
科学实验用物理摇摆仪说明书
3B SCIENTIFIC ® PHYSICSBedienungsanleitung09/16 TL/DU1 Pendel 2Stativ3 BodenauflageBei sorgfältiger Montage und bestimmungsge-mäßen Gebrauch ist gefahrloses Experimentie-ren mit dem Reversionspendel gewährleistet. Es besteht jedoch eventuell Verletzungsgefahr oder die Gefahr der Beschädigung des Reversions-pendels, wenn die Sorgfalt vernachlässigt wird.∙ Diese Bedienungsanleitung vollständig lesen und beachten.∙ Stativ auf festem, ebenem Untergrund auf-bauen und Montageschrauben fest anziehen. ∙Arretierschraube der beweglichen Pendel-masse festdrehen, so dass die Pendelmasse nicht unkontrolliert abgleiten kann.∙Lagerplatte mit Hilfe der Justierschrauben in der Fußplatte des Stativs so ausrichten, dass die Lagerachsen des Pendels gleichmäßig aufliegen können.∙ Pendel beim Um- oder Einhängen immer mit zwei Händen anfassen.∙Pendel sorgfältig in die Lagerplatte einhän-gen und korrekte Position der Lagerachsenprüfen.∙Pendel keinen übertriebenen Stößen ausset-zen und nicht mehr als 10 cm am unteren Ende auslenken.Pendela feste Pendelmasseb Pendelstangec Lagerachsend Einrastpositionene bewegliche Pendel-massef Arretierschraubeg MontageschraubenStativh Fußplattei Justierschrauben j Stativstrebek Stativboardl Lagerplattem Libellen BodenauflageDas Reversionspendel ist ein physikalisches Pendel mit zwei Lagerachsen und einer festen und einer beweglichen Pendelmasse. Es schwingt in einem Stativ wahlweise mit der Schwingungsdauer T 1 um die erste oder mit der Schwingungsdauer T 2 um die zweite Lager-achse. Durch Verschieben der beweglichen Pen-delmasse können die beiden Schwingungsdau-ern so verändert werden, dass sie übereinstim-men. Dann entspricht die reduzierte Pendellänge dem Abstand dder Lagerachsen und es gilt: 122T T ==π g : FallbeschleunigungBeim Verschieben rastet die bewegliche Pendel-masse auf der Pendelstange in Abständen von 2,5 cm ein. Für feinere Verschiebungen kann die Pendelmasse vertikal um 180° gedreht montiert werden.Schwingungsdauer des abgestimmten Pendels(berechnet mit g = 9,81 m/s 2): 1794 msAbmessungen inkl. Stativ: 80x125x30cm 3 Gesamtmasse:ca. 6,3 kg Länge der Pendelstange: 120 cm Abstand der Lagerachsen: 80 cm Feste Pendelmasse:ca. 1,4 kg Bewegliche Pendelmasse: ca. 1,0 kg Max. Pendelauslenkung10 cm5.1 Wahl des AufstellortesAuf federnden Böden wird Schwingungsenergie auf das gesamte Stativ übertragen und werden somit Messfehler verursacht.∙Reversionspendel nur auf festem, ebenem Untergrund aufstellen und betreiben.Bei glatten, gleitfähigen oder empfindlichen Bö-den:∙Unter der Fußplatte sowie unter der Stativ-strebe jeweils eine Bodenauflage auslegen.5.2 Montage des Stativs∙ Fixierschraube lösen (siehe Fig. 1), Stativ-strebe ausklappen.∙Fixierschraube in Aufstellposition mit mäßi-gem Anzugsmoment wieder eindrehen.Fig. 1: Montage der Stativstrebe am Stativboard5.3 Vertikallage der Pendelstange∙Pendel mit zwei Händen fassen und sorgfäl-tig in die Lagerplatte einhängen (siehe Fig. 2).∙Die Vertikallage der Pendelstange mit den Justierschrauben in der Fußplatte so justie-ren, dass das Libellenauge zentriert ist (siehe Fig. 3).Fig. 2: Lagerplatte mit eingehängter PendelstangeFig. 3: Lageeinstellung über die Libelle6.1 Anschieben des Pendels∙Pendel mehrmals in Pfeilrichtung mit leich-tem Druck auf die markierte Stelle anschie-ben, bis die Auslenkung ca. 5 cm beträgt. Hinweis:Größere Auslenkungen führen zu rele-vanten Messfehlern.Fig. 4: Anschieben des Pendels6.2 Umsetzen in die Reversionslage∙Pendel mit beiden Händen aus der Lager-platte heben und umdrehen.∙Pendel mit der anderen Lagerachse sorgfäl-tig wieder in die Lagerplatte einhängen. Wei-ter wie in Punkt 6.1 vorgehen.Fig. 5: Experimenteller Aufbau mit Lichtschranke und Digitalzähler 6.3 Schwingungsdauer in Abhängigkeit von der Position der beweglichen PendelmasseZusätzlich erforderlich:1 Lichtschranke 1000563 1 Digitalzähler (@230 V) 1001033 oder1 Digitalzähler (@115 V) 1001032 ∙Lichtschranke unter der ruhenden Pendel-stange aufstellen und an den Digitalzähler anschließen (siehe Fig. 5).∙Pendelstange so in die Lagerplatte einhän-gen, dass sich sowohl die feste (rot) als auch die bewegliche Pendelmasse (blau) unter-halb der entsprechenden Lagerachse befin-den.∙Die bewegliche Pendelmasse in der kegelför-migen Einkerbung arretieren, die der festen Pendelmasse am nächsten ist, d.h. in der un-tersten. Diese Position wird im Folgenden als Messpunkt 1 bezeichnet (auch bei Aufhän-gung der Pendelstange über die andere La-gerachse).∙Schwingungsdauer messen und notieren.∙Die bewegliche Pendelmasse nach und nach in jeder übernächsten kegelförmigen Einker-bung arretieren (Messpunkte 2 – 13) und je-weils die Schwingungsdauer messen und no-tieren.∙Pendelstange jetzt so in die Lagerplatte ein-hängen, dass sich die feste Pendelmasse (rot) oberhalb und die bewegliche Pendel-masse (blau) unterhalb der entsprechenden Lagerachse befindet.∙Die bewegliche Pendelmasse in der kegelför-migen Einkerbung arretieren, die der festen Pendelmasse am nächsten ist, d.h. in der obersten. Diese Position entspricht wieder Messpunkt 1 (siehe oben).∙Schwingungsdauer messen und notieren.∙Die bewegliche Pendelmasse nach und nach in jeder übernächsten kegelförmigen Einker-bung arretieren (Messpunkte 2 – 13) und je-weils die Schwingungsdauer messen und no-tieren.∙Die gemessenen Schwingungsdauern je-weils für beide Messserien in Abhängigkeit von den Nummern n der Messpunkte in ei-nem Diagramm darstellen (siehe Fig. 6).3B Scientific GmbH ▪ Ludwig -Erhard-Str. 20 ▪ 20459 Hamburg ▪ Deutschland ▪ 6.4 Bestimmung der Erdbeschleunigung Die Schwingungsdauern T 1 bzw. T 2 an den bei-den Schnittpunkten der Graphen sind gleich und entsprechen der Periodendauer T 0 des abge-stimmten Pendels, d.h. T 0 = T 1 = T 2.Aus der im Punkt 6.3 gemessenen Perioden-dauer T 0 des abgestimmten Reversionspendels und dem Abstand l = 0,8 m der beiden Lagerach-sen, der der verkürzten Pendellänge entspricht, kann die Erdbeschleunigung bestimmt werden: 2204l g T =⋅π⋅. Hinweis: Zur Abstimmung des Pendels auf exaktgleiche Schwingungsdauer eventuell bewegliche Pendelmasse vertikal um 180° gedreht an der Pendelstange montieren.∙ Gerät an einem sauberen, trockenen und staubfreien Platz aufbewahren.∙ Zur Reinigung keine aggressiven Reiniger o-der Lösungsmittel verwenden.∙ Zum Reinigen ein weiches, feuchtes Tuch benutzen.∙ Die Verpackung ist bei den örtlichen Recyc-lingstellen zu entsorgen. ∙Sofern das Gerät selbst verschrottet werden soll, so gehört dieses nicht in den normalen Hausmüll. Es sind die lokalen Vorschriften einzuhalten.Fig. 6: Schwingungsdauer T in Abhängigkeit von der Nummer n des Messpunkts. Rote Kreise: Beide Pendelmas-sen unterhalb der Lagerachse. Schwarze Quadrate: Feste Pendelmasse oberhalb, bewegliche Pendelmasse un-terhalb der Lagerachse。
AWAB环境振动使用说明
目录1 概述 22 主要性能指标 33 结构特征 63.1 外形图 63.2 按键 63.3 输入输出接口73.4 过载指示93.5 工作电源94 常见符号及名词术语105 工作原理116 仪器的连接和开关机116.1 连接116.2 开关机117 参数设置127.1 参数设置菜单127.2 预存测点名的输入147.3 查看预存测点名168 振动测量168.1 显示界面和选项168.2 进行测量199 数据管理209,1 数据调阅209.2 用微型打印机打印输出229.3 删除存储的数据239.3 删除存储的数据2310频率计权相对响应(ISO8041,2型)2411 为试验目的规定的信息25附录装箱清单261.概述AWA6256B+型环境振动分析仪是一种采用数字信号处理技术的手持式分析仪,它既能测量全身垂向(W.B.z)计权振级(也是环境振级),又能测量全身水平()计权振级,以及不计权振动加速度级。
满足GB/T10071-1988《环境振动测量方法》标准对振动测量仪器的要求,也符合ISO8041:1990《人体对振动的响应——测量仪器》。
AWA6256B+型是AWA6256B型的换代产品,与AWA6256B型环境振动分析仪相比,主要是频率计权、检波和时间计权是通过数字信号处理技术实现的,因此稳定性更好,动态范围更大,而且以后可升级为符合正在修订中的新的环境振动国家标准要求,外形更加美观。
环境振动对人体的影响与振动的加速度有效值、振动的频率特性、振动的作用时间、振动的方向和部位等等因素有关。
评价振动对人体的影响的基本量是频率计权加速度a W 或频率计权加速度级VL W(简称计权振级):频率计权加速度(指数平均)a W:按公式4-1进行均方根计算(1)计权振级:均方根计权加速度a w与基准加速度a0的比值取以10为底的对数再乘以20,即VL W=20l g(a w/a0) (dB)(2)式中:a W为频率计权加速度有效值(m/s2)a0为参考加速度(10-6m/s2)。
安柏精密仪器有限公司AT527系列电池测试仪用户手册说明书
用户手册User’s GuideRev.A9固件说明:适用于主程序Rev.C1.02及以上的版本AT527系列电池测试仪安柏精密仪器有限公司电话:0512-********©2005-2018 Applent InstrumentsLtd..产品咨询联系电话:0512-63976842 AT527系列用户手册安全须知当你发现有以下不正常情形发生,请立即终止操作并断开电源线。
立刻与安柏科技销售部联系维修。
否则将会引起火灾或对操作者有潜在的触电危险。
●仪器操作异常。
●操作中仪器产生反常噪音、异味、烟或闪光。
●操作过程中,仪器产生高温或电击。
●电源线、电源开关或电源插座损坏。
●杂质或液体流入仪器。
安全信息为避免可能的电击和人身安全,请遵循以下指南进行操作。
免责声明用户在开始使用仪器前请仔细阅读以下安全信息,对于用户由于未遵守下列条款而造成的人身安全和财产损失,安柏科技将不承担任何责任。
仪器接地为防止电击危险,请连接好电源地线。
不可在爆炸性气体环境使用仪器不可在易燃易爆气体、蒸汽或多灰尘的环境下使用仪器。
在此类环境使用任何电子设备,都是对人身安全的冒险。
不可打开仪器外壳非专业维护人员不可打开仪器外壳,以试图维修仪器。
仪器在关机后一段时间内仍存在未释放干净的电荷,这可能对人身造成电击危险。
不要使用已经损坏的仪器如果仪器已经损害,其危险将不可预知。
请断开电源线,不可再使用,也不要试图自行维修。
不要使用工作异常的仪器如果仪器工作不正常,其危险不可预知,请断开电源线,不可再使用,也不要试图自行维修。
不要超出本说明书指定的方式使用仪器超出范围,仪器所提供的保护措施将失效。
产品咨询联系电话:0512-63976843安装和设置向导有限担保和责任范围常州安柏精密仪器有限公司(以下简称Applent )保证您购买的每一台AT527在质量和计量上都是完全合格的。
此项保证不包括保险丝以及因疏忽、误用、污染、意外或非正常状况使用造成的损坏。
DVM-1000 数字振动测试仪操作手册说明书
Operation ManualDigital Vibration TesterModel No. DVM-1000Phase II Machine & Tool, Inc.283 Veterans Blvd Carlstadt, NJ. 07072 (201) 933-6300 Features:The DVM-1000 is a compact and simple to operate vibration tester. It’s an ideal tool for obtaining balance and alignment data for all types of rotating objects such as heavy-duty machinery or any fixture that uses a motor as a source of power.The high temperature piezoelectric sensor has a removable mounting base for attachment of a supplied stinger probe. It also is equipped with AC output socket for easy headphone hook up. The DVM-1000 has a large 18mm LCD that will display the data in four (4) measurement modes; Acceleration, Velocity(RMS), Displacement and RPM. Auto shut-off will conserve batteries and will still save all previous stored data.Specifications:Acceleration Peak Value: 0.1 – 200 m/sor 0.3-656 ft/m/s Frequency Range: 10Hz-1KHz Frequency Range: 10Hz-10KHzVelocity(RMS) RMS: 0.01-400 (mm/s)or 0.004 -16.0 inch/sFrequency Range: 10Hz-1KHzDisplacement Peak to Peak 0.001 – 4.00(mm)or 0.04-160milFrequency Range: 10Hz-500HzRPM (revolution)60-999,990 r/min(readings should be multiplied by 10 if the displayis set for “10”Frequency 1 – 20KHzAccuracy +/-5% +2 digitsOperatingTemperature/Humidity0-50°C / below 90%RHOperating Output AC output 2.0V peak full scale Load resistance: above 10k Power Supply 4-AAA BatteriesDimensions 124 x 62 x 30mm (4.9 x 2.4 x 1.2:)Weight 120g (not including batteries)The DVM-1000 Kit includes:1pc Powerful Earth Magnet1pc Accelerometer1pc Stinger Probe (Cone)1pc Stinger Probe (Ball)Operation Manual & Carry CaseFront Panel Descriptions:3-13-2 3-63-83-7 3-53-4 3-33-113-103-93-12Set Up Procedure:1.Connect the accelerometer to the input connector on the right side of the unit bythreading the socket gently until it locks in place.2.Press the Power Button to turn unit on.3.Place the accelerometer, with the magnetic base firmly attached to the machine. Youshould allow a few seconds for the readings to stabilize before taking a reading. Machine vibration may vary with time, in which case the maximum and minimum readings may be recorded. The machine surface must be sufficiently flat to permit the magnetic base to solidly attach to it. If the magnetic base is not attached properly, you will not be able to obtain accurate readings at higher frequencies. If the measurement surface is not magnetic or if the space is limited, the “Stinger” probes can be used in place of the magnetic base. When using the Stinger probe hold the tip against the machine with just enough force to prevent chattering. The stinger must be positioned perpendicular to the desired measurement surface.A steel disc or washer may be cemented to a non-magnetic surface to permit usage of themagnetic base. For Maximum accuracy of Acceleration (g) measurements, the accelerometer should be temporarily mounted on the machine surface with the supplied (M5) threaded mounting stud.Measurements made in more than one vibration mode can reveal something of the nature of the vibration signal. A high acceleration reading combined with a low displacement reading is indicative of a high frequency vibration. Conversely, a low acceleration reading combined with a high displacement reading is indicative of a low frequency vibration. Velocity is usually the preferred measurement when a single reading is to be recorded. Consult the machines operation manual or the manufacturer if you are in doubt of the measurements to be made.The supplied vibration chart should be used as a guideline for determining machine condition. The best indicator of machine condition is a carefully collected and recorded history database. Changes in machine condition over time become readily apparent and permit repairs to be made prior to machine failure.4.Press the Function button to toggle through the 3 main measurement parameters; as wellas RPM and Frequency readings. The three main measurement scales are typically used for vibration testing.a)Acceleration: Normally measured in m/s2 has excellent high frequency capabilitiesand is therefore very effective in determining faults in bearings or gear drives.b)Velocity: The most commonly used vibration parameter. It’s used for vibrationseverity measurements in accordance with ISO 2372 which contains guidelines foracceptable vibration levels of machinery under different power categories. Theseguidelines are presented in a table in the back of this manual. Velocity is typicallymeasured in cm/s or Inch/s RMS (centimeters or millimeters per second). Note: thisinstrument measures in cm/s. If you are more familiar with measurements in mm/sor need to compare your measured values directly with the vibration severity chart inthis manual, you must multiply the value by 10.c)Displacement: This parameter is typically used on low speed machines because ofit’s good low frequency response. This is NOT recommended for monitoring bearings.Units are measured in Mil or mm equivalent peak-peak.Calibration:The DVM does not need a scheduled (daily, weekly, monthly) calibration performed however, the calibration should be verified yearly by Phase II or a qualified calibration facility.Battery Replacement:When the battery symbol appears on the display, its time to replace the batteries.Slide the back cover off and remove and properly dispose of the old batteries. Replace with fresh set of batteries paying careful attention to the polarity.Maintenance:Be sure to keep this unit free of dirt, dust, liquids or viscous fluids. Its also best to store this unit in a temperature controlled environment when not in use for a long period of time.If the DVM-1000 malfunctions, contact Phase II tech support directly for instructions. Any attempt at internal repair will void any stated or implied warranties.Vibration Charts:ISO 10816This recommendation, release in August 2000, establishes the general conditions and procedures for the measurement and evaluation of vibrations using measurements made on the non-rotating parts of a machine. It also provides general evaluation criteria related to both operational monitoring and acceptance testing established primarily with regard to securing reliable long term operation of the machine.ISO 10816-3 separates the working conditions into four zones:•Zone A (Green): Vibration values from machines just put into operation•Zone B (Yellow): Continuous operation without any restrictions•Zone C (Orange): Condition is acceptable only for a limited period of time•Zone D (Red) Dangerous vibration values-Damage could occur at any time.It also defines four groups of machines, according to their size, base and purpose.Ranking:A=Vibration values from machines just put into operation B= Continuous operation without any restrictionsC = Condition is acceptable only for a limited period of timeD = Dangerous vibration values-Damage could occur at any timeNEMA MG1-12.05(Maximum vibration of motor that generates more than 1 horsepower)RPM (Rev) Displacement (p-p) (µm)3000-4000 25.4 1500-2999 38.1 1000-1499 50.8<999 63.6NEMA MG1-20.52(Maximum vibration of high power induction motor)RPM (Rev) Displacement (p-p) (µm)>3000 25.4 1500-2999 50.8 1000-1499 63.6<999 76.2 Example of Analysis chart:it’s highly suggested that you design your own chart based upon your testing procedure and application.Main Headquarters: U.S.APhase II Machine & Tool, Inc.Carlstadt, NJ. 07072 USATel: (201) 933-6300Fax: (201) 933-3801General E-Mail: ******************BEIJING, CHINAPhase II Measuring Instruments (Beijing) Ltd. Room 1204,Bldg 13,Yong Tai Yuan,Qing He,Haidian District, Beijing 100192,China Tel:+86-10-82752121Fax:+86-10-82750352General E-mail:********************.cnMEXICOPhase II de MexicoCalle A No. 4 Promer PisoCol. San Marcos AzcapotzalcoC.P 02020 MexicoTel: 011-525-5538-39771Fax: sameGeneral E-mail: ************************VENEZUELAPhase II Herramientas Universales EDCM. CA.Av. Francisco Lazo Marti CCPlaza Santa Monica PB LocalSanta Monica, Caracas 1040 VenezuelaTel: 212-690-28-21Fax: 212-693-29-16E-mail: *******************。
朴素流体系统精密压力调节器说明书
This is increased efficiency. Precision low flow carrier gas control for gas chromatography.1P r e c i s i o n P r e s s u r For more information call +1 603 595 1500 or email ppfinfo @Pressure RegulatorsTable of ContentsPage2Typical Applications• Environmental Analyzers —Helium or Hydrogen Carrier Gas • Precision Nitrogen Control forChemical Analysis• Laboratory and Process GasChromatography applicationsForward Pressure RegulatorsPhysical PropertiesModel 8310 / 8311Precision Pressure RegulatorProduct Specifications1Parker Precision Fluidics Model 8310 / 8311 Regulators incorporate a threadless valve seat assembly with a precision glass ball. It is ideal for very low flow carrier gas applications and provides bubble tight shut-off. The 8310 / 8311 is a direct-acting, non-relieving pressure regulator supplied with a replaceable sintered stainless steel cartridge filter on the inlet. It can be configured with a stainless steel diaphragm to reduce permeability. Each regulator is performance tested and ideally suited for manufacturers ofanalytical equipment.Features• Direct-acting and non-relieving• Compact design enables panel mounting• All bar stock construction reduces production variation • Bubble tight shut-off• Cleaned for Analytical Service Use • Pressure gauge port included •RoHS and REACH compliant1Performance characteristics are based on 60 psig (4.14 barg) helium supply pressure at 50 psig (3.45 barg) outlet pressure.3P r e c i s i o n P For more information call +1 603 595 1500 or email ppfinfo @Typical Droop (Flow Sensitivity) Curve (Fairprene Diaphragm Unit)Typical Regulator Output vs. Change in Supply Pressure (Supply Pressure Effect)(Fairprene Diaphragm Unit)Model 8310 / 8311Typical Flow Curves50.03.45p s i gbarg 49.8 3.4349.6 3.4249.4 3.4149.2 3.3949.03.38Flow sccm Helium PressureO u t l e t P r e s s u r e p s i gpsigbargbarg O u t l e t P r e s s u r e60801001201401601803.523.483.453.413.38Supply PressureTypical Droop (Flow Sensitivity) Curve (Stainless Steel Diaphragm)Typical Regulator Output vs. Change in Supply Pressure (Supply Pressure Effect)(Stainless Steel Diaphragm)p s i gpsigbargbargO u t l e t P r e s s u r e1801601401001208060403.483.453.413.383.353.31Supply Pressure50.0 3.45p s i gbarg49.649.83.433.4249.249.4 3.413.3748.849.0 3.393.3548.448.6 3.383.34Flow sccm Helium PressureO u t l e t P r e s s u r e Precision Pressure Regulator4For more information call +1 603 595 1500 or email ppfinfo @Principle of OperationAs gas enters the regulator body from the inlet (left), the pressure rises which pushes the diaphragm, closing the control inlet valve and preventing any more gas from entering the regulator .When gas is drawn from the outlet (right) side, the pressure inside the regulator body falls. As a result, the diaphragm is pushed back by the spring and the valve opens, allowing more gas in from the supply until equilibrium is reached between the outlet pressure and the spring.The outlet pressure is a function of the spring force which may be modified by the adjustment knob. The outlet pressure and the inlet pressure hold the quad ring poppet assembly in the closed position against the force of the spring.Model 8310 / 8311Precision Pressure Regulator5P r e c i s i o n P r e For more information call +1 603 595 1500 or email ppfinfo @Mechanical IntegrationDimensions83108311Model 8310 / 8311Basic DimensionsUnits In (cm)Precision Pressure Regulator6For more information call +1 603 595 1500 or email ppfinfo @Model 8310 / 8311Typical Flow DiagramVOC Emissions Monitoring AnalyzerPrecision Pressure Regulator7P r e c i s i o n P r e s s u r e R e g u For more information call +1 603 595 1500 or email ppfinfo @Model 8310 / 8311Ordering InformationInstallation Guide• For NPT connections, a high quality sealant compatible with the customer’s process gas must be used.• May be installed in any orientation.• Support inlet and outlet piping to reduce strain on regulator body.Key Things to Remember:• To minimize your Helium gas costs, consider using 2.5 or 5 psig Pressure Range (0.17 or 0.34 barg) only available from Parker. • Choice of Diaphragm Materials – Stainless Steel Diaphragms provide extremely low permeability. Coated Fabric Diaphragms, available in Buna or FKM, offer unmatched sensitivity.• Fine Pitch Adjusting Stem – 56 threads/in. (2.2 threads/mm) stem for 15 turns resolution pitch on all regulator adjusting stems gives precise control over incremental pressure adjustments.• Bar Stock Construction and Analytical Service Cleaning – Machined from bar stock in your choice of aluminum or stainless steel. All parts are cleaned to procedures developed specifically for analytical service use, minimizing contaminant generation in low-level analyzer applications.• Extensive Choice of Pressure Range – This ensures maximum resolution at specificpressure and temperature requirements.(ASTM A228) onlyNOTE: In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering: • Media, Inlet & Outlet Pressures • Minimum Required Flow Rate.Please click on the ORDER ON-LINE button (or go to www.parker .com/precisionfluidics/regulators) to configure your Precision Pressure Regulator. For more detailed information, visit us on the web orcall Applications Engineering.Precision Pressure Regulator8Model 8286Physical PropertiesPrecision Pressure RegulatorPerformance Characteristics 1The Parker Precision Fluidics Model 8286 Regulator utilizes a pneumatically balanced poppet valve to ensure maximum stability over wide variations in supply pressure. Based on Parker's popular 8310 model, the 8286 offers higher flow capability combined with precision pressure control. It can be equipped with a stainless diaphragm for reduced permeability. The Model 8286 is performance tested under simulated operating conditions and is cleaned for analytical instrument service.Features• Direct-acting and non-relieving• Compact design enables panel mounting• All bar stock construction reduces production variation • Bubble tight shut-off• Cleaned for Analytical Service Use • Pressure gauge port included •RoHS and REACH compliantTypical Applications• Environmental Analyzers —Helium or Hydrogen Carrier Gas • Precision Nitrogen Control forChemical Analysis• Laboratory and Process GasChromatography applicationsProduct Specifications1Performance characteristics are based on 60 psig (4.14 barg) helium supply pressure at 50 psig (3.45 barg) outlet pressure.2Available in Music Wire (ASTM A228) only.Balanced Poppet RegulatorP r e c i s i o n For more information call +1 603 595 1500 or email ppfinfo @Typical Flow Curves3.45p s i gbarg 3.102.762.412.071.72O u t l e t P r e s s u re 123451020304050504540353025Standard Liters per MinuteTypical Droop (Flow Sensitivity) Curve (Fairprene Diaphragm Unit)Typical Regulator Output vs. Change in Supply Pressure (Supply Pressure Effect)(Fairprene Diaphragm Unit)p s i gbargbargO u t l e t P r e s s u r e3.453.383.313.243.1760801001201401601802005049484746psigSupply PressureFor more information call +1 603 595 1500 or email ppfinfo @Principle of OperationAs gas enters the regulator body from the inlet (left), the pressure rises which pushes the diaphragm, closing the control inlet valve and preventing any more gas from entering the regulator .When gas is drawn from the outlet (right) side, the pressure inside the regulator body falls. As a result, the diaphragm is pushed back by the spring and the valve opens, allowing more gas in from the supply until equilibrium is reached between the outlet pressure and the spring.The outlet pressure is a function of the spring force which may be modified by the adjustment knob. The outlet pressure and the inlet pressure hold the dual poppet assembly in the closed position against the force of the spring.P r e c i s i o n P r e s s u For more information call +1 603 595 1500 or email ppfinfo @Mechanical IntegrationDimensionsBasic DimensionsUnits In (cm)Typical Flow DiagramVOC Emissions Monitoring AnalyzerFor more information call +1 603 595 1500 or email ppfinfo@P r e c i s i o n P r e s s u r e R e g u For more information call +1 603 595 1500 or email ppfinfo @Ordering InformationInstallation Guide• For NPT connections, a high quality sealant compatible with the customer’s process gas must be used.• May be installed in any orientation.• Support inlet and outlet piping to reduce strain on regulator body.Key Things to Remember:• To minimize your Helium gas costs, consider using 2.5 or 5 psig Pressure Range (0.17 or 0.34 barg) only available from Parker. • Choice of Diaphragm Materials – Stainless Steel Diaphragms provide extremely low permeability. Coated Fabric Diaphragms, available in Buna or FKM, offer unmatched sensitivity.• Fine Pitch Adjusting Stem – 56 threads/in. (2.2 threads/mm) stem for 15 turns resolution pitch on all regulator adjusting stems gives precise control over incremental pressure adjustments.• Bar Stock Construction and Analytical Service Cleaning – Machined from bar stock in your choice of aluminum or stainless steel. All parts are cleaned to procedures developed specifically for analytical service use, minimizing contaminant generation in low-level analyzer applications.• Extensive Choice of Pressure Range – This ensures maximum resolution at specificpressure and temperature requirements.(ASTM A228) onlyNOTE: In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering: • Media, Inlet & Outlet Pressures • Minimum Required Flow Rate.Please click on the ORDER ON-LINE button (or go to www.parker .com/precisionfluidics/regulators) to configure your Precision Pressure Regulator. For more detailed information, visit us on the web orcall Applications Engineering.Typical Applications• Environmental Analyzers —Helium or Hydrogen Carrier Gas • Precision Nitrogen Control forChemical Analysis• Laboratory and Process GasChromatography applicationsModel 4000Precision Pressure RegulatorProduct SpecificationsFeatures• Direct-acting and non-relieving• Compact design enables panel mounting• All bar stock construction reduces production variation • Bubble tight shut-off• Cleaned for Analytical Service Use • Pressure gauge port included •RoHS and REACH compliantThe Parker Precision Fluidics Model 4000 Regulator is a high performance miniature size pressure regulator . With a compact diameter of only 1-1/8", it fits easily into small instruments, yet its performance surpasses that of many competitive large diaphragm regulators. Model 4000 is a direct-acting, non-relieving performance regulator tested under simulated operating conditions and is cleaned for analytical instrument service.High Performance Pressure RegulatorP r e c i s i o n For more information call +1 603 595 1500 or email ppfinfo @Typical Droop (Flow Sensitivity) Curve (Fairprene Diaphragm Unit)Typical Regulator Output vs. Change in Supply Pressure (Supply Pressure Effect)(Fairprene Diaphragm Unit)Typical Flow Curves15.01.03p s i gbarg 14.5 1.0014.00.97Flow sccm Helium PressureO u t l e t P r e s s u r e p s i gpsigbargbarg O u t l e t P r e s s u r e2040608010012014016018016.01.1015.5 1.0715.0 1.0314.5 1.0014.00.97Supply PressureFor more information call +1 603 595 1500 or email ppfinfo @Principle of OperationAs gas enters the regulator body from the inlet (left), the pressure rises which pushes the dia-phragm, closing the control inlet valve and preventing any more gas from entering the regulator . When gas is drawn from the outlet (right) side, the pressure inside the regulator body falls. As a result, the diaphragm is pushed back by the spring and the valve opens, allowing more gas in from the supply until equilibrium is reached between the outlet pressure and the spring. The outlet pressure is a function of the spring force which may be modified by the adjustment knob. The outlet pressure and the inlet pressure hold the quad ring poppet assembly in the closedposition against the force of the spring.P r e c i s i o n P r e s s u For more information call +1 603 595 1500 or email ppfinfo @Mechanical IntegrationDimensionsBasic DimensionsPortUnits In (cm)Typical Flow DiagramVOC Emissions Monitoring AnalyzerFor more information call +1 603 595 1500 or email ppfinfo@P r e c i s i o n P r e s s u r e R e g u For more information call +1 603 595 1500 or email ppfinfo @Ordering InformationInstallation Guide• May be installed in any orientation.Key Things to Remember:• Fine Pitch Adjusting Stem – 56 threads/in. (2.2 threads/mm) stem for 15 turns resolution pitch on all regulator adjusting stems gives precise control over incremental pressure adjustments.• Bar Stock Construction and Analytical Service Cleaning – Machined from bar stock in your choice of aluminum or stainless steel. All parts are cleaned to procedures developed specifically for analytical service use, minimizing contaminant generation in low-level analyzer applications.• Extensive Choice of Pressure Range – This ensures maximum resolution at specificpressure and temperature requirements.NOTE: In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering: • Media, Inlet & Outlet Pressures • Minimum Required Flow Rate.Please click on the ORDER ON-LINE button (or go to www.parker .com/precisionfluidics/regulators) to configure your Precision Pressure Regulator. For more detailed information, visit us on the web orcall Applications Engineering.Model 4000Precision Pressure RegulatorTypical Applications• Environmental Analyzers —Helium or Hydrogen Carrier Gas • Precision Nitrogen Control forChemical Analysis• Laboratory and Process GasChromatography applications • Argon Gas Regulation forBioReagent ManufacturingModel 9000Precision Pressure RegulatorProduct SpecificationsThe Parker Precision Fluidics Model 9000 Regulator is a compact,spring-loaded, diaphragm operated back pressure regulator. Designed specifically for precision regulation in low-flow gas applications, it controls upstream pressure rather than downstream pressure and is similar to a relief valve in operation. Model 9000 is performance tested under simulated operating conditions and is cleaned for analyticalinstrument service.Features• Direct-acting and non-relieving• Compact design enables panel mounting• All bar stock construction reduces production variation • Bubble tight shut-off• Panel mount applications• Cleaned for Analytical Service Use • Pressure gauge port included •RoHS and REACH compliantPhysical PropertiesPerformance RatingsPerformance Characteristics** Performance characteristics are based on 60 psig (4.14 barg) helium supply pressure at 50 psig (3.45 barg) outlet pressure.Back Pressure RegulatorP r e c i s i o n P r For more information call +1 603 595 1500 or email ppfinfo @Typical Flow CurvesTypical Droop (Flow Sensitivity) Curve 30 psig (2.07 barg) Range SpringTypical Droop (Flow Sensitivity) Curve 60 psig (4.14 barg) Range SpringD e v i a t i o n f r o m S e t P r e s s u r e02101001,0003%2%1%0%Flow sccm Helium PressureD e v i a t i o n f r o m S e t P r e s s u r e2101001,0003%2%1%0%Flow sccm Helium PressureFor more information call +1 603 595 1500 or email ppfinfo @Principle of OperationA backpressure regulator is designed to regulate inlet pressure. The force of the regulator spring holds the valve closed. When the inlet pressure of the process fluid overcomes the spring setting the valve begins to open. Using a backpressure regulator to precisely control upstream gas pressure is typically more accurate than a relief valve.P r e c i s i o n P r e s s u For more information call +1 603 595 1500 or email ppfinfo @Mechanical IntegrationDimensionsBasic DimensionsUnits In (cm)Typical Flow DiagramVOC Emissions Monitoring AnalyzerFor more information call +1 603 595 1500 or email ppfinfo@P r e c i s i o n P r e s s u r e R e g u l For more information call +1 603 595 1500 or email ppfinfo @Installation Guide• May be installed in any orientation.• Support inlet and outlet piping to reduce strain on regulator body.Key Things to Remember:• Choice of Diaphragm Materials – Stainless Steel Diaphragms provide extremely lowpermeability. Coated Fabric Diaphragms, available in Fairprene BN-5029, offer unmatched sensitivity.• Fine Pitch Adjusting Stem – 56 threads/in. (2.2 threads/mm) stem for 15 turns resolution pitch on all regulator adjusting stems gives precise control over incremental pressure adjustments.• Bar Stock Construction and Analytical Service Cleaning – Machined from bar stock in your choice of aluminum or stainless steel. All parts are cleaned to procedures developed specifically for analytical service use, minimizing contaminant generation in low-level analyzer applications.• Extensive Choice of Pressure Range – This ensures maximum resolution at specificpressure and temperature requirements.NOTE: In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering: • Media, Inlet & Outlet Pressures • Minimum Required Flow Rate.Please click on the ORDER ON-LINE button (or go to www.parker .com/precisionfluidics/regulators) to configure your Precision Pressure Regulator. For more detailed information, visit us on the web or call Applications Engineering.For more information call +1 603 595 1500 or email ppfinfo @Value AddedApplication-Specific SolutionsGassing Control System• Mixed gassing logic design includes VSO ® proportional valves, X-Valve ®, pressure switch, pressure sensors, and PCB interfacePneumatic Module• Integrated valve manifold• Compact design • Single electrical connection• Valves configured per specifications6 Position VSO ® Proportional Valve Pneumatic Manifold Assembly• Quick connect fittings• Circuit board with mass electrical terminationVacuum Gas Control Module• Tested to 1 x 10-7 cc/sec/atm Helium • Assembly tested on mass spectrometer8 Position SRS Model Pneumatic Manifold• Integrated circuit board mounting • Mass electrical terminationMagnum Manifold Assembly• Integrated circuit board with single connection• Compact design • Easily adaptable • 2 way and 3 way designs10 Position SRS Model Pneumatic Manifold• Circuit board with transducers• Pressed in barbed fittings10 Position X-Valve ® Pneumatic Manifold• Mixed pneumatic logic design• Ultra-miniature design with PCB for mass terminationNOTESFor more information call +1 603 595 1500 or email ppfinfo@For more information call +1 603 595 1500 or email ppfinfo @Portfolio ReviewCustomizationContact Division Applications at (603) 595 1500 or ppfinfo@parker .com.Model 8286Models 8310 & 8311Flow control from 1 sccm to 3 slpmFlow control from 1 slpm to 40 slpmModel 9000Flow control from 10 sccm to 1 slpm Back Pressure RegulatorPrecision Pressure RegulatorsModel 4000Flow control from 0.5 slpm to 10 slpm Smaller Size。
PiezoHaptTMActuato
P i e z o H a p t TM A c t u a t o r sJanuary 2018PiezoHapt TM执行器适合一般用途PHU系列PHUA8060-35A-33-000PHUA3015-30A-21-000使用注意事项在使用本产品前,请务必随附采购规格书。
安全注意事项使用本产品时,请注意安全事项。
本产品使用时, 每个元件的个别规格充分确认的基础上, 在注意事项留意, 请进行安全设计。
本产品不能加入直流偏压。
与增添绝缘电阻降低,不能起到功能。
请使用这样不压电元件接触含有水分物质和水滴。
劣化性能的可能, 请遵守以下事项。
存储位置的急剧温度变化和结露,阳光直射、腐蚀性气体、灰尘,避免灰尘的感觉,请保存不施加负荷应力那样包装的状态下。
请使用6个月以内。
请不要加入到产品进入龟裂的强烈冲击( 下落等) 和压力。
请不要给超过使用范围的电压。
本产品为室内用。
请避免在室外使用。
请不要加150 °C 以上的温度。
在对使用本产品的设备进行设计时,请根据该设备的使用用途及状态确保保护电路及装置,并设置备份电路。
本产品本身溶剂,请避免或气体侵入种形式的清洗。
压电元件,请注意处理用手触摸。
腐蚀的原因和充电的电荷的放电的手。
请把放电使前本产品连接到测定仪器。
压电元件从振动板时请不要断开。
焊接进行附加作业时,请注意通量、其他的异物在压电元件附着。
端子插针的焊接请在没有污渍,生锈的清洁状态下进行,否则会导致接触不良。
在安装状态确认共振频率,请使用标准不共振的影响范围,共振频率的1/2以下。
粘附在固定本产品时,探讨黏结剂的种类、数量、粘合性等,进行了可靠性评价试验,确认没有异常上进行。
消费者本产品可以触摸机器中不能使用。
请不要再加工,本产品。
通过安装部分的形状,安装场所,有差异特性发生变化。
请在安装状态下加以确认。
Ag-Pd 电极、迁移发生电极间的绝缘不能成为有差异, 因此确认了使用环境, 请停止使用。
奥马 SKR 振动测试仪产品指南说明书
e-mail:**************For latest product manuals:SHAKERSShop online atUser’sGuideSKR SeriesServicing North America:U.S.A.:Omega Engineering, Inc., One Omega Drive, P.O. Box 4047ISO 9001 CertifiedStamford, CT 06907-0047 USA Toll Free: 1-800-826-6342TEL: (203) 359-1660FAX: (203) 359-7700e-mail:**************Canada:976 BergarLaval (Quebec), Canada H7L 5A1Toll-Free: 1-800-826-6342TEL: (514) 856-6928FAX: (514) 856-6886e-mail:*************For immediate technical or application assistance:U.S.A. and Canada:Sales Service: 1-800-826-6342/1-800-TC-OMEGA ®Customer Service: 1-800-622-2378/1-800-622-BEST ®Engineering Service: 1-800-872-9436/1-800-USA-WHEN ®Mexico:En Español: 001 (203) 359-7803FAX: (001) 203-359-7807**************.mxe-mail:*****************Servicing Europe:Benelux :Managed by the United Kingdom Office Toll-Free: 0800 099 3344TEL: +31 20 347 21 21FAX: +31 20 643 46 43e-mail:**************Czech Republic:Frystatska 184733 01 Karviná, Czech Republic Toll-Free: 0800-1-66342TEL: +420-59-6311899FAX: +420-59-6311114e-mail:*****************France:Managed by the United Kingdom Office Toll-Free: 0800 466 342TEL: +33 (0) 161 37 29 00FAX: +33 (0) 130 57 54 27e-mail:**************Germany/Austria:Daimlerstrasse 26D-75392 Deckenpfronn, Germany Toll-Free************TEL: +49 (0) 7059 9398-0FAX: +49 (0) 7056 9398-29e-mail:*************United Kingdom:OMEGA Engineering Ltd.ISO 9001 CertifiedOne Omega Drive, River Bend Technology Centre, Northbank Irlam, Manchester M44 5BD England Toll-Free: 0800-488-488TEL: +44 (0)161 777-6611FAX: +44 (0)161 777-6622e-mail:**************.ukOMEGAnet ®Online ServiceInternet e-mail **************It is the policy of OMEGA Engineering, Inc. to comply with all worldwide safety and EMC/EMIregulations that apply. OMEGA is constantly pursuing certification of its products to the European New Approach Directives. OMEGA will add the CE mark to every appropriate device upon certification.The information contained in this document is believed to be correct, but OMEGA accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.WARNING: These products are not designed for use in, and should not be used for, human applications.BEFORE USE:Please read the following instructions:Read the Manual first before operating the instrumentFor indoor use onlyAmbient temperature range +5°C to +40°CUse in a well-ventilated area.Relative humidity not exceeding 80%Mains supply fluctuation not exceeding 10%WarningALL UNITS MUST BE GROUNDEDCheck the line supply is sufficient to meet the power requirement of the unit!OverviewOrbital Shakers are one type of mixers that the sample trays (platform) are moving horizontally (parallel to) the unit. There are several types of movement: orbital, reciprocating, and refrained orbital, such as SKR series (orbital); MS series and vortex mixers (refrained orbital). The SKR mixers generate smooth orbital (circular) and turbulence effect on the liquid, creating good mix and aeration for the samples and suitable for mixing the samples in flask and other larger containers. The SKR is also widely used in liquid culture. However, the SKR is not suitable for small vials since more vigorous movement needed for mixing the liquid in small containers.The Micro‐plate shakers are developed for the mixing of small vials. The shakers generate agitation effect through refrained orbital movement.Figure 1: Overview of the lab scale orbital shaker (SKR‐202, Digital). 1 Electrical socket;2 Carriage platform;3 Main LED on Digital front panelFigure 2: Overview of the mini microplate shaker (SKR‐13, Analog). 1 Electrical socket;2 Slip‐proof platform;3 Main Switch on Analog front panelOperationAlways install the carrier or platform before turn on the machines. All platforms or carriers are shipped in pre‐installed status. For safety reason, please check all the locking screw and tighten again if necessary. The locking screws might be loosened during transportation!Place the machines on the flat and steady surface and keep away from other objects for safe operation.Check the electrical safety status and the power switch must be in “OFF” position before plug into the power outlet. The machines come with IEC electrical socket and double fuses for safety operation.Load the samples first before turning on the machine. Be aware of loading sample evenly and never overload the samples.Always start with low speed and gradually adjust the speed, especially for the analog model.For SKR series, use 200 rpm maximum at the high loading.There are two different types of control in the shakers: digital and analog. Both control modes can adjust the speed and timer of the shakers.1. Digital Control of Speed and TimersFigure 14: Overview of the front panel of the digital control mode. 1 Start/stopbutton; 2 Mode button; 3 Indicator beneath “rpm”; 4 Indicator beneath “time”;5 Digital Read out;6 On/Off switch and Adjustment for Time and SpeedThere are two buttons and one knob on the digital panel: The knob is the main switch for turning on the machine and adjusting the speed and timer; the mode button has the selection function to either adjust the timer or the speed; the start/stop button is used to start or stop the mixing process. The panel has LED numeric display and red indicators.6illuminate, and when pressing the mode button, the read indicators underneath the rpm and minute alternatively illuminate to show the status of display.1.1 Press the knob to turn on the unit. The LED display the number of last saved rpm and timer setting. And the indicator underneath the rpm illuminate, adjust the rpm by the knob to desired value. And move the illuminated indicator from underneath rpm to minute by pressing the mode button, the display will show the set timer and change to the desired timing value, and finally press the start/stop button to start the machine. If using the knob to turn off the machine, the set timer and speed will automatically be saved, and carry on the next time operation.1.2 Adjust the timer: press mode button until the indicator underneath of min illuminate, turn the knob to desired count‐down minute. To disable the timer, just turn the knob to ‐‐‐, the unit will continuously operate until manually stopping the unit. When the timer reaches to zero, the unit stops and sounds an alert.The default time unit is minute (displayed nn:nn), but when turning the knob over 99:99, it displays H:nn. The maximum set time is 9 hours, i.e. 540 min.1.3 The speed and timer can be adjusted during operation without stopping the machine. Suggest users to use lower speed to start the machine and adjust the speed to optimum mixing status slowly to avoid the spill or safety problems during the operation.2. Analog Control of Speed and TimersFigure 15: Overview of the front panel of the analog control mode. 1 Timer knob;2 Main switch;3 Speed knobThere are two knobs and one main switch on the front panel of the analog types of the mixers. The main switch has three stages function: ON, OFF and Timer. For continuous operation, place the switch to the “ON” position, and turn the rpm knob (on the right hand side) to desired speed. When using timer, place the switch to “Timer” position, and adjust the speed using speed knob. Before turning on the machine, please turn the speed knob all the way to the left hand side (minimum level)! And adjust the speed gradually.Maintenance and ServiceThis range of equipment only requires routine cleaning for the maintenance. Before cleaning, Always unplug the equipment from the electrical outlet. Use soft cloth with mild detergent to clean the surface of the equipment.Technical SpecificationSKR‐202 SKR‐204 SKR‐12 SKR‐14Speed range (rpm) Digital, 30 to300Digital, 30 to300Digital, 250 to1250Digital, 250 to1250Motion Orbital Orbital Orbital Orbital Timer (min) Digital, 540 Digital, 540 Digital, 540 Digital, 540 Orbit (mm ) 16 16 0.7 0.7 Maximum load(KG)10 10 1 1 Platform (mm) 335X335 220X220 306X306 220X220 Dimensions, (mm,WXLXH)360x420x270 240x300x160 360x420x160 240x300x160 Operationaltemperature (°C )+4 to +40 +4 to +40 +4 to +40 +4 to +40 Maximumhumidity80% 80% 80% 80% CO2 EnvironmentSafeyes yes yes yesNet weight (KG) 11 6 10 6Power supply 120V, 60Hz,50W120V, 60Hz,50W120V, 60Hz,50W120V, 60Hz,50WWARRANTY/DISCLAIMEROMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of 36 months from date of purchase. OMEGA’s WARRANTY adds an additional one (1) month grace period to normal three (3) year product warranty to cover handling and shipping time. This ensures that OMEGA’s customers receive maximum coverage on each product.If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA’s Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA’s WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA’s control. Components in which wear is not warranted, include but are not limited to contact points, fuses, and triacs.OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by the company will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages.CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a “Basic Component” under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANTY/DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.RETURN REQUESTS/INQUIRIESDirect all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA’S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.FOR WARRANTY RETURNS, please have the following information available BEFORE contacting OMEGA:1.Purchase Order number under which the productwas PURCHASED,2.Model and serial number of the product underwarranty, and3.Repair instructions and/or specific problemsrelative to the product.FOR NON-WARRANTY REPAIRS,consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA: 1. Purchase Order number to cover the COSTof the repair,2.Model and serial number of the product, and3.Repair instructions and/or specific problemsrelative to the product.OMEGA’s policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.OMEGA is a registered trademark of OMEGA ENGINEERING, INC.© Copyright 2009 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied,Where Do I Find Everything I Need for Process Measurement and Control?OMEGA…Of Course!Shop online at SMTEMPERATUREThermocouple, RTD & Thermistor Probes, Connectors, Panels & AssembliesWire: Thermocouple, RTD & ThermistorCalibrators & Ice Point ReferencesRecorders, Controllers & Process MonitorsInfrared PyrometersPRESSURE, STRAIN AND FORCETransducers & Strain GagesLoad Cells & Pressure GagesDisplacement TransducersInstrumentation & AccessoriesFLOW/LEVELRotameters, Gas Mass Flowmeters & Flow ComputersAir Velocity IndicatorsTurbine/Paddlewheel SystemsTotalizers & Batch ControllerspH/CONDUCTIVITYpH Electrodes, Testers & AccessoriesBenchtop/Laboratory MetersControllers, Calibrators, Simulators & PumpsIndustrial pH & Conductivity EquipmentDATA ACQUISITIONData Acquisition & Engineering SoftwareCommunications-Based Acquisition SystemsPlug-in Cards for Apple, IBM & CompatiblesDatalogging SystemsRecorders, Printers & PlottersHEATERSHeating CableCartridge & Strip HeatersImmersion & Band HeatersFlexible HeatersLaboratory HeatersENVIRONMENTALMONITORING AND CONTROLMetering & Control InstrumentationRefractometersPumps & TubingAir, Soil & Water MonitorsIndustrial Water & Wastewater TreatmentpH, Conductivity & Dissolved Oxygen InstrumentsM-5371/1113。
MODAL 50A 振动测试器说明书
MODAL 50AExcitation Made Easy!THE EXCITER - #1 SELLING WORLDWIDE"The MODAL 50A along with MB's MODAL APPLICATIONSEXPERTISE have revolutionized modal testing!" This Exciter wasdesigned by a team of world-respected modal testers, includingUniversity of Cincinnati professors, to eliminate problemsencountered when using traditional shakers for modal tests. TheMODAL 50A slashes setup time to a minimum! Conveniences infixturing and setup like the clearance hole through the armatureand shaker and a collet chuck for gripping a threadless stingermake easy the attachment of the MODAL 50A to a test structure.50 pounds dynamic force from an Exciter weighing little more than50 lbs makes it portable and easy to setup by one person.THE COMPANY - UNIQUELY QUALIFIEDMB's three principals (SDRC alumni) have over seven decades of combined experience performing extensive dynamic testing - both in the USA and Europe. These experienced test veterans have solved real-world test challenges, and have helped hundreds of new and experienced modal testers alike properly apply the right excitation source to achieve good modal data faster! Choosing an MB Modal Exciter gains you access to applications experience unsurpassed in the marketplace today ... whether you need custom-tailored testing solutions ... on-site consulting ... seminars on theory, applications, excitation ... practical hints for acquiring valid modal data ... you'll get it with MB Modal Exciters.APPLICATIONS EXPERTS - BEHIND EVERY EXCITERThe MODAL 50A (and multiples thereof) is ideal for excitingstructures smaller than say, a full-size automobile. Totalvehicle modal tests on anything larger (truck, jet, even aspace shuttle) requires multiple MODAL 50A's or the MODAL250A.Modal testing of structures needs an Exciter that is highlyportable and easy to setup and operate. The lightweight,compact MODAL 50A was designed with these needs inmind. A center bore extending through the armature,housing, trunnion base, and inertial masses allows a stingerto be easily positioned along its axis. It may then be placedas close to the test article as desired and the chuck tighteneddown to grip the stinger firmly. The stinger need not be cutoff, thus retaining flexibility for future use in differentorientations and applications.The ideal stinger would be infinitely stiff in the axial direction and have no bending stiffness. Since this is not possible, it can be approached with a pre-loaded thin wire. Replacing the 1/8" stinger with piano wire is easy by simply changing one of the collets provided in the Accessory Kit. Once installed, the wire can be pre-loaded using bungy cord and a small block pulley. An oscillatory force of 50 pounds keeps the tension in the stinger while delivering peak dynamic force. This virtually eliminates measurement errors due to bending moments and side loads that can result when using compression loading of traditional stingers.25865 Richmond Rd · Cleveland OH 44146 · 216-292-5850 · fax 216-292-5614 · email mbd@mbdynamics · 1981EASY TO FIXTURE & SETUP -- SLASHES SETUP TIME•Clearance hole through armature and shaker allows unlimitedpositioning along the axis of the stinger•Collet chuck with clearance hole through armature and shakerprovides easy attachment of "one size fits all" stinger•'Piano wire' minimizes cross-axis measurement errors; allowslarge static force to be applied without derating 50 lb dynamicforce•Quick disconnect turnbuckles for adjustable suspension andeasy, 6 dof positioning•Lightweight shaker, easy-mount inertial masses/accessoriesallows one-man setup and portability to remote locations•Trunnion base with two hand-knobs and three screw feet allowadjustment to virtually any excitation angle•Quick connect/disconnect of additional mass supplies largeinertial restraint for low frequency testsUNIVERSAL -- NO NEED FOR 2 LBS FORCE OR 6" STROKE SHAKERS•1" stroke - sufficient for flexible structures and low frequency "suspended shaker" tests•50 pounds dynamic force - enough for large test articles such as mid- to full-size automobile•Lightweight armature (<0.4 lb) enables testing small items•Broad usable frequency range (1-4000 Hz) handles almost every modal survey•Ideal for multi-shaker random, single-point random, multi-point sine dwell, and even burst randomACCURATE -- FEWER MEASUREMENT ERRORS DUE TO FIXTURING•The 'current mode' of MB's SS250VCF amplifier virtually eliminates mass loading of very small test items •Lightweight armature minimizes mass loading - dramatically reduces force drop-off at resonances of the test specimen •Low armature axial suspension stiffness (<15 lbs/in) assures shaker dynamics are decoupled from the test specimen’s •Ultra thin stinger decouples force inputs in all directions except the driven axis - avoids "cross axis" error in force measurement•Applies/Maintains pre-loaded tension to the stinger, eliminating buckling problems - results in superior forcing function! ACCESSORY KITIncludes chucks, turnbuckles, nuts, bolts, bolt-on masses, wrenches for bolt-on masses, stingers, user's manual, and extra storage for your stingers and load cellsSPECIFICATIONSSTROKE 1" peak-peak (continuous duty)1.1" between stopsFORCE OUTPUT Convection Cooling:Shop Air by User:Portable Cooling: 25 pounds (peak)50 pounds (peak)50 pounds (peak) - optionalSTINGER ATTACHMENTS Chuck and assortment of collets handles wire sizes from .020" to .125" SHAKER ATTACHMENTS (for mounting) Floor: adjustable trunnion base & screw feet. Suspended: multipleturnbucklesTEST SPECIMEN STATIC PRE-LOAD Capable of tensioning stinger in excess of 50 poundsWEIGHT Shaker with trunnion base: 55 poundsBOUNCE MODE OF 'LARGE INERTIALCONFIGURATION' ON ARMATURE SUSPENSIONApprox. 1 HzDIMENSIONS 11 ½" H (to top of collet chuck with feet retracted) 7 ½" x 9 ¼" footprint DRIVE CABLE LENGTH 30’ standard (100’ cable available as option)Specifications subject to change without notice 0297。
科学实验:悬挂质量的弹簧振动说明书
For a weight of mass m suspended from the spring, the fol-lowing therefore holds:(2)22ddxm k xt⋅+⋅=.This applies as long the mass of the spring itself and any friction that might arise can be neglected.In general, solutions to this equation of motion take the follow-ing form:(3) ()sinx t A t ⎫=⋅+ϕ⎪⎪⎭.This will be verified by experiment by recording the harmonic oscillations of a coil spring pendulum as a function of time with the help of an ultrasonic motion sensor and matching the measured data to a sine function.The ultrasonic motion sensor detects the distance between itself and the weight suspended from the spring. Other than an offset for the zero point, which can be compensated for by calibration, the measurement corresponds directly to the vari-able x(t) included in equation 3.The period of oscillation T is defined as the interval between two points where a sine wave crosses the zero axis in the same direction. From equation (3) it can therefore be seen to be equal to:(4) 2T=πIn order to verify equation (4), the measurements are made for various combinations of mass m and spring constant k, whereby the period of oscillation is determined from where a curve matching the data crosses the zero axis or by matching the curve to equation (3). The spring constants are also to be established by static measurements and compared with those obtained from dynamic measurements.LIST OF EQUIPMENT1 Set of Helical Springsfor Hooke‘s Law U40816 10033761 Set of Slotted Weights, 10x 10 g U30031 10032271 Set of Slotted Weights, 5x 50 g U30033 10032291 Tripod Stand, 150 mm U13270 10028351 Stainless Steel Rod, 1000 mm U15004 10029361 Clamp with Hook U13252 10028281 Ultrasonic Motion Sensor U11361 10005591 3B NET lab™ U11310 10005441 3B NET log™ U11300 1000539/40 1 Pocket Measuring Tape,2 m U10073 1002603 EXPERIMENT SET-UP AND PROCEDURE Note:The experiment is carried out using spring pendulums involv-ing coil springs with with spring constants specified as k = 2.5, 5 and 25 N/m by way of example.Static measurement∙Set up the apparatus for the measurement as shown in Fig. 1.∙Suspend one of the Hooke’s law springs (nominal values of k = 2.5, 5, 10, 15 and 25 N/m) from the clamp with hook.∙Depending on the stiffness of the spring, add the weights from the 10 x 10 g or 5 x 50 g sets of slotted weights to the spring one after the other, then use the pocket tape measure to find the extension s and enter it into Table 1. Note:The weight holders in the slotted weight sets count as one of the ten 10 g or the five 50 g weights.∙Repeat the set of measurements for each of the other springs.Dynamic measurement∙Set up the apparatus for the measurement as shown in Fig. 1.∙Suspend one of the Hooke’s law springs (nominal values of k = 2.5, 5, 10, 15 and 25 N/m) from the clamp with hook.∙Take the four 50 g weights in the 5 x 50 g slotted weight set off the holder. Suspend the holder from the coil spring.∙Place the ultrasonic motion sensor precisely underneath the spring with weight holder hanging from it.∙Connect the ultrasonic motion sensor to analog Input A orB of the 3B NET log™ unit using a miniDIN cable. Turn onthe 3B NETl og™ unit and wait for it to detect the sensor. ∙Turn on the computer and start running the 3B NET la b™ software. Connect the 3B NET log™ unit to the computer. Configure the input as described in the manual for the 3B NET lab™ software.∙Enter the measurement interval/rate, the number of measurements to be made and the duration of the meas-urement (e.g. 5ms/200Hz for the scope, 1000, 5.0s).∙Slightly deflect the spring pendulum, let it go and simulta-neously start the measurement procedure by clicking the “Start” button in the 3B NET lab™ software.∙Save the data recorded for the oscillation.∙Add 50 g weights to the holder one by one and repeat the measurement in each case.∙Repeat the whole set of measurements for the other springs.SAMPLE MEASUREMENTStatic measurementTab. 1: Deflection s for coil spring with specified spring con-stant k = 2.5 N/m with various masses m suspendedfrom it.m / g s / cm10 3.220 7.230 11.240 15.450 19.760 23.770 27.780 31.790 36.0100 40.0Tab. 2: D eflection s for coil spring with specified spring con-stant k = 5 N/m with various masses m suspendedfrom it.m / g s / cm10 0.920 3.030 4.740 6.250 7.960 9.470 10.980 12.590 14.0100 15.7Tab. 3: Deflection s for coil spring with specified spring con-stant k = 25 N/m with various masses m suspendedfrom itm / g s / cm501.4 100 3.2 150 5.0 200 6.9 250 8.7 Dynamic measurementFig. 2 shows the oscillation data recorded by the 3B NET lab™ software using the spring with nominal spring constant k = 5 N/m carrying a mass m = 250 g as an example. In order to verify equation (3), the region of the measured curve between the two cursors is fitted to a sine function. Fig. 2: R ecorded oscillation after fitting to a sine function.The cursors mark the two ends of the region to be fit-ted.EVALUATIONStatic measurementThe weight F G is equal to the force of the spring F F, i.e. ac-cording to the laws of Newton and Hooke, the following is true:(5)G s FsssgF m g k s F s m B mkg gB kk B=⋅=⋅=⇔=⋅=⋅=⇔=F G: Weightm: Mass of suspended weightsg: Acceleration due to gravityF F: Force of springk s: Spring constants: Deflection of spring∙Plot the measurement values from tables 1, 2 and 3 n (Fig. 3), and draw a straight line s = B s ·m through the points. Use equation (5) to determine the spring constant k s from the gradient B s.s / cmm / g Fig. 3: Deflection s as a function of m.Dynamic measurement∙Determine the period of oscillation T for each set of oscil-lation data.∙Do this by reading off the time between every second crossing of the zero axis direct from the curve and enter-ing the results into tables 4, 5 and 6. Alternatively, the pe-riod can be determined with the help of equation (4) from the curve as fitted to equation (3).Tab. 4: Period of oscillation for coil spring with specified nominal spring constant k = 2.5 N/m as obtainedfrom recorded oscillation data.m / g T / s T2 / s250 0.937 0.877100 1.308 1.710150 1.503 2.258 Tab. 5: Period of oscillation for coil spring with specified nominal spring constant k = 5 N/m as obtained fromrecorded oscillation data.m / g T / s T2 / s250 0.584 0.341100 0.810 0.656150 0.992 0.983200 1.143 1.305250 1.262 1.592 Tab. 6: Period of oscillation for coil spring with specified nominal spring constant k = 25 N/m as obtained fromrecorded oscillation datam / g T / s T2 / s250 0.289 0.084100 0.398 0.158150 0.482 0.232200 0.553 0.305250 0.619 0.384 From equation (4):(6)22TT22T TT T444T m B mkB kk Bπ=⋅=⋅ππ=⇔=.∙Plot the square of the period measurements from tables 4, 5 and 6 (Fig. 4) against the mass and draw a straight line T2 = B T·m through the points. Use equation (5) to de-termine the spring constant k T from the gradient B T.T2 / s2m / g Fig. 4: Square of period of oscillation T2 as a function of m.∙Plot the spring constants k T from the dynamic measure-ments against those obtained from the static measure-ments k s and draw a straight line though the points (Fig. 5).3B Scientific GmbH, Rudorffweg 8, 21031 Hamburg, Germany, k T / N/cmk s / N/cmFig. 5: k T as a function of k s with straight line fitted.Fitting a straight line to the measurements in Fig. 5 results in a line of gradient 0.9, i.e. the values lie along a line bisecting the angle to a good approximation. The constants obtainedfrom both static and dynamic measurements are confirmed tobe in agreement.。
贝利尼瓦瑟(Bently Nevada)2300振动监测器产品数据表说明书
2300Vibration MonitorsProduct DatasheetBently Nevada*Asset Condition MonitoringDescriptionThe2300Vibration Monitors provide cost-effective continuousvibration monitoring and protection capabilities for less criticaland spared machinery.They are specifically designed tocontinuously monitor and protect essential medium to lowcriticality machinery in a wide range of industries including:oil&gas,power generation,water treatment,pulp and paper,manufacturing,mining,cement,and other industries.The2300Vibration Monitors deliver vibration monitoring andhigh vibration level alarming.They include two channels ofseismic or proximity measurement inputs from variousaccelerometer,Velomitor and Proximitor types,a speed inputchannel for time-synchronous measurements,and outputs forrelay contacts.The2300/20monitor features a configurable4-20mA output which interfaces more points to a DCS.The2300/25monitor features System1*connectivity forTrendmaster SPA interface which enables users to leverageexisting DSM SPA infrastructure.The2300Vibration Monitors are designed for use on a broadrange of machine trains or individual casings where the sensorpoint count fits the monitor’s channel count and whereadvanced signal processing is desired.Monitor Key Features2300/20l Two4-20mA outputs with internal current loop power supply.l Continuous monitoring and protectionl Two acceleration/velocity/proximity inputs with synchronized sampling for advanced diagnostics.l One dedicated speed channel supporting Proximity probes,Magnetic pickup and Proximity switch typesensors.l Supports process variable on all three inputchannels.l Key measurements(Acceleration pk,Acceleration rms,Acceleration pk/rms,Velocity pk,Velocity rms,Displacement pp,Displacement rms,Speed)real-time provided with alarm configuration.l Each channel has one measurement group and two bandpass measurements.l LCD and LED for real time value and status display.l Ethernet10/100Base-T communication forconfiguration using Bently Nevada MonitorConfiguration software(Included)with RSAencryption.l Local contacts for positive engagement of channel bypass,configuration lockout,and reset.l Two relay outputs with programmable setpoints.l Three buffered transducer outputs(including Keyphasor*signal)providing short circuit and EMIprotection.Buffered outputs for each signal arethrough BNC connectors.l Modbus®overEthernet.CAUTION:Two4-20mA outputs will NOT work with external powered loop.2300/25l Trendmaster SPA interface.l Continuous monitoring and protection.l Two Acceleration/Velocity/Proximity inputs with synchronized sampling for advanced diagnostics.l One dedicated speed channel supporting Proximity probes,Magnetic pickup and Proixmity switch typesensor.l Support process variable on all three input channels.l Key measurements(Acceleration pk,Acceleration rms,Acceleration pk/rms,Velocity pk,Velocity rms,Displacement pp,Displacement rms,Speed)real-time provided with alarm configuration.l Each channel has one measurement group and two bandpass measurements.l LCD and LED for real time value and status display. l Ethernet10/100Base-T communication for configuration using Bently Nevada MonitorConfiguration software(included)with RSAencryption.l Local contacts for positive engagement of channel bypass,configuration lockout,and reset.l Two relay outputs with programmable setpoints.l Three buffered transducer outputs(including Keyphasor signal)providing short circuit and EMIprotection.Buffered outputs for each signal arethrough BNC connectors.l Modbus®over Ethernet.Document:105M0340SpecificationsINPUTSSupport most of unit with default on TemperatureAccuracy:+1%of full scale rangeIndependent 24-bit ADCs on input channelsSupports Bently transducer or 2/3wires customtransducer for Accelerometers,Velomitor and Proximitor.Keyphasor transducers support multiple events perrevolution and event ratios for speed inputs up to 20kHz.External button to reset latched alarm and relay Jumpers are 2-pin terminal interfaces that connects COM to the Chassis ground (GND).Alternatively,COM can be connected to an earth ground separately through a terminal.Document:105M0340OUTPUTSRelay circuit specification in Non-Hazardous area:Type Single pole,double throw Sealing Epoxy sealedContact life100,000cycles @5amps 250VAC200,000@1amp,24VDCInsulation resistance 1000MΩminimum @500VDCRelay closed contact resistance 1Ωmaximum Relay open contact resistance1MΩminimum Maximum switched contact voltage250V AC /250V DC Maximum breaking contact current6A @250VAC /6A @24VDC Maximum switched power1500VA AC /150Watts DCRelay circuit specification in Hazardous area:Two 4-20mA outputs with internal current loop power supply4to 20mA output values are proportional to the full-scale of the associated measurement.Software configuration may determine the varible of each output.Voltage compliance:0to +12Vdc range across load Load resistance:0to 600ΩResolution:0.3662uAAccuracy:1%over operating temperature range Update rate:100msConfigurable with default 2mA clamp current No output feedback determinationCAUTION:Two 4-20mA outputs will NOT work with external powered loop.Document:105M0340Allows viewing machine speed,vibration measurements value,setpoints,and configuration information.CAN/CSA C22.2No.61010-1-12EN61010-1:2010LV Directive 2014/35/EUEN61000-6-2Immunity for Industrial Environments EN61000-6-4Emissions for Industrial EnvironmentsEN61326-1Electrical equipment for measurement,control and laboratory use -EMC requirementsFor adetailed listing of country and product specific approvals,refer to the Approvals Quick Reference Guide (document 108M1756)located at the following website:CSA/NRTL/CClass I,Division 2/Zone 2AEx nA nC [ic]IIC T4GcClass I,Division 2,Groups A,B,C &D;T4ATEX/IECEx2300/20II 3GEx nA nC [ic]IIC T4GcT4@-30°C <Ta <65°C (-22°F <+149°F)2300/25II 3GEx nA nC ic [ic]IIC T4GcDocument:105M0340OrderingInformationFor a detailed listing of country and product specific approvals,refer to the Approvals Quick Reference Guide(document108M1756)located at the following website:.2300Series Vibration Monitor2300/20-AA:Monitor with4-20ma Outputs (including DIN rail mount assembly,manual and monitor configuration software)AA:Approvals Option00None02Multiple Explosive Atmosphere Certifications(ATEX/IECEx/CSA)2300/25-AA: Monitor with SPA Outputs (including DIN rail mount assembly,manual and monitor configuration software)AA:Approvals Option00None02Multiple Explosive Atmosphere Certifications(ATEX/IECEx/CSA)2300/20_KIT-AAA-BB:Bently Nevada2300/20 Condition Monitoring System KitAAA:Configuration0012Sensors and1Housing1-2300/20Monitor1-6ft.(1.8m)shielded Ethernet cable1-Housing Kit:105M6193-01(fiberglasshousing for nonhazardous area)or105M6193-02(stainless steel housing forhazardous area)12x14in.2-Accelerometer sensors(200350)2-17ft.(5.2m)cables(9571)(Excluding Keyphasor sensor and24VDC power supply1)0021Sensor and1Housing1-2300/20or2300/25Monitor1-6ft.(1.8m)shielded Ethernet cable1-Housing Kit:105M6193-01(fiberglasshousing for nonhazardous area)or105M6193-02(stainless steel housing forhazardous area)12x14in.1-Accelerometer sensor(200350)1-17ft.(5.2m)cable(9571)(Excluding Keyphasor sensor and24VDC power supply1)0032Sensors1-2300/20Monitor1-6ft.(1.8m)shielded Ethernet cable2-Accelerometer sensors(200350)2-12ft.(3.6m)cables(9571) (Excluding Keyphasor sensor and24VDC power supply1)0042Velomitors and1Housing1-2300/20Monitor1-6ft.(1.8m)shielded Ethernet cable1-Housing Kit:105M6193-01(fiberglasshousing for nonhazardous area)or105M6193-02(stainless steel housing forhazardous area)12x14in.2-Velomitor sensors(330500)2-17ft.(5.2m)cable(9571)(Excluding Keyphasor sensor and24VDC power supply1)0051Velomitor and1Housing1-2300/20Monitor1-6ft.(1.8m)shielded Ethernet cable1-Housing Kit:105M6193-01(fiberglasshousing for nonhazardous area)or105M6193-02(stainless steel housing forhazardous area)12x14in.1-Velomitor sensor(330500)1-17ft.(5.2m)cable(9571)Document:105M0340(Excluding Keyphasor sensor and24VDC powersupply1)0062Velomitors1-2300/20Monitor1-6ft.(1.8m)shielded Ethernet cable2-Velomitor sensors(330500)2-12ft.(3.6m)cable(9571)(Excluding Keyphasor sensor and24VDC powersupply1)BB:Approvals Option00None02Multiple Explosive Atmosphere Certifications(ATEX/IECEx/CSA2300/25_KIT-AAA-BB:Bently Nevada2300/25 Condition Monitoring System KitAAA:Configuration0012Sensors and1Housing1-2300/25Monitor1-6ft.(1.8m)shielded Ethernet cable1-Housing Kit:105M6193-01(fiberglasshousing for nonhazardous area)or105M6193-02(stainless steel housing forhazardous area)12x14in.2-Accelerometer sensors(200350)2-17ft.(5.2m)cables(9571)(Excluding Keyphasor sensor and24VDC powersupply1)0021Sensor and1Housing1-2300/25Monitor1-6ft.(1.8m)shielded Ethernet cable1-Housing Kit:105M6193-01(fiberglasshousing for nonhazardous area)or105M6193-02(stainless steel housing forhazardous area)12x14in.1-Accelerometer sensor(200350)1-17ft.(5.2m)cable(9571)(Excluding Keyphasor sensor and24VDC powersupply1)0032Sensors1-2300/25Monitor1-6ft.(1.8m)shielded Ethernet cable2-Accelerometer sensors(200350)2-12ft.(3.6m)cables(9571)(Excluding Keyphasor sensor and24VDC power supply1)0042Velomitors and1Housing1-2300/25Monitor1-6ft.(1.8m)shielded Ethernet cable1-Housing Kit:105M6193-01(fiberglasshousing for nonhazardous area)or105M6193-02(stainless steel housing forhazardous area)12x14in.2-Velomitor sensors(330500)2-17ft.(5.2m)cable(9571)(Excluding Keyphasor sensor and24VDC power supply1)0051Velomitor and1Housing1-2300/25Monitor1-6ft.(1.8m)shielded Ethernet cable1-Housing Kit:105M6193-01(fiberglasshousing for nonhazardous area)or105M6193-02(stainless steel housing forhazardous area)12x14in.1-Velomitor sensor(330500)1-17ft.(5.2m)cable(9571)(Excluding Keyphasor sensor and24VDC power supply1)0062Velomitors1-2300/25Monitor1-6ft.(1.8m)shielded Ethernet cable2-Velomitor sensors(330500)2-12ft.(3.6m)cable(9571)(Excluding Keyphasor sensor and24VDC power supply1)Document:105M0340BB:Approvals Option00None02Multiple Explosive Atmosphere Certifications(ATEX/IECEx/CSASystem1:2300/20can interface to System1V16.2or higher for expanded condition monitoring and analysis. System1software and the2300device connectivity(P/N3071/13)are sold separately. Refer to document108M5214for System1 detailed information.3071/13-AA-BB:System12300Series Device ImportAA:Not available for2300monitor00BB:Quantity of2300Monitoring Systems##-Numeric[1->n]1Provided are3kinds of power supplies with different temperature and power ranges.Verify Accessories below for the details.Accessories106M7607-01Power supply for DIN railmounting,100/240AC to24DC/1.5ACertifications(ATEX)(-25°C~70°C,35*99*95mm)(Onepower can drive max4monitors) 110M7102-01Power supply for DIN railmounting,100/240AC to24DC/1.3ACertifications(CID2byUL)(-25°C~70°C,22.5*99*107mm)(One power can drive max4monitors.)106M6694-01Power supply for DIN railmounting,110/220AC to24VDC/5ACertifications(ATEX,IECEx,CID2by UL)(-40°C~70°C,40*130*125mm)(One power candrive max10monitors.)105M6193-02Stainless Steel Housing for2300KIT(can be used in hazardousarea)105M6193-01Fiberglass NEMA4X/IP66weatherproof housing withwindow in door(includes mountingplate for monitor)Dimensions:Width:338.3mm(13.3in)Height:389.1mm(15.3in)Depth:209.8mm(8.2in)(used in nonhazardousarea)105M6193-02Weatherproof HousingDocument:105M0340105M6193-01WeatherproofHousing200350AccelerometerSensorAM3100T2-Z2Accelerometer SensorDocument:105M0340330400/330425AccelerometerSensor330500Velomitor330505Velomitor330525Velomitor190501VelomitorDocument:105M0340100M0741ProximitySwitch284947Magnetic PickupProximity Transducer SystemRefer to proximity transducer system datasheet for details.17203633005mm 141194-013300XL 8mm 146256-013300XL 11mm 147385-013300XL NSV02120015Bulk Cable from Proximity sensor to monitor (500ft.)9571-AA*Low cost cable for accelerometerAA:From “02”to “99”Increments of 1.0foot84661-AA*Armored cable for 2-wire transducerAA:From “03”to “99”Increments of 1.0footCB2W100-AAACable for 2-wiretransducerNote:The CB2W100cable is not recommended for use with the 200350Accelerometer.The O-ring will not form a proper seal with the accelerometer.AAA:01515ft.(4.8m)03232ft.(9.8m)06464ft.(19.5m)112112ft.(34.1m)125125ft.(38.1m)150150ft.(45.7m)200200ft.(61.0m)250250ft.(76.2m)Splash Proof Cable for 2-wire transducer 9571Mod :285031-AA*Cable for 2-wire extension with Splash Proof Connection.This cable assembly provides an equivalent IP66level ofprotection.Note:For Proximitor 3300-NSV andAccelerometer 330400need metal conduit for conducted RF performance.Note:Cable lengths greater than 30meters (100feet)will experience some attenuation of amplitudes at higher frequencies when using the AM3100T2-Z2Accelerometer.Document:105M0340AA :1616ft.(4.8m)3232ft.(9.8m)6464ft.(19.5m) 286244Magnetic mounting base¼-28threaded hole Ethernet Cables138131-AAA Standard10Base-T/100Base-TXShielded Category5Cable with RJ-45connectors(solid conductor)AAA:Cable Length0066ft.(1.8m)010010ft.(3.0m)02525ft.(7.6m)04040ft.(12.2m)05050ft.(15.2m)07575ft.(22.9m)08585ft.(25.9m)100100ft.(30.5m)Spares105M6203-0135mm DIN rail mount andscrews(included with2300/20monitor)106M321010-pin4-20mA outputconnector106M22235-pin contact inputconnector(Alarm Reset) 106M34085-pin contact inputconnector(Alarm Inhibit,Config lock)106M321116-pin transducer inputconnector106M32126-pin relay output connector 106M22313-pin power input connector Accessories02120015Bulk Cable from Proximitysensor to monitor(500ft.) 9571-AA*Low cost cable for2-wiretransducerSoftware100M9465-01BN Monitor ConfigurationSW/FW DVD-BNMC version5.2or greater-2300series monitorfirmware(DVD includes2300SeriesSoftware Guide) Additional Information2300Series Operation and Maintenance Manual (Document105M0341)2300Field Wiring Diagram(Document106M5801) 2300Series Software Guide(Document107M7626) 2300Series Monitor Installation Guide(Document 121M3029)https:///condition-monitoring-and-protection/distributed-monitoring/bently-nevada-2300-series-vibrationDocument:105M0340Document:105M0340Graphs andFigures2300Series Monitor Recommended ClearanceDocument:105M0340WiringDiagram2300/20Wiring DiagramNote:2300/20and 2300/25use the same interface connector for recorder output or SPA output.2300/25WiringDiagramNote:2300/20and2300/25use the same interface connector for recorder output or SPA output.Document:105M0340©2014-2017Bently Nevada,LLC.All rights reserved.*Denotes a trademark of Bently Nevada,LLC,a wholly owned subsidiary of General Electric Company.All product and company names are trademarks of their respective holders.Use of the trademarks does not imply any affiliation with or endorsement by the respective holders.The information contained in this document is subject to change without prior notice.Printed in USA.Uncontrolled when transmitted electronically.1631Bently Parkway South,Minden,Nevada USA89423Phone:Document:105M0340。
苏州实验仪器总厂 RC-2000 数字式振动控制系统 说明书
版本1.0RC-2000数字式振动控制系统使用说明书RC-2000 目 录 STI目录第1章 系统简介 2 1.1 说明书内容 (2)1.2系统组成 (2)1.3 应用软件及安装 (3)1.4 启动应用软件 (4)1.5系统信息 (7)项目管理和文件9 2.1 STI 振动台控制系统文件夹 (9)2.2 试验项目文件夹结构 (9)2.3 试验文件夹 (10)2.4 创建一个新项目 (11)2.5 打开一个已有项目 (11)2.6 缺省项目 (13)2.7 信号文件 (13)第3章 建立一个新项目15 3.1 建立新项目相关的菜单项 (15)3.2 试验设置菜单 (16)3.3 试验目标菜单 (30)3.4 试验项目顺序执行 (54)第4章 试验运行55 4.1 选择试验项目 (55)4.2 试验运行前的准备 (56)4.3试验运行步骤 (57)4.4试验运行和控制菜单 (58)4.5 顺序启动试验 (63)第5章屏幕显示64 5.1 窗口菜单 (64)5.2 显示菜单 (68)5.3 光标菜单 (78)第6章WORD试验报告84 6.1报表功能 (84)6.2 报表菜单 (84)第7章工具条89 7.1 新项目工具条 (89)7.2 工具条按钮 (89)第8术语表93 第9章系统安装及校准99 9.1警告 (99)9.2系统说明 (99)9.3 系统安全与运行环境 (102)9.4系统安装 (103)9.5 系统校准 (105)9.6 系统故障诊断 (112)1RC-2000 系统简介 STI第1章 系统简介本章介绍STI振动控制器的组成、应用软件的安装、首次运行软件的过程、以及系统关键信息(如硬件序列号和软件版本号)等。
1.1 说明书内容基于Windows的STI振动控制应用软件提供了完善的功能,包括试验设置、运行计划表、运行控制、数据存储及显示、试验报告自动生成等,本说明书将系统介绍了STI振动控制系统应用软件所有的操作。
Helix PM-1050600 振动与耦合系统手册说明书
MécaniqueOscillationsϕ1ϕ2ϕϕϕ12 == ϕϕ- = ϕϕ12= ϕϕ-ϕOscillations coupléesENREGISTREMENT ET EVALUATION DES OSCILLATIONS DE DEUX PENDULES IDEN-TIQUES COUPLES.UE105060003/16 CWNOTIONS DES BASE GÉNÉRALESLorsque deux pendules couplés oscillent, de l'énergie est va et vient entre les deux pendules. Si les deux pendules sont identiques et que leurs os-cillations sont excitées de telle manière que l'un des pendules se trouve au départ en position de repos alors que l'autre pendule est élongé au maximum, le transfert d'énergie est même intégral. C'est-à-dire qu'un pendule est entièrement au re-pos, tandis que l'autre oscille avec une amplitude maximale. La durée entre les deux arrêts d'un pen-dule ou, d'une manière générale, entre deux mo-ments où le pendule oscille avec une amplitude minimale, est la période de battement T ∆.Les oscillations entre deux pendules mathématiques identiques couplés peuvent être décrites comme super-position de deux oscillations propres. On peut observer ces oscillations propres en excitant les deux pendules à des oscillations en phase ou en opposition de phase.Dans le premier cas, les pendules sans influence du couplage oscillent à la fréquence des pendules non couplés ; dans le second cas, sous l'influence maximale du couplage, ils oscillent à la fréquence propre maxi-male. Toutes les autres oscillations peuvent être repré-sentées comme des superpositions de ces deux oscilla-tions propres.On obtient pour le mouvement des pendules l'équation suivante (pour petits angles d'élongation ϕ1 et ϕ2) :()()0012222111=ϕ-ϕ⋅+ϕ⋅+ϕ⋅=ϕ-ϕ⋅+ϕ⋅+ϕ⋅k g L k g L(1)g : accélération de la pesanteur, L : longueur de pen-dule, k : constante de couplageFig. 1: A gauche : oscillation couplée générale. Au milieu :oscillation couplée en phase. A droite : oscillation cou-plée en opposition de phase.Pour les grandeurs auxiliaires21ϕ+ϕ=ϕ+ et21ϕ-ϕ=ϕ- (arbitraires dans un premier temps), on obtient les équations suivantes : ()020=ϕ⋅++ϕ⋅=ϕ⋅+ϕ⋅--++k g L g L (2)Leurs solutions ()()()()t b t a t b t a -----+++++ω+ω=ϕω+ω=ϕsin cos sin cos (3)avec les fréquences angulairesL g =ω+ et L k g 2+=ω- (4) correspondent aux oscillations propres décrites en cas d'excitation en phase ou en opposition de phase (ϕ+ = 0 en phase et ϕ– = 0 en opposition de phase).Les déviations des pendules peuvent être calculées à partir de la somme ou la différence des deux grandeurs auxiliaires. On obtient la solution ()()()()()()()()()()t b t a t b t a t b t a t b t a ----++++----++++ω-ω-ω+ω=ϕω+ω+ω+ω=ϕsin cos sin cos 21sin cos sin cos 2121 (5) Dans un premier temps, les paramètres a +, a –, b + et b – sont des grandeurs quelconques qui peuvent être cal-culées depuis l'état d'oscillation des deux pendules au moment t = 0.Le cas suivant qui consiste à tirer sur le pendule 1 avec un angle ϕ0 au temps 0 et à partir de la position zéro et à le relâcher ensuite, pendant que le pendule 2 se trouve à l'état d'équilibre à la position zéro, est le plus facile à interpréter.()()()()()()t t t t -+-+ω⋅ϕ-ω⋅ϕ⋅=ϕω⋅ϕ+ω⋅ϕ⋅=ϕcos cos 21cos cos 21002001 (6)Après la conversion mathématique, on obtient()()()()t t t t ω⋅ω⋅ϕ=ϕω⋅ω⋅ϕ=ϕ∆∆cos sin cos cos 0201(7)avec22-++-∆ω+ω=ωω-ω=ω (8)Cela correspond à une oscillation des deux pendules avec la même fréquence angulaire ω, leurs amplitudes étant modulées avec la fréquence angulaire ω∆. On désigne une telle modulation sous le terme de batte-ment. Dans le cas présenté ici, on peut même parler de battement maximum parce que la valeur minimum at-teinte par 'amplitude est zéro.LISTE DES APPAREILS2 pendule avec capteur de déplacement @230 V1000763 (U8404275-230) ou2 pendule avec capteur de déplacement @115 V 1000762 (U8404275-115)1 ressort hélicoïdal 3 N/m 1002945 (U15027)2 etau de fixation 1002832 (U1326)2 tiges p. statifs, 1000 mm 1002936 (U15004)1 tige pour statifs, 470 mm 1002934 (U15002) 4 noix universelle 1002830 (U13255)2 cordon HF, BNC / douille 4 mm 1002748 (U11257)1 3B NETlog™ @230 V 1000540 (U11300-230) ou1 3B NETlog™ @115 V 1000539 (U11300-115) 1 3B NETlab™1000544 (U11310) 1 PC équipé de Windows, Internet Explorer et un port USBMONTAGEFig. 2 Montage pour l'enregistrement et l'analyse des oscilla-tions de deux pendules couplés identiquesLe montage est illustré sur la Fig. 2. ∙Barres de support d'une longueur de 1000 mm fixées sur le plan de travail à un intervalle d'env.15 cm à l'aide de pinces-étaux.∙ Fixer la barre de support courte à l'horizontale pour mieux stabiliser le montage.∙Fixer le capteur angulaire à l'extrémité supérieure des barres de support verticales à l'aide de man-chons universels.∙ Fixer les masses à l'extrémité inférieure des barres de pendule.∙Accrocher les barres de pendule sur les capteurs angulaires (des encoches sont prévues dans les tiges des capteurs d'angle pour les aiguilles du dis-positif de suspension du pendule).∙Accrocher les ressorts à boudin dans les trous si-tués sur les barres de pendule, qui se trouvent à env. 40 cm de la suspension.∙ Connecter les deux capteurs angulaires au les blocs d'alimentation.∙ Connecter 3B NET log ™ à l'ordinateur.∙Raccorder les deux capteurs angulaires en veillant respecter la polarité (rouge : pôle +, noir : pôle –) aux entrées de tension du 3B NET log ™.REALISATION∙ Brancher 3B NET log ™ et lancer le programme informatique 3B NET lab ™.∙ Sélectionner « Laboratoire de mesure » et créer un nouveau fichier.∙Sélectionner les entrées analogiques A et B et ré-gler chacune d'elles sur la plage de mesure 2 V en mode tension continue (Vcc).∙Régler les paramètres de mesure suivants : Taux : 50 Hz, nombre de valeurs de mesure : 600, mode : standard.1. Enregistrement de l'oscillation équiphase ∙Tirer sur les deux pendules dans la même direction et avec le même angle (réduit) et les relâcher aussi-tôt.∙ Démarrer l'enregistrement de la valeur de mesure dans 3B NET lab ™.∙Une fois cet enregistrement terminé, sélectionner « Retour » et enregistrer la mesure sous un nom pertinent.2. Enregistrement de l'oscillation en opposition de phase ∙Tirer sur les deux pendules dans la direction oppo-sée et avec le même angle (réduit) et les relâcher aussitôt.∙ Lancer à nouveau l'enregistrement de la valeur de mesure dans 3B NET lab ™.∙Une fois cet enregistrement terminé, sélectionner « Retour » et enregistrer la mesure sous un nou-veau nom.3. Enregistrement d'une oscillation couplée avec battement maximum ∙ Sélectionner « Modifier les réglages » et augmenter le nombre de valeurs de mesure à 1200.∙Tirer sur une barre de pendule et maintenir l'autre en position zéro, puis relâcher les deux en même temps.∙ Lancer à nouveau l'enregistrement de la valeur de mesure dans 3B NET lab ™.∙Une fois cet enregistrement terminé, sélectionner « Retour » et enregistrer la mesure sous un nou-veau nom.EXEMPLES DE MESURE1.Oscillation couplée équiphaseFig. 3 Diagramme du temps d'élongation de l'oscillation couplée équiphase (en bleu : pendule de gauche, en rouge : pendulede droite). La graduation angulaire n'est pas étalonnée.2. Oscillation couplée en opposition de phaseFig. 4 Diagramme du temps d'élongation de l'oscillation couplée en opposition de phase (en bleu : pendule de gauche, en rouge : pendule de droite). La graduation angulaire n'est pas étalonnée.3. Oscillation couplée avec battement maximumFig. 5 Diagramme du temps d'élongation de l'oscillation couplée avec battement maximum (en bleu : pendule de gauche, en rouge : pendule de droite). La graduation angulaire n'est pas étalonnée.Fig. 6: R eprésentation agrandie d'une période de battement de l'oscillation couplée avec battement maximum (en bleu : pen-dule de gauche, en rouge : pendule de droite). La graduation angulaire n'est pas étalonnée.3B Scientific GmbH, Rudorffweg 8, 21031 Hamburg, Allemagne, EVALUATION1. Détermination de la période d'oscillation de l'oscillation couplée équiphase ∙ Ouvrir le fichier concernant l'oscillation équiphase. ∙Entourer sur le diagramme le plus grand nombre de périodes d'oscillations d'un pendule au moyen de curseurs ; ce faisant, placer exactement chacun des deux curseurs sur le passage au point zéro d'un flanc montant pour permettre l'inclusion d'un nombre important de périodes (cf. Fig. 3).∙Lire l'intervalle de temps des curseurs dans le ta-bleau situé sous le diagramme (Fig. 3, encadré rouge).Le quotient obtenu à partir de l'intervalle de temps du curseur et du nombre de période incluses donne la période d'oscillations ,,T 737116s827==+2. Détermination de la période d'oscillation de l'oscillation couplée en opposition de phase ∙Ouvrir le fichier concernant l'oscillation en opposi-tion de phase et procéder de la même façon.Le quotient obtenu à partir de l'intervalle de temps du curseur et du nombre de période incluses donne la période d'oscillations ,T –6291=3. Détermination de la période d'oscillation de l'oscillation couplée avec battement maximum ∙ Ouvrir le fichier concernant l'oscillation avec batte-ment maximum.∙Entourer une ou, si possible, plusieurs périodes d'oscillation à l'aide des curseurs (cf. Fig. 5) et lire l'intervalle de temps des curseurs sous le dia-gramme.Le quotient obtenu à partir de l'intervalle de temps du curseur et du nombre de période de battement incluses donne la période de battements T 25=∆∙Modifier la graduation de la base de temps de ma-nière à agrandir la représentation d'une période de battement.∙A l'aide des curseurs, entourer sur le diagramme le plus grand nombre possible de périodes d'oscilla-tion d'un pendule à l'intérieur d'une période de bat-tement (temps s'écoulant entre deux immobilisa-tions du pendule en position de repos) (cf. Fig. 6) et lire l'intervalle de temps des curseurs sous le dia-gramme.Le quotient obtenu à partir de l'intervalle de temps du curseur et du nombre de période incluses donne la période d'oscillations ,T 6851=4. Comparaison de la période de battement et de la période d'oscillation avec les valeurs calculées à partir des périodes d'oscillation proprePour la période d'oscillation T de l'oscillation couplée avec battement maximum, on obtient à partir de l'équa-tion (8) :s ,T T T T T ––68112=+⋅⋅=++(9)Cette valeur peut être comparée avec la valeur de me-sure T = 1,685 s.Le calcul de la période de battement T ∆ s'effectue de la même manière. Il faut toutefois tenir compte du fait que celle-ci est généralement définie comme le temps s'écoulant entre deux immobilisations d'un pendule en position de repos. Cela correspond à la moitié de la durée de période du terme cosinus de modulation ou du terme sinus de l'équation (7).s T T TT T ––26=-⋅=++∆ (10)Cette valeur peut être comparée avec la valeur de me-sure s T 25=∆.L'écart d'environ une seconde par rapport à la valeur de mesure peut paraître de prime abord important. Il est cependant dû à la différence entre les périodes d'oscil-lation propre dont il dépend sensiblement. Une variation de quatre millisecondes qui se situe à peu près dans la plage de précision de mesure maximum atteignable dans le cadre de cette expérience pour les périodes d'oscillation propre, suffit déjà à provoquer une modifi-cation de la période de battement d'une seconde.5. Détermination des constantes de rappel des ressorts de couplage.La constante de rappel du ressort de couplage D est fonction de la constante de couplage k suivant l'équa-tionm d Lk D ⋅⋅=2(11)(d : Intervalle entre le point de fixation du ressort de couplage et la suspension du pendule).Pour un couplage faible (k << g ), la constante de rappel n'a que peu d'influence sur la période d'oscillation de l'oscillation en opposition de phase mais, par contre, une grande influence sur la période de battement. Pour calculer la constante de rappel, il est donc recommandé d'établir une relation avec la période de battement, relation que l'on obtient en intégrant l'équation (4) dans l'équation (8) pour obtenir l’inconnue k dans l’équation ci-dessous.()+∆∆ω⋅ω-ω⋅⋅=22L k(12)On exprime à présent les pulsations par les périodes d'oscillation et on les intègre dans l'équation (11).m N 5322222,T T T T g m dL D =⎪⎪⎭⎫⎝⎛+⋅⋅⋅⋅=∆+∆+ (13)。
Perkin Elmer Fluid Sciences 高压试验设备说明书
monitor the data and present customers with easy-to-read reports. Also, technicians have the ability to remotely run their pressure tests from the laboratory, their desks, or anywhere outside the containment enclosure.Building theAcquisition SystemAn incident during a typical high-pressure test prompted Perkin Elmer Fluid Sciences to build a containment enclosure around the test stations. Although an enclosure increases safety, it also makes the technician’s job of continuously monitoring and adjusting the mechanical components within the station (mechanical relays,pressure, temperature, and more)increasingly difficult. In addition to safety concerns, Perkin Elmer Fluid Sciences wanted to improve the accuracy of the tests and provide clients with reliable, easy-to-read reports. We tightened tolerances usingautomatic data collection instead of manually reading from gauges. Also, handwritten reports were no longer acceptable to many of Perkin Elmer Fluid Sciences’customers.by Ellen Byington, Senior Manager,Acquired Data Solutions, Inc. (ADS)The Challenge: Automating safe and reliable high-pressure,high-temperature,and high-load motion test procedures for aircraft components.The Solution: Developing a rugged,safe,and automated LabVIEW-based data acquisition system that incorporates National Instruments FlexMotion ™hardware and aprogrammable logic controller (PLC).IntroductionPerkin Elmer Fluid Sciences (formerly EG&G Pressure Sciences, Inc.) buildscomponents for aircraft manufacturers such as McDonnell Douglas, Boeing, andGeneral Electric. In the past, Perkin Elmer Fluid Sciences performed threshold tests on the components using manual test stations.These tests took a long time to run andrequired constant supervision. Safety,accuracy, repeatability, and customersatisfaction motivated the company to seek an automated approach to performing the tests. Using LabVIEW , FlexMotion, and the SQL T oolkit, ADS designed an unmanned test station for data acquisition that centered on a PLC. With this system, the operator canW e incorporated NationalInstruments FlexMotion board and an AC servo motor.This high-performance board generates enough current to produce the high force required for precisely moving the fixtures.With the flexibility of this board to change the feedback loop,it is easy to switch testing modes between distance and pressure.Tests LabVIEW ™s MotionPerkin Elmer Fluid Sciences hired ADS to provide direction and assistance indeveloping a data acquisition (DAQ) system that could automatically operate outside the test station enclosure. T o meet the need for an unmanned test station, we designed a system that centered on a PLC. A PLC has a low failure rate in industrial applications and can control several critical functionssuch as collecting sensor data andcontrolling relays to open and close pressure valves. Using National InstrumentsLabVIEW software, we wrote an application to remotely monitor data collection fromthe PLC in real-time through an RS-232Automated test equipment for stress tests of aircraft components.Acquired Data Solutions Uses FlexMotion and LabVIEW to Build Unmanned T est Station for Aircraft Components T estingU sing National InstrumentsLabVIEW software,we wrote an application to remotely monitor data collection from the PLC in real-time through an RS-232 serial protocol.serial protocol. The application also permits technicians to enter manual inputs that are not gathered by the PLC. In case of a system failure, the application shuts down the test and puts the system into a safe mode. Upon failure, the application dials a beeper that contacts an off-duty technician.Part of Perkin Elmer Fluid Sciences’ test procedures required moving fixtures in high-pressure and high-temperature cycles.We incorporated a FlexMotion board with(512)794-0100•Fax(512)683-9300•***********Branch Offices: Australia 03 9879 5166 • Austria ***********•Belgium 02 757 00 20 • Brazil 000 817 947 8791 • Canada 905 785 0085 • China ***********Denmark 45 76 26 00 • Finland 09 725 725 11 • France 01 48 14 24 24 • Germany 089 741 31 30 • Greece 30 1 42 96 427 • Hong Kong 2645 3186India 91805275406 • Israel 03 6120092 • Italy 02 413091 • Japan 03 5472 2970 • Korea 02 596 7456 • Mexico 001 800 010 0793 • Netherlands 0348 433466New Zealand 09 914 0488 • Norway 32 27 73 00 • Poland 48 22 528 94 06 •Portugal 351 1 726 9011 •Singapore 2265886 • Spain 91 640 0085Sweden 08 587 895 00 • Switzerland 056 200 51 51 • Taiwan 02 2528 7227 • U.K. 01635 523545• Venezuela 800 1 4466© Copyright 2000 National Instruments Corporation. All rights reserved. Product and company names listed are trademarks or trade names of their respective companies.an AC servo motor. This high-performance board generates enough current to produce the high force required for precisely moving the fixtures. With the flexibility of thisboard to change the feedback loop, it is easy to switch testing modes between distance and pressure. You can make these changes from software on-the-fly without changing any hardware and cables.We used National Instruments SQL T oolkit to pass sensor data to aMicrosoft Access table for further analysis and report generation. We can now easily transfer the data in the table to other Microsoft Office products such as Excel and Word.Benefits of the SystemThis integrated approach provided aturnkey solution that met the requirements set forth by Perkin Elmer Fluid Sciences, Inc.The system is secure and self-contained, and the operator can monitor the data. It also presents the customers with easy-to-read reports. T echnicians now have the ability to remotely run their pressure tests from the laboratory, their desks, or anywhere outside the containment enclosure.Using the flexibility and power of LabVIEW to integrate the FlexMotion board with a PLC, we built a universal solution for Perkin Elmer Fluid Sciences.1For more information, contact Ellen Byington,Senior Manager, Acquired Data Solutions, Inc.,1225 Martha Custis Drive, C-1,Alexandria, VA 22302tel (703) 379-5303, fax (703) 379-5307*******************************361637A -01361637A -01020800U sing the flexibility and powerof LabVIEW to integrate the FlexMotion board with a PLC,we built a universal solution for Perkin Elmer Fluid Sciences.。
Amber软件中动力学模拟的步骤
Molecular Dynamics simulation——从能量最小化到实际模拟 1 基本流程图1)概述前面我们已经得到了Amber 用来动力学模拟的prmtop 和inpcrd 文件,它们分别是参数文件和坐标文件。
我们先从一条命令说起来解释Amber 是如何做动力学模拟的: sander –O –i mdin –o mdout –p prmtop –c inpcrd –r rst –x mdcrd 动力学过程是一个连续地解牛顿运动方程的过程:上一个牛顿方程结束时,蛋白质中各原子的位置和速度保留给下一个牛顿方程,惟一改变的是原子的加速度,它会根据各种势能函数重新计算(势能随原子坐标改变:E=f (r,…))。
只不过每个牛顿方程的时间很短,短到fs (10-15s )级,Amber 软件提供的sander 主程序可以用来自动地做这样的数值计算。
它需要参数文件(prmtop )、坐标文件(inpcrd )、sander 程序配置文件(mdin )来启动运行,我们已经有了前两种文件,本节内容最主要的就是讲解如何配置我们需要的动力学模拟。
sander 程序运行过程中会输出临时文件(rst )保存坐标和速度,还有轨迹文件(mdcrd )。
2)动力学过程从基本流程图可以知道,一般的动力学过程也就可以分为三步:能量最小化(minimization)、体系平衡(equilibrium)、实际动力学模拟。
由于我们进行的初始结构来自晶体结构或同源建模,所以在分子内部存在着一定的结构张力,能量最小化就是真正的动力学之前释放这些张力,如果没有这个步骤,在动力学模拟开始之后,整个体系可能会因此变形、散架。
另外,由于动力学模拟的是真实的生物体环境,因此必须使研究对象升温升压到临界值,体系达到平衡,才能做实际的动力学模拟。
2 各流程输入文件要通过Amber软件做动力学模拟,需要明白如何去配置上述过程中的每一步。
一般来说就是指定一些键/值对。
振动控制阀性能试验台的设计
振动控制阀性能试验台的设计王文娟【期刊名称】《《流体传动与控制》》【年(卷),期】2012(000)004【总页数】5页(P37-41)【关键词】振动控制阀; 性能试验; 数据采集; 数据处理【作者】王文娟【作者单位】泊姆克(天津)液压有限公司天津 300461【正文语种】中文【中图分类】TH137引言随着我国“十二五”规划对交通、水利、能源等基础设施建设项目投资力度的加大,对振动压路机的市场需求量也日益增长,用户对压路机性能的要求也越来越高,除了能满足作业质量要求外,还对操作者的舒适性、设备节能、可靠性等方面提出了更高要求,为了满足客户需求,本公司设计开发了一种新型压路机振动控制阀。
振动控制阀是自行式振动压路机液压振动系统的关键控制部件,其性能直接影响压路机的作业质量、经济性和耐久性。
为了测试振动控制阀的性能,模拟振动压路机的现场使用工况,通过试验及时发现问题并加以改进,从而有效保证产品的出厂质量,提高产品的市场信誉,因此开发研制振动控制阀的性能试验台是很有必要的。
1 试验台的设计方案1.1 主要参数振动控制阀是以国内的机重为20 t级振动压路机开式液压振动系统为基础,并考虑机重向上、下延伸配套的需要,为了消除现有配套产品的某些缺点而设计开发的,其主要技术参数为:通径Dg25;流量220 L/min;安全阀全开压力18 MPa(可调);息振压力13.5 MPa(可调);最大节流流量60 L/min。
振动压路机开式液压振动系统中,齿轮泵为系统提供液压能,其排量为100 mL/r;齿轮马达将液压能转换成机械能,驱动压路机振动轴旋转,其排量为100 mL/r;振动控制阀对齿轮马达的旋向和速度进行控制;发动机标准转速为2200 r/min。
因此,为测试振动控制阀的性能,模拟振动压路机的使用工况,拟开发此振动控制阀性能试验台。
试验台的主要技术参数见表1。
表1 试验台的主要技术参数1.2 设计标准根据国家标准GB/T 7935《液压元件通用技术条件》的要求,测量准确度等级分为A、B、C三级,型式试验不应低于B级,出厂试验不应低于C级。
Benstone Instruments VPod II智能振动计测试器说明书
Specification
0~1999 um, p-p (10~1KHz BP)(0.00~78.7 mil) 0.0~199.9 mm/s, 0-p (10~1KHz, ISO2954)(0.00~7.87 in/sec) 0.00~19.99 g, rms (10 Hz HP) 0.0 ~ 199.9 mm/s (0-p) (500Hz ~2kHz)(0.00~7.87 in/sec) 5% (10 ~ 10 kHz) Low/ 25%/ 50% / 75%/ full, graphical indicator Normal/ open/ short, graphical indicator LED back light, auto off (100mV/g ±30% adjustable) IP 65, with EMI protection 2.8V 9V alkaline battery x1(about 30 hours operation) 5 minutes after pressing any key 120 x 32 graphic mode LCD 180 x 92 x 32 mm(7.1 x 3.6 x 1.2 in) About 300 gram (including battery) Freeze the display instantly Display the averaged value of the latest 10 data Display the maximum value x10, and increase the reading precision(by 1 decimal place) 0.0~199.9 um, p-p(0.00~7.87 mil) 0.00~19.99 mm/s, 0-p(0.000~0.787 in/s) 0.000~1.999 g, rms Memory for 1000 measured data Recall and display the saved data Download a pre-defined route from a PC, or upload archived data to a PC
awab环境振动使用说明
目录1概述2 2主要性能指标3 3结构特征6 3.1外形图6 3.2按键6 3.3输入输出接口7 3.4过载指示9 3.5 工作电源9 4常见符号及名词术语105工作原理11 6仪器的连接和开关机11 6.1连接11 6.2开关机11 7参数设置12 7.1参数设置菜单12 7.2预存测点名的输入14 7.3查看预存测点名16 8振动测量16 8.1显示界面和选项168.2进行测量19 9数据管理20 9,1数据调阅20 9.2用微型打印机打印输出22 9.3删除存储的数据23 9.3删除存储的数据23 10频率计权相对响应(ISO8041,2型)24 11为试验目的规定的信息25附录装箱清单261.概述AWA6256B+型环境振动分析仪是一种采用数字信号处理技术的手持式分析仪,它既能测量全身垂向(W.B.z)计权振级(也是环境振级),又能测量全身水平(W.B.x-y)计权振级,以及不计权振动加速度级。
满足GB/T 10071-1988 《环境振动测量方法》标准对振动测量仪器的要求,也符合ISO 8041:1990《人体对振动的响应——测量仪器》。
AWA6256B+型是AWA6256B型的换代产品,与AWA6256B型环境振动分析仪相比,主要是频率计权、检波和时间计权是通过数字信号处理技术实现的,因此稳定性更好,动态范围更大,而且以后可升级为符合正在修订中的新的环境振动国家标准要求,外形更加美观。
环境振动对人体的影响与振动的加速度有效值、振动的频率特性、振动的作用时间、振动的方向和部位等等因素有关。
评价振动对人体的影响的基本量是频率计权加速度a W或频率计权加速度级VL W(简称计权振级):频率计权加速度(指数平均) a W:按公式4-1进行均方根计算( 1)计权振级:均方根计权加速度a w与基准加速度a0的比值取以10为底的对数再乘以20,即VL W=20l g(a w/a0) (dB)(2)式中:a W为频率计权加速度有效值(m/s2)a0为参考加速度(10-6 m/s2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
爱盟科技Amber 振动试验控制系统使用说明书使用注意事项在安装、拆卸和使用Amber振动控制仪时,请务必注意以下几点: ¾请在计算机电源切断的情况下,安装或拆卸Amber振动控制仪。
否则带电插拔会损坏计算机和Amber振动控制仪硬件。
¾Amber振动控制仪安装要求牢固。
安装不牢固或接触不良,会引起振动控制软件运行不稳定,甚至会损坏计算机和Amber振动控制仪硬件。
¾严禁用手或带电物体接触Amber振动控制仪的芯片或器件管脚。
静电可损坏Amber振动控制仪的硬件。
¾Amber振动控制软件没有使用校准文件将会降低Amber振动控制仪的精度。
¾校准文件的有效期为一年,到期后,建议用户进行校准。
使用已过期的校准文件也会影响Amber振动控制仪的精度。
¾在振动试验运行过程中,非正常关闭Amber振动控制软件,不会停止当前的试验控制。
Amber振动控制仪的DSP控制器会继续完成原来设定的试验进度表。
在这种情况下,使用外接的急停开关可安全地停止试验。
目录第1章硬件及驱动程序的安装 (1)1.1.Amber振动控制仪简介 (1)1.2.Amber振动控制仪技术参数 (1)1.2.1.输入通道技术参数 (1)1.2.2.输出通道技术参数 (1)1.2.3.随机控制性能指标 (1)1.2.4.正弦扫频控制性能指标 (2)1.2.5.典型冲击控制性能指标 (2)1.2.6.谐振搜索与驻留(RSTD)性能指标 (2)1.3.Amber振动控制仪硬件说明 (3)1.4.Amber振动控制仪驱动程序安装 (3)第2章振动试验控制软件安装及初始配置 (8)2.1.振动试验控制系统软件的安装 (8)2.2.振动试验控制系统软件的卸载 (11)2.3.启动振动试验控制系统软件 (11)2.4.软件授权 (11)2.5.导入校准文件 (12)2.6.振动试验控制系统软件文件夹结构说明 (13)第3章建立试验项目及基本参数设置 (15)3.1.新建试验项目 (15)3.2.打开已保存试验项目 (15)3.3.打开最近保存试验项目 (16)3.4.振动控制软件主界面说明 (17)3.4.1.工具栏说明 (18)3.4.2.试验运行控制说明 (19)3.4.3.试验运行前的注意事项 (19)3.5.试验基本参数设置 (20)3.5.1.工程单位选择 (20)3.5.2.振动台参数设置与管理 (20)3.5.3.通道参数设置 (23)第4章控制参数设置 (25)4.1.正弦扫频控制参数 (25)4.2.随机控制参数 (26)4.3.典型冲击控制参数 (27)4.4.谐振搜索与驻留控制参数 (27)第5章目标谱设置 (28)5.1.正弦试验目标谱 (28)5.2.随机试验目标谱 (31)5.3.典型冲击试验目标谱 (34)5.4.谐振搜索与驻留试验目标谱 (36)第6章进度表设置 (37)6.1.正弦扫频试验进度表 (37)6.1.1.正弦扫频进度表 (37)6.1.2.正弦扫频进度表事件设置 (38)6.2.随机试验进度表 (40)6.2.1.随机进度表 (40)6.2.2.随机进度表事件设置 (40)6.3.典型冲击试验进度表 (41)6.3.1.典型冲击进度表 (41)6.3.2.典型冲击进度表事件设置 (42)6.4.谐振搜索与驻留试验进度表 (43)6.4.1.谐振搜索与驻留进度表 (43)6.4.2.谐振搜索与驻留进度表事件设置 (44)第7章信号管理与显示 (46)7.1.控制窗口和视图窗口的信号管理 (46)7.2.控制窗口和视图窗口的信号显示属性 (46)7.3.控制窗口和视图窗口坐标的调整 (47)7.4.控制窗口和视图窗口信号的缩放显示 (48)7.5.控制窗口和视图窗口信号的测量 (48)7.6.控制窗口和视图窗口的注释 (49)7.7.控制窗口和视图窗口多窗口的显示 (49)7.8.通道状态实时显示 (50)7.9.谐振搜索与驻留视图窗口 (51)7.10.信号对应的名称和颜色显示 (52)第8章生成报表 (53)第1章硬件及驱动程序的安装本章介绍Amber振动控制仪硬件、性能参数及硬件驱动程序的安装。
1.1. Amber振动控制仪简介Amber振动控制仪采用了美国TI公司高性能浮点DSP处理器,结合24位高精度模/数转换和数/模转换技术,以稳定的PCI插卡式系统架构,实现了产品的高性能和高可靠性。
Amber振动控制仪硬件拥有二个同步输入通道和一个输出通道。
可实现随机、正弦、典型冲击和谐振搜索与驻留四个功能。
Amber振动控制仪是一种高性价比的振动控制解决方案。
1.2. Amber振动控制仪技术参数1.2.1.输入通道技术参数¾最大电压输入范围:±10V。
¾最大电荷输入范围:±10000PC。
¾输入阻抗:大于110 k。
¾信噪比:大于100dB。
¾通道输入接口:可直接连接ICP和电荷型加速度传感器,或直接的电压信号输入。
1.2.2.输出通道技术参数¾最大输出电压范围:±10V。
¾输出阻抗:小于50 Ω。
¾幅值精度:2mV。
1.2.3.随机控制性能指标¾动态范围:90dB。
¾控制精度:±1dB。
¾闭环时间:100mS。
¾频率范围:DC~4800Hz。
¾分辨率:最大3200线。
¾控制策略:单通道、多通道加权平均、多通道最大值、多通道最小值。
1.2.4.正弦扫频控制性能指标¾动态范围:95dB。
¾闭环时间:10mS。
¾波形失真度:﹤0.3%。
¾信噪比大于100 dB。
¾频率分辨率:0.01%。
¾扫频模式:定频、线性和对数。
¾扫频速率:线性扫频:0~6000Hz/min。
对数扫频:0~100 Oct/min。
¾频率范围:1Hz~5000Hz。
¾控制策略:单通道、多通道加权平均、多通道最大值、多通道最小值。
1.2.5.典型冲击控制性能指标¾动态范围:90dB。
¾脉冲类型:半正弦、前峰锯齿波、后峰锯齿波、三角波、矩形。
¾脉冲持续时间:0.5~3000mS。
¾频率范围:0~21000Hz。
¾补偿方法:前后脉冲补偿、前脉冲补偿、后脉冲补偿。
1.2.6.谐振搜索与驻留(RSTD)性能指标¾动态范围:95dB。
¾闭环时间:10mS。
¾波形失真度:﹤0.3%。
¾信噪比大于100 dB。
¾频率分辨率:0.01%。
¾扫频模式:定频、线性和对数。
¾线性扫频速率:0~6000Hz/min。
¾对数扫频速率:0~100 Oct/min。
¾频率范围:1Hz~5000Hz。
¾驻留模式:定频以及跟踪驻留。
¾控制策略:单通道、多通道加权平均、多通道最大值、多通道最小值。
1.3. Amber振动控制仪硬件说明Amber振动控制仪硬件输入输出示意图:¾ABORT:急停开关输入。
可连接开关按钮。
通过开关按钮,可以停止试验。
是Amber振动控制仪可选择的配置。
¾INPUT1:输入通道1。
¾INPUT2:输入通道2。
¾OUTPUT:输出通道。
控制仪控制输出,最大输出电压范围:±10V。
输入通道1和输入通道2,可直接连接电荷型、ICP型加速度传感器,或直接电压输入。
最大电压输入范围:±10V。
最大电荷输入范围:±10000PC。
Amber振动控制仪的输出通道和输入通道都采用相同BNC接插件,因此连线时注意不能连错。
1.4. Amber振动控制仪驱动程序安装Amber振动控制仪软件可运行于Windows XP或Windows2000上。
下面以Windows XP 系统为例,说明Amber控制仪驱动程序的安装过程。
1、在切断计算机电源的条件下,将Amber振动控制仪硬件牢固地安装到计算机PCI插槽内。
开启计算机,Windows XP系统会显示“找到新硬件向导”,如图。
选择“从列表或指定位置安装(高级)”。
按“下一步”继续。
如果Windows XP系统未显示“找到新硬件向导”,可按如下方法处理: ¾到“设备管理器”中查找是否有“其它PCI桥设备”,如有,则可在“设备管理器”中安装驱动程序。
¾如果“设备管理器”中没有“其它PCI桥设备”,那么可以按如下方法检查问题:z检查Amber振动控制仪硬件安装是否牢固、正确?z可以将Amber振动控制仪硬件安装到另外的PCI插槽中。
z换一台计算机安装Amber振动控制仪硬件,可测试是否是Amber振动控制仪硬件已损坏?或计算机PCI插槽已损坏?2、指定Amber振动控制仪驱动程序位置。
按“下一步”继续。
如下图所示。
3、向导正在安装Amber控制仪驱动程序。
如下图所示。
4、完成Amber控制仪驱动程序的安装。
如下图所示。
5、在“设备管理器”中,可以看到Amber振动控制仪设备已经正常安装。
如带有“!”或“?”,说明Amber振动控制仪设备没有正常安装。
如下图,Amber 振动控制仪硬件设备驱动程序已正确安装。
如果Amber振动控制仪设备没有正常安装,可按如下方法处理: z检查Amber振动控制仪硬件安装是否牢固、正确?z可以将Amber振动控制仪硬件安装到另外的PCI插槽中。
z换一台计算机安装Amber振动控制仪硬件,可测试是否是Amber振动控制仪硬件已损坏?或计算机PCI插槽已损坏?第2章振动试验控制软件安装及初始配置本章详细介绍振动试验控制系统软件的安装;软件的初始配置如软件的授权、校准文件的导入;软件的文件夹结构说明。
2.1. 振动试验控制系统软件的安装1、将振动试验控制系统软件的光盘放入计算机光驱中,安装软件会自动运行。
用户也可以在振动试验控制系统软件目录中,双击运行振动试验控制系统软件的安装文件Setup.exe。
出现下图界面。
2、单击“下一步”继续,出现下图界面。
3、如上图所示界面,用户点击“更改(C)…”可以修改振动试验控制系统软件安装的“目的地文件夹”。
单击“下一步”继续,出现下图界面。
在这一界面中,用户可单击“上一步”返回上一步界面。
4、点击“安装”,开始振动试验控制系统软件的安装。
5、单击“完成”按钮,完成振动试验控制系统软件的安装。
2.2. 振动试验控制系统软件的卸载点击桌面的“开始”→“程序”→“Inter-Measure”→“Vibration Control System”→“Uninstall Vibration Control System”,启动卸载振动试验控制系统软件界面。