2019-2020学年贵州省贵阳市八年级(上)期末数学试卷
2020-2021学年贵州省贵阳市白云区八年级(上)期中数学试卷(解析版)
2020-2021学年贵州省贵阳市白云区八年级第一学期期中数学试卷一、选择题(每小题3分,共30分)1.4的算术平方根是()A.2B.C.﹣2D.±22.以下列各组数为边长,能构成直角三角形的是()A.4,5,6B.5,12,13C.7,14,15D.2,2,23.下列计算正确的是()A.=B.﹣=1C.×=D.=4.如图,以等边△ABC的边BC的中点O为坐标原点建立平面直角坐标系,已知C(1,0),则点A的坐标为()A.(,0)B.(0,)C.(,0)D.(0,)5.点A(2,4)、B(﹣2,4),则点A与点B的对称关系是()A.关于x轴对称B.关于y轴对称C.关于坐标原点中心对称D.以上说法都不对6.下面哪个点在函数y=﹣2x+3的图象上()A.(5,13)B.(﹣1,1)C.(3,0)D.(1,1)7.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为6和14,则b的面积为()A.8B.18C.20D.268.已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5B.25C.D.5或9.如图,点A的坐标为(﹣1,0),点P是直线y=x上的一个动点,当线段AP最短时,点P的坐标为()A.(0,0)B.(﹣,)C.(,﹣)D.(﹣,﹣)10.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度(滑轮上方的部分忽略不计)为()A.12m B.13m C.16m D.17m二、填空题(每小题4分,共20分)11.实数的相反数为.12.已知,直线y=kx经过点A(1,2),则k=.13.已知点P位于x轴上方,距离x轴4个单位长度,位于y轴右侧,距y轴3个单位长度,则点P坐标是.14.直线l1:y=2x+4沿y轴向下移动4个单位长度得到直线l2,则直线l2的解析式为.15.如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”:当AC=3,BC=4时,则阴影部分的面积为.三、解答题(共50分)16.计算:(1);(2)(3+2)(3﹣2).17.已知:y与x+2成正比例,且x=1时,y=﹣6.(1)求y与x之间的函数关系式;(2)若点M(m,4)在这个函数的图象上,求点M的坐标.18.如图,四边形ABCD中,AB=AD,∠BAD=90°,若AB=2,CD=4,BC=8,求四边形ABCD的面积.19.在平面直角坐标系中,每个小方格的边长为一个单位长度.(1)点A的坐标为,点B的坐标为;(2)点C关于x轴对称点的坐标为;(3)在直线l上找一点N,使△BMN为等腰三角形,点N坐标为.20.甲、乙两人以相同路线前往离学校12km的地方参加植树活动.图中l甲,l乙分别表示甲、乙两人前往目的地所行驶的路程s(km)与时间t(min)的关系,请根据图象回答下列问题:(1)甲比乙早出发min;(2)乙出发min后,两人相遇,这时他们离学校km;(3)甲的速度是km/min,乙的速度是km/min;(4)甲行驶的路程s与时间t的函数关系式为.21.如图,一架梯子AB长13米,斜靠在一面墙上,梯子底端离墙5米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了5米,那么梯子的底端在水平方向滑动了多少米?22.如图,在平面直角坐标系中,直线AB交坐标轴于点A(0,6),B(8,0),点C为x轴正半轴上一点,连接AC,将△ABC沿AC所在的直线折叠,点B恰好与y轴上的点D重合.(1)求直线AB的解析式;(2)点P为直线AB上的点,请求出点P的坐标使S△COP=.参考答案一、选择题(每小题3分,共30分)1.4的算术平方根是()A.2B.C.﹣2D.±2【分析】根据算术平方根的定义即可求出答案.解:∵22=4,∴4的算术平方根为2,故选:A.2.以下列各组数为边长,能构成直角三角形的是()A.4,5,6B.5,12,13C.7,14,15D.2,2,2【分析】根据勾股定理的逆定理逐个判断即可.解:A.∵42+52≠62,∴以4、5、6为边不能组成直角三角形,故本选项不符合题意;B.∵52+122=132,∴以5、12、13为边能组成直角三角形,故本选项符合题意;C.∵72+142≠152,∴以7、14、15为边不能组成直角三角形,故本选项不符合题意;D.∵22+22≠22,∴以2、2、2为边不能组成直角三角形(是等边三角形),故本选项不符合题意;故选:B.3.下列计算正确的是()A.=B.﹣=1C.×=D.=【分析】利用二次根式加减法法则、乘法计算法则进行计算即可.解:A、和不是同类二次根式,不能合并,故原题计算错误;B、和不是同类二次根式,不能合并,故原题计算错误;C、=,故原题计算正确;D、==,故原题计算错误;故选:C.4.如图,以等边△ABC的边BC的中点O为坐标原点建立平面直角坐标系,已知C(1,0),则点A的坐标为()A.(,0)B.(0,)C.(,0)D.(0,)【分析】根据等边三角形的性质和勾股定理即可得到结论.解:∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵AO⊥BC,∴∠AOC=90°,∵C(1,0),∴OC=1,∵点O为边BC的中点,∴BC=2,∴AC=2,∴AO===,∴A(0,),故选:B.5.点A(2,4)、B(﹣2,4),则点A与点B的对称关系是()A.关于x轴对称B.关于y轴对称C.关于坐标原点中心对称D.以上说法都不对【分析】根据两点的横坐标互为相反数,纵坐标相同的两个点关于y轴对称解答.解:∵点A(6,3),点B(6,﹣3)的横坐标互为相反数,纵坐标相同,∴点A与点B关于y轴对称.故选:B.6.下面哪个点在函数y=﹣2x+3的图象上()A.(5,13)B.(﹣1,1)C.(3,0)D.(1,1)【分析】分别将各个点的值代入函数中满足解析式的即在图象上.解:当x=5时,y=﹣7,(5,13)不在函数y=﹣2x+3的图象上;当x=﹣1时,y=5,(﹣1,1)不在函数y=﹣2x+3的图象上;当x=3时,y=﹣3,(3,0)不在函数y=﹣2x+3的图象上;当x=1时,y=1,(1,1)在函数y=﹣2x+3的图象上;故选:D.7.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为6和14,则b的面积为()A.8B.18C.20D.26【分析】运用正方形边长相等,结合全等三角形和勾股定理来求解即可.解:∵a、b、c都是正方形,∴AC=CE,∠ACE=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,∴∠BAC=∠DCE,∵∠ABC=∠CED=90°,AC=CE,∴△ACB≌△CED(AAS),∴AB=CD,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=6+14=20,故选:C.8.已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5B.25C.D.5或【分析】分为两种情况:①斜边是4有一条直角边是3,②3和4都是直角边,根据勾股定理求出即可.解:分为两种情况:①斜边是4有一条直角边是3,由勾股定理得:第三边长是=;②3和4都是直角边,由勾股定理得:第三边长是=5;即第三边长是5或,故选:D.9.如图,点A的坐标为(﹣1,0),点P是直线y=x上的一个动点,当线段AP最短时,点P的坐标为()A.(0,0)B.(﹣,)C.(,﹣)D.(﹣,﹣)【分析】当AP⊥直线y=x时,AP最短,过点P作PB⊥x轴于点B,结合直线的解析式可得出△AOP为等腰直角三角形,再利用等腰直角三角形的性质可得出当线段AP最短时点P的坐标.解:当AP⊥直线y=x时,AP最短,过点P作PB⊥x轴于点B,如图所示.∵直线的解析式为y=x,∴∠AOP=45°,又∵∠APB=90°,∴△AOP为等腰直角三角形,∴BP=OB=OA=,∴点P的坐标为(﹣,﹣).故选:D.10.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度(滑轮上方的部分忽略不计)为()A.12m B.13m C.16m D.17m【分析】根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.解:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选:D.二、填空题(每小题4分,共20分)11.实数的相反数为.【分析】直接利用相反数的定义得出答案.解:实数的相反数为:﹣.故答案为:﹣.12.已知,直线y=kx经过点A(1,2),则k=2.【分析】把点A(1,2)代入y=kx即可解决问题.解:∵直线y=kx经过点A(1,2),∴2=k•1,∴k=2,故答案为2.13.已知点P位于x轴上方,距离x轴4个单位长度,位于y轴右侧,距y轴3个单位长度,则点P坐标是(3,4).【分析】根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故答案为:(3,4).14.直线l1:y=2x+4沿y轴向下移动4个单位长度得到直线l2,则直线l2的解析式为y =2x.【分析】根据平移法则上加下减可得出解析式.解:直线l1:y=2x+4沿y轴向下移动4个单位长度得到直线l2,则直线l2的解析式为y =2x+4﹣4,即y=2x,故答案为:y=2x.15.如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”:当AC=3,BC=4时,则阴影部分的面积为6.【分析】根据勾股定理求出AB,分别求出三个半圆的面积和△ABC的面积,即可得出答案.解:在Rt△ACB中,∠ACB=90°,AC=3,BC=4,由勾股定理得:AB===5,所以阴影部分的面积S=×π×()2+π×()2+﹣π×()2=6,故答案是:6.三、解答题(共50分)16.计算:(1);(2)(3+2)(3﹣2).【分析】(1)先把二次根式化简,然后根据二次根式的乘法法则运算;(2)利用平方差公式计算.解:(1)原式==3×2=6;(2)原式=8﹣12=6.17.已知:y与x+2成正比例,且x=1时,y=﹣6.(1)求y与x之间的函数关系式;(2)若点M(m,4)在这个函数的图象上,求点M的坐标.【分析】(1)根据题意设出函数解析式,把当x=1时,y=﹣6代入解析式,便可求出未知数的值,从而求出其解析式;(2)将点M(m,4)代入函数的解析式中,即可求得m的值.解:(1)根据题意:设y=k(x+2),把x=1,y=﹣6代入得:﹣6=k(1+2),解得:k=﹣2.则y与x函数关系式为y=﹣2(x+2),即y=﹣2x﹣4;(2)把点M(m,4)代入y=﹣2x﹣4,得:4=﹣2m﹣4,解得m=﹣4,所以点M的坐标是(﹣4,4).18.如图,四边形ABCD中,AB=AD,∠BAD=90°,若AB=2,CD=4,BC=8,求四边形ABCD的面积.【分析】首先根据勾股定理求出BD,再根据勾股定理的逆定理证明∠BDC=90°,根据S四边形ABCD=S△ABD+S△DCB计算即可解决问题;解:在Rt△ABD中,AB=AD=2,∠BAD=90°,∴BD==4,∵CD=4,BC=8,∴BC2=BD2+CD2,∴∠BDC=90°,∴S四边形ABCD=S△ABD+S△DCB=×2×2+×4×4=4+8.19.在平面直角坐标系中,每个小方格的边长为一个单位长度.(1)点A的坐标为(﹣4,4),点B的坐标为(﹣3,0);(2)点C关于x轴对称点的坐标为(﹣2,2);(3)在直线l上找一点N,使△BMN为等腰三角形,点N坐标为(0,4)或(﹣3﹣2,4)或(﹣3+2,4)或(3﹣2,4)或(3+2,4).【分析】(1)根据题意得出点的坐标即可;(2)根据关于x轴对称点的坐标特点得出点的坐标即可;(3)设N(x,4),分三种情况:NB=NM;BN=BM;MB=MN.分别列出x的方程进行解答便可.解:(1)根据题意可得点A的坐标为(﹣4,4),点B的坐标为(﹣3,0),故答案为:(﹣4,4);(﹣3,0);(2)由坐标图可知C(﹣2,﹣2)∴点C关于x轴对称点的坐标为(﹣2,2);故答案为:(﹣2,2);(3)设N点的坐标为(x,4),当NB=NM时,有,解得,x=0,∴N(0,4);当BN=BM时,有,解得,x=﹣3,∴N(﹣3﹣2,4),或N(﹣3+2,4);当MN=BM时,有,解得,x=3,∴N(3﹣2,4),或N(3+2,4),综上,N点的坐标为N(0,4)或(﹣3﹣2,4)或(﹣3+2,4)或(3﹣2,4)或(3+2,4),故答案为:(0,4)或(﹣3﹣2,4)或(﹣3+2,4)或(3﹣2,4)或(3+2,4),20.甲、乙两人以相同路线前往离学校12km的地方参加植树活动.图中l甲,l乙分别表示甲、乙两人前往目的地所行驶的路程s(km)与时间t(min)的关系,请根据图象回答下列问题:(1)甲比乙早出发6min;(2)乙出发6min后,两人相遇,这时他们离学校6km;(3)甲的速度是km/min,乙的速度是1km/min;(4)甲行驶的路程s与时间t的函数关系式为s=t(0≤t≤24).【分析】(1)(2)根据图象可得答案;(3)利用速度=路程÷时间可得答案;(4)首先设甲行驶的路程s与时间t的函数s=kt,然后再代入图象经过的点即可.解:(1)甲比乙早出发6min,故答案为:6;(2)乙出发6min后,两人相遇,这时他们离学校6km,故答案为:6;6;(3)甲的速度:6÷12=(km/min),乙的速度:6÷6=1(km/min),故答案为:;1;(4)设甲行驶的路程s与时间t的函数关系式为s=kt,∵图象经过点(12,6),∴6=12k,解得:k=,∴故答案为:s=t(0≤t≤24).21.如图,一架梯子AB长13米,斜靠在一面墙上,梯子底端离墙5米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了5米,那么梯子的底端在水平方向滑动了多少米?【分析】(1)利用勾股定理可以得出梯子的顶端距离地面的高度.(2)由(1)可以得出梯子的初始高度,下滑1米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的底端距离墙的距离为5米,可以得出,梯子底端水平方向上滑行的距离.解:(1)根据勾股定理:所以梯子距离地面的高度为:AO===12(米);答:这个梯子的顶端距地面有12米高;(2)梯子下滑了5米即梯子距离地面的高度为OA′=12﹣5=7(米),根据勾股定理:OB′===2(米),∴BB′=OB′﹣OB=(2﹣5)米答:当梯子的顶端下滑1米时,梯子的底端水平后移了(2﹣5)米.22.如图,在平面直角坐标系中,直线AB交坐标轴于点A(0,6),B(8,0),点C为x轴正半轴上一点,连接AC,将△ABC沿AC所在的直线折叠,点B恰好与y轴上的点D重合.(1)求直线AB的解析式;(2)点P为直线AB上的点,请求出点P的坐标使S△COP=.【分析】(1)用待定系数法求一次函数的解析式;(2)在Rt△ABO中由勾股定理得AB=10,由折叠性质可知:AD=AB=10,OD=4,设出OC长,由勾股定理得出x,设P(m,﹣m+6),根据面积求出m,最后得P点坐标.解:(1)设直线AB的关系式:y=kx+b,∵直线AB交坐标轴于点A(0,6),B(8,0),∴,解得,k=﹣,∴直线AB的解析式:y=﹣x+6;(2)由题意可知:OA=6,OB=8,∴在Rt△ABO中由勾股定理得AB=10,由折叠性质可知:AD=AB=10,OD=4,设OC=x,则BC=CD=8﹣x,在△OCD中,由勾股定理得x2+16=(8﹣x)2,解得,x=3,∴C(3,0),∵P在直线AB上,∴设P(m,﹣m+6),∵S△COP=,∴=,解得,m=6或m=10,①当m=6时,﹣m+6=,②当m=10时,﹣m+6=﹣,∴P(6,)或(10,﹣).。
2018-2019学年贵州省贵阳市八年级(下)期末数学试卷
2018-2019学年贵州省贵阳市八年级(下)期末数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请在答题卡相应位置作答,每小题3分,共30分.1.(3分)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.2.(3分)不等式x<1的解集是()A.x<B.x>C.x>3D.x<33.(3分)如图,在▱ABCD中,∠C=50°,∠BDC=55°,则∠ADB的度数是()A.10°B.75°C.35°D.15°4.(3分)要使分式有意义,则x的取值范围是()A.x=1B.x≠1C.x=﹣1D.x≠﹣15.(3分)把a2﹣a分解因式,正确的是()A.a(a﹣1)B.a(a+1)C.a(a2﹣1)D.a(1﹣a)6.(3分)如图,长方形ABCD的长为6,宽为4,将长方形先向上平移2个单位,再向右平移2个单位得到长方形A′B′C′D′,则阴影部分面积是()A.12B.10C.8D.67.(3分)如图,在△ABC中,分别以点A,C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD.若AB=3,BC=4,则△ABD的周长是()A.7B.8C.9D.108.(3分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2D.a2﹣b2=(a+b)(a﹣b)9.(3分)利用函数y=ax+b的图象解得ax+b<0的解集是x<﹣2,则y=ax+b的图象是()A.B.C.D.10.(3分)如图,在△ABC中,D是BC边的中点,AE是∠BAC的角平分线,AE⊥CE于点E,连接DE.若AB=7,DE=1,则AC的长度是()A.5B.4C.3D.2二、填空题:每小題4分,共16分.11.(4分)分式的值为零,则x的值是.12.(4分)如图,在四边形ABCD中,对角线AC、BD交于点O,AD∥BC,请添加一个条件:,使四边形ABCD为平行四边形(不添加任何辅助线).13.(4分)若不等式组的解集是x>2,则m的值是.14.(4分)如图,在等腰直角△ABC中,∠ACB=90°,BC=2,D是AB上一个动点,以DC为斜边作等腰直角△DCE,使点E和A位于CD两侧.点D从点A到点B的运动过程中,△DCE周长的最小值是.三、解答题:本大题7小题,共54分.15.(10分)(1)先化简,再求值:(﹣),其中a=3;(2)三个数4,1﹣a,5﹣3a在数轴上从左到右依次排列,求a的取值范围.16.(10分)如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF,连接EF,分别交AD,BC于点M,N,连接AN,CM.(1)求证:△DFM≌△BEN;(2)四边形AMCN是平行四边形吗?请说明理由.17.(6分)在平面直角坐标系中,△ABC的位置如图所示,点A,B,C的坐标分别为(﹣3,﹣3),(﹣1,﹣1),(0,﹣2),根据下面要求完成解答.(1)作△ABC关于点C成中心对称的△A1B1C1;(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2;(3)在x轴上求作一点P,使P A2+PC2的值最小,直接写出点P的坐标.18.(7分)在“626”国际禁毒日到来之际,为了普及禁毒知识,提高市民禁毒意识,某区发放了一批“关爱生命,拒绝毒品”的宣传资料.据统计,甲小区共收到宣传资料350份,乙小区共收到宣传资料100份,甲小区住户比乙小区住户的3倍多25户,若两小区每户平均收到资料的数量相同.求这两小区各有多少户住户?19.(6分)如图是两个全等的直角三角形(△ABC和△DEC)摆放成的图形,其中∠ACB =∠DCE=90°,∠A=∠D=30°,点B落在DE边上,AB与CD相交于点F.若BC =4,求这两个直角三角形重叠部分△BCF的周长.20.(8分)王大伯计划在自家的鱼塘里投放普通鱼苗和红色鱼苗,需要购买这两种鱼苗2000尾,购买这两种鱼苗的相关信息如下表:品种项目单价(元/尾)养殖费用(元/尾)普通鱼种0.51红色鱼种11设购买普通鱼苗x尾,养殖这些鱼苗的总费用为y元(1)写出y(元)与x(尾)之间的函数关系式;(2)如果购买每种鱼苗不少于600尾,在总鱼苗2000尾不变的条件下,养殖这些鱼苗的最低费用是多少?21.(7分)如图,在△ABC中,AB=AC,∠A=2α,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.(1)∠EDB=°(用含α的式子表示)(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转180°﹣2α,与AC边交于点N.①根据条件补全图形;②写出DM与DN的数量关系并证明;③用等式表示线段BM、CN与BC之间的数量关系,(用含α的锐角三角函数表示)并写出解题思路.。
八年级数学东城区2019-2020学年度第一学期期末教学统一检测 (含答案)
东城区2019-2020学年度第一学期期末教学统一检测初二数学 2020.1一、选择题(本题共20分,每小题2分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.在国庆70周年的庆典活动中,使用了大量的电子显示屏,0.0009m 微间距显示屏就是其中之一.数字0.0009用科学记数法表示应为A.4910-⨯B. 3910-⨯C. 30.910-⨯D. 40.910-⨯ 2. 下列等式中,从左到右的变形是因式分解的是A .()m a b ma mb +=+B .23313(1)1x x x x -+=-+ C .()()23212x x x x ++=++ D .22(2)+4+4a a a +=3.如图是3×3的正方形网格,其中已有2个小方格涂成了黑色.现在要从编号为①‒④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是A.①B.②C.③D.④4. 下列各式计算正确的是 A.2133a aa -⋅= B.236()ab ab = C.22(2)4x x -=- D.824623x x x ÷=5. 对于任意的实数x ,总有意义的分式是A.152--x x B.231x x -+ C.x x 812+ D.21x -6.如图,△ABC 中,∠A =40°,AB 的垂直平分线分别交AB ,AC 于点D ,E ,连接BE ,则∠BEC 的大小为A.40°B.50°C.80°D.100°7.若分式2213x x -+的值为正数,则x 需满足的条件是 A. x 为任意实数 B. 12x < C. 12x >D. 12x >- 8. 已知△ABC ,两个完全一样的三角板如图摆放,它们的一组对应直角边分别在AB ,AC 上,且这组对应边所对的顶点重合于点M ,点M 一定在A.∠A 的平分线上B.AC 边的高上C.BC 边的垂直平分线上D.AB 边的中线上9.如图,已知∠MON 及其边上一点A .以点A 为圆心,AO 长为半径画弧,分别交OM ,ON于点B 和C .再以点C 为圆心,AC 长为半径画弧,恰好经过点B .错误的结论是 A. AOC ABC S S =△△ B. ∠OCB =90° C. ∠MON =30° D. OC =2BC10. 已知OP 平分∠AOB ,点Q 在OP 上,点M 在OA 上,且点Q ,M 均不与点O 重合.在OB 上确定点N ,使QN =QM ,则满足条件的点N 的个数为A.1 个B.2个C.1或2个D.无数个二、填空题(本题共16分,每小题2分) 11. 因式分解:39a a -= _ . 12. 已知 -2是关于x 的分式方程23x kx x -=+的根,则实数k 的值为________ . 13. 如图,BE 与CD 交于点A ,且∠C =∠D .添加一个条件: ,使得△ABC ≌△AED .BA CM第8题图 第9题图14. 如图,将长方形纸片ABCD 折叠,使顶点A ,C 重合,折痕为EF .若∠BAE =28°,则∠AEF 的大小为 °.15. 如图,等边△ABC 中,AD 是BC 边上的中线,且AD =4,E ,P 分别是AC ,AD 上的动点,则C P +EP 的最小值等于 .16. 我国古代数学曾有许多重要的成就,其中“杨辉三角” (如图)就是一例. 这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小顺序排列)的系数规律.例如,第三行的三个数1,2,1,恰好对应()2222a b a ab b +=++展开式中各项的系数;第五行的五个数1,4,6,4,1,恰好对应着()4432234464a b a a b a b ab b +=++++展开式中各项的系数.(1)()5a b +展开式中4a b 的系数为 ;(2)()7a b +展开式中各项系数的和为 .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:3+23x x x +-. 18.下面是小明设计的“已知两线段及一角作三角形”的尺规作图过程. 已知:线段m ,n 及∠O .求作:△ABC ,使得线段m ,n 及∠O 分别是它的两边和一角. 作法:如图,① 以点O 为圆心,m 长为半径画弧,分别交∠O 的两边于点M ,N ; ② 画一条射线AP ,以点A 为圆心,m 长为半径画弧,交AP 于点B ; ③ 以点B 为圆心,MN 长为半径画弧,与第②步中所画的弧相交于点D ; ④ 画射线AD ;⑤ 以点A 为圆心,n 长为半径画弧,交AD 于点C ; ⑥ 连接BC ,则△ABC 即为所求作的三角形. 请回答:(1)步骤③得到两条线段相等,即 = ; (2)∠A =∠O 的作图依据是 ; (3)小红说小明的作图不全面,原因是 .19.计算:()201π533-⎛⎫- ⎪⎝⎭.20.如图,在△ABC 和△ADE 中,∠BAC =∠DAE ,AD =AE .连接BD ,CE,∠ABD =∠ACE . 求证:AB =AC .21. 计算:2()()()4()2m n m n m n m m n m ⎡⎤+-+---÷⎣⎦.B22. 解方程:2151=24xx x +--- . 23.在三角形纸片ABC 中,∠B =90°,∠A =30°,AC =4,点E 在AC 上,AE =3.将三角形纸片按图1方式折叠,使点A 的对应点A '落在AB 的延长线上,折痕为ED ,A E '交BC 于点F .(1)求∠CFE 的度数;(2)如图2,,继续将纸片沿BF 折叠,点A '的对应点为A '',A F ''交DE 于点G .求线段DG 的长.图1 图224. 如图,△ABC .(1)尺规作图:过点C 作AB 的垂线交AB 于点O .不写作法,保留作图痕迹;(2)分别以直线AB ,OC 为x 轴,y 轴建立平面直角坐标系,使点B ,C 均在正半轴上.若AB=7.5,OC =4.5,∠A =45°,写出点B 关于y 轴的对称点D 的坐标; (3)在(2)的条件下,求△ACD 的面积.25. 先化简,再求值:22214()2442a a a a a a a a ----÷++++,其中a 是满足|3|3a a -=-的最大整数.26. 列方程,解应用题:第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行.与首届相比,第二届进博会的展览面积更大,企业展设置科技生活、汽车、装备等七个展区,展览面积由的270 000平方米增加到330 000平方米.参展企业比首届多了约300家,参展企业平均展览面积增加了12.8%,求首届进博会企业平均展览面积. (1) 在解应用题时,我们常借助表格、线段图等分析题目中的数量关系.A'F E C A GA'F E C设首届进博会企业平均展览面积为x 平方米,把下表补充完整: 届别总面积(平方米)企业平均展览面积(平方米)首 届 270 000x第二届 330 000(2)根据以上分析,列出方程(不解..方程).27. 在ABC 中,AB >BC ,直线l 垂直平分AC .(1)如图1,作∠ABC 的平分线交直线l 于点D ,连接AD ,CD . ①补全图形;②判断∠BAD 和∠BCD 的数量关系,并证明.(2) 如图2,直线l 与ABC 的外角∠ABE 的平分线交于点D ,连接AD ,CD . 求证:∠BAD =∠BCD .28.对于△ABC 及其边上的点P ,给出如下定义:如果点1M ,2M ,3M ,……,n M 都在 △ABC 的边上,且 123n PM PM PM PM ====L L ,那么称点1M ,2M ,3M ,……,n M 为△ABC 关于点P 的等距点,线段1PM ,2PM ,3PM ,……,n PM 为△ABC 关于点P 的等距线段.(1)如图1,△ABC 中,∠A <90°,AB =AC ,点P 是BC 的中点.①点B ,C △ABC 关于点P 的等距点,线段P A ,PB △ABC 关于点P 的等距线段;(填“是”或“不是”)②△ABC 关于点P 的两个等距点1M ,2M 分别在边AB ,AC 上,当相应的等距线段最短时,在图1中画出线段1PM ,2PM ;(2)△ABC 是边长为4的等边三角形,点P 在BC 上,点C ,D 是△ABC 关于点P 的等距lE D A C B lA B 图1 图2点,且PC =1,求线段DC 的长;(3)如图2,在Rt △ABC 中,∠C =90°,∠B =30°.点P 在BC 上,△ABC 关于点P 的等距点恰好有四个,且其中一个是点C . 若BC a =,直接写出PC 长的取值范围.(用含a 的式子表示)图1 图2东城区2019-2020学年度第一学期期末教学统一检测初二数学参考答案及评分标准 2020.1一、选择题(本题共20分,每小题2分)题号 1 2 3 4 5 6 7 8 9 10 答案ACDABCCADC二、填空题(本题共16分,每小题2分)11.()()33a a a +- 12. 2 13.答案不唯一,但必须是一组对应边,如:AC =AD 14. 59 15. 4 16. 5 ;128三.解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)17. 解: 原式()()()()332=223x x x x x -+++-L L L L 分()()2336423x x x x x -++=+-L L L L 分 ()()26523x x x +=+-L L L L 分 18.(1)BD ,MN ;……………………1分(2)三边对应相等的两个三角形全等;全等三角形的对应角相等;……………………3分 (3)小明没有对已知中的边和角的位置关系分类讨论. ……………………5分19.解:()-201π53⎛⎫- ⎪⎝⎭94=-+……………………4分=……………………5分20.证明:∵∠BAC =∠DAE,∴∠BAC -∠CAD =∠DAE -∠CAD.即∠BAD =∠CAE. ……………………2分 在△BAD 和△CAE 中,,BAD CAE ABD ACE AD AE ∠∠∠∠⎧⎪⎨⎪⎩=,=,=∴△BAD ≌△CAE (AAS ). …………………… 4分 ∴ AB =AC. …………………… 5分2222222()()()4()2(243454)2m (22)2m n m n m n m m n mm n m mn n m mn m mn m m n ⎡⎤+-+---÷⎣⎦=-+-+-+÷=-+⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯÷=-+⋯⋯⋯⋯⋯⋯⋯21.解:分分分B()()()222124532453112343x x x x x x x x ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯++--=++-+==-=-⋯⋯⋯⋯⋯⋯⋯⋯⋯22.解:分分分经检验:13x =-是原方程的解. ∴13x =-.……………………5分23.解:(1)∵∠A =30°,∴∠A '=30°. ……………………1分 ∵∠A BF '=90°, ∴∠A FB '=60°. ……………………2分∵∠CFE =∠A FB ',∴∠CFE =60°. ……………………3分(2)∵点A 与点A '关于直线DE 对称,∴DE ⊥AA '.∵∠A =30°,AE =3, ∴1322DE AE == . ……………………4分 由(1)知,∠CFE =60°,∠C =60°,∴△CFE 是等边三角形.∴EF =CE =AC -AE =1. ……………………5分 同理,△EFG 也是等边三角形, ∴12DG DE EG =-=DG =DE -EG =.……………………6分 24.解:(1)……………………………………………………………………………………2分GA''DA'FECAB图2A'FECA图1(2)D (-3,0); ……………………4分 (3)13927==2228ACD S ⨯⨯△.……………………6分22222221225.[](2)(2)44(1)2[](2)(2)442(2124)4231a a a a a a a a a a a a a a a a a a a a a a a--+=-⋅++---+=-⋅++--+=⋅+-⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=+解:原式分分分分∵a 是满足|3|3a a -=-的最大整数, ∴30a -≥. ∴3a ≤.∴=3a . ……………………5分 ∴1=15原式.……………………6分……………………………………………………………………………………4分(2)270 000330000+300=(1+12.8%)x x.……………………6分 27. 解:(1)①补全图形;……………………1分② 结论:∠BAD +∠BCD =180°. ……………………2分证明:过点D 作DE ⊥AB 于E ,作DF ⊥BC 交BC 的延长线于F , 则∠AED =∠CFD =90°.∵BD 平分∠ABC ,∴DE =DF . ∵直线l 垂直平分AC ,∴DA =DC. ……………………3分在Rt ADE 和Rt CDF 中, DA DC DE DF =⎧⎨=⎩,,∴Rt ADE ≌Rt CDF . ∴∠BAD =∠FCD.∵∠FCD +∠BCD =180°,∴Rt ADN ≌Rt CDM.∴∠BAD =∠BCD. ……………………7分28.解:(1)①是,不是;……………………2分②……………………3分(2)如图,DC =2,或DC =1; ……………………5分B(3)32a a PC <<.……………………7分。
2019-2020学年贵州省贵阳一中高二(上)第一次月考数学试卷 (含答案解析)
2019-2020学年贵州省贵阳一中高二(上)第一次月考数学试卷一、选择题(本大题共12小题,共48.0分)1.已知下图的程序,如果程序执行后输出的结果是990,那么在UNTIL后面的“条件”应为()A. i>9B. i>=9C. i<=8D. i<82.执行图的程序框图,如果输入a=1,b=1,则输出的S=()A. 54B. 33C. 20D. 73.101(9)化为十进制数为()A. 9B. 11C. 82D. 1014.两个整数315和2016的最大公约数是()A. 38B. 57C. 63D. 835.读下面的程序:下面的程序在执行时如果输入6,那么输出的结果为()A. 6B. 720C. 120D. 16.如图是一个程序框图,则输出k的值为()A. 6B. 7C. 8D. 97.下列抽样方法中是简单随机抽样的是()A. 在机器传送带上抽取30件产品作为样本B. 在无限多个个体中抽取50个个体作为样本C. 箱子里共有100个零件,今从中选取10个零件进行检验,在抽样操作时,每次任意地拿出一个零件进和质量检验,检验后不再把它放回箱子里,直到抽10个零件为止D. 从50个个体中一次性抽取5个个体作为样本8.某班有34位同学,座位号记为01,02,…34,用如图的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号是()A. 23B. 09C. 02D. 169.一个学校高三年级共有学生200人,其中男生有120人,女生有80人,为了调查高三复习状况,用分层抽样的方法从全体高三学生中抽取一个容量为25的样本,应抽取女生的人数为()A. 20B. 15C. 12D. 1010.200辆汽车通过某一段公路时,时速的频率分布直方图如图所示,则时速在[50,70)的汽车大约有()A. 60辆B. 80辆C. 70辆D. 140辆11.为了在程序运行后得到Y=16,应输入X的值是()A. 3或−3B. −5C. −5或5D. 5或−312.图是一个算法程序框图,若输入的x=3,则输出的y的值为()A. −2B. 6C. 0D. −1二、填空题(本大题共5小题,共20.0分)13.已知下列程序INPUT xIF x<=−1THENy=−x−1ELSEIF x>1THENy=−x∧2+1ELSEy=x−1END IFEND IFPRINT“y=”;yEND如果输出的是y=0.75,则输入的x是________.14.把“五进制”数1234(5)转化为“四进制”数的末尾数是______ .15.153与119的最大公约数为___;16.采用系统抽样方法,从123人中抽取一个容量为12的样本,则抽样距为______ .17.运行程序框图,若输出的S的值为29−1,则判断框内的整数a为29______ .三、解答题(本大题共5小题,共32.0分)18.用秦九韶算法计算f(x)=2x4+3x3+5x+4在x=2时的值.写出详细步骤.19.从两个班中各随机抽取10名学生,他们的数学成绩如下:甲班:76 74 82 96 64 76 78 72 54 68乙班:86 84 65 76 75 92 83 74 88 87画出茎叶图并分析两个班学生的数学学习情况.20.甲,乙两机床同时加工直径为100cm的零件,为检验质量,各从中抽取6件测量的数据为:甲:99,100,98,100,100,103乙:99,100,102,99,100,100(1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定.21.某校举办安全法规知识竞赛,从参赛的高一学生中抽出100人的成绩作为样本进行统计,并按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]分组,得到成绩分布的频率分布直方图(如图).(1)若规定60分以上(包括60分)为合格,计算高一年级这次知识竞赛的合格率;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此,估计高一年级这次知识竞赛的学生的平均成绩.22.为了了解某中学高二女生的身高情况,该校对高二女生的身高(单位:cm)进行了一次随机抽样测量,将所得数据整理后列出了如下频率分布表:(1)表中m,n,M,N所表示的数分别是多少?(2)绘制频率分布折线图.(3)估计该校高二女生身高小于162.5cm的人数占总人数的百分比.-------- 答案与解析 --------1.答案:C解析:解:∵输出的结果是990,即S=1×11×10×9,需执行3次,即i小于等于8时,退出循环,∴程序中UNTIL后面的“条件”应为i≤8.故选:C先根据输出的结果推出循环体执行的次数,再根据S=1×11×10×9=990得到程序中UNTIL后面的“条件”.本题主要考查了直到型循环语句,语句的识别问题是一个逆向性思维,一般认为学习是从算法步骤(自然语言)至程序框图,再到算法语言(程序),如果将程序摆在我们的面前,要识别逐个语句,整体把握,概括程序的功能,属于基础题.2.答案:C解析:【分析】本题考查了程序框图的应用问题,是基础题.模拟执行程序框图的运行过程,写出每次运行后S的值,求出程序运行后输出的S值.【解答】解:执行如图所示的程序框图知,第一次运行后S=2,a=2,b=3,k=2;第二次运行后S=7,a=5,b=8,k=4;第三次运行后S=20,a=13,b=21,k=6;此时不满足k≤4,则输出的n=20.故选C.3.答案:C解析:解:由题意,101(9)=1×92+0×91+1×90=82,故选:C.利用累加权重法,即可将九进制数转化为十进制,从而得解.本题考查九进制与十进制之间的转化,熟练掌握九进制与十进制之间的转化法则是解题的关键,属于基本知识的考查.4.答案:C解析:解:∵2016=315×6+126,315=2×126+63,126=63×2+0∴两个数315和2016的最大公约数是63,故选C.用较大的数字除以较小的数字,得到商和余数,然后再用上一式中的除数和得到的余数中较大的除以较小的,余数为0,从而可得两个数的最大公约数.利用辗转相除法的关键是用较大的数字除以较小的数字,得到商和余数,然后再用上一式中的除数和得到的余数中较大的除以较小的,以此类推,当整除时,就得到要求的最大公约数.5.答案:B解析:【分析】按照程序的流程,写出前6次循环的结果,直到第六次,不满足循环的条件,执行输出.解决程序中的循环结构,一般先按照流程写出前几次循环的结果,找出循环遵循的规律.【解答】解:经过第一次循环得到S=1,I=2经过第二次循环得到S=2,I=3经过第三次循环得到S=6,I=4经过第四次循环得到S=24,I=5经过第五次循环得到S=120,I=6经过第六次循环得到S=720,I=7此时,不满足循环的条件,执行输出S故选B.6.答案:B解析:【分析】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结果,是基础题.根据题意,模拟程序框图的运行过程,即可得出输出的k值.【解答】解:程序框图的执行过程如下:S=1,K=10;S=10,k=9;11S=9,k=8;11S=8,k=7;循环结束,11故选B.7.答案:C解析:【分析】本题考查简单随机抽样的判定,属于基础题目.根据简单随机抽样的概念进行判定即可.【解答】解:A不是,因为传送带上的产品数量不确定;B不是,因为个体的数量无限;C是,因为满足简单随机抽样的定义;D不是,因为它不是逐个抽取.故选C.8.答案:D解析:【分析】本题考查了简单随机抽样,属于基础题.【简单】解:从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字中小于34的编号依次为21,32,09,16,其中第4个为16.故选D.9.答案:D解析:解:各层在样本和总体中的比例不变=10∴25×80200故选D根据在总体与样本中的比例相同的原理,比例乘以样本容量即得结果.本题主要考查分层抽样,要注意各层在样本和总体中的比例不变,属于基础题.10.答案:D解析:【分析】本题考查频率分布直方图,考查数据处理能力,是基础题.根据频率分布直方图,可得时速在[50,70)的汽车的频率,结合样本容量为200,把频率看作概率即可估算出结果.【解答】解:由于时速在[50,70)的数据对应的矩形高之和为0.03+0.04=0.07,由于数据的组距为10,故时速在[50,70)的数据的频率为:0.07×10=0.7,故时速在[50,70)的数据的频数为:0.7×200=140.故选D.11.答案:C解析:解:本程序含义为:输入x如果x<0,执行:y=(x+1)2否则,执行:y=(x−1)2因为输出y=16由y=(x+1)2,可得,x=−5由y=(x−1)2可得,x=5故x=5或−5故选C.首先分析程序含义,判断执行过程,对于结果为y=16,所以根据程序,分别计算求出x的值即可.本题选择选择结构的程序语句,根据两个执行语句分别计算,属于基础题.本题是考查条件结构的一道好题.12.答案:A解析:【分析】本题主要考查条件结构的程序框图.【解答】解:根据程序框图可知,其功能为计算分段函数y ={x +3,x <0,0,x =0,x −5,x >0的函数值,因为x =3,所以y =3−5=−2.故选A .13.答案:−1.75解析:【分析】本题考查条件语句及分段函数,由程序求解即可.【解答】解:由程序可知本题为根据输入的x ,求函数y ={−x −1,x ≤−1,x −1,−1<x ≤1,−x 2+1,x >1的函数值,我们可以分段令y =0.75,并验证,可求得x =−1.75.故答案为−1.7514.答案:2解析:解:五进制”数为1234(5)转化为“十进制”数为1×53+2×52+3×51+4=194. 194÷4=48…2,48÷4=12…0,12÷4=3…0,3÷4=0…3,把余数从下往上排序:3002,即:(194)10=(3002)4.其末位数字是2.故答案为:2.首先把五进制数字转化成十进制数字,用所给的数字最后一个数乘以5的0次方,依次向前类推,相加得到十进制数字,再用这个数字除以4,倒序取余.本小题考查进位制之间的转化,本题涉及到三个进位制之间的转化,实际上不管是什么之间的转化,原理都是相同的,属于基础题.15.答案:17解析:【分析】本题考查更相减损术与辗转相除法求最大公约数,这是一个算法案例,这种题目出现的比较少,但是要掌握题目的解法.解法一、用更相减损术求153与119的最大公约数,先用大数减去小数,再用减数和差中较大的数字减去较小的数字,这样减下去,直到减数和差相同,得到最大公约数.解法二、用辗转相除法求153与119的最大公约数.【解答】解:法一、用更相减损术,153−119=34,119−34=85,85−34=51,51−34=17,34−17=17,所以153与119的最大公约数就是17.法二、用辗转相除法,153=119×1+34,119=34×3+17,34=17×2+0,所以153与119的最大公约数就是17.故答案为17.16.答案:10解析:解:根据系统抽样方法的定义,从123人中抽取一个容量为12的样本,∵不能整除,∴先利用随机抽样方法剔除3个个体,=10.再确定系统抽样的抽样间隔为12012故答案为:10.从123人中抽取一个容量为12的样本,不能整除,先利用随机抽样方法剔除3个个体,再确定抽样间隔.本题考查了系统抽样方法,当总体个数不能被样本容量整除时,要先剔除部分个体,再确定抽样间隔.17.答案:10解析:解:29−129=1−129, 由程序框图可知,输出结果是首项为12,公比为12的等比数列的前k 项和,若输出的S 的值为1−129,则判断框中的整数a 为10.故答案为:10.模拟程序的运行,可知输出结果是首项为12,公比为12的等比数列的前k 项和,由输出的S 的值为1−129,可求判断框中的整数a 的值.本题主要考查了算法和程序框图的应用,着重考查了学生的逻辑推理能力,属于基础题. 18.答案:解∵f(x)=2x 4+3x 3+5x +4=(((2x +3)x +0)x +5)x +4,∴v 1=2×2+3=7,∴v 2=7×2+0=14,v 3=14×2+5=33,v 4=33×2+4=70,即f(2)=70.解析:利用秦九韶算法:f(x)=(((2x +3)x +0)x +5)x +4,将x =2代入计算,即可得x =2时的函数值.本题考查用秦九韶算法进行求多项式的值的运算,考查运算能力,是一个基础题.19.答案:解:两个班学生的数学成绩的茎叶图如下;甲班这10个同学数学成绩的中位数和平均数分别是75,74;乙班这10个同学数学成绩的中位数和平均数分别是83.5,81.甲班这10个同学数学成绩的方差:s 2=111.2,乙班这10个同学数学成绩的方差:s 2=61, ∴乙班同学的数学成绩更加稳定.解析:将数的十位作为一个主干(茎),将个位数作为分枝(叶),列在主干的左或右面,画出茎叶图;由茎叶图知,找出数据中最多的数据众数是出现次最多的数,把数据按照从小到大的顺序排列得到中位数;首先写出数据的平均数表示式和方差的表示式,把数据代入计算表示出数据的平均数和方差的表示式,两部分进行比较,得到结果.本题考查读茎叶图,考查求一组数据的平均数,考查求一组数据的方差,本题是一个平均数和方差的实际应用问题.20.答案:解:(1)x 甲=99+100+98+100+100+1036=100, x 乙=99+100+102+99+100+1006=100, S 甲2=16[(99−100)2+(100−100)2+(98−100)2+(100−100)2+(100−100)2+(103−100)2]=73.S 乙2=16[(99−100)2+(100−100)2+(102−100)2+(99−100)2+(100−100)2+(100−100)2]=1.(2)因为两个机床产品的平均数相等,且S 甲2>S 乙2,说明甲机床加工零件波动比较大,因此乙机床加工零件的质量更稳定.解析:本题考查两组数据的平均数和方差,对于两组数据通常要求它们的平均数和方差,来比较两组数据的平均水平和波动大小,本题是一个基础题.(1)根据所给的两组数据,分布求出两组数据的平均数,结果两组数据的平均数相等,再利用方差公式求两组数据的方差,得到甲的方差大于乙的方差.(2)对于两组数据的平均数和方差进行比较,知道两组数据的平均数相等,甲的方差大于乙的方差,说明乙机床生产的零件质量比较稳定.21.答案:解:(1)60分以上(包括60分)的频率为0.02×10+0.03×10+0.02×10+0.01×10=0.8,所以高一年级这次知识竞赛的合格率为80%;(2)利用区间的中点值,计算样本的平均数为45×0.01×10+55×0.01×10+65×0.02×10+75×0.03×10+85×0.02×10+95×0.01×10=72,据此,可以估计高一年级这次知识竞赛的学生的平均成绩为72分.解析:本题考查了频率分布直方图的应用问题,也考查了平均数的计算问题,是基础题目.(1)根据频率分布直方图计算60分以上(包括60分)的频率即可;(2)利用区间的中点值,计算样本的平均数即可.22.答案:略.解析:(1)由于频率和为1,所以N=1,所以n=1−(0.02+0.08+0.40+0.30+0.16)=0.04,M=1=50,m=50−(1+4+20+15+8)=2故有m=2,n=0.04,M=50,N=1.0.02(2)频率分布折线图如图:(3)估计该校髙二女生身高小于162.5cm的人数占总人数的百分比为(0.02%20+%200.08%20+%200.40)%20×%20100%%20%20=%2050%.。
2019—2020年最新鲁教版(五四制)八年级数学上册期末复习检测题及答案解析(试卷).doc
八年级(上)期末数学试卷(五四学制)一、选择题(共12小题,每小题3分,满分36分)1.下列分解因式正确的是()A.﹣a+a3=﹣a(1+a2)B.2a﹣4b+2=2(a﹣2b)C.a2﹣1=(a﹣1)2D.﹣a2+4b2=(2b+a)(2b﹣a)2.下列条件中,能判定四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.对角线相等C.一条对角线平分另一条对角线D.两条对角线互相平分3.绕某个点旋转180°后不能与自身重合的图形是()A.平行四边形B.长方形C.线段 D.等边三角形4.一件衬衫售价a元,利润为m%(m>0),则这种商品每件的成本是()A.B.C.a(1+m%)D.a(1﹣m%)5.某公司要出口一批易拉罐啤酒,标准体积为每瓶350mL,现抽取10瓶样品进行检测,它们的体积与标准体积的差值(单位:mL)如下:﹣6,+3,0,+3,0,0,﹣3,0,+3,+6,则这10瓶易拉罐啤酒体积的平均数及众数为()A.350.6mL,350mL B.0.6mL,0mLC.356mL,353mL D.350.6mL,353mL6.在▱ABCD中,EF过对角线的交点O,AB=4,BC=5,OF=1.5,则四边形ABFE的周长是()A.11 B.11.5 C.12 D.12.57.2710﹣324可以被20和30之间的某两个整数整除,这两个数是()A.22,24 B.23,25 C.26,28 D.27,298.设p=﹣,q=﹣,则p,q的关系是()A.p=q B.p>q C.p<q D.p=﹣q9.如图,在菱形ABCD中,对角线的交点为O,点E是BC的中点,∠BAD=110°,则∠BOE=()A.35° B.40° C.45° D.50°10.如图,已知点A(1,0),B(4,0),将线段AB平移得到线段CD,点B的对应点C恰好落在y轴上,且四边形ABCD的面积为9,则四边形ABCD的周长为()A.14 B.16 C.18 D.2011.如图,将△ABC绕点P逆时针旋转90°得到△A′B′C,则点P的坐标是()A.(1,1)B.(2,1)C.(1,2)D.(1,3)12.如图,过边长为2的正方形ABCD的中心O引两条互相垂直的射线,分别与正方形的边交于E,F两点,则线段EF长的取值范围是()A.≤EF≤2 B.≤EF≤2C.≤EF≤2D.≤EF≤二、填空题(共6小题,每小题3分,满分18分)13.分解因式:x2﹣3x﹣4= .14.=(a﹣1)+ .15.某学校开展数学竞赛,八(1)、八(2)班根据初赛成绩各选出5名选手参加复赛,两个班的5名选手的复赛成绩如图所示.根据图示回答:一班复赛成绩的中位数是分,二班复赛成绩的极差是分.16.如图,人民币旧版壹角硬币内部的正多边形每个内角度数是°.17.如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,则∠BFD= .18.如图,将三条线段CD,EF,GN分别绕点O旋转,不能与线段AB重合的线段是.三、解答题(共7小题)19.把下列各式因式分解:(1)﹣9a2+6a(a﹣b)﹣(a﹣b)2;(2)(x﹣1)(x﹣2)+.20.先化简,再求值:(﹣)÷(a+1﹣),其中a=﹣.21.如图,在▱ABCD中,AB=AE,连接BE且延长CD的延长线于点F.求证:AD=CF.22.小明和小亮在课外活动中,报名参加了短跑训练.在五次百米训练中,所测成绩如图所示,请根据图中所给信息解答以下问题:分别计算他们的平均数、极差和方差.23.手机专卖店经营的某种手机去年销售总额为10万元,今年每部售价比去年降低500元,若今年卖出的数量与去年卖出的数量相同,且销售总额比去年减少10%,求今年每部手机的售价是多少元.24.如图,菱形ABCD的边长为5,过点A作对角线AC的垂线,交CB的延长线于点E,AE=4.(1)求证:BE=BC;(2)求S菱形ABCD.25.如图,P是等腰Rt△ACB内一点,AC=BC,且PA=8,PB=10,PC=.将△CPB绕点C 按逆时针方向旋转后,得到△CP′A.(1)直接写出旋转的最小角度;(2)求∠APC的度数.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列分解因式正确的是()A.﹣a+a3=﹣a(1+a2)B.2a﹣4b+2=2(a﹣2b)C.a2﹣1=(a﹣1)2D.﹣a2+4b2=(2b+a)(2b﹣a)考点:提公因式法与公式法的综合运用.分析:分别利用提取公因式法以及公式法分解因式得出即可.解答:解:A、﹣a+a3=﹣a(1﹣a2)=﹣a(1+a)(1﹣a),故此选项错误;B、2a﹣4b+2=2(a﹣2b+1),故此选项错误;C、a2﹣1=(a﹣1)(a+1),故此选项错误;D、﹣a2+4b2=(2b+a)(2b﹣a),正确.故选:D.点评:此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.2.下列条件中,能判定四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.对角线相等C.一条对角线平分另一条对角线D.两条对角线互相平分考点:平行四边形的判定.分析:根据平行四边形的判定定理(①两组对角分别相等的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③对角线互相平分的四边形是平行四边形;④有一组对边相等且平行的四边形是平行四边形)进行判断即可.解答:解:如图:A、一组对边平行,另一组对边相等的四边形可能是等腰梯形,故本选项错误;B、对角线相等不能判定四边形是平行四边形,故本选项错误;C、一条对角线平分另一条对角线不能判定四边形是平行四边形,故本选项错误;D、两条对角线互相平分的四边形是平行四边形,故本选项正确.故选D.点评:本题考查了平行四边形的判定,解题的关键是了解平行四边形的所有判定定理,难度不大.3.绕某个点旋转180°后不能与自身重合的图形是()A.平行四边形B.长方形C.线段 D.等边三角形考点:旋转对称图形.分析:利用中心对称图形的性质进而分析得出即可.解答:解;A、平行四边形,是中心对称图形,绕某个点旋转180°后能与自身重合的图形,故此选项错误;B、长方形,是中心对称图形,绕某个点旋转180°后能与自身重合的图形,故此选项错误;C、线段,是中心对称图形,绕某个点旋转180°后能与自身重合的图形,故此选项错误;D、等边三角形,不是中心对称图形,绕某个点旋转180°后不能与自身重合的图形,故此选项正确;故选:D.点评:此题主要考查了旋转对称图形,正确把握中心对称图形的定义是解题关键.4.一件衬衫售价a元,利润为m%(m>0),则这种商品每件的成本是()A.B.C.a(1+m%)D.a(1﹣m%)考点:列代数式(分式).分析:根据进价与利润之间的关系求出即可.解答:解:设这种商品每件的成本是x元,根据题意可得:x(1+m%)=a,解得:x=.故选:B.点评:此题主要考查了列代数式,正确掌握进价与利润之间的关系是解题关键.5.某公司要出口一批易拉罐啤酒,标准体积为每瓶350mL,现抽取10瓶样品进行检测,它们的体积与标准体积的差值(单位:mL)如下:﹣6,+3,0,+3,0,0,﹣3,0,+3,+6,则这10瓶易拉罐啤酒体积的平均数及众数为()A.350.6mL,350mL B.0.6mL,0mLC.356mL,353mL D.350.6mL,353mL考点:众数;加权平均数.分析:首先求得﹣6,+3,0,+3,0,0,﹣3,0,+3,+6这10个数的平均数以及众数,然后分别加上350ml,即可求解.解答:解:平均数是:350+(﹣6+3+0+3+0+0﹣3+0+3+6)=350+0.6=350.6ml,﹣10,+5,0,+5,0,0,﹣5,0,+5,+10的众数是0,因而这10瓶啤酒的质量的众数是:350+0=350ml.故选A.点评:本题考查了众数与平均数的求法,正确理解定理,理解与这10瓶罐头质量的平均数及众数的关系是关键.6.在▱ABCD中,EF过对角线的交点O,AB=4,BC=5,OF=1.5,则四边形ABFE的周长是()A.11 B.11.5 C.12 D.12.5考点:平行四边形的性质.分析:先利用平行四边形的性质求出AB、CD、BC、AD的值,可利用全等的性质得到△AEO ≌△CFO,即可求出四边形的周长.解答:解:已知AB=4,BC=5,OE=1.5,根据平行四边形的性质,AB=CD=4,BC=AD=5,在△AEO和△CFO中OA=OC,∠OAE=∠OCF,∠AOE=∠COF,所以△AEO≌△CFO,OE=OF=1.5,则ABFE的周长=EFCD的周长=ED+CD+CF+EF=(DE+CF)+AB+EF=5+4+3=12.故选C.点评:本题考查平行四边形的性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.7.2710﹣324可以被20和30之间的某两个整数整除,这两个数是()A.22,24 B.23,25 C.26,28 D.27,29考点:因式分解的应用.分析:将2710﹣324利用分解因式的知识进行分解,再结合题目能被20至30之间的两个整数整除即可得出答案.解答:解:2710﹣324=324(36﹣1)=324(32﹣1)(33+1)∵可以被20和30之间的某两个整数整除,∴这两个数是26,28.故选:C.点评:此题考查因式分解的实际运用,利用提公因式法和平方差公式是解决问题的关键.8.设p=﹣,q=﹣,则p,q的关系是()A.p=q B.p>q C.p<q D.p=﹣q考点:分式的加减法.专题:计算题.分析:把p与q代入p+q中计算,即可做出判断.解答:解:∵p=﹣,q=﹣,∴p+q=﹣+﹣=﹣=1﹣1=0,则p=﹣q,故选D点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.9.如图,在菱形ABCD中,对角线的交点为O,点E是BC的中点,∠BAD=110°,则∠BOE=()A.35° B.40° C.45° D.50°考点:菱形的性质.分析:由菱形的性质可求得∠ABC,进一步可求得∠ABO,再利用中位线定理可得∠BOE=∠ABO,可求得答案.解答:解:∵四边形ABCD为菱形,∴AD∥BC,∴∠ABC+∠BAD=180°,∴∠ABC=180°﹣110°=70°,∴∠ABO=∠ABC=35°,又∵E为BC中点,∴OE为△ABC的中位线,∴OE∥AB,∴∠BOE=∠ABO=35°,故选A.点评:本题主要考查菱形的性质,掌握菱形对边平行、对角线互相平分且平分每一组对角是解题的关键.10.如图,已知点A(1,0),B(4,0),将线段AB平移得到线段CD,点B的对应点C恰好落在y轴上,且四边形ABCD的面积为9,则四边形ABCD的周长为()A.14 B.16 C.18 D.20考点:坐标与图形变化-平移.分析:根据平移的性质可得四边形ABCD是平行四边形,然后根据点A、B的坐标求出AB,再利用平行四边形的面积求出OC,然后利用勾股定理列式求出BC,再根据平行四边形的周长公式列式计算即可得解.解答:解:∵线段AB平移得到线段CD,∴AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∵A(1,0),B(4,0),∴AB=4﹣1=3,∵四边形ABCD的面积为9,∴3•OC=9,解得OC=3,在Rt△BOC中,由勾股定理得,BC===5,∴四边形ABCD的周长=2(3+5)=16.故选B.点评:本题考查了坐标与图形变化﹣平移,勾股定理,平行四边形的判定与性质,熟记性质并求出BC长度是解题的关键.11.如图,将△ABC绕点P逆时针旋转90°得到△A′B′C,则点P的坐标是()A.(1,1)B.(2,1)C.(1,2)D.(1,3)考点:坐标与图形变化-旋转.分析:先根据旋转的性质得到点A的对应点为点A′,点B的对应点为点B′,再根据旋转的性质得到旋转中心在线段AA′的垂直平分线,也在线段BB′的垂直平分线,即两垂直平分线的交点为旋转中心.解答:解:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△A′B′C′,∴点A的对应点为点A′,点C的对应点为点C′,作线段AA′和CC′的垂直平分线,它们的交点为P(1,2),∴旋转中心的坐标为(1,2).故选:C.点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.12.如图,过边长为2的正方形ABCD的中心O引两条互相垂直的射线,分别与正方形的边交于E,F两点,则线段EF长的取值范围是()A.≤EF≤2 B.≤EF≤2C.≤EF≤2D.≤EF≤考点:全等三角形的判定与性质;正方形的性质.分析:如图,作辅助线;证明△AOE≌△DOF,进而得到OE=OF,此为解决该题的关键性结论;求出OE的范围,借助勾股定理即可解决问题.解答:解:如图,连接EF;∵四边形ABCD为正方形,∴∠EAO=∠FDO=45°,AO=DO;∵∠EOF=90°,∠AOD=90°,∴∠AOE=∠DOF;在△AOE与△DOF中,,∴△AOE≌△DOF(SAS),∴OE=OF(设为λ);由勾股定理得:EF2=OE2+OF2=2λ2;由题意可得:1≤λ≤,∴,故选A.点评:该题以正方形为载体,主要考查了正方形的性质、全等三角形的判定等几何知识点的应用问题;牢固掌握全等三角形的判定等几何知识点,是灵活解题的基础和关键.二、填空题(共6小题,每小题3分,满分18分)13.分解因式:x2﹣3x﹣4= (x+1)(x﹣4).考点:因式分解-十字相乘法等.分析:因为﹣4=1×(﹣4),1+(﹣4)=﹣3,所以x2﹣3x﹣4=(x+1)(x﹣4).解答:解:x2﹣3x﹣4=(x+1)(x﹣4).点评:本题考查十字相乘法分解因式,因为x2+(a+b)x+ab=(x+a)(x+b),只要符合此形式,就可以进行因式分解,称为十字相乘法.14.=(a﹣1)+ .考点:分式的加减法.专题:计算题.分析:原式分子配方后,计算即可得到结果.解答:解:原式==(a﹣1)+,故答案为:点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.15.某学校开展数学竞赛,八(1)、八(2)班根据初赛成绩各选出5名选手参加复赛,两个班的5名选手的复赛成绩如图所示.根据图示回答:一班复赛成绩的中位数是80 分,二班复赛成绩的极差是30 分.考点:中位数;条形统计图;极差.分析:根据中位数和极差的概念求解.解答:解:八(1)班的成绩按照从小到大的顺序排列为:60,75,80,80,95,则中位数为:80,八(2)班的成绩的极差为:95﹣65=30.故答案为:80.30.点评:本题考查了中位数和极差的概念:极差是指一组数据中最大数据与最小数据的差;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.16.如图,人民币旧版壹角硬币内部的正多边形每个内角度数是140 °.考点:多边形内角与外角.分析:根据多边形的内角和公式即可得出结果.解答:解:∵九边形的内角和=(9﹣2)•180°=1260°,又∵九边形的每个内角都相等,∴每个内角的度数=1260°÷9=140°.故答案为:140.点评:本题考查多边形的内角和计算公式.多边形内角和定理:多边形内角和等于(n﹣2)•180°.17.如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,则∠BFD= 80°.考点:平行四边形的性质.分析:根据平行四边形的对角相等可得∠A=∠C,对边相等可得AB=CD,再利用三角形的内角和定理求出∠ABE,然后求出四边形BGDF是平行四边形,最后利用平行四边形的邻角互补列式计算即可得解.解答:解:在在▱ABCD中,∠A=∠C=50°,AB=CD,∵∠E=30°,∴∠ABE=180°﹣50°﹣30°=100°,∵AF=CG,∴BF=DG,又∵BF∥DG,∴四边形BGDF是平行四边形,∴∠BFD=180°﹣∠ABE=180°﹣100°=80°.故答案为:80°.点评:本题考查了平行四边形的性质,三角形的内角和定理,熟练掌握平行四边形的判定方法与性质是解题的关键.18.如图,将三条线段CD,EF,GN分别绕点O旋转,不能与线段AB重合的线段是线段CD .考点:旋转的性质.分析:连结OA、OC、ON、OF、OB、OD、OG、OE,设小方格正方形的边长为1,如图,易得OA=ON=OF=2,而OC=,根据对应点到旋转中心的距离相等可判断线段CD绕点O旋转,不能与线段AB重合.解答:解:连结OA、OC、ON、OF、OB、OD、OG、OE,设小方格正方形的边长为1,如图,∵OA=ON=OF=2,而OC=,OB=OG=OE=3,而OD=,∴线段EF,GN分别绕点O旋转,能与线段AB重合,而线段CD绕点O旋转,不能与线段AB 重合.故答案为线段CD.点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的判定与性质.三、解答题(共7小题)19.把下列各式因式分解:(1)﹣9a2+6a(a﹣b)﹣(a﹣b)2;(2)(x﹣1)(x﹣2)+.考点:提公因式法与公式法的综合运用.分析:(1)首先提取负号,进而利用完全平方公式分解因式得出即可;(2)首先去括号,进而利用完全平方公式分解因式即可.解答:解:(1)﹣9a2+6a(a﹣b)﹣(a﹣b)2=﹣[(3a﹣(a﹣b)]2=﹣(2a+b)2;(2)(x﹣1)(x﹣2)+=x2﹣3x+2+=(x﹣)2.点评:此题主要考查了提取公因式法以及公式法分解因式,正确应用完全平方公式是解题关键.20.先化简,再求值:(﹣)÷(a+1﹣),其中a=﹣.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.解答:解:原式=÷=•=,当a=﹣时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.如图,在▱ABCD中,AB=AE,连接BE且延长CD的延长线于点F.求证:AD=CF.考点:平行四边形的性质.专题:证明题.分析:利用平行四边形的性质得出AD∥BC,AB∥FC,AD=BC,进而得出∠CBF=∠F,即可得出AD=CF.解答:证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥FC,AD=BC,∴∠ABE=∠F,∠CBE=∠FED,∵AB=AE,∴∠ABE=∠AEB,∴∠CBF=∠F,∴BC=FC,∴AD=CF.点评:此题主要考查了平行四边形的性质,利用平行线的性质得出∠CBF=∠F是解题关键.22.小明和小亮在课外活动中,报名参加了短跑训练.在五次百米训练中,所测成绩如图所示,请根据图中所给信息解答以下问题:分别计算他们的平均数、极差和方差.考点:方差;折线统计图;算术平均数;极差.分析:从折线图中得出小明和小亮的五次百米训练的成绩数据,再由公式计算平均数,极差,方差.解答:解:小明的短跑平均成绩=(13.3+13.4+13.3+13.2+13.3)÷5=13.3秒,小亮的短跑平均成绩=(13.2+13.4+13.1+13.5+13.3)÷5=13.3秒,小明的极差=13.4﹣13.2=0.2,小亮的极差=13.5﹣13.1=0.4,小明的方差=[(13.3﹣13.3)2+(13.4﹣13.3)2+(13.3﹣13.3)2+(13.2﹣13.3)2+(13.3﹣13.3)2]÷5=0.004,小亮的方差=[(13.2﹣13.3)2+(13.4﹣13.3)2+(13.1﹣13.3)2+(13.5﹣13.3)2+(13.3﹣13.3)2]÷5=0.02.点评:本题考查平均数、极差和方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.23.手机专卖店经营的某种手机去年销售总额为10万元,今年每部售价比去年降低500元,若今年卖出的数量与去年卖出的数量相同,且销售总额比去年减少10%,求今年每部手机的售价是多少元.考点:分式方程的应用.分析:设今年每部手机的售价是x元,则去年每部手机的售价是(x+500)元,根据今年的销售总额比去年减少10%,列方程求解.解答:解:设今年每部手机的售价是x元,则去年每部手机的售价是(x+500)元,由题意得,x=100000×(1﹣10%),解得:x=4500,经检验,x=4500是原分式方程的解,且符合题意.答:今年每部手机的售价是4500元.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.24.如图,菱形ABCD的边长为5,过点A作对角线AC的垂线,交CB的延长线于点E,AE=4.(1)求证:BE=BC;(2)求S菱形ABCD.考点:菱形的性质.分析:(1)由条件可证得∠E+∠ACB=∠EAB+∠BAC,可证得∠E=∠EAB,可得结论;(2)由(1)的结论,结合菱形的性质可得S菱形ABCD=S△EAC,结合条件可求得答案.解答:(1)证明:∵四边形ABCD为菱形,∴AB=BC,∴∠BAC=∠ACB,∵EA⊥AC,∴∠E+∠ACB=∠EAB+∠BAC,∴∠E=∠EAB,∴BA=BE,∴BE=BC;(2)解:在Rt△ACE中,BC=BA=BE=5,∴CE=10,∴AC===2,∵四边形ABCD为菱形,∴△ABC≌△ADC,∴S菱形ABCD=2S△ABC=S△EAC=AE•AC=×4×2=4.点评:本题主要考查菱形的性质,掌握菱形的四条边都相等是解题的关键.25.如图,P是等腰Rt△ACB内一点,AC=BC,且PA=8,PB=10,PC=.将△CPB绕点C 按逆时针方向旋转后,得到△CP′A.(1)直接写出旋转的最小角度;(2)求∠APC的度数.考点:旋转的性质.专题:计算题.分析:(1)由等腰直角三角形的性质得CA=CB,∠ACB=90°,再根据旋转的性质得∠ACB 等于旋转角,于是可判断旋转的最小角度为90°;(2)连结PP′,如图,根据旋转的性质得∠P′CP=∠ACB=90°,CP′=CP=,P′A=PB=10,则可判断△CPP′为等腰直角三角形,得到PP′=CP=6,∠CPP′=45°,然后利用勾股定理的逆定理判断△APP′为直角三角形,∠APP′=90°,于是利用∠APC=∠APP′+∠CPP′计算即可.解答:解:(1)∵△ACB为等腰直角三角形,∴CA=CB,∠ACB=90°,∵△CPB绕点C按逆时针方向旋转后,得到△CP′A,∴∠ACB等于旋转角,∴旋转的最小角度为90°;(2)连结PP′,如图,∵△CPB绕点C按逆时针方向旋转后,得到△CP′A,∴∠P′CP=∠ACB=90°,CP′=CP=,P′A=PB=10,∴△CPP′为等腰直角三角形,∴PP′=CP=×=6,∠CPP′=45°,在△APP′中,∵PP′=6,PA=8,P′A=10,∴PP′2+PA2=P′A2,∴△APP′为直角三角形,∠APP′=90°,∴∠APC=∠APP′+∠CPP′=90°+45°=135°.点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的判定与性质和勾股定理的逆定理.。
最新版2019-2020年冀教版八年级数学上学期期末模拟综合测评题及答案解析-精编试题
八年级(上)期末数学模拟试卷一、仔细选一选(本大题共12小题,每小题2分,满分24分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确选项的代码填在题后的括号内)1.4的算术平方根是()A.±2 B.2 C.4 D.﹣22.下列四个图案中,是轴对称图形的是()A. B. C. D.3.若使分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x≠﹣1 D.x=24.下列结论正确的是()A.形状相同的两个图形是全等图形B.全等图形的面积相等C.对应角相等的两个三角形全等D.两个等边三角形全等5.下列属于最简二次根式的是()A.B. C.D.6.某市2016年的地方公共财政收入用四舍五入取近似值后为21.39亿元,则这个数值精确到()A.百分位B.亿位C.千万位D.百万位7.一个等腰三角形的两边长分别是3和7,则它的周长为()A.13 B.15 C.17 D.13或178.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°9.下列运算正确的是()A.2÷=B.=﹣2 C.(﹣)2=﹣2 D.×=10.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC11.如图,数轴上点A,B所对应的实数分别是1和,点B与点C关于点A对称,则点C所对应的实数是()A. B.2﹣C.2﹣2 D.﹣112.如图,在6×6的正方形网格中,点A,B均在正方形格点上,若在网格中的格点上找一点C,使△ABC为等腰三角形,这样的点C一共有()A.7个B.8个C.10个D.12个二、认真填一填(本大题共6个小题,每小题3分,满分18分.请把答案写在题中横线上)13.0.008的立方根是.14.命题“有一条边和一个锐角分别相等的两个直角三角形全等”是命题.(填“真”或“假”)15.如图,公路AC和BC互相垂直,垂足为点C,公路AB的中点M与点C 被湖隔开.已知公路AB=3.2km,则点M,C之间的距离为km.16.规定符号“[m]”表示一个实数m的整数部分,例如:[]=0,[π]=3.则按此规定[﹣1]= .17.如图,长方形纸片ABCD中,已知AD=8,AB=6,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,则CE的长为.18.如图,等边△ABC中,AB=4,AD⊥BC于点D,点F在线段AD上运动,点E在AC上,且AE=2,当EF+CF取最小值时,∠ECF= °.三、细心解答(本大题共8个小题,共58分,解答应写出相应的文字说明或解题步骤)19.计算:(1)2+﹣;(2)(b2﹣ab)•.20.解方程:2﹣=.21.当x=时,求(﹣)÷的值.22.如图,在Rt△ABC中,已知∠ABC=90°,∠ACB=60°,DE是斜边AC 的中垂线,分别交AB,AC于点D,E,连接DC,若BD=2,求线段AC的长.23.如图,已知∠MON,点A,B分别在OM,ON边上,且OA=OB.(1)求作:过点A,B分别作OM,ON的垂线,两条垂线的交点记作点D(保留作图痕迹,不写作法);(2)连接OD,若∠MON=50°,则∠ODB= °.24.在数学活动课上,小明将一块等腰直角三角形纸板ABC的直角顶点C放置在直线l上,位置如图所示,∠ACB=90°,过点A,B分别作直线l的垂线,垂足分别为D,E.(1)通过观察,小明猜想△ACD与△CBE全等,请你证明这个猜想;(2)小明把三角形纸板ABC绕点C任意旋转(点C始终在直线l上,直角边不与l重合),借助(1)中的结论,发现线段AD,BE和DE之间存在某种数量关系,请你写出所有用BE,DE表示AD的式子:.25.在我市地铁1号线的建设中,某路段需要有甲、乙两个工程队进行施工,已知甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的,经测算,若由甲队先做15天,剩下的工程再由甲、乙两队合作30天完成.(1)甲、乙两队单独完成这项工程各需多少天?(2)已知甲队的施工费用为6.5万元/天,乙队的施工费用为8.5万元/天,这项工程预算的施工费用为500万元.若甲、乙两队合作完成这项工程,则预算的施工费用是否够用?若不够用,需要追加多少万元?请通过计算说明.26.已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.【发现】(1)如图1,若∠ABC=∠ADC=90°,则∠BCD= °,△CBD是三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有.(只填序号)①2个②3个③4个④4个以上参考答案与试题解析一、仔细选一选(本大题共12小题,每小题2分,满分24分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确选项的代码填在题后的括号内)1.4的算术平方根是()A.±2 B.2 C.4 D.﹣2【考点】算术平方根.【分析】根据算术平方根的概念即可求出答案.【解答】解:∵22=4,∴4的算术平方根是2,故选(B)2.下列四个图案中,是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:C.3.若使分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x≠﹣1 D.x=2【考点】分式有意义的条件.【分析】直接利用分式有意义则其分母不为零,进而得出答案.【解答】解:∵分式有意义,∴x的取值范围是:x﹣2≠0,解得:x≠2.故选:A.4.下列结论正确的是()A.形状相同的两个图形是全等图形B.全等图形的面积相等C.对应角相等的两个三角形全等D.两个等边三角形全等【考点】全等图形.【分析】能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形,根据全等图形的性质以及全等三角形的性质进行判断即可.【解答】解:A.形状相同的两个图形不一定是全等图形,是相似形,故A错误;B.根据全等图形的性质,可得全等图形的面积相等,故B正确;C.对应角相等且对应边相等的两个三角形全等,故C错误;D.两个边长相等的等边三角形全等,故D错误,故选:B.5.下列属于最简二次根式的是()A.B. C.D.【考点】最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含分母,故D错误;故选:A.6.某市2016年的地方公共财政收入用四舍五入取近似值后为21.39亿元,则这个数值精确到()A.百分位B.亿位C.千万位D.百万位【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:21.39亿精确到0.01亿位,即精确到百万位.故选D.7.一个等腰三角形的两边长分别是3和7,则它的周长为()A.13 B.15 C.17 D.13或17【考点】等腰三角形的性质;三角形三边关系.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选C.8.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°【考点】反证法.【分析】用反证法证明命题的真假,应先按符合题设的条件,假设题设成立,再判断得出的结论是否成立即可.【解答】解:用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设每一个锐角都大于45°.故选D.9.下列运算正确的是()A.2÷=B.=﹣2 C.(﹣)2=﹣2 D.×=【考点】二次根式的乘除法.【分析】根据=(a≥0,b>0),=|a|,=(a≥0,b≥0),分别进行计算即可.【解答】解:A、2=,故原题计算错误;B、=2,故原题计算错误;C、(﹣)2=2,故原题计算错误;D、=,故原题计算正确;故选:D.10.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【考点】全等三角形的判定.【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.11.如图,数轴上点A,B所对应的实数分别是1和,点B与点C关于点A对称,则点C所对应的实数是()A. B.2﹣C.2﹣2 D.﹣1【考点】实数与数轴.【分析】根据点A、B表示的数求出AB,再根据对称可得AC=AB,然后根据数轴上左边的数比右边的小列式计算即可得解.【解答】解:∵点A ,B 所对应的实数分别是1和,∴AB=﹣1,∵点B 与点C 关于点A 对称,∴AC=AB ,∴点C 所对应的实数是1﹣(﹣1)=1﹣+1=2﹣.故选B .12.如图,在6×6的正方形网格中,点A ,B 均在正方形格点上,若在网格中的格点上找一点C ,使△ABC 为等腰三角形,这样的点C 一共有( )A .7个B .8个C .10个D .12个【考点】等腰三角形的判定.【分析】首先由勾股定理可求得AB 的长,然后分别从BA=BC ,AB=AC ,CA=CB 去分析求解即可求得答案.【解答】解:∵AB==2,如图所示:∴①若BA=BC ,则符合要求的有:C 1,C 2共2个点;②若AB=AC ,则符合要求的有:C 3,C 4共2个点;③若CA=CB ,则符合要求的有:C 5,C 6,C 7,C 8,C 9,C 10共6个点. ∴这样的C 点有10个.故选:C.二、认真填一填(本大题共6个小题,每小题3分,满分18分.请把答案写在题中横线上)13.0.008的立方根是0.2 .【考点】立方根.【分析】根据立方根的概念即可求出答案【解答】解:0.23=0.008∴0.008的立方根是0.2故答案为:0.214.命题“有一条边和一个锐角分别相等的两个直角三角形全等”是假命题.(填“真”或“假”)【考点】命题与定理.【分析】根据直角三角形全等的判定方法判断即可.【解答】解:一条边和一个锐角分别相等的两个直角三角形,边与角不一定是对应边和对应角,例如:两个直角三角形中相等的∠α的邻边与对边相等,两个三角形不全等,所以,这两个直角三角形不一定全等,所以,“有一条边和一个锐角分别相等的两个直角三角形全等”是假命题.故答案为:假.15.如图,公路AC和BC互相垂直,垂足为点C,公路AB的中点M与点C 被湖隔开.已知公路AB=3.2km,则点M,C之间的距离为 1.6 km.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=AB=1.6km.【解答】解:∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=AB=1.6km.故答案为:1.6.16.规定符号“[m]”表示一个实数m的整数部分,例如:[]=0,[π]=3.则按此规定[﹣1]= 2 .【考点】估算无理数的大小.【分析】直接利用的取值范围得出2<﹣1<3,进而得出答案.【解答】解:∵3<<4,∴2<﹣1<3,∴[﹣1]=2.故答案为:2.17.如图,长方形纸片ABCD中,已知AD=8,AB=6,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,则CE的长为 5 .【考点】翻折变换(折叠问题).【分析】如图,求出AC的长度;证明EF=EB(设为λ),得到CE=8﹣λ;列出关于λ的方程,求出λ即可解决问题.【解答】解:如图,∵四边形ABCD为矩形,∴∠D=90°,DC=AB=6;由勾股定理得:AC2=AD2+DC2,而AD=8,∴AC=10;由题意得:∠AFE=∠B=90°,AF=AB=6;EF=EB(设为λ),∴CF=10﹣6=4,CE=8﹣λ;由勾股定理得:(8﹣λ)2=λ2+42,解得:λ=3,∴CE=5,故答案为5.18.如图,等边△ABC中,AB=4,AD⊥BC于点D,点F在线段AD上运动,点E在AC上,且AE=2,当EF+CF取最小值时,∠ECF= 30 °.【考点】轴对称-最短路线问题;等边三角形的性质.【分析】如图,作点E关于直线AD的对称点E′,连接CE′交AD于F′.由EF+FC=FE′+FC,所以当C、E′、F共线时,EF+CF最小,由△ABC是等边三角形,AB=BC=AC=4,AE=AE′=2,推出AE′=E′B,∠ACB=60°,推出∠ACE′=∠BCE′=30°,即可解决问题.【解答】解:如图,作点E关于直线AD的对称点E′,连接CE′交AD于F′.∵EF+FC=FE′+FC,∴当C、E′、F共线时,EF+CF最小,∵△ABC是等边三角形,AB=BC=AC=4,AE=AE′=2,∴AE′=E′B,∠ACB=60°∴∠ACE′=∠BCE′=30°,∴此时∠ECF=30°,故答案为30.三、细心解答(本大题共8个小题,共58分,解答应写出相应的文字说明或解题步骤)19.计算:(1)2+﹣;(2)(b2﹣ab)•.【考点】二次根式的加减法;分式的乘除法.【分析】根据二次根式的性质以及分式运算的性质即可求出答案.【解答】解:(1)原式=4+6﹣4=6,(2)原式=b(b﹣a)•=﹣ab2,20.解方程:2﹣=.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣6﹣x=﹣3,解得:x=3,经检验x=3是增根,分式方程无解.21.当x=时,求(﹣)÷的值.【考点】分式的化简求值.【分析】先将(﹣)÷进行化简,然后将x=代入求解即可.【解答】解:(﹣)÷=×=﹣×=﹣.当x=时,原式=﹣=﹣6.22.如图,在Rt△ABC中,已知∠ABC=90°,∠ACB=60°,DE是斜边AC 的中垂线,分别交AB,AC于点D,E,连接DC,若BD=2,求线段AC的长.【考点】线段垂直平分线的性质.【分析】根据直角三角形的性质求出∠A的度数,根据线段垂直平分线的性质得到DA=DC,求出∠DCB=30°,根据直角三角形的性质求出BC的长,得到答案.【解答】解:∵∠ACB=60°,∠B=90°,∴∠A=30°,∵DE是斜边AC的中垂线,∴DA=DC,∴∠ACD=∠A=30°,∴∠D CB=30°,∴BC=BD=2,∴AC=2BC=4.23.如图,已知∠MON,点A,B分别在OM,ON边上,且OA=OB.(1)求作:过点A,B分别作OM,ON的垂线,两条垂线的交点记作点D(保留作图痕迹,不写作法);(2)连接OD,若∠MON=50°,则∠ODB= 65 °.【考点】作图—基本作图;等腰三角形的性质.【分析】(1)根据过直线上一点作直线垂线的方法作出垂线即可;(2)利用全等三角形的判定与性质结合四边形内角和定理得出答案.【解答】解:(1)如图,DA,DB即为所求垂线;(2)连接OD,∵DB⊥ON,DA⊥OM,∴∠OBD=∠OAD=90°,∠MON=50°,∴∠ADB=180°﹣50°=130°.在Rt△OBD与Rt△OAD中,∵,∴Rt△OBD≌Rt△OAD(HL),∴∠ODB=∠ADB=65°.故答案为:65.24.在数学活动课上,小明将一块等腰直角三角形纸板ABC的直角顶点C放置在直线l上,位置如图所示,∠ACB=90°,过点A,B分别作直线l的垂线,垂足分别为D,E.(1)通过观察,小明猜想△ACD与△CBE全等,请你证明这个猜想;(2)小明把三角形纸板ABC绕点C任意旋转(点C始终在直线l上,直角边不与l重合),借助(1)中的结论,发现线段AD,BE和DE之间存在某种数量关系,请你写出所有用BE,DE表示AD的式子:AD=BE﹣DE,或AD=DE ﹣BE,或AD=DE+BE..【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)观察图形,结合已知条件,可知全等三角形为:△ACD与△CBE.根据AAS即可证明;(2)根据全等三角形的性质即可得到结论.【解答】(1)证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠ACD=90°﹣∠ECB=∠CBE.在△ACD与△CBE中,,∴△ACD≌△CBE(AAS);(2)AD=BE﹣DE,或AD=DE﹣BE,或AD=DE+BE.故答案为:AD=BE﹣DE,或AD=DE﹣BE,或AD=DE+BE.25.在我市地铁1号线的建设中,某路段需要有甲、乙两个工程队进行施工,已知甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的,经测算,若由甲队先做15天,剩下的工程再由甲、乙两队合作30天完成.(1)甲、乙两队单独完成这项工程各需多少天?(2)已知甲队的施工费用为6.5万元/天,乙队的施工费用为8.5万元/天,这项工程预算的施工费用为500万元.若甲、乙两队合作完成这项工程,则预算的施工费用是否够用?若不够用,需要追加多少万元?请通过计算说明.【考点】分式方程的应用.【分析】(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工程需x 天,根据“甲先做15天的工作量+甲、乙合作30天的工作量=1”列分式方程求解可得;(2)把这项工程的总工作量设为1,先求出甲、乙两队合作一天的工作量,再求得甲、乙两队合作完成这项工程需要的时间,根据“合作每天的费用×合作时间”可得所需总费用,从而得出答案.【解答】解:(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工程需x天,根据题意,得:+30×(+)=1,解得:x=60,经检验x=60是原分式方程的解,当x=60时,x=90,答:甲队单独完成这项工程需90天,乙队单独完成这项工程需60天;(2)把这项工程的总工作量设为1,则甲、乙两队合作一天的工作量为(+)=,甲、乙两队合作完成这项工程需要的时间为1÷=36天,∴合作需要的施工费用为36×(6.5+8.5)=540(万元),∵540>500,540﹣500=40(万元),∴预算的施工费用不够用,需要追加40万元.26.已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.(1)如图1,若∠ABC=∠ADC=90°,则∠BCD= 60 °,△CBD是等边三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有④.(只填序号)①2个②3个③4个④4个以上【考点】三角形综合题.【分析】(1)利用四边形的内角和即可得出∠BCD的度数,再利用角平分线的性质定理即可得出CB,即可得出结论;(2)先判断出∠CDE=∠ABC,进而得出△CDE≌△CFB(AAS),得出CD=CB,再利用四边形的内角和即可得出∠BCD=60°即可得出结论;(3)先判断出∠POE=∠POF=60°,先构造出等边三角形,找出特点,即可得【解答】解:(1)如图1,连接BD,∵∠ABC=∠ADC=90°,∠MAN=120°,根据四边形的内角和得,∠BCD=360°﹣(∠ABC+∠ADC+∠MAN)=60°,∵AC是∠MAN的平分线,CD⊥AM.CB⊥AN,∴CD=CB,(角平分线的性质定理),∴△BCD是等边三角形;故答案为:60,等边;(2)如图2,同(1)得出,∠BCD=60°(根据三角形的内角和定理),过点C作CE⊥AM于E,CF⊥AN于F,∵AC是∠MAN的平分线,∴CE=CF,∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,∴∠CDE=∠ABC,在△CDE和△CFB中,,∴△CDE≌△CFB(AAS),∴CD=CB,∵∠BCD=60°,∴△CBD是等边三角形;(3)如图3,∵OP平分∠EOF,∠EOF=120°,∴∠POE=∠POF=60°,在OE上截取OG'=OP=1,连接PG',∴△G'OP是等边三角形,此时点H'和点O重合,同理:△OPH是等边三角形,此时点G和点O重合,将等边△PHG绕点P逆时针旋转到等边△PG'H',在旋转的过程中,边PG,PH分别和OE,OF相交(如图中G'',H'')和点P围成的三角形全部是等边三角形,(旋转角的范围为(0°到60°包括0°和60°),所以有无数个;理由:同(2)的方法.故答案为④.2017年2月21日。
【附5套中考模拟试卷】贵州省贵阳市2019-2020学年中考中招适应性测试卷数学试题(3)含解析
贵州省贵阳市2019-2020学年中考中招适应性测试卷数学试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若()292m m --=1,则符合条件的m 有( ) A .1个 B .2个 C .3个 D .4个2.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,,则在本次测试中,成绩更稳定的同学是( )A .甲B .乙C .甲乙同样稳定D .无法确定3.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是( )A .0.15B .0.2C .0.25D .0.34.如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a ∥b ,∠1=60°,则∠2的度数为( )A .30°B .45°C .60°D .75°5.下面运算结果为6a 的是( )A .33a a +B .82a a ÷C .23•a aD .()32a - 6.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,则下列结论:①ac>0;②a-b+c<0; ③当x 0<时,y 0<;2a b 0+=④,其中错误的结论有( )A .②③B .②④C .①③D .①④7.如图所示,在长方形纸片ABCD 中,AB=32cm ,把长方形纸片沿AC 折叠,点B 落在点E 处,AE 交DC 于点F ,AF=25cm ,则AD 的长为( )A.16cm B.20cm C.24cm D.28cm 8.下列运算正确的是()A.a4+a2=a4B.(x2y)3=x6y3C.(m﹣n)2=m2﹣n2D.b6÷b2=b39.4的平方根是( )A.2 B.2C.±2 D.±2 10.-3的相反数是()A.13B.3 C.13D.-311.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠412.如图,按照三视图确定该几何体的侧面积是(单位:cm)( )A.24π cm2B.48π cm2C.60π cm2D.80π cm2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,扇形OMN的圆心角为45°,正方形A1B1C1A2的边长为2,顶点A1,A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B2,以A2B2为边长继续作正方形A2B2C2A3,使得点C2在线段ON上,点A3在线段OM上,……,依次规律,继续作正方形,则A2018M=__________.14.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数的图像上,OA=1,OC=6,则正方形ADEF 的边长为.15.若式子23x 有意义,则x 的取值范围是______. 16.反比例函数y=1k x与正比例函数y=k 2x 的图象的一个交点为(2,m ),则12k k =____. 17.如图,四边形ABCD 是菱形,☉O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE ,若∠D=78°,则∠EAC=________°.18.如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A =52°,则∠1+∠2的度数为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC 中,∠ABC=90°,以AB 为直径的⊙O 与AC 边交于点D ,过点D 的直线交BC 边于点E ,∠BDE=∠A .判断直线DE 与⊙O 的位置关系,并说明理由.若⊙O 的半径R=5,tanA=34,求线段CD的长.20.(6分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:请将以上两幅统计图补充完整;若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_ ▲ 人达标;若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?21.(6分)雾霾天气严重影响市民的生活质量。
最新2018-2019学年苏教版数学八年级上册期末模拟检测卷及答案解析-精品试卷
苏教版八年级第一学期期末模拟考试数学试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是(,).9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为人.11.比较大小:1(填“>”、“<”或“=”).12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= .16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是(填序号).三、解答题(本大题共10小题,共68分)17.(4分)计算:.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= km,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数就是无限不循环小数,π是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批圆珠笔的寿命,调查具有破坏性,适合抽样调查,故A错误;B、检查一枚用于发射卫星的运载火箭的各零部件是精确度要求高的调查,适合普查,故B正确;C、考察人们保护海洋的意识,调查范围广适合抽样调查,故C错误;D、了解全国九年级学生的身高现状,调查范围广适合抽样调查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【解答】解:A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、线段有2条对称轴,故此选项错误;B、角有1条对称轴,故此选项错误;C、等腰三角形有1条或3条对称轴,故此选项错误;D、正方形有4条对称轴,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,关键是正确确定对称轴.5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质可知一次函数y=2x﹣3的图象经过哪几个象限,不经过哪个象限,从而可以解答本题.【解答】解:∵y=2x﹣3,∴该函数的图象经过第一、三、四象限,不经过第二象限,故选:B.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【解答】解:A、从一装有2个白球和1个红球的袋子中任取一球,取到白球的概率是≈0.67>0.16,故此选项错误;B、从一副扑克牌中任意抽取一张,这张牌是“红色的概率=≈0.24>0.16,故此选项错误;C、掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率==0.5>0.16,故此选项错误;D、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率=≈0.16故此选项正确,故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是±2 .【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是( 1 ,﹣1 ).【分析】让横坐标不变,纵坐标加1可得到所求点的坐标.【解答】解:∵﹣2+1=﹣1,∴点B的坐标是(1,﹣1),故答案为:1,﹣1.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为①③②.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【解答】解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为;②面朝上的点数大于2的有4种结果,其概率为=;③面朝上的点数是奇数的有3种结果,其概率为=;所以按事件发生的可能性大小,按从小到大排列为①③②,故答案为:①③②.【点评】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为120 人.【分析】用学校总人数乘以教师所占的百分比,计算即可得解.【解答】解:1500×(1﹣48%﹣44%)=1500×8%=120.故答案为:120.【点评】本题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.11.比较大小:>1(填“>”、“<”或“=”).【分析】直接估计出的取值范围,进而得出答案.【解答】解:∵2<<3,∴1<﹣1<2,故>1.故答案为:>.【点评】此题主要考查了实数大小比较,正确得出的取值范围是解题关键.12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b .【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.【点评】本题考查了一次函数的性质,解题的关键是找出该一次函数单调递减.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数的性质,找出该函数的单调性是关键.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为x>﹣1 .【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【解答】解:当y=2时,﹣2x=2,x=﹣1,由图象得:不等式kx+b>﹣2x的解集为:x>﹣1,故答案为:x>﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)﹣2x的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在﹣2x上(或下)方部分所有的点的横坐标所构成的集合.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.【分析】根据线段的垂直平分线的性质得到DB=DC=2,根据角平分线的性质得到DE=AD=1,根据勾股定理计算即可.【解答】解:∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE==,故答案为:.【点评】本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= 2 .【分析】求出∠BDE=∠FEC=∠AFD=30°,求出∠DEF=∠DFE=∠EDF=60°,推出DF=DE=EF,即可得出等边三角形DEF,根据全等三角形性质推出三个三角形全等即可.求出AB=3BE,即可解答.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC,∠B=∠C=∠A=60°,∵DE⊥BC、EF⊥AC、FD⊥AB,∴∠DEB=∠EFC=∠FDA=90°,∴∠BDE=∠FEC=∠AFD=30°,∴∠DEF=∠DFE=∠EDF=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形,在△ADF、△BED、△CFE中∴△ADF≌△BED≌△CFE,∴AD=BE=CF,∵∠DEB=90°,∠BDE=30°,∴BD=2BE,∴AB=3BE,∴BE=AB=2.故答案为:2.【点评】本题考查了等边三角形性质,含30度角的直角三角形性质,解决本题的关键是熟记含30度角的直角三角形性质.16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是①②③(填序号).【分析】根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.【解答】解:由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(m/分),当第15分钟时,乙运动15﹣9=6(分钟),运动距离为:15×80=1200(m),∴乙的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);此时乙运动19﹣9=10(分钟),运动总距离为:10×200=2000(m),∴甲运动时间为:2000÷80=25(分钟),故a的值为25,(故④错误);∵甲19分钟运动距离为:19×80=1520(m),∴b=2000﹣1520=480,(故③正确).故正确的有:①②③.故答案为:①②③.【点评】此题主要考查了一次函数的应用,利用数形结合得出乙的运动速度是解题关键.三、解答题(本大题共10小题,共68分)17.(4分)计算:.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=﹣2﹣2+1=﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是50 ,并补全频数分布直方图;(2)C组学生的频率为0.32 ,在扇形统计图中D组的圆心角是72 度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?【分析】(1)根据A组的百分比和频数得出样本容量,并计算出B组的频数补全频数分布直方图即可;(2)由图表得出C组学生的频率,并计算出D组的圆心角即可;(3)根据样本估计总体即可.【解答】解:(1)这次抽样调查的样本容量是4÷8%=50,B组的频数=50﹣4﹣16﹣10﹣8=12,补全频数分布直方图,如图:(2)C组学生的频率是0.32;D组的圆心角=;(3)样本中体重超过60kg的学生是10+8=18人,该校初三年级体重超过60kg的学生=人,故答案为:(1)50;(2)0.32;72.【点评】此题考查频数分布直方图,关键是根据频数分布直方图得出信息进行计算.19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.【分析】欲证明DE∥CF,只要证明∠ADE=∠BCF,只要证明△AED≌△BFC即可;【解答】证明:∵AE∥BF,∴∠A=∠B,∵AC=BD,∴AC+BD=BD+CD,即:AD=BC,在△AED和△BFC中,∴△AED≌△BFC(SAS),∴∠ADE=∠BCF,∴DE∥CF.【点评】本题考查全等三角形的判定和性质、平行线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.【分析】(1)根据角平分线的尺规作图即可得;(2)作DE⊥AB,由△ADB的面积为15cm2求得DE=3cm,再根据角平分线的性质可得.【解答】解:(1)如图所示,AD即为所求;(2)过D作DE⊥AB,E为垂足,由△ADB的面积为15cm2,得AB•ED=15,解得:ED=3cm,∵AD平分∠BAC,DE⊥AB,∠ACB=90°∴CD=ED=3cm.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握角平分线的尺规作图及角平分线的性质.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.【分析】(1)根据平行一次函数的定义可知:k=2,再利用待定系数法求出b的值即可;(2)过点A作AD⊥x轴于D点,利用三角形面积公式解答即可.【解答】解:(1)由已知可设l1对应的函数表达式为y=2x+b,把x=﹣2,y=1代入表达式解得:b=5,∴l1对应的函数表达式为y=2x+5,画图如下:,(2)设l1与l2的交点为A,过点A作AD⊥x轴于D点,由题意得,解得即A(,),则AD=,设l1、l2分别交x轴的于点B、C,由y=﹣2x+4=0,解x=2,即C(2,0)由y=2x+5=0解得,即B(,0)∴BC=,∴即l2与l1及x轴所围成的三角形的面积为.【点评】本题考查了函数的平移和两条直线的平行问题;同时还要熟练掌握若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= 240 km,AB两地的距离为390 km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?【分析】(1)根据图象中的数据即可得到A,B两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.【解答】解:(1)由题意和图象可得,a=千米,A,B两地相距:150+240=390千米,故答案为:240,390(2)由图象可得,A与C之间的距离为150km汽车的速度,PM所表示的函数关系式为:y1=150﹣60xMN所表示的函数关系式为:y2=60x﹣150(3)由y1=60得 150﹣60x=60,解得:x=1.5由y2=60得 60x﹣150=60,解得:x=3.5由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.【分析】(1)只要证明△BDH≌△CEK,即可解决问题;(2)只要证明△DHO≌△EKO即可解决问题;【解答】解:(1)∵DH⊥BC,EK⊥BC,∴∠DHB=∠K=90°,∵AB=AC,∴∠B=∠ACB,又∵∠ACB=∠ECK,∴∠B=∠ECK,在△BDH和△CEK中∵∠ACB=∠ECK,∠B=∠ECK,BD=CE∴△BDH≌△CEK(AAS).∴DH=EK.(2)∵DH⊥AC,EK⊥BC,∴∠DHO=∠K=90°,由(1)得EK=DH,在△DHO和△EKO中,∵∠DHO=∠K,∠DOH=∠EOK,DH=EK∴△DHO≌△EKO(AAS),∴DO=EO.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?【分析】(1)根据总成本y=A种购物袋x个的成本+B种购物袋x个的成本即可得到答案.(2)列出不等式,根据函数的增减性解决.【解答】解:(1)根据题意得:y=(2.3﹣2)x+(3.5﹣3)(4500﹣x)=﹣0.2x+2250即y与x的函数表达式为:y=﹣0.2x+2550,(2)根据题意得:﹣x+13500≤10000,解得:x≥3500元,∵k=﹣0.2<0,∴y随x增大而减小,∴当x=3500时,y取得最大值,最大值y=﹣0.2×3500+2250=1550,答:该厂每天最多获利1550元.【点评】本题考查了销售量、成本、售价、利润之间的关系,正确理解这些量之间的关系是解决问题的关键,学会用函数的增减性解决实际问题.26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.【分析】(1)作△ADC关于CD的对称图形△A′DC,再证明AD=BA′即可;(2)如图,作△ADC关于AC的对称图形△A′DC.过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.由此构建方程即可解决问题;【解答】(1)证明:作△ADC关于CD的对称图形△A′DC,∴A′D=AD,C A′=CA,∠CA′D=∠A=60°,∵CD平分∠ACB,∴A′点落在CB上∵∠ACB=90°,∴∠B=90°﹣∠A=30°,∵CD平分∠ACB,∴∠ACD=45°在△ACD中,∠ADC=180°﹣∠A﹣∠A CD=75°∴∠A′DC=∠ADC=75°,∴∠A′DB=180°﹣∠ADC﹣∠A′DC=30°,∴∠A′DB=∠B,∴A′D=A′B,∴CA+AD=CA′+A′D=C A′+A′B=CB.(2)如图,作△ADC关于AC的对称图形△A′DC.∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.∴102﹣x2=172﹣(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点评】本题考查全等三角形的判定和性质、直角三角形30度角性质、轴对称、勾股定理、一元二次方程等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用方程的思想思考问题,属于中考常考题型.。
昆明市2019-2020学年八年级上学期数学期末考试试卷D卷
昆明市2019-2020学年八年级上学期数学期末考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·金水月考) 实数-5,,0.1010010001…(每相邻两个1之间0的个数这个增如1),,0.4中,属于无理数的有()A . 3个B . 2个C . 1个D . 0个2. (2分)下列命题的逆命题是真命题的是()A . 对顶角相等B . 如果两个角是直角那么这两个角相等C . 全等三角形的对应角等D . 两直线平行,内错角相等3. (2分) (2019八上·绍兴期末) 已知正比例函数的图象经过点,则这个正比例函数的表达式为()A .B .C .D .4. (2分)已知△ABC的三边长分别为5,13,12,则△ABC的面积为()A . 30B . 60C . 78D . 不能确定5. (2分)(2018·洛阳模拟) 某校九年级(1)班全体学生进行体育测试的成绩(满分70分)统计如表:根据表中的信息判断,下列结论中错误的是()成绩(分)45505560656870人数(人)26107654A . 该班一共有40名同学B . 该班学生这次测试成绩的众数是55分C . 该班学生这次测试成绩的中位数是60分D . 该班学生这次测试成绩的平均数是59分6. (2分)(2016·新疆) 已知ab<0,点P(a、b)在反比例函数的图象上,则直线y=ax+b不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限7. (2分) (2017八下·丛台期末) 如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A .B .C .D .8. (2分)如图,l∥m,∠1=115°,∠2=95°,则∠3=()A . 120°B . 130°C . 140°D . 150°9. (2分)现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,而一个盒身与两个盒底配成一个盒子,设用x张铁皮做盒身,y张铁皮做盒底,则可列方程组为()A .B .C .D .10. (2分)如下图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于轴对称.AB∥轴,AB=4cm,最低点C在轴上,高CH=1cm,BD=2cm,则右轮廓线DFE所在抛物线的函数解析式为()A .B .C .D .二、填空题 (共4题;共4分)11. (1分) (2017七下·红桥期末) =________.12. (1分)(2018·宜宾模拟) 在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是________.13. (1分)探照灯、锅形天线、汽车灯以及其它很多灯具都可以反射光线。
贵州省贵阳市八年级上学期期末数学试卷
贵州省贵阳市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七下·滨州期中) 在实数-1.414,,π,,2+ ,3.212212221…,3.14中,无理数的个数是()个.A . 1B . 2C . 3D . 42. (2分)若分式的值为零,则x的值为()A . -1B . 1C . 1或-1D . 03. (2分)如图,已知线段AB=20米,MA⊥AB于点A,MA=6米,射线BD⊥AB于B,P点从B点向A运动,每秒走1米,Q点从B点向D运动,每秒走3米,P、Q同时从B出发,则出发x秒后,在线段MA上有一点C,使△CAP 与△PBQ全等,则x的值为()A . 5B . 5或10C . 10D . 6或104. (2分)下列运算正确的是().A .B .C .D .5. (2分) (2017八下·江苏期中) 如果把中的x与y都扩大为原来的5倍,那么这个代数式的值()A . 不变B . 扩大为原来的5倍C . 缩小为原来的D . 扩大为原来的10倍6. (2分) (2017七下·东城期中) 如图所示,已知数轴上的点,,,分别表示数、、、,则表示的点落在线段()A . 上B . 上C . 上D . 上7. (2分)不等式x﹣2≤0的解集是()A . x>2B . x<2C . x≥2D . x≤28. (2分) (2015八上·宜昌期中) 在等腰△ABC中,AB=AC=9,BC=6,DE是AC的垂直平分线,交AB、AC于点D、E,则△BDC的周长是()A . 6B . 9C . 12D . 159. (2分)如图,△ABC的两条中线AD、CE交于点M,联结BM并延长,交AC于F,已知AD=9,CE=12且A D⊥CE.那么下列结论中不正确的是()A . AC=10B . BM=10C . AB=15D . FB=1510. (2分) (2016八上·九台期中) 下列命题中,是假命题的是()A . 互补的两个角不能都是锐角B . 所有的直角都相等C . 乘积是1的两个数互为倒数D . 若a⊥b,a⊥c,则b⊥c11. (2分)不等式的解集是()A . x≤4B . x≥4C . x≤-1D . x≥-112. (2分) (2020八上·咸丰期末) 如图所示,∠ABC=∠ACB,CD⊥AC于C,BE⊥AB于B,AE交BC于点F,且BE=CD,下列结论不一定正确的是()A . AB=ACB . BF=EFC . AE=ADD . ∠BAE=∠CAD二、填空题 (共6题;共6分)13. (1分) (2017九下·梁子湖期中) ________的算术平方根是.14. (1分) (2019八下·端州期中) 三角形三边分别为 cm, cm, cm,则这个三角形周长是________.15. (1分)已知关于x的不等式(1﹣a)x>2的解集为x<﹣3,则a________.16. (1分) (2018八上·梁子湖期末) 关于x的分式方程的解为正数,则m的取值范围是________.17. (1分) (2017八上·江门月考) 如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D点,则BD=________.18. (1分)如图,在ΔABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是________三、解答题 (共6题;共45分)19. (10分)(2018·吉林模拟) 计算:(1);(2) .20. (5分)(2019·金台模拟) 解分式方程:=1.21. (5分) (2017七下·丰台期中) .22. (15分) (2019八上·南开期中) 如图,平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为(0,1),∠BAO=30°.(1)求AB的长度;(2)以AB为一边作等边△ABE,作OA的垂直平分线MN交AB的垂线AD于点D.求证:BD=OE;(3)在(2)的条件下,连接DE交AB于F.求证:F为DE的中点.23. (5分) (2017七下·新野期末) 解不等式组,并写出该不等式组的最大整数解.24. (5分)若a、b、c是△ABC的三边,化简:|a﹣b+c|﹣2|c﹣a﹣b|+3|a+b+c|的值.四、综合与探究 (共2题;共15分)25. (5分)某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?26. (10分)(2018·潍坊) 如图1,在中,于点的垂直平分线交于点 ,交于点 ,,.(1)如图2,作于点 ,交于点 ,将沿方向平移,得到,连接.①求四边形的面积;②直线上有一动点 ,求周长的最小值.(2)如图3.延长交于点.过点作 ,过边上的动点作 ,并与交于点 ,将沿直线翻折,使点的对应点恰好落在直线上,求线段的长.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共45分)19-1、19-2、20-1、21-1、22-1、22-2、22-3、23-1、24-1、四、综合与探究 (共2题;共15分) 25-1、26-1、26-2、。
2018-2019学年度八年级上数学期末试卷(解析版) (2)
2018-2019学年八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义; 所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解. 答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE . (1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明; (3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题; 【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
八年级数学上册 2019-2020学年八年级(上)期末名校校考试卷及答案
八年级数学上册2019-2020学年八年级(上)期末名校校考试卷及答案一、选择题(本题共10个小题)每小题均给出标号为A、B、C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号涂在答题卡上.1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.2.如图,▱ABCD的对角线交于点O,已知△OCD的面积等于3,则▱ABCD的面积等于()A.6B.12C.15D.243.正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°4.在某校“班级篮球联赛”中,全年级共有11个班级参加比赛,它们决赛的最终成绩各不相同,小芳向知道自己班能否进入前6名,不仅要了解自己班的成绩,还要了解这11个班级成绩的()A.众数B.方差C.平均数D.中位数5.对于一组统计数据:1,6,2,3,3,下列说法错误的是()A.平均数是3B.中位数是3C.众数是3D.方差是2.56.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()A.2x B.﹣4x C.4x4D.4x7.点M的坐标为(﹣2,3),点N的坐标为(3,b),若将线段MN平移至M'N'的位置,点M'的坐标为(a,﹣2),点N'的坐标为(4,﹣4),则a﹣b的值为()A.0B.﹣4C.﹣2D.68.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE9.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()A.40×1.25x﹣40x=800B.﹣=40C.﹣=40D.﹣=4010.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.3二、填空题(本题共10个小题)11.某校规定学期综合成绩按照平日成绩20%、期中成绩30%、期末成绩50%计算,由此看出,期中成绩的权是.12.如图中的5个数据的标准差是.13.若无意义,且分式的值等于零,那么=.14.在平行四边形ABCD中,若∠A:∠B=2:3,则∠C=.15.如图,在四边形ABCD中,AB∥CD,E,F分别是AC,BD的中点,已知AB=12,CD=6,则EF=.16.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是.17.如果,那么.18.已知关于的分式的解是非负数,则k的取值范围是.19.若,则K=.20.如图,小亮从A点出发,沿直线前进15米后向左转30°,再沿直线前进15米,又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了米.三、解答题(本大题共9个小题)21.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+4922.解方程:.23.先化简,再求值:÷(x﹣),其中x为0,﹣1,﹣3,1,2的极差.24.已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.25.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;(2)平移△ABC:若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.26.近年来“哈罗单车”和“哈啰助力车”在街头流行.随着市民对这两种车的使用率的提升,经营“哈罗单车”和“哈啰助力车”的两家公司也有了越来越高的收人.初三某班的实践小组对两家公司近10个周的收入进行了调查,就收入(单位:千元)情况制作了如下的统计图:根据以上信息,整理分析数据如下:(1)完成表格填空;(2)“哈罗单车”和“哈啰助力车”在该地各有500辆和300辆.从收入的情况看,上个周这2家公司都达到了近10个周的最高收人.已知每骑用一次“哈罗单车”和“哈啰助力车”,公司就分别收人1元和2元,通过计算在上周每辆车的周平均骑用次数,说明哪种车比较抢手?27.列方程解应用题:在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式,若一次性付款4200元购买这种篮球,则在B超市购买的数量比在A 超市购买的数量多5个.请求出这种篮球的标价.28.如图,O在等边△ABC内,∠BOC=150°,将△BOC绕点C顺时针旋转后,得△ADC,连接OD.(1)△COD是三角形.(2)若OB=5,OC=3,求OA的长.29.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.参考答案一、选择题(本题共10个小题)每小题均给出标号为A、B、C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号涂在答题卡上.1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.【考点】R5:中心对称图形.【专题】1:常规题型.【分析】直接利用中心对称图形的性质得出答案.【解答】解:A、新图形不是中心对称图形,故此选项错误;B、新图形是中心对称图形,故此选项正确;C、新图形不是中心对称图形,故此选项错误;D、新图形不是中心对称图形,故此选项错误;故选:B.2.如图,▱ABCD的对角线交于点O,已知△OCD的面积等于3,则▱ABCD的面积等于()A.6B.12C.15D.24【考点】K3:三角形的面积;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】由▱ABCD的对角线相交于点O,可得OA=OC,OB=OD,然后根据三角形中线的性质,求得S△COD=S△AOD=S△AOB=3,继而求得答案.【解答】解:如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴S△BOC=S△COD=3,同理:S△COD=S△AOD=S△AOB=3,∴S▱ABCD=4S△COD=12.故选:B.3.正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°【考点】L3:多边形内角与外角.【专题】55:几何图形.【分析】利用正十边形的外角和是360度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数.【解答】解:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°﹣36°=144°;故选:D.4.在某校“班级篮球联赛”中,全年级共有11个班级参加比赛,它们决赛的最终成绩各不相同,小芳向知道自己班能否进入前6名,不仅要了解自己班的成绩,还要了解这11个班级成绩的()A.众数B.方差C.平均数D.中位数【考点】W A:统计量的选择.【专题】1:常规题型.【分析】11人成绩的中位数是第6名的成绩,要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有11个人,且他们的分数互不相同,第6名的成绩是中位数,要判断是否进入前6名,故应知道中位数的多少.故选:D.5.对于一组统计数据:1,6,2,3,3,下列说法错误的是()A.平均数是3B.中位数是3C.众数是3D.方差是2.5【考点】W1:算术平均数;W4:中位数;W5:众数;W7:方差.【专题】1:常规题型;542:统计的应用.【分析】根据平均数、中位数、众数和方差的定义逐一求解可得.【解答】解:A、平均数为=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为×[(1﹣3)2+(6﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2]=2.8,错误;故选:D.6.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()A.2x B.﹣4x C.4x4D.4x【考点】44:整式的加减;54:因式分解﹣运用公式法.【专题】1:常规题型.【分析】分①4x2是平方项,②4x2是乘积二倍项,③1是乘积二倍项,然后根据完全平方公式的结构解答.【解答】解:A、4x2+1+2x,无法运用完全平方公式分解因式,故此选项符合题意;B、4x2+1﹣4x=(2x﹣1)2,能运用完全平方公式分解因式,故此选项不符合题意;C、4x4+4x2+1=(2x2+1)2,能运用完全平方公式分解因式,故此选项不符合题意;D、4x2+1+4x=(2x+1)2,能运用完全平方公式分解因式,故此选项不符合题意;故选:A.7.点M的坐标为(﹣2,3),点N的坐标为(3,b),若将线段MN平移至M'N'的位置,点M'的坐标为(a,﹣2),点N'的坐标为(4,﹣4),则a﹣b的值为()A.0B.﹣4C.﹣2D.6【考点】Q3:坐标与图形变化﹣平移.【专题】558:平移、旋转与对称;69:应用意识.【分析】由题意可知平移后横坐标加1,纵坐标减5,由此求出a,b即可解决问题.【解答】解:由题意可知平移后横坐标加1,纵坐标减5,∴a=﹣1,b=1,∴a﹣b=﹣1﹣1=﹣2,故选:C.8.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE 【考点】JB:平行线的判定与性质;R2:旋转的性质.【专题】1:常规题型.【分析】利用旋转的性质得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通过判断△ABD为等边三角形得到AD=AB,∠BAD=60°,则根据平行线的性质可判断AD∥BC,从而得到∠DAC=∠C,于是可判断∠DAC=∠E,接着利用AD=AB,BE =BC可判断AD+BC=AE,利用∠CBE=60°,由于∠E的度数不确定,所以不能判定BC⊥DE.【解答】解:∵△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 的延长线上,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,∴△ABD为等边三角形,∴AD=AB,∠BAD=60°,∵∠BAD=∠EBC,∴AD∥BC,∴∠DAC=∠C,∴∠DAC=∠E,∵AE=AB+BE,而AD=AB,BE=BC,∴AD+BC=AE,∵∠CBE=60°,∴只有当∠E=30°时,BC⊥DE.故选:C.9.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()A.40×1.25x﹣40x=800B.﹣=40C.﹣=40D.﹣=40【考点】B6:由实际问题抽象出分式方程.【专题】1:常规题型.【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.【解答】解:小进跑800米用的时间为秒,小俊跑800米用的时间为秒,∵小进比小俊少用了40秒,方程是﹣=40,故选:C.10.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.3【考点】KJ:等腰三角形的判定与性质;KX:三角形中位线定理.【专题】17:推理填空题.【分析】证明△BNA≌△BNE,得到BA=BE,即△BAE是等腰三角形,同理△CAD是等腰三角形,根据题意求出DE,根据三角形中位线定理计算即可.【解答】解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,∴△BNA≌△BNE,∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19﹣BC=19﹣7=12,∴DE=BE+CD﹣BC=5,∴MN=DE=.故选:C.二、填空题(本题共10个小题)11.某校规定学期综合成绩按照平日成绩20%、期中成绩30%、期末成绩50%计算,由此看出,期中成绩的权是30%.【考点】W2:加权平均数.【专题】542:统计的应用;61:数感.【分析】根据权的表现形式,一种是比的形式,如4:3:2,另一种是百分比的形式,如平日成绩占20%,期中成绩占30%,期末成绩占50%等.【解答】解:根据加权平均数的定义可知:期中成绩的权为30%.故答案为30%.12.如图中的5个数据的标准差是0.【考点】W8:标准差.【专题】543:概率及其应用;65:数据分析观念.【分析】由图知5个数据均为3,从而得出这组数据没有波动,即可得出答案.【解答】解:由图知这5个数据均为3,∴这组数据的标准差为0,故答案为:0.13.若无意义,且分式的值等于零,那么=2.【考点】62:分式有意义的条件;63:分式的值为零的条件.【专题】513:分式;66:运算能力.【分析】直接利用分式的值为零的条件“分子为0且分母不为0”分析得出答案.【解答】解:∵无意义∴a+2=0,a=﹣2∵分式的值等于零,∴|b|﹣1=0,b﹣1≠0,∴b=﹣1,∴==2,故答案为2.14.在平行四边形ABCD中,若∠A:∠B=2:3,则∠C=72°.【考点】L5:平行四边形的性质.【分析】根据已知比例设∠A=2x,∠B=3x,再由两直线平行,同旁内角线补,可求角的度数.【解答】解:依题意设∠A=2x,∠B=3x,由平行四边形的性质,得∠A+∠B=180°,∴2x+3x=180°,解得x=36°,∴∠A=2x=72°,又∵∠A=∠C,∴∠C=72°.故答案为72°.15.如图,在四边形ABCD中,AB∥CD,E,F分别是AC,BD的中点,已知AB=12,CD=6,则EF=3.【考点】KX:三角形中位线定理.【专题】557:梯形;67:推理能力.【分析】连接CF并延长交AB于G,证明△FDC≌△FBG,根据全等三角形的性质得到BG=DC=6,CF=FG,求出AG,根据三角形中位线定理计算,得到答案.【解答】解:连接CF并延长交AB于G,∵AB∥CD,∴∠FDC=∠FBG,在△FDC和△FBG中,,∴△FDC≌△FBG(ASA)∴BG=DC=6,CF=FG,∴AG=AB﹣BG=12﹣6=6,∵CE=EA,CF=FG,∴EF=AG=3,故答案为:3.16.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是平行四边形.【考点】LN:中点四边形.【专题】555:多边形与平行四边形;67:推理能力.【分析】首先根据题意画出图形,再连接AC,根据三角形的中位线得到HG∥AC,HG =AC,EF∥AC,EF=AC,可以推出EF=GH,EF∥GH,根据平行四边形的判定:一组对边平行且相等的四边形是平行四边形求出即可.【解答】解:这个图形一定是平行四边形,理由是:根据题意画出图形,如右图所示:连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=AC,EF∥AC,EF=AC,∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形.故答案为:平行四边形.17.如果,那么.【考点】RA:几何变换的类型.【专题】13:作图题;558:平移、旋转与对称;69:应用意识.【分析】观察图象的变化,根据旋转变换的性质轴对称的性质即可解决问题.【解答】解:由题意性质180,可得图形:18.已知关于的分式的解是非负数,则k的取值范围是k≤3且k≠1.【考点】B2:分式方程的解.【专题】522:分式方程及应用;66:运算能力.【分析】求出分式方程的解,根据解是非负数求出k的取值范围.【解答】解:去分母得:1+2(x﹣2)=x﹣k,解得:x=3﹣k,由题意得:3﹣k≥0,且3﹣k≠2,解得:k≤3且k≠1,∴k的取值范围是k≤3且k≠1,故答案为:k≤3且k≠1.19.若,则K=1.【考点】6B:分式的加减法.【专题】17:推理填空题;513:分式;66:运算能力.【分析】根据分式的加减和恒等关系即可求解.【解答】解:原式变形,得=∴3K=3,4K=4,解得K=1.故答案为1.20.如图,小亮从A点出发,沿直线前进15米后向左转30°,再沿直线前进15米,又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了180米.【考点】L3:多边形内角与外角.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了15×12=180(米).故答案为:180.三、解答题(本大题共9个小题)21.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+49【考点】55:提公因式法与公式法的综合运用.【专题】512:整式;66:运算能力.【分析】(1)先提公因式,然后根据平方差公式分解即可;(2)根据完全平方公式和平方差公式分解即可.【解答】解:(1)3a2(x+y)3﹣27a4(x+y)=3a2(x+y)[(x+y)2﹣9a2]=3a2(x+y)(x+y﹣3a)(x+y+3a);(2)(x2﹣9)2﹣14(x2﹣9)+49=(x2﹣9﹣7)2=(x2﹣16)2=(x+4)2(x﹣4)2.22.解方程:.【考点】B3:解分式方程.【专题】11:计算题;16:压轴题.【分析】观察可得最简公分母是(x﹣1)(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边都同乘以(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3,化简,得x+2=3,解得:x=1.检验:把x=1代入(x﹣1)(x+2)=0.∴x=1不是原方程的解,原分式方程无解.23.先化简,再求值:÷(x﹣),其中x为0,﹣1,﹣3,1,2的极差.【考点】6D:分式的化简求值;W6:极差.【专题】1:常规题型.【分析】先算括号内的减法,再把除法变成乘法,最后算乘法,再代入求出即可.【解答】解:原式=÷=•=,当x=2﹣(﹣3)=5时,原式==.24.已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.【考点】KD:全等三角形的判定与性质;L6:平行四边形的判定.【专题】16:压轴题.【分析】首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF=∠BCE,可证出AD∥CB,根据一条对边平行且相等的四边形是平行四边形可证出结论.【解答】解:结论:四边形ABCD是平行四边形,证明:∵DF∥BE,∴∠AFD=∠CEB,又∵AF=CE DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.25.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;(2)平移△ABC:若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为(,﹣1).【考点】Q4:作图﹣平移变换;R8:作图﹣旋转变换.【专题】13:作图题;558:平移、旋转与对称.【分析】(1)分别作出点A、B关于点C的对称点,再顺次连接可得;(2)由点A的对称点A2的位置得出平移方向和距离,据此作出另外两个点的对称点,顺次连接可得;(3)连接A1A2、B1B2,交点即为所求.【解答】解:(1)如图所示,△A1B1C即为所求;(2)如图所示,△A2B2C2即为所求;(3)如图所示,点P即为对称中心,其坐标为(,﹣1),故答案为:(,﹣1).26.近年来“哈罗单车”和“哈啰助力车”在街头流行.随着市民对这两种车的使用率的提升,经营“哈罗单车”和“哈啰助力车”的两家公司也有了越来越高的收人.初三某班的实践小组对两家公司近10个周的收入进行了调查,就收入(单位:千元)情况制作了如下的统计图:根据以上信息,整理分析数据如下:(1)完成表格填空;(2)“哈罗单车”和“哈啰助力车”在该地各有500辆和300辆.从收入的情况看,上个周这2家公司都达到了近10个周的最高收人.已知每骑用一次“哈罗单车”和“哈啰助力车”,公司就分别收人1元和2元,通过计算在上周每辆车的周平均骑用次数,说明哪种车比较抢手?【考点】W2:加权平均数;W4:中位数;W5:众数;W7:方差.【专题】542:统计的应用;66:运算能力.【分析】(1)根据加权平均数、中位数、众数、方差的定义即可求解;(2)根据方差的结果进行判断即可.【解答】解:(1)7×20%+8×10%+4×10%+5×20%+6×(1﹣20%﹣10%﹣10%﹣20%)=6(千克);(4+5)÷2=4.5(千克);×[5×(6﹣4)2+2(6﹣5)2+2×(9﹣6)2+(12﹣6)2]=7.6(千克).故答案为6、4.5、7.6.(2)因为两家的平均周收入相同,周收入中位数和众数“哈罗单车”都大于“哈罗助力车”,而方差“哈罗单车”小于“哈罗助力车”,比较稳定.答:“哈罗单车”比较抢手.27.列方程解应用题:在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式,若一次性付款4200元购买这种篮球,则在B超市购买的数量比在A 超市购买的数量多5个.请求出这种篮球的标价.【考点】B7:分式方程的应用.【专题】34:方程思想;522:分式方程及应用;69:应用意识.【分析】设这种篮球的标价为x元,根据数量=总价÷单价结合在B超市购买的数量比在A超市购买的数量多5个,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设这种篮球的标价为x元,依题意,得:﹣=5,解得:x=50,经检验,x=50是原方程的解,且符合题意.答:这种篮球的标价为50元.28.如图,O在等边△ABC内,∠BOC=150°,将△BOC绕点C顺时针旋转后,得△ADC,连接OD.(1)△COD是等边三角形.(2)若OB=5,OC=3,求OA的长.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质;KQ:勾股定理;R2:旋转的性质.【专题】553:图形的全等;554:等腰三角形与直角三角形;558:平移、旋转与对称;67:推理能力.【分析】(1)由旋转的性质可得CO=CD,AD=BO,∠ACB=∠DCO=60°,可证△COD是等边三角形;(2)由等边三角形的性质可得OD=OC=3,∠CDO=60°,可得∠ADO=90°,由勾股定理可求OA的长.【解答】解:(1)∵将△BOC绕点C顺时针旋转后,得△ADC,∴△BOC≌△ADC,∴CO=CD,AD=BO=5,∠ACB=∠DCO=60°,∠BOC=∠ADC=150°,∴△COD是等边三角形,故答案为:等边;(2)∵△COD是等边三角形,∴OD=OC=3,∠CDO=60°,∴∠ADO=ADC﹣∠ODC=90°,∴AO2=AD2+OD2=9+25=34,∴AO=.29.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.【考点】KJ:等腰三角形的判定与性质;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】(1)由平行四边形的性质和角平分线证出∠BAE=∠E.得出AB=BE,即可得出结论;(2)同(1)证出DA=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】(1)证明:∵AE为∠ADB的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB.∴∠DAE=∠E.∴∠BAE=∠E.∴AB=BE.∴CD=BE.(2)解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠BAF=∠DF A.∴∠DAF=∠DF A.∴DA=DF.∵F为DC的中点,AB=4,∴DF=CF=DA=2.∵DG⊥AE,DG=1,∴AG=GF.∴AG=.∴AF=2AG=2.在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).∴AF=EF,∴AE=2AF=4.。
2019-2020学年贵州省贵阳市白云区八年级下学期期末数学试卷 (解析版)
2019-2020学年贵州贵阳市白云区八年级第二学期期末数学试卷一、选择题(共10小题).1.窗棂即窗格(窗里面的横的或竖的格)是中国传统木构建筑的框架结构设计.如图表示我国古代窗棂样式结构图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.已知a<b,则下列各式中不正确的是()A.2020a<2020b B.2020+a<2020+bC.2020﹣a<2020﹣b D.3.下列因式分解正确的是()A.(x+1)2=x2+2x+1B.x2+2x﹣1=(x﹣1)2C.x2﹣x+2=(x﹣1)(x+2)D.2x2﹣8=2(x+2)(x﹣2)4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.36.如图,在▱ABCD中,AB=4,BC=7,∠ABC的平分线交AD于点E,则ED等于()A.2B.3C.4D.57.如图,∠1,∠2,∠3是五边形ABCDE的3个外角,若∠A+∠B=220°,则∠1+∠2+∠3=()A.140°B.180°C.220°D.320°8.某园林队原计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比原计划提前3小时完成任务,若每人每小时绿化的面积相同,求每人每小时绿化的面积若设每人每小时绿化的面积为x平方米,根据题意下面所列方程正确的是()A.﹣=3B.﹣=3C.﹣=2D.+=39.如图,在Rt△AOB中,∠O=90°,以点A为旋转中心,把△ABO顺时针旋转得△ACD,记旋转角为α,∠ABO为β,当旋转后满足BC∥OA时,α与β之间的数量关系为()A.α=βB.α=2βC.α+β=90°D.α+2β=180°10.如图,在第一个△ABA1中∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C,得到第二个△A1A2C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,则以点A4为顶点的等腰三角形的底角的度数为()A.175°B.170°C.10°D.5°二、填空题(每小题4分,共20分)11.化简分式的结果是.12.已知a﹣b=3,b﹣c=﹣4,则代数式a2﹣ac﹣b(a﹣c)的值是.13.如图,在平行四边形ABCD中,AB=4,BC=6.以点B为圆心,适当长为半径画弧,交BA于点E,交BC于点F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧相交于点G,射线BG交CD的延长线于点H,则DH的长是.14.如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为.15.如图,在△ABC中,∠B=30°,BC=2,等腰直角三角形ACD的斜边AD在AB边上,则AB的长是.三、解答题(共50分)16.关于x的方程:﹣=1.(1)当a=3时,求这个方程的解;(2)若这个方程有增根,求a的值.17.如图,在平面直角坐标系中,已知点A(﹣2,5),B(﹣3,3),C(1,2),点P (m,n)是三角形ABC边BC上任意一点,三角形经过平移后得到三角形A1B1C1,点P的对应点为P1(m+6,n﹣2).(1)直接写出点B1的坐标;(2)画出三角形ABC平移后的三角形A1B1C1.(3)在y轴上是否存在一点P,使三角形AOP的面积等于三角形ABC面积的,若存在,请求出点P的坐标;若不存在,请说明理由.18.如图,有一张直角三角形纸片,两直角边AC=6cm,AB=8cm,将△ABC折叠,使点B与C点重合,折痕为DE.(1)求△ABC的周长.(2)求DE的长.19.如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=(AC﹣AB);(2)如图2,△ABC中,AB=9,AC=5,求线段EF的长.20.“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A、B两种型号的垃圾处理设备共10台.已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A、B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?21.多边形上或内部的一点与多边形各顶点的连线,可以将多边形分割成若干个小三角形.如图,给出了四边形的三种具体分割方法,分别将四边形分割成了2个、3个、4个小三角形,这样我们就可以借助研究三角形的经验研究四边形了.图①被分割成2个小三角形图②被分割成3个小三角形图③被分割成4个小三角形(1)请按照上述三种方法分别将图中的六边形进行分割,并写出每种方法所得到的小三角形的个数:图①被分割成个小三角形、图②被分割成个小三角形、图③被分割成个小三角形(2)如果按照上述三种分割方法分别分割n边形,请写出每种方法所得到的小三角形的个数(用含n的代数式写出结论即可,不必画图);按照上述图①、图②、图③的分割方法,n边形分别可以被分割成、、个小三角形.参考答案一、选择题(共10小题).1.窗棂即窗格(窗里面的横的或竖的格)是中国传统木构建筑的框架结构设计.如图表示我国古代窗棂样式结构图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、是中心对称图形,也是轴对称图形,故此选项正确;B、不是中心对称图形,是轴对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项错误;D、不是轴对称图形,也不是中心对称图形,故此选项错误,故选:A.2.已知a<b,则下列各式中不正确的是()A.2020a<2020b B.2020+a<2020+bC.2020﹣a<2020﹣b D.【分析】根据不等式的性质进行判断即可.解:A、在不等式a<b的两边同时乘以2020,不等式仍成立,即2020a<2020b,故本选项不符合题意.B、在不等式a<b的两边同时加上2020,不等式仍成立,即2020+a<2020+b,故本选项不符合题意.C、在不等式a<b的两边同时乘以﹣1,然后再加上2020,不等式仍成立,不等号的方向发生改变,即2020﹣a>2020﹣b,故本选项符合题意.D、在不等式a<b的两边同时除以2020,不等式仍成立,即,故本选项不符合题意.故选:C.3.下列因式分解正确的是()A.(x+1)2=x2+2x+1B.x2+2x﹣1=(x﹣1)2C.x2﹣x+2=(x﹣1)(x+2)D.2x2﹣8=2(x+2)(x﹣2)【分析】根据因式分解的定义,和对各多项式分解因式得到结果,即可作出判断.解:A.是整式乘法,不是因式分解,不符合题意;B.x2+2x﹣1=x2+2x+1﹣2=(x+1)2﹣2=(x+1+)(x+1﹣),不符合题意;C.原式=(x+1)(x﹣2),不符合题意;D、原式=2(x2﹣4)=2(x+2)(x﹣2),符合题意,故选:D.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式2﹣x≤1,得:x≥1,解不等式2x+3>x+6,得:x>3,则不等式组的解集为x>3,其解集在数轴上表示为:.故选:B.5.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.3【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.6.如图,在▱ABCD中,AB=4,BC=7,∠ABC的平分线交AD于点E,则ED等于()A.2B.3C.4D.5【分析】由四边形ABCD为平行四边形,得到AD与BC平行,AD=BC,利用两直线平行得到一对内错角相等,由BE为角平分线得到一对角相等,等量代换得到∠ABE=∠AEB,利用等角对等边得到AB=AE=4,由AD﹣AE求出ED的长即可.解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC=7,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠AEB=∠ABE,∴AB=AE=4,∴ED=AD﹣AE=BC﹣AE=7﹣4=3.故选:B.7.如图,∠1,∠2,∠3是五边形ABCDE的3个外角,若∠A+∠B=220°,则∠1+∠2+∠3=()A.140°B.180°C.220°D.320°【分析】根据∠A+∠B=220°,可求∠A、∠B的外角和,再根据多边形外角和360°,可求∠1+∠2+∠3的值.解:根据∠A+∠B=220°,可知∠A的一个邻补角与∠B的一个邻补角的和为360°﹣220°=140°.根据多边形外角和为360°,可知∠1+∠2+∠3=360°﹣140°=220°.故选:C.8.某园林队原计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比原计划提前3小时完成任务,若每人每小时绿化的面积相同,求每人每小时绿化的面积若设每人每小时绿化的面积为x平方米,根据题意下面所列方程正确的是()A.﹣=3B.﹣=3C.﹣=2D.+=3【分析】直接利用原计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比原计划提前3小时完成任务,利用施工时间得出等式求出答案.解:设每人每小时绿化的面积为x平方米,根据题意可得:﹣=3.故选:A.9.如图,在Rt△AOB中,∠O=90°,以点A为旋转中心,把△ABO顺时针旋转得△ACD,记旋转角为α,∠ABO为β,当旋转后满足BC∥OA时,α与β之间的数量关系为()A.α=βB.α=2βC.α+β=90°D.α+2β=180°【分析】由旋转的性质可得△AOB≌△ADC,∠BAC=∠OAD=α,可得AB=AC,∠BAO=∠CAD,由等腰三角形的性质可得∠ABC=(180°﹣α),由平行线的性质可得∠OBC=90°,即可求解.解:∵把△ABO顺时针旋转得△ACD,∴△AOB≌△ADC,∠BAC=∠OAD=α,∴AB=AC,∠BAO=∠CAD,在△ABC中,∠ABC=(180°﹣α),∵BC∥OA,∴∠OBC=180°﹣∠O=180°﹣90°=90°,∴β+(180°﹣α)=90°,整理得,α=2β.故选:B.10.如图,在第一个△ABA1中∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C,得到第二个△A1A2C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,则以点A4为顶点的等腰三角形的底角的度数为()A.175°B.170°C.10°D.5°【分析】先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出∠A6的度数.解:∵在△ABA1中,∠B=20°,AB=A1B,∴∠BA1A==80°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1===40°;A同理可得∠DA3A2=20°,∠EA4A3=10°,∴∠A n=,以点A4为顶点的底角为∠A5.∵∠A5==5°,故选:D.二、填空题(每小题4分,共20分)11.化简分式的结果是.【分析】将分子、分母因式分解并进行约分.解:原式=.12.已知a﹣b=3,b﹣c=﹣4,则代数式a2﹣ac﹣b(a﹣c)的值是﹣3.【分析】直接利用分组分解法分解因式,进而把已知代入得出答案.解:∵a﹣b=3,b﹣c=﹣4,∴a﹣b+b﹣c=a﹣c=﹣1,∴a2﹣ac﹣b(a﹣c)=a(a﹣c)﹣b(a﹣c)=(a﹣c)(a﹣b)=﹣1×3=﹣3.故答案为:﹣3.13.如图,在平行四边形ABCD中,AB=4,BC=6.以点B为圆心,适当长为半径画弧,交BA于点E,交BC于点F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧相交于点G,射线BG交CD的延长线于点H,则DH的长是2.【分析】根据作图过程可得BH平分∠ABC,再根据平行四边形的性质可得AG=AB=CD,进而可得DH的长.解:根据作图过程可知:BH平分∠ABC,∴∠ABG=∠CBG,∵在平行四边形ABCD中,AD∥BC,∴∠AGB=∠CBG,∴∠ABG=∠AGB,∴AG=AB=CD,∵AB∥CD,∴∠H=∠ABG=∠DGH,∴DH=DG=AD﹣AG=BC﹣AB=6﹣4=2,故答案为:2.14.如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为x >1.【分析】此题可根据两直线的图象以及两直线的交点坐标来进行判断.解:由图知:当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;由于两直线的交点横坐标为:x=1,观察图象可知,当x>1时,x+b>ax+3;故答案为:x>1.15.如图,在△ABC中,∠B=30°,BC=2,等腰直角三角形ACD的斜边AD在AB边上,则AB的长是1+.【分析】首先过点C作CE⊥AB交AB于点E,由已知等腰直角△ACD,可求出CE=AE,在直角三角形CEB中,根据含30°角的直角三角形性质可求出CE、BE的长,进而即可求得AB的长..解:过点C作CE⊥AB交AB于点E,已知等腰直角△ACD,∴△AEC是等腰直角三角形,∴AE=CE,在直角三角形CEB中,∠B=30°,∴CE=BC=×2=1,BE=BC=×2=,∴AE=CE=1,∴AB=AE+BE=1+,故答案为1+.三、解答题(共50分)16.关于x的方程:﹣=1.(1)当a=3时,求这个方程的解;(2)若这个方程有增根,求a的值.【分析】(1)把a的值代入分式方程,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)由分式方程有增根,得到最简公分母为0,求出x的值,代入整式方程即可求出a 的值.解:(1)当a=3时,原方程为﹣=1,方程两边同时乘以(x﹣1)得:3x+1+2=x﹣1,解这个整式方程得:x=﹣2,检验:将x=﹣2代入x﹣1=﹣2﹣1=﹣3≠0,∴x=﹣2是原方程的解;(2)方程两边同时乘以(x﹣1)得ax+1+2=x﹣1,若原方程有增根,则x﹣1=0,解得:x=1,将x=1代入整式方程得:a+1+2=0,解得:a=﹣3.17.如图,在平面直角坐标系中,已知点A(﹣2,5),B(﹣3,3),C(1,2),点P (m,n)是三角形ABC边BC上任意一点,三角形经过平移后得到三角形A1B1C1,点P的对应点为P1(m+6,n﹣2).(1)直接写出点B1的坐标;(2)画出三角形ABC平移后的三角形A1B1C1.(3)在y轴上是否存在一点P,使三角形AOP的面积等于三角形ABC面积的,若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)利用点P和点为P1坐标特征确定平移的方向与距离,然后根据此平移规律可确定点B1的坐标;(2)利用(1)中的平移规律确定点A1的坐标和C1的坐标,然后描点即可;(3)设P(0,t),先利用面积的和差计算出△ABC的面积=,则•|t|•2=×,然后解方程求出t即可得到P点坐标.解:(1)点B1的坐标为(3,1);(2)如图,△A1B1C1为所作;(3)存在.设P(0,t),△ABC的面积=4×3﹣×4×1﹣×2×1﹣×3×3=,∵S△AOP=S△ABC,∴•|t|•2=×,解得t=3或t=﹣3,∴P点坐标为(0,3)或(0,﹣3).18.如图,有一张直角三角形纸片,两直角边AC=6cm,AB=8cm,将△ABC折叠,使点B与C点重合,折痕为DE.(1)求△ABC的周长.(2)求DE的长.【分析】(1)由勾股定理可求BC的长,即可求解;(2)由折叠的性质可得∠DEC=∠DEB=90°,DC=BD,CE=BE=5cm,由勾股定理可求DB的长,DE的长.解:(1)∵AC=6cm,AB=8cm,∴BC===10cm,∴△ABC的周长=AC+AB+BC=6+8+10=24cm;(2)∵将△ABC折叠,使点B与C点重合,折痕为DE,∴∠DEC=∠DEB=90°,DC=BD,CE=BE=5cm,∵AC2+AD2=CD2,∴36+(8﹣DB)2=DB2,∴DB=,∴DE===.19.如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=(AC﹣AB);(2)如图2,△ABC中,AB=9,AC=5,求线段EF的长.【分析】(1)利用ASA定理证明△AEB≌△AED,得到BE=ED,AD=AB,根据三角形中位线定理解答;(2)分别延长BE、AC交于点H,利用(1)的结论解答.【解答】(1)证明:在△AEB和△AED中,,∴△AEB≌△AED(ASA)∴BE=ED,AD=AB,∵BE=ED,BF=FC,∴EF=CD=(AC﹣AD)=(AC﹣AB);(2)解:分别延长BE、AC交于点H,在△AEB和△AEH中,,∴△AEB≌△AED(ASA)∴BE=EH,AH=AB=9,∵BE=EH,BF=FC,∴EF=CH=(AH﹣AC)=2.20.“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A、B两种型号的垃圾处理设备共10台.已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A、B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?【分析】(1)设购买A种设备x台,则购买B种设备(10﹣x)台,根据购回的设备日处理能力不低于140吨列出不等式12x+15(10﹣x)≥140,求出解集,再根据x为正整数,得出x=1,2,3.进而求解即可;(2)分别求出各方案实际购买费用,比较即可求解.解:(1)设购买A种设备x台,则购买B种设备(10﹣x)台,根据题意,得12x+15(10﹣x)≥140,解得x≤3,∵x为正整数,∴x=1,2,3,∴该景区有三种设计方案:方案一:购买A种设备1台,B种设备9台;方案二:购买A种设备2台,B种设备8台;方案三:购买A种设备3台,B种设备7台;(2)各方案购买费用分别为:方案一:3×1+4.4×9=42.6>40,实际付款:42.6×0.9=38.34(万元);方案二:3×2+4.4×8=41.2>40,实际付款:41.2×0.9=37.08(万元);方案三:3×3+4.4×7=39.8<40,实际付款:39.8(万元);∵37.08<38.34<39.8,∴采用(1)设计的第二种方案,使购买费用最少.21.多边形上或内部的一点与多边形各顶点的连线,可以将多边形分割成若干个小三角形.如图,给出了四边形的三种具体分割方法,分别将四边形分割成了2个、3个、4个小三角形,这样我们就可以借助研究三角形的经验研究四边形了.图①被分割成2个小三角形图②被分割成3个小三角形图③被分割成4个小三角形(1)请按照上述三种方法分别将图中的六边形进行分割,并写出每种方法所得到的小三角形的个数:图①被分割成4个小三角形、图②被分割成5个小三角形、图③被分割成6个小三角形(2)如果按照上述三种分割方法分别分割n边形,请写出每种方法所得到的小三角形的个数(用含n的代数式写出结论即可,不必画图);按照上述图①、图②、图③的分割方法,n边形分别可以被分割成(n﹣2)、(n ﹣1)、n个小三角形.【分析】(1)图(1)是作一个顶点出发的所有对角线对其进行分割;(2)是连接多边形的其中一边上的一个点和各个顶点,对其进行分割;(3)是连接多边形内部的任意一点和多边形的各个顶点,对其进行分割.(2)根据(1)的解答,从特殊到一般总结,可得出答案.解:(1)如图所示:可以发现所分割成的三角形的个数分别是4个,5个,6个;故答案为:4;5;6;(2)结合两个特殊图形,可以发现:第一种分割法把n边形分割成了(n﹣2)个三角形;第二种分割法把n边形分割成了(n﹣1)个三角形;第三种分割法把n边形分割成了n个三角形.故答案为:(1)4,5,6;(2)(n﹣2);(n﹣1);n。
2020年贵州省贵阳中考数学试卷及答案
绝密★启用前2020年贵州省贵阳市初中毕业学业水平(升学)考试数 学同学你好!答题前请认真阅读以下内容:1.全卷共8页,三个大题,共25小题,满分150分.考试时间为120分钟.考试形式闭卷.2.一律在答题卡相应位置作答,在试题卷上答题视为无效.3.不能使用科学计算器.一、选择题:以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.计算(3)2-´的结果是( )A .6-B .1-C .1D .62.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是( )A B C D3.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫.一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是( )A .直接观察B .实验C .调查D .测量4.如图,直线a ,b 相交于点O ,如果1260Ð+Ð=°,那么3Ð是( )(第4题图)A .150°B .120°C .60°D .30°5.当1x =时,下列分式没有意义的是( )A .1x x +B .1x x -C .1x x-D .1x x +6.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )ABCD7.菱形的两条对角线长分别是6和8,则此菱形的周长是( )A .5B .20C .24D .328.已知a b <,下列式子不一定成立的是( )A .11a b -<-B .22a b ->-C .111122a b +<+D .ma mb>9.如图,Rt ABC △中,90C Ð=°,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE BD =;分别以D ,E 为圆心、以大于12DE 为长的半径作弧,两弧在CBA Ð内交于点F ;作射线BF 交AC 于点G ,若1CG =,P 为AB 上一动点,则GP 的最小值为( )(第9题图)A .无法确定B .12C .1D .210.已知二次函数2y ax bx c =++的图象经过(3,0)-与(1,0)两点,关于x 的方程20(0)ax bx c m m +++=>有两个根,其中一个根是3.则关于x 的方程20(0)ax bx c n n m +++=<<有两个整数根,这两个整数根是( )A .2-或0B .4-或2C .5-或3D .6-或4二、填空题:每小题4分,共20分.11.化简(1)x x x -+的结果是________.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------12.如图,点A 是反比例函数3y x=图象上任意一点,过点A 分别作x 轴,y 轴的垂线,垂足为B ,C ,则四边形OBAC 的面积为________.(第12题图)13.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是________.14.如图,ABC △是O e 的内接正三角形,点O 是圆心,点D ,E 分别在边AC ,AB 上,若DA EB =,则DOE Ð的度数是________度.(第14题图)15.如图,ABC △中,点E 在边AC 上,EB EA =,2A CBE Ð=Ð,CD 垂直于BE 的延长线于点D ,8BD =,11AC =,则边BC 的长为________.(第15题图)三、解答题:本大题10小题,共100分.16.(本题满分8分)如图,在44´的正方形网格中,每个小格的顶点叫做格点,以格点为项点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.图①图②图③(第16题图)17.(本题满分10分)2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如下统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 1.522.533.54人数/人26610m4部分初三学生每天听空中黔课时间的人数统计图(第17题图)(1)本次共调查的学生人数为________,在表格中,m =________;(2)统计的这组数据中,每天听空中黔课时间的中位数是________,众数是________;(3)请就疫情期间如何学习的问题写出一条你的看法.18.(本题满分10分)如图,四边形ABCD 是矩形,E 是BC 边上一点,点F 在BC 的延长线上,且-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------CF BE =.(1)求证:四边形AEFD 是平行四边形;(2)连接ED ,若90AED Ð=°,4AB =,2BE =,求四边形AEFD 的面积.(第18题图)19.(本题满分10分)如图,一次函数1y x =+的图象与反比例函数k y x=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数1y x =+的图象向下平移2个单位,求平移后的图象与反比例函数k y x=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数ky x=的图象没有公共点.(第19题图)20.(本题满分10分)“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动.规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为57,那么应添加多少张《消防知识手册》卡片?请说明理由.21.(本题满分8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB 所在的直线.为了测量房屋的高度,在地面上C 点测得屋顶A 的仰角为35°,此时地面上C 点、屋檐上E 点、屋顶上A 点三点恰好共线,继续向房屋方向走8m 到达点D 时,又测得屋檐E 点的仰角为60°,房屋的顶层横梁12m EF =,EF CB ∥,AB 交EF 于点G (点C ,D ,B 在同一水平线上).(参考数据:sin350.6°»,cos350.8°»,tan350.7°»,1.7»)(1)求屋顶到横梁的距离AG ;(2)求房屋的高AB (结果精确到1m ).图①图②(第21题图)22.(本题满分10分)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?毕业学校_____________姓名________________考生号________________23.(本题满分10分)如图,AB 为O e 的直径,四边形ABCD 内接于O e ,对角线AC ,BD 交于点E ,O e 的切线AF 交BD 的延长线于点F ,切点为A ,且CAD ABD Ð=Ð.(第23题图)(1)求证:AD CD =;(2)若4,5AB BF ==,求sin BDC Ð的值.24.(本题满分12分)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y (人)与时间x (分钟)的变化情况,数据如下表:(表中9~15表示915x <≤)时间x (分钟)1234567899~15人数y (人)0170320450560650720770800810810(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y 与x 之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?25.(本题满分12分)如图,四边形ABCD 是正方形,点O 为对角线AC 的中点.(1)问题解决:如图①,连接BO ,分别取CB ,BO 的中点P ,Q ,连接PQ ,则PQ与BO 的数量关系是________,位置关系是________;(2)问题探究:如图②,AO E ¢△是将图①中的AOB D 绕点A 按顺时针方向旋转45°得到的三角形,连接CE ,点P ,Q 分别为CE ,BO ¢的中点,连接PQ ,PB.判断PQBD 的形状,并证明你的结论;(3)拓展延伸:如图③,AO E ¢△是将图①中的AOB D 绕点A 按逆时针方向旋转45°得到的三角形,连接BO ¢,点P ,Q 分别为CE ,BO ¢的中点,连接PQ ,PB .若正方形ABCD 的边长为1,求PQB △的面积.图①图②图③(第25题图)2020年贵州省贵阳市初中毕业学业水平(升学)考试数学答案解析一、1.【答案】A【解析】原式利用异号两数相乘的法则计算即可求出值.解:原式326=-´=-,故选:A .【考点】有理数的乘法2.【答案】D【解析】要求可能性的大小,只需求出各袋中红球所占的比例大小即可.解:第一个袋子摸到红球的可能性110=;第二个袋子摸到红球的可能性;第三个袋子摸到红球的可能性51102==;第四个袋子摸到红球的可能性63105==.故选:D .【考点】可能性大小的计算3.【答案】C【解析】根据得到数据的活动特点进行判断即可.解:因为获取60岁以上人的年龄进行了数据的收集和整理,所以此活动是调查.故选:C .【考点】数据的获得方式4.【答案】A【解析】根据对顶角相等求出1Ð,再根据互为邻补角的两个角的和等于180°列式计算即可得解.解:1260ÐÐ=°Q +,12Ð=Ð(对顶角相等),130\Ð=°,1ÐQ 与3Ð互为邻补角,3180118030150\Ð=°-Ð=°-°=°.故选:A .【考点】对顶角相等的性质,邻补角的定义5.【答案】B【解析】由分式有意义的条件分母不能为零判断即可.1xx -,当1x =时,分母为零,分式无意义.故选B.【考点】分式有意义的条件6.【答案】D【解析】根据太阳光下的影子的特点:①同一时刻,太阳光下的影子都在同一方向;②太阳光线是平行的,太阳光下的影子与物体高度成比例,据此逐项判断即可.选项A 、B 中,两棵小树的影子的方向相反,不可能为同一时刻阳光下的影子,则选项A 、B 错误;选项C 中,树高与影长成反比,不可能为同一时刻阳光下的影子,则选项C 错误;选项D 中,在同一时刻阳光下,影子都在同一方向,且树高与影长成正比,则选项D 正确.故选:D .【考点】太阳光下的影子的特点7.【答案】B【解析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.解:如图所示,根据题意得1842AO =´=,1=632BO ´=,Q 四边形ABCD 是菱形,AB BC CD DA \===,AC BD ^,AOB \△是直角三角形,5AB \===,\此菱形的周长为:5420´=.故选:B .【考点】菱形的性质8.【答案】D【解析】根据不等式的性质解答.解:A 、不等式a b <的两边同时减去1,不等式仍成立,即11a b --<,故本选项不符合题意;B 、不等式a b <的两边同时乘以2-,不等号方向改变,即22a b ->-,故本选项不符合题意;C 、不等式a b <的两边同时乘以12,不等式仍成立,即:1122a b <,再在两边同时加上1,不等式仍成立,即111122a b ++<,故本选项不符合题意;D 、不等式a b <的两边同时乘以m ,当0m >,不等式仍成立,即ma mb <;当0m <,不等号方向改变,即ma mb >;当0m =时,ma mb =;故Rt CDF △不一定成立,故本选项符合题意,故选:D .【考点】不等式的性质9.【答案】C【解析】当GP AB ^时,GP 的值最小,根据尺规作图的方法可知,GB 是ABC Ð的角平分线,再根据角平分线的性质可知,当GP AB ^时,1GP CG ==.解:由题意可知,当GP AB ^时,GP 的值最小,根据尺规作图的方法可知,GB 是ABC Ð的角平分线,90C Ð=°Q ,\当GP AB ^时,1GP CG ==,故答案为:C .【考点】角平分线的尺规作图,角平分线的性质10.【答案】B【解析】由题意可得方程20ax bx c ++=的两个根是3-,1,方程在y 的基础上加m ,可以理解为二次函数的图象沿着y 轴平移m 个单位,由此判断加m 后的两个根,即可判断选项.二次函数2y ax bx c=++的图象经过(3,0)-与DG BD =两点,即方程20ax bx c ++=的两个根是3﹣和1,20ax bx c m +++=可以看成二次函数y 的图象沿着y 轴平移m 个单位,得到一个根3,由1到3移动2个单位,可得另一个根为5-.由于0n m <<,可知方程20ax bx c n +++=的两根范围在5~3--和1~3,由此判断B 符合该范围.故选B .【考点】二次函数图象与一元二次方程的综合二、11.【答案】2x 【解析】直接去括号然后合并同类项即可.解:22(1)x x x x x x x -+=-+=,故答案为:2x .【考点】整式运算,单项式乘以多项式,合并同类项12.【答案】3【解析】根据反比例函数3y x=的图象上点的坐标性得出3xy =,进而得出四边形OBAC 的面积.解:如图所示:可得3OB AB xy k ´===,则四边形OBAC 的面积为:3,故答案为:3.【考点】反比例函数()0ky xk =¹系数k 的几何意义13.【答案】16【解析】随着试验次数的增多,变化趋势接近与理论上的概率.解:如果试验的次数增多,出现数字“6”的频率的变化趋势是接近16.故答案为:16.14.【答案】120【解析】本题可通过构造辅助线,利用垂径定理证明角等,继而利用SAS 定理证明三角形全等,最后根据角的互换结合同弧所对的圆周角等于圆心角的一半求解本题.解:连接OA ,OB ,作OH AC ^,OM AB ^,如下图所示:因为等边三角形ABC ,OH AC ^,OM AB ^,由垂径定理得:AH AM =,又因为OA OA =,故OAH OAM HL △≌△(.OAH OAM \Ð=Ð.又OA OB =Q ,AD EB =,OAB OBA OAD \Ð=Ð=Ð,()ODA OEB SAS \△≌△,DOA EOB \Ð=Ð,DOE DOA AOE AOE EOB AOB \Ð=Ð+Ð=Ð+Ð=Ð.又60C Ð=°Q 以及同弧»AB ,120AOB DOE \Ð=Ð=°.故本题答案为:120.【考点】圆与等边三角形的综合15.【答案】【解析】如图,延长BD 到点G ,使DG BD =,连接CG ,则由线段垂直平分线的性质可得CB CG =,在EG上截取EF EC =,连接CF ,则EFC ECF Ð=Ð,G CBE Ð=Ð,根据等腰三角形的性质和三角形的内角和定理可得2EFC A CBE Ð=Ð=Ð,再根据三角形的外角性质和等腰三角形的判定可得FC FG =,设CE EF x ==,则可根据线段间的和差关系求出DF 的长,进而可求出FC 的长,然后根据勾股定理即可求出CD 的长,再一次运用勾股定理即可求出答案.解:如图,延长BD 到点G ,使DG BD =,连接CG ,则CB CG =,在EG 上截取EF EC =,连接CF ,则EFC ECF Ð=Ð,G CBE Ð=Ð,EA EB =Q ,A EBA \Ð=Ð,AEB CEF Ð=ÐQ ,22EFC A CBE G \Ð=Ð=Ð=Ð,EFC G FCG Ð=Ð+ÐQ ,G FCG \Ð=Ð,FC FG \=,设CE EF x ==,则11AE BE x ==-,8113DE x x \=--=-(),33DF x x \=--=(),8DG DB ==Q ,5FG \=,5CF \=,在Rt CDF △中,根据勾股定理,得4CD ==,BC \===.故答案为:.【考点】等腰三角形的判定和性质,三角形的内角和定理,三角形的外角性质,勾股定理以及线段垂直平分线的性质三、16.【答案】(1)图①(或其他合理答案)(2)图②(或其他合理答案)(3)图③(或其他合理答案)【解析】(1)画一个边长为3,4,5的三角形即可.具体解题过程参照答案.(2)利用勾股定理,找长为和4的线段,画三角形即可.具体解题过程参照答案.(3、的线段,画三角形即可.具体解题过程参照答案.【考点】勾股定理的应用17.【答案】(1)5022(2)3.5h3.5h(3)认真听课,独立思考.(或其他合理答案)【解析】(1)根据已知人数和比例算出学生总人数,再利用所占比例求出m 的值.学生人数2560ax x +-=.2x =.故答案为:50,22.(2)根据中位数和众数的概念计算即可.50225¸=,所以中位数为第25人所听时间为3.5h ,人数最多的也是3.5h ,故答案为:3.5h ,3.5h .(3)任写一条正能量看法即可.具体解题过程参照答案.【考点】扇形统计图,统计基础运算18.【答案】(1)解:Q 四边形ABCD 是矩形,AD BC \∥,AD BC =.CF BE =Q ,CF EC BE EC \+=+,即EF BC =.EF AD \=,\四边形AEFD 是平行四边形.(2)解:如图,连接ED ,Q 四边形ABCD 是矩形,90B \Ð=°,在Rt ABE D 中,4AB =,2BE =,\由勾股定理得,216420EA =+=,即EA =AD BC Q ∥,DAE AEB Ð=Ð\.EH x =,ABE DEA \△∽△.BE EAEA AD =\=10AD =.由(1)得四边形AEFD 是平行四边形,又10EF =Q ,高4AB =,10440AEFD S EF AB =×=´=\Y .【解析】(1)直接利用矩形的性质结合BE CF =,可得EF AD =,进而得出答案.具体解题过程参照答案.(2)在a 中利用勾股定理可计算EA =ABE DEA △∽△得BE EA EA AD=,进而求出AD 长,由AEFD S EF AB =×Y 即可求解.具体解题过程参照答案.【考点】矩形和平行四边形的性质以及判定,相似三角形的判定和性质,勾股定理,熟练运用勾股定理和相似三角形性质求线段长是解题的关键.19.【答案】解:(1)Q 一次函数1y x =+的图象与反比例函数k y x=的图象的一个交点的横坐标是2,\当2x =时,3y =,\其中一个交点是(2,3).236k \=´=.\反比例函数的表达式是6y x=.(2)解:Q 一次函数1y x =+的图象向下平移2个单位,\平移后的表达式是1y x =-.联立6y x=及1y x =-,可得一元二次方程260x x --=,解得12x =-,23x =.\平移后的图象与反比例函数图象的交点坐标为(2,3)--,(3,2).(3)设一次函数为()0y ax b a =+¹,Q 经过点(0,5),则5b =,5y ax \=+,联立5y ax =+以及6y x=可得:2560ax x +-=,若一次函数图象与反比例函数图象无交点,则25240a D =+<,解得:2524a <-,25y x \=-+(或其他合理答案).【解析】(1)将2x =代入一次函数,求出其中一个交点是(2,3),再代入反比例函数k y x=即可解答.具体解题过程参照答案.(2)先求出平移后的一次函数表达式,联立两个函数解析式得到一元二次方程260x x --=即可解答.具体解题过程参照答案.(3)设一次函数为()0y ax b a =+¹,根据题意得到5b =,联立一次函数与反比例函数解析式,得到2560ax x +-=,若无公共点,则方程无解,利用根的判别式得到25240a D =+<,求出a 的取值范围,再在范围内任取一个a 的值即可.具体解题过程参照答案.【考点】一次函数与反比例函数图象交点问题,函数图象平移问题20.【答案】解:(1)先将《消防知识手册》《辞海》《辞海》分别记作A ,1B ,2B ,然后列表如下:第2次第1次A1B 2B A 1(,)A B 2(,)A B 1B 1(,)B A 12(,)B B 2B 2(,)B A 21(,)B B 总共有6种结果,每种结果出现的可能性相同,而2张卡片都是《辞海》的有2种:21(,)B B ,12(,)B B 所以,P (2张卡片都是《辞海》)2163==;(2)解:设再添加x 张和原来一样的《消防知识手册》卡片,由题意得:1537x x +=+,解得,4x =,经检验,4x =是原方程的根,答:应添加4张《消防知识手册》卡片.【解析】(1)根据题意画出列表,由概率公式即可得出答案.具体解题过程参照答案.(2)设应添加x 张《消防知识手册》卡片,由概率公式得出方程,解方程即可.具体解题过程参照答案.【考点】列表法,概率公式21.【答案】(1)解:Q 房屋的侧面示意图是轴对称图形,AB 所在直线是对称轴,EF CB ∥,AG EF \^,162EG EF ==,35AEG ACB Ð=Ð=°.在Rt AGE △中,90AGE Ð=°,35AEG Ð=°,tan GAE G G A E Ð=Q ,6EG =,tan350.7°».6tan 3542AG \=»°(米)答:屋顶到横梁的距离AG 约是4.2米.(2)过点E 作EH CB ^于点H ,设EH x =,在Rt EDH △中,90EHD Ð=°,60EDH Ð=°,tan EH EDH DH Ð=Q ,tan 60x DH \=°,在Rt ECH D 中,90EHC Ð=°,35ECH Ð=°,tan EH ECH CH Ð=Q ,tan 35x CH =°\.8CH DH CD -==Q ,8tan 35tan 60x x -=°°\,tan 350.7°»Q 1.7»,解得9.52x ».4.29.5213.7214AB AG BG =+=+=»\(米)答:房屋的高AB 约是14米.【解析】(1)EF CB ∥可得35AEG ACB Ð=Ð=°,在Rt AGE △中由tan AG EG AEG Ð=即可求AG .具体解题过程参照答案.(2)设EH x =,利用三角函数由x 表示DH 、CH ,由8DH CH -=列方程即可求解.具体解题过程参照答案.【考点】仰角的定义,解直角三角形的应用22.【答案】(1)解:设单价为6元的钢笔买了x 支,则单价为10元的钢笔买了(100x -)支,根据题意,得610(100)1300378x x +-=-,解得:19.5x =.因为钢笔的数量不可能是小数,所以学习委员搞错了.(2)解:设笔记本的单价为a 元,根据题意,得610(100)1300378x x a +-+=-,整理,得13942x a =+,因为010a <<,x 随a 的增大而增大,所以19.522x <<,x Q 取整数,20x \=,21.当20x =时,420782a =´-=,当21x =时,421786a =´-=,所以笔记本的单价可能是2元或者6元.【解析】(1)根据题意列出方程解出答案判断即可.具体解题过程参照答案(2)根据题意列出方程得出x 与a 的关系,再由题意中a 的条件即可判断x 的范围,从而得出单价.具体解题过程参照答案【考点】方程及不等式的列式和计算23.【答案】解:(1)在O e 中,ABD ÐQ 与ACD Ð都是»AD 所对的圆周角,ABD ACD Ð=Ð\,CAD ABD Ð=ÐQ ,ACD CAD \Ð=Ð.AD CD \=.(2)解:AF Q 是O e 的切线,AB 是O e 的直径,90FAB ACB ADB ADF \Ð=Ð=Ð=Ð=°.90FAD BAD Ð+Ð=°Q ,90ABD BAD Ð+Ð=°,FAD ABD \Ð=Ð.又ABD CAD Ð=ÐQ ,CAD FAD \Ð=Ð.AD AD =Q ,Rt Rt ()ADE ADF ASA \△≌△,AE AF \=,ED FD =.在Rt BAF D 中,4AB =Q ,5BF =,3AF \=,即3AE =.1122AB AF BF AD ×=×Q ,125AD \=.在Rt ADF D 中,95FD ==,975255BE =-´=\.BEC AED Ð=ÐQ ,且ECB EDA Ð=Ð,BEC AED \△∽△,BE BC AE AD =\,即2825BC =.BDC Q ∠与BAC Ð都是»BC所对的圆周角,BDC BAC Ð=Ð\.在Rt ACB △中,90ACB Ð=°,7sin 25BC BAC AB Ð==\,即7sin 25BDC Ð=.【解析】(1)利用同弧所对的圆周角相等可得ABD ACD Ð=Ð,由CAD ABD Ð=Ð得ACD CAD Ð=Ð,根据等角对等边可得结论.具体解题过程参照答案.(2)先证明FAD ABD Ð=Ð,CAD FAD Ð=Ð,由ASA 证明Rt Rt ADE ADF △≌△,得AE AF =,ED FD =;再求125AD =,75BE =,再证明BEC AED △∽△得2825BC =,利用BDC BAC Ð=Ð可得结论.具体解题过程参照答案.【考点】切线的性质,圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形24.【答案】(1)解:根据表中数据的变化趋势可知:①当09x ≤≤时,y 是x 的二次函数.Q 当0x =时,0y =,\二次函数的关系式可设为2y ax bx =+.当1x =时,170y =;当3x =时,450y =.将它们分别代入关系式得17045093a b a b =+ìí=+î,解得10180a b =-ìí=î.\二次函数的关系式为210180y x x =-+.将表格内的其他各组对应值代入此关系式,均满足.②当915x <≤时,810y =.y \与x 的关系式为210180,09810,915x x x y x ì-+=íî≤≤<≤.(2)设第x 分钟时的排队人数是W ,根据题意,得21018040,09,4081040,915x x x x W y x x x ì-+-££=-=í-<£î,①当09x ≤≤时,221014010(7)490W x x x =-+=--+.\当7x =时,490W =最大.②当915x <≤时,81040W x =-,W 随x 的增大而减小,210450W \≤<.\排队人数最多时是490人.要全部考生都完成体温检测,根据题意,得81040=0x -,解得20.25x =.\排队人数最多时是490人,全部考生都完成体温检测需要20.25分钟.(3)设从一开始就应该增加m 个检测点,根据题意,得1220(2)810m ´+≥,解得318m ≥.m Q 是整数,318m \≥的最小整数是2.\一开始就应该至少增加2个检测点.【解析】(1)先根据表中数据的变化趋势猜想:①当09x ≤≤时,y 是x 的二次函数.根据提示设出抛物线的解析式2y ax bx =+,再从表中选择两组对应数值,利用待定系数法求函数解析式,再检验其它数据是否满足解析式,从而可得答案.具体解题过程参照答案.(2)设第x 分钟时的排队人数是W ,列出W 与第x 分钟的函数关系式,再根据函数的性质求排队的最多人数,利用检测点的检测人数列方程求解检测时间.具体解题过程参照答案.(3)设从一开始就应该增加m 个检测点,根据题意列出不等式,利用不等式在正整数解可得答案.具体解题过程参照答案.【考点】根据实际的数据探究各数据符合的函数形式,待定系数法求解函数解析式,二次函数的实际应用,二次函数的性质,一元一次方程的应用,一元一次不等式的应用25.【答案】(1)解:Q 点P 和点Q 分别为CB ,BO 的中点,PQ \为BOC △的中位线,Q 四边形ABCD 是正方形,AC BO \^,12PQ BO \=,PQ BO ^;故答案为:12PQ BO =,PQ BO ^;(2)解:PQB △的形状是等腰直角三角形.理由如下:连接O P ¢并延长交BC 于点F ,由正方形的性质及旋转可得AB BC =,90ABC =°∠,AO E ¢△是等腰直角三角形,O E BC ¢∥,O E O A ¢=¢.O EP FCP \Т=Ð,'PO E PFC Ð=Ð.又Q 点P 是CE 的中点,CP EP \=.()O PE FPC AAS \¢△≌△.''O E FC O A \==,'O P FP =.AB O A CB FC \-¢=-,BO BF \¢=.'O BF \△为等腰直角三角形.'BP O F \^,'O P BP =.BPO \¢△也为等腰直角三角形.又Q点Q为'O B的中点,'PQ O B\^,且PQ BQ=.PQB\△的形状是等腰直角三角形.(3)解:延长O E¢交BC边于点G,连接PG,'O P.Q四边形ABCD是正方形,AC是对角线,45ECG\Ð=°.由旋转得,四边形O ABG¢是矩形,O G AB BC\¢==,90EGCÐ=°.EGC\△为等腰直角三角形.Q点P是CE的中点,PC PG PE\==,90CPGÐ=°,45EGPÐ=°.'()O GP BCP SAS\△≌△.O PG BPC\Т=Ð,O P BP¢=.90O PG GPB BPC GPB\Т-Ð=Ð-Ð=°.'90O PB\Ð=°.O PB\¢△为等腰直角三角形.QQ是O B¢的中点,∴12PQ O B BQ=¢=,PQ O B^¢.1AB=Q,O A\¢=,O B¢==BQ \=1132216PQB S BQ PQ D =×==\.【解析】(1)根据题意可得PQ 为BOC △的中位线,再根据中位线的性质即可求解.具体解题过程参照答案.(2)连接O P ¢并延长交BC 于点F ,根据题意证出O PE FPC ¢△≌△,'O BF △为等腰直角三角形,BPO ¢△也为等腰直角三角形,由'PQ O B ^且PQ BQ =可得PQB △是等腰直角三角形.具体解题过程参照答案.(3)延长O E ¢交BC 边于点G ,连接PG ,'O P .证出四边形O ABG ¢是矩形,EGC △为等腰直角三角形,' O GP BCP △≌△,再证出O PB ¢△为等腰直角三角形,根据图形的性质和勾股定理求出O A ¢,O B ¢和BQ 的长度,即可计算出PQB △的面积.具体解题过程参照答案.【考点】正方形的性质,等腰直角三角形的判定与性质,旋转图形的性质,三角形中位线定理,全等三角形的判定与性质,勾股定理。
人教版2019-2020学年八年级数学(上)期末复习:全等三角形常考题型复习(解析版)
人教版八年级数学上册期末复习:全等三角形常考基础专题复习一.选择题(共12小题)1.如图,△ABO≌△DCO,∠D=80°,∠DOC=70°,则∠B=()A.35°B.30°C.25°D.20°2.图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D3.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE4.如图,已知AB=AD,那么添加下列一个条件后,仍然不能判定△ABC≌△ADC的是()A.CB=CD B.∠B=∠D=90°C.∠BAC=∠DAC D.∠BCA=∠DCA 5.如图,点B、E、C、F在同一条直线上,AB∥DE,AB=DE,要用SAS证明△ABC≌△DEF,可以添加的条件是()A.∠A=∠D B.AC∥DF C.BE=CF D.AC=DF6.如图,已知AB=AD,那么添加下列一个条件后,能判定△ABC≌△ADC的是()A.AC=AC B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D7.如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC8.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm9.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线10.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D.若CD=3cm,则点D到AB的距离DE是()A.5 cm B.4 cm C.3 cm D.2 cm11.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处12.如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若P A=2,则PQ的最小值为()A.1B.2C.3D.4二.填空题(共8小题)13.如图所示,已知△ABC的面积是36,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的周长是.14.如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则D到AB的距离为.15.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ACB=∠DBC;能判定△ABC≌△DCB的是.(填序号)16.如图,B、C、E共线,AB⊥BE,DE⊥BE,AC⊥DC,AC=DC,又AB=2cm,DE=1cm,则BE=.17.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=.18.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=°.19.如图为6个边长相等的正方形的组合图形,则∠1+∠3=.20.如图,若△ABC≌△ADE,∠EAC=30°,则∠BAD=度.三.解答题(共12小题)21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.23.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3.(1)求DE的长;(2)若AC=6,BC=8,求△ADB的面积.24.如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,AC=BE.(1)求证:AD=BD;(2)求∠B的度数.25.如图,在△ABC中,∠C=90°.(1)作∠BAC的平分线AD,交BC于D;(2)若AB=10cm,CD=4cm,求△ABD的面积.26.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:(1)PE=PF;(2)点P在∠BAC的角平分线上.27.如图,点C、E、B、F在同一直线上,CE=BF,AC∥DF,AC=DF,求证:△ABC≌△DEF.28.如图,AB=AC,AD=AE,∠1=∠2,求证:△ABD≌△ACE.29.如图,已知点C,F在线段BE上,AB∥ED,∠ACB=∠DFE,EC=BF.求证:△ABC≌△DEF.30.已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.31.如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.32.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.参考答案与试题解析部分一.选择题(共12小题)1.如图,△ABO≌△DCO,∠D=80°,∠DOC=70°,则∠B=()A.35°B.30°C.25°D.20°【分析】根据三角形内角和定理求出∠C,根据全等三角形的性质解答即可.【解答】解:∵∠D=80°,∠DOC=70°,∴∠C=180°﹣∠D﹣∠DOC=30°,∵△ABO≌△DCO,∴∠B=∠C=30°,故选:B.2.图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D【分析】根据全等三角形的性质和已知图形得出即可.【解答】解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.3.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE【分析】根据全等三角形的判定方法对各选项进行判断.【解答】解:∵∠A=∠D,∠B=∠DFE,∴当BE=CF时,即BC=EF,△ABC≌△DFE(AAS);当AB=DF时,即BC=EF,△ABC≌△DFE(ASA);当AC=DE时,即BC=EF,△ABC≌△DFE(AAS).故选:C.4.如图,已知AB=AD,那么添加下列一个条件后,仍然不能判定△ABC≌△ADC的是()A.CB=CD B.∠B=∠D=90°C.∠BAC=∠DAC D.∠BCA=∠DCA 【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;C、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;D、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;故选:D.5.如图,点B、E、C、F在同一条直线上,AB∥DE,AB=DE,要用SAS证明△ABC≌△DEF,可以添加的条件是()A.∠A=∠D B.AC∥DF C.BE=CF D.AC=DF【分析】根据AB∥DE得出∠B=∠DEF,添加条件BC=EF,则利用SAS定理证明△ABC ≌△DEF.【解答】解:∵AB∥DE,∴∠B=∠DEF,可添加条件BC=EF,理由:∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故选:C.6.如图,已知AB=AD,那么添加下列一个条件后,能判定△ABC≌△ADC的是()A.AC=AC B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加AC=AC,根据SS,不能判定△ABC≌△ADC,故本选项错误;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故本选项正确;C、添加∠BCA=∠DCA时,根据SSA不能判定△ABC≌△ADC,故本选项错误;D、添加∠B=∠D,根据SSA不能判定△ABC≌△ADC,故本选项错误;故选:B.7.如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC【分析】根据“SAS”可添加BF=EC使△ABC≌△DEF.【解答】解:∵AB∥ED,AB=DE,∴∠B=∠E,∴当BF=EC时,可得BC=EF,可利用“SAS”判断△ABC≌△DEF.故选:A.8.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm【分析】根据角平分线上的点到角的两边的距离相等可得DE=CD,再根据等腰直角三角形的性质求出AC=BC=AE,然后求出△DBE的周长=AB,代入数据即可得解.【解答】解:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴DE=CD,又∵AC=BC,AC=AE,∴AC=BC=AE,∴△DBE的周长=DE+BD+EB=CD+BD+EB=BC+EB=AE+EB=AB,∵AB=6cm,∴△DBE的周长=6cm.故选:A.9.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线【分析】由角平分线性质的逆定理:到角的两边的距离相等的点在角的平分线上,则这个点是三角形三条角平分线的交点.【解答】解:∵到角的两边的距离相等的点在角的平分线上,∴这个点是三角形三条角平分线的交点.故选:A.10.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D.若CD=3cm,则点D到AB的距离DE是()A.5 cm B.4 cm C.3 cm D.2 cm【分析】过D作DE⊥AB于E,由已知条件,根据角平分线上的点到角的两边的距离相等解答.【解答】解:过D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3cm,∴DE=3cm.故选:C.11.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故选:D.12.如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若P A=2,则PQ的最小值为()A.1B.2C.3D.4【分析】由垂线段最短可知当PQ⊥OM时PQ最小,当PQ⊥OM时,则由角平分线的性质可知P A=PQ,可求得PQ=2.【解答】解:∵垂线段最短,∴当PQ⊥OM时,PQ有最小值,又∵OP平分∠MON,P A⊥ON,∴PQ=P A=2,故选:B.二.填空题(共8小题)13.如图所示,已知△ABC的面积是36,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的周长是18.【分析】作OE⊥AB于E,OF⊥AC于F,根据角平分线的性质得到OE=OF=OD=4,根据三角形的面积公式计算即可.【解答】解:作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,OE⊥AB,OF⊥AC,∴OE=OF=OD=4,由题意得,×AB×OE+×CB×OD+×AC×OF=36,解得,AB+BC+AC=18,则△ABC的周长是18,故答案为:18.14.如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则D到AB的距离为4.【分析】由已知条件首先求出线段CD的大小,接着利用角平分线的性质得点D到边AB 的距离等于CD的大小,问题可解.【解答】解:∵BC=10,BD=6,∴CD=4,∵∠C=90°,∠1=∠2,∴点D到边AB的距离等于CD=4,故答案为:4.15.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ACB=∠DBC;能判定△ABC≌△DCB的是①③④.(填序号)【分析】根据全等三角形的判定方法一一判断即可.【解答】解:因为∠ABC=∠DCB,BC=CB,①AB=CD,根据SAS可以判定△ABC≌△DCB.②AC=DB,无法判断△ABC≌△DCB.③∠A=∠D,根据AAS可以判定△ABC≌△DCB.④∠ACB=∠DBC,根据ASA可以判定△ABC≌△DCB.故答案为:①③④.16.如图,B、C、E共线,AB⊥BE,DE⊥BE,AC⊥DC,AC=DC,又AB=2cm,DE=1cm,则BE=3cm.【分析】易证△ABC≌△CED,可得AB=CE,BC=DE,可以求得BE的值.【解答】解:∵AC⊥DC,∴∠ACB+∠ECD=90°∵AB⊥BE,∴∠ACB+∠A=90°,∴∠A=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(AAS),∴AB=CE=2cm,BC=DE=1cm,∴BE=BC+CE=3cm.故答案为3cm.17.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=100°.【分析】根据全等三角形的性质求出∠B,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△DEF,∴∠B=∠E=50°,∴∠C=180°﹣∠A﹣∠B=100°,故答案为:100°.18.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=35°.【分析】根据全等三角形性质得出∠BAC=∠DAE,求出∠BAD=∠EAC,代入求出即可.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∵∠EAC=35°,∴∠BAD=35°,故答案为:35.19.如图为6个边长相等的正方形的组合图形,则∠1+∠3=90°.【分析】首先利用SAS定理判定△ABC≌△DBE,根据全等三角形的性质可得∠3=∠ACB,再由∠ACB+∠1=90°,可得∠1+∠3=90°.【解答】解:∵在△ABC和△DBE中,∴△ABC≌△DBE(SAS),∴∠3=∠ACB,∵∠ACB+∠1=90°,∴∠1+∠3=90°,故答案为:90°.20.如图,若△ABC≌△ADE,∠EAC=30°,则∠BAD=30度.【分析】根据△ABC≌△ADE,可得∠CAB=∠EAD,由于∠EAB是公共角,可得∠EAC =∠BAD,即可得解.【解答】解:∵△ABC≌△ADE,∵∠EAB是公共角,∴∠CAB﹣∠EAB=∠EAD﹣∠EAB,即∠EAC=∠BAD,已知∠EAC=30°,∴∠BAD=30°.故答案填:30.三.解答题(共12小题)21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.【分析】作∠AOB的角平分线和线段CD的垂直平分线,它们的交点为P点.【解答】解:如图,点P为所作.22.已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.【分析】(1)过D作DE⊥AB于E,依据角平分线的性质,即可得到DE=CD,再根据含30°角的直角三角形的性质,即可得出结论;(2)依据AD=BD=2CD=4,即可得到Rt△ACD中,AC==2,再根据△ABD的面积=×BD×AC进行计算即可.【解答】解:(1)如图,过D作DE⊥AB于E,∵∠C=90°,AD是△ABC的角平分线,∴DE=CD,又∵∠B=30°,∴Rt△BDE中,DE=BD,∴BD=2DE=2CD;(2)∵∠C=90°,∠B=30°,AD是△ABC的角平分线,∴∠BAD=∠B=30°,∴AD=BD=2CD=4,∴Rt△ACD中,AC==2,∴△ABD的面积为×BD×AC=×4×2=4.23.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3.(1)求DE的长;(2)若AC=6,BC=8,求△ADB的面积.【分析】(1)直接根据角平分线的性质可得出结论;(2)先根据勾股定理求出AB的长,再由三角形的面积公式求解即可.【解答】解:(1)∵Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3,∴DE=CD=3;(2)∵Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB==10.∵由(1)知,DE=3,∴S△ABD=AB•DE=×10×3=1524.如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,AC=BE.(1)求证:AD=BD;(2)求∠B的度数.【分析】(1)根据角平分线的性质得到CD=DE,根据全等三角形的判定和性质即可得到结论;(2)根据角平分线的定义可得∠CAD=∠BAD,根据等边对等角可得∠B=∠BAD,再根据三角形的内角和定理列出方程求解即可.【解答】证:(1)∵DE⊥AB于E,∠C=90°,AD是△ABC的角平分线,∴CD=DE,在Rt△ACD与Rt△AED中,∴Rt△ACD≌Rt△AED,∴AC=AE,∵AC=BE,∴AE=BE,∴AD=BD;(2)∵AD是△ABC的角平分线,∴∠CAD=∠BAD,∵AD=BD,∴∠B=∠BAD,∴∠CAD=∠BAD=∠B,∵∠C=90°,∴∠CAD+∠BAD+∠B=90°,∴∠B=30°.25.如图,在△ABC中,∠C=90°.(1)作∠BAC的平分线AD,交BC于D;(2)若AB=10cm,CD=4cm,求△ABD的面积.【分析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D作DE⊥AB于E,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【解答】解:(1)如图所示,AD即为所求;(2)如图,过D作DE⊥AB于E,∵AD平分∠BAC,∴DE=CD=4,∴S△ABD=AB×DE=×10×4=20cm2.26.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:(1)PE=PF;(2)点P在∠BAC的角平分线上.【分析】(1)连接AP,根据HL证明△APF≌△APE,可得到PE=PF;(2)利用(1)中的全等,可得出∠F AP=∠EAP,那么点P在∠BAC的平分线上.【解答】证明:(1)如图,连接AP并延长,∵PE⊥AB,PF⊥AC∴∠AEP=∠AFP=90°又AE=AF,AP=AP,∵在Rt△AFP和Rt△AEP中∴Rt△AEP≌Rt△AFP(HL),∴PE=PF.(2)∵Rt△AEP≌Rt△AFP,∴∠EAP=∠F AP,∴AP是∠BAC的角平分线,故点P在∠BAC的角平分线上.27.如图,点C、E、B、F在同一直线上,CE=BF,AC∥DF,AC=DF,求证:△ABC≌△DEF.【分析】先由CE=BF,可得BC=EF,继而利用SAS可证明结论.【解答】解:∵CE=BF,∴CE+BE=BF+BE,即BC=EF,又∵AC∥DF,∴∠C=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).28.如图,AB=AC,AD=AE,∠1=∠2,求证:△ABD≌△ACE.【分析】由∠1=∠2,可得∠CAE=∠BAD,进而利用两边夹一角,证明全等.【解答】证明:∵∠1=∠2,∴∠CAE=∠BAD,∵AB=AC,AD=AE,∴△ABD≌△ACE.29.如图,已知点C,F在线段BE上,AB∥ED,∠ACB=∠DFE,EC=BF.求证:△ABC≌△DEF.【分析】利用平行线的性质可得∠ABE=∠BED,根据等式的性质可得EF=BC,然后利用ASA判定△ABC≌△DEF即可.【解答】解:∵AB∥ED∴∠ABE=∠BED,∴EC﹣FC=BF﹣FC,∴EF=BC,在△ABC和△DEF中,∴△ABC≌△DFE(SAS).30.已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以∠ACB=∠DBC,即∠OCB=∠OBC,所以有OB=OC.【解答】证明:∵∠A=∠D=90°,AC=BD,BC=BC,∴Rt△BAC≌Rt△CDB(HL)∴∠ACB=∠DBC.∴∠OCB=∠OBC.∴OB=OC(等角对等边).31.如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.【分析】欲证BD、CE两边相等,只需证明这两边所在的△ABD与△ACE全等,这两个三角形,有一对直角相等,公共角∠A,AB=AC,所以两三角形全等.【解答】证明:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°.在△ABD和△ACE中,,∴△ABD≌△ACE(AAS).32.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.【分析】要证角相等,可先证明全等.即证Rt△ABC≌Rt△ADC,进而得出角相等.【解答】证明:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90°,∴△ABC与△ACD为直角三角形,在Rt△ABC和Rt△ADC中,∵AB=AD,AC为公共边,∴Rt△ABC≌Rt△ADC(HL),∴∠1=∠2.。
2018-2019学年贵州省贵阳一中集团学校八年级(上)期中数学试卷(解析版)
2018-2019学年贵州省贵阳一中集团学校八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.化简:=()A.2B.﹣2C.4D.﹣42.下列图象中,不能表示y是x的函数的是()A.B.C.D.3.若三角形的三边长分别为,2,,则这个三角形的面积为()A.B.2C.2D.44.已知点P(1,﹣2),Q(﹣1,2),R(﹣1,﹣2),H(1,3),则下面线段中与x轴平行的是()A.PQ B.PH C.QR D.PR5.若单项式2x b﹣1y a+b与﹣x a﹣2y5是同类项,则下列方程组正确的为()A.B.C.D.6.如图,数轴上的点A表示的数是1,OB⊥OA,垂足为O,且BO=1,以点A为圆心,AB为半径画弧交数轴于点C,则C点表示的数为()A.﹣0.4B.﹣C.1﹣D.﹣17.下列说法正确的是()①a的倒数是;②相反数等于本身的数为0;③+=;④若|a|=|b|,则a=±bA.①②B.②③C.③④D.②④8.一根长18cm的牙刷置于底面半径为5cm,高为12cm的圆柱形水杯中,牙刷露在杯子外面的长度为h,则h的值不可能是()A.3cm B.πcm C.6cm D.8cm9.在同一坐标系中,正比例函数y=kx与一次函数y=x﹣k的图象大致应为()A.B.C.D.10.如图,直线y=x+4与x轴、y轴分别交于A、B两点,点C在OB上,若将△ABC沿AC折叠,使点B恰好落在x轴上的点D处,则C点的坐标为()A.(4,0)B.(0,2)C.(0,1.5)D.(0,3)二、填空题(每小题4分共20分)11.化简:(1)=;(2)=12.比较大小:3﹣﹣2.13.已知一次函数y=kx+b(k≠0)经过点(0,3)和(﹣2,7),则y随x的增大而(填“增大”或“减小”).14.平面直角坐标系中,直线y=﹣2x﹣3与x轴、y轴分别交于A,B两点,则△AOB的面积为.15.如图,Rt△ABC中,AC=5,BC=12,分别以它的三边为直径向上作三个半圆,则阴影部分面积为.三、解答题16.(8分)解方程(1)(2)(3)(4)17.(6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点)△ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3)(1)请在网格平面内作出平面直角坐标系,并写出B坐标;(2)作出与△ABC关于y轴对称的△A′B′C′,并写出点B′和C′的坐标;(3)求△ABC的面积.18.(6分)已知2a﹣1是9的平方根,3a+b﹣1的算术平方根是4(1)求a与b;(2)当ab>0时,求2a﹣b2的立方根.19.(6分)已知一次函数y=(6+3m)x+(n﹣4).求:(1)m为何值时,y随x的增大而减小;(2)m,n满足什么条件时,函数图象与y轴的交点在x轴下方;(3)m,n分别取何值时,函数图象经过原点;(4)m,n满足什么条件时,函数图象不经过第二象限.20.(8分)A、B两地相距90km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2表示两人离A地的距离S(km)与时间t(h)的关系,结合图象回答下列问题(1)表示甲离A地的距离与时间关系的图象是(填l1或l2);(2)甲的速度是km/h;乙的速度是km/h(3)甲出发后多少时间两人相遇?21.(8分)如图,E、F分别是矩形ABCD的边AD、AB上的点,EF=EC,且EF⊥EC.(1)求证:△AEF≌△DCE;(2)若DC=,求BE的长.22.(8分)点A(0,3)和点B(﹣2,1)在直线l1:y=kx+b上.(1)求直线l1的解析式并在平面直角坐标系中画出l1图象;(2)若直线l1与直线l2:y=﹣x+3交点C,求C点坐标;(3)请问在y轴上是否存在点P,使得△ACP是等腰三角形?若存在,请直接写出点P 的坐标;若不存在,说明理由.参考答案一、选择题1.解:=2.故选:A.2.解:A、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A不符合题意;B、不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B符合题意;C、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不符合题意;D、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D不符合题意;故选:B.3.解:因为,所以此三角形是直角三角形,所以这个三角形的面积=,故选:C.4.解:由点P(1,﹣2),Q(﹣1,2),R(﹣1,﹣2),H(1,3)知,点P与点Q的纵坐标都是﹣2,则与x轴平行的是线段PR,故选:D.5.解:∵单项式2x b﹣1y a+b与﹣x a﹣2y5是同类项,∴,整理得:.故选:B.6.解:在R t△AOB中,AB==,∴AB=AC=,∴OC=AC﹣OA=﹣1,∴点C表示的数为1﹣.故选:C.7.解:①若a≠0时,a的倒数是,故①不符合题意;②相反数等于本身的数为0,故②符合题意;③+=不一定成立,例如:a=b=1时,故③不符合题意;④若|a|=|b|,则a=b或a=﹣b,故④符合题意.故选:D.8.解:∵将一根长为18cm的牙刷,置于底面直径为5cm,高为12cm的圆柱形水杯中,∴在杯子中牙刷最短是等于杯子的高,最长是等于杯子斜边长度,∴当杯子中牙刷最短是等于杯子的高时,x=12,最长时等于牙刷斜边长度是:x==13,∴h的取值范围是:(18﹣13)≤h≤(18﹣12),即5≤h≤6.故选:C.9.解:根据图象知:A、k<0,﹣k<0.解集没有公共部分,所以不可能;B、k<0,﹣k>0.解集有公共部分,所以有可能;C、k>0,﹣k>0.解集没有公共部分,所以不可能;D、正比例函数的图象不对,所以不可能.故选:B.10.解:直线y=x+4与x轴、y轴分别交于A、B两点,则点A、B的坐标分别为:(﹣3,0)、(0,4),则AB=5,将△ABC沿AC折叠,使点B恰好落在x轴上的点D处,则AD=AB=5,故点D(2,0),设点C(0,m),则CD=BC,即,解得:m=,故点C(0,1.5),故选:C.二、填空题(本大题共5小题,每小题4分共20分)11.解:(1)==×=5;(2)=,故答案为:5,.12.解:∵3﹣﹣(﹣2)=5﹣2,且4<5<6.25即2<<2.5,∴4<2<5,∴5﹣2>0,∴3﹣>﹣2.故答案是:>.13.解:∵一次函数y=kx+b(k≠0)经过点(0,3)和(﹣2,7),∴,解得k=﹣2<0,∴y随x的增大而减小.故答案为:减小.14.解:y=﹣2x﹣3,令x=0,则y=﹣3,令y=0,则x=﹣,则OA=,O B=3,则△AOB的面积=AO×BO=3×=,故答案为.15.解:由勾股定理AB==13,=π()2+π()2﹣[π()2﹣×5×12]=30.根据题意得:S阴影三、解答题(共50分)16.解:(1),①+②得3x=9,解得x=3,把x=3代入①得3﹣y=4,解得y=﹣1,所以方程组的解为;(2),①﹣②得4y=16,解得y=4,把y=4代入①得x﹣4=6,解得x=10,所以方程组的解为;(3)原式=2+2+5﹣2=7;(4)原式=+1+1﹣=3+2﹣=5﹣.17.解:(1)如图:B(﹣2,1);(2)如图所示:△A′B′C′即为所求,B′(2,1),C′(1,3);(3)△ABC的面积:4×3﹣×2×3﹣×2×4﹣2×1=12﹣3﹣4﹣1=4.18.解:(1)∵2a﹣1是9的平方根,3a+b﹣1的算术平方根是4,∴2a﹣1=3或2a﹣1=﹣3;3a+b﹣1=16,解得:a=2,b=11;a=﹣1,b=20;(2)由ab>0,a=2,b=11,则2a﹣b2=4﹣121=117,117的立方根是.19.解:(1)∵y随x的增大而减小,∴6+3m<0,∴m<﹣2,∴当m<﹣2时,y随x的增大而减小;(2)∵一次函数y=(6+3m)x+(n﹣4)的图象与y轴的交点在x轴下方,∴6+3m≠0,n﹣4<0,∴m≠﹣2,n<4.∴当m≠﹣2、n<4时,函数图象与y轴的交点在x轴下方;(3)∵一次函数y=(6+3m)x+(n﹣4)的图象经过原点,∴6+3m≠0,n﹣4=0,∴m≠﹣2,n=4.∴当m≠﹣2、n=4时,函数图象经过原点;(4)∵一次函数y=(6+3m)x+(n﹣4)的图象不经过第二象限,∴一次函数y=(6+3m)x+(n﹣4)的图象经过第一、三、四象限或第一、三象限.当一次函数y=(6+3m)x+(n﹣4)的图象经过第一、三、四象限时,6+3m>0,n﹣4<0,∴m>﹣2,n<4;当一次函数y=(6+3m)x+(n﹣4)的图象经过第一、三象限时,6+3m>0,n﹣4=0,∴m>﹣2,n=4.综上所述:当m>﹣2、n≤4时,函数图象不经过第二象限.20.解:(1)∵甲先出发,∴表示甲离A地的距离与时间关系的图象是l1,故答案为:l1;(2)甲的速度是:90÷2=45km/h,乙的速度是:90÷(3.5﹣0.5)=90÷3=30km/h,故答案为:45,30;(3)设甲对应的函数解析式为y=ax+b,,解得,∴甲对应的函数解析式为y=﹣45x+90,设乙对应的函数解析式为y=cx+d,,解得,即乙对应的函数解析式为y=30x﹣15,,解得.答:甲出发1.4小时后两人相遇.21.(1)证明:在矩形ABCD中,∠A=∠D=90°,∴∠AFE+∠AEF=90°,∵EF⊥EC,∴∠FEC=90°,∴∠AEF+∠CED=90°,∴∠AEF=∠CED,在△AEF和△DCE中,∴△AEF≌△DCE(AAS),(2)解:由(1)得AE=DC,∴AE=DC=,在矩形ABCD中,AB=CD=,在R△ABE中,AB2+AE2=BE2,即()2+()2=BE2,∴BE=2.22.解:(1)将点A、B的坐标代入直线l1的函数表达式得:,解得:,故函数表达式为:y=x+3,函数图象如下:(2)联立l1、l2的表达式并解得:x=0,y=3,故点C(0,3);(3)存在,理由:设点P(0,m),则AC=3,AP=,CP=|3﹣m|,①当AC=AP时,则3=,解得:m=±3;②当AC=CP时,则3=|3﹣m|,解得:m=3±3;③当AP=CP时,则=|3﹣m|,m=0,故点P的坐标为(0,3)、(0,﹣3)、(0,3)、(0,3﹣)、(0,0).。
贵州省贵阳市2019-2020学年八年级(下)开学数学试卷(含解析)
2019-2020学年贵州省贵阳市八年级(下)开学数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.(3分)下列实数中,属于无理数的是()A.B.C.D.π2.(3分)已知一直角三角形的木板,三边的平方和为1800cm2,则斜边长为()A.30cm B.80cm C.90cm D.120cm3.(3分)如图,在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(﹣4,﹣1)B.(﹣4,1)C.(4,﹣1)D.(1,﹣4)4.(3分)我市某一周每天的最高气温统计如下(单位:℃):27,28,29,28,29,30,29.这组数据的众数与中位数分别是()A.28,28B.28,29C.29,28D.29,295.(3分)已知点A(m+3,2)与点B(1,n﹣1)关于x轴对称,m=(),n=()A.﹣4,3B.﹣2,﹣1C.4,﹣3D.2,16.(3分)如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4=()A.70°B.80°C.110°D.100°7.(3分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米8.(3分)一次函数y=kx﹣k的大致图象可能如图()A.B.C.D.9.(3分)《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,则列方程组错误的是()A.B.C.D.10.(3分)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC 二、填空题:每小题4分,共20分.11.(4分)已知:一个正数的两个平方根分别是2a﹣3和a﹣2,则a的值是.12.(4分)点A(m,m+5)在函数y=﹣2x+1的图象上,则m=.13.(4分)如图,已知O为△ABC内任意一点,且∠A=40°,∠1=25°,∠2=35°,则∠BOC=.14.(4分)如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.15.(4分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.若PE=5,则点P 到AB的距离是.三、解答题:本大题8小题,共50分.16.(9分)计算:(2)3x(x﹣2)=2(x﹣2)17.(9分)如图,在四边形ABCD中,点E,F分别在AB和CD上,已知AB∥CD,∠CDE =∠ABF.求证:DE∥BF18.(9分)如图,正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积.(2)判断△ABC是什么形状?并说明理由.19.(9分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)在图中画出△ABC关于y轴的对称图形△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积;(3)在x轴上找出使P A+PB的值最小的点P,并写出点P的坐标20.(9分)周口市某水果店一周内甲、乙两种水果每天销售情况统计如下:(单位:千克)品种星期一二三四五六日甲45444842575566乙48444754515360(1)分别求出本周内甲、乙两种水果每天销售量的平均数;(2)哪种水果销售量比较稳定?21.(9分)甲开车从距离B市100千米的A市出发去B市,乙从同一路线上的C市出发也去往B市,二人离A市的距离与行驶时间的函数图象如图(y代表距离,x代表时间).(1)C市离A市的距离是千米;(2)甲的速度是千米∕小时,乙的速度是千米∕小时;(3)小时,甲追上乙;(4)试分别写出甲、乙离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式.(注明自变量的范围)22.(8分)某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.23.(8分)已知一次函数y=kx+b经过点(0,3)和(3,0).(1)求此一次函数解析式;(2)求这个函数与直线y=2x﹣3及y轴围成的三角形的面积.2019-2020学年贵州省贵阳市八年级(下)开学数学试卷参考答案与试题解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.(3分)下列实数中,属于无理数的是()A.B.C.D.π【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:,,∴,,是有理数,π是无理数.故选:D.2.(3分)已知一直角三角形的木板,三边的平方和为1800cm2,则斜边长为()A.30cm B.80cm C.90cm D.120cm【分析】先求出斜边的平方,进而可得出结论.【解答】解:设直角三角形的斜边长为x,∵三边的平方和为1800cm2,∴x2=900cm2,解得x=30cm.故选:A.3.(3分)如图,在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(﹣4,﹣1)B.(﹣4,1)C.(4,﹣1)D.(1,﹣4)【分析】根据A(1,1),B(2,0),再结合图形即可确定出点C的坐标.【解答】解:∵点A的坐标是:(1,1),点B的坐标是:(2,0),∴点C的坐标是:(4,﹣1).故选:C.4.(3分)我市某一周每天的最高气温统计如下(单位:℃):27,28,29,28,29,30,29.这组数据的众数与中位数分别是()A.28,28B.28,29C.29,28D.29,29【分析】根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数,即可得出答案.【解答】解:29出现了3次,出现的次数最多,则众数是29;把这组数据从小到大排列27,28,28,29,29,29,30,最中间的数是29,则中位数是29;故选:D.5.(3分)已知点A(m+3,2)与点B(1,n﹣1)关于x轴对称,m=(),n=()A.﹣4,3B.﹣2,﹣1C.4,﹣3D.2,1【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:由点A(m+3,2)与点B(1,n﹣1)关于x轴对称,得m+3=1,n﹣1=﹣2,解得m=﹣2,n=﹣1,故选:B.6.(3分)如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4=()A.70°B.80°C.110°D.100°【分析】根据同位角相等,两直线平行这一定理可知a∥b,再根据两直线平行,同旁内角互补即可解答.【解答】解:∵∠3=∠5=110°,∵∠1=∠2=58°,∴a∥b,∴∠4+∠5=180°,∴∠4=70°,故选:A.7.(3分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.8.(3分)一次函数y=kx﹣k的大致图象可能如图()A.B.C.D.【分析】根据一次函数图象:k>0,b>0图象经过一二三象限,k>0,b<0图象经过一三四象限,k<0,b<0,图象经过二三四象限,k<0,b<0图象经过一二四象限,可得答案.【解答】解:当k>0时,﹣k<0,图象经过一三四象限,A、k>0,﹣k>0,故A不符合题意;B、k>0,﹣k<0,故B符合题意;C、k<0,﹣k<0,故C不符合题意;D、k<0,﹣k=0,故D不符合题意;故选:B.9.(3分)《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,则列方程组错误的是()A.B.C.D.【分析】由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.【解答】解:设每头牛值金x两,每只羊值金y两,由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,所以方程组错误,故选:D.10.(3分)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC 【分析】根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC =CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,,∴Rt△BCE≌Rt△DCE(HL),故选:C.二、填空题:每小题4分,共20分.11.(4分)已知:一个正数的两个平方根分别是2a﹣3和a﹣2,则a的值是.【分析】根据一个正数的平方根有两个,它们互为相反数求出a的值即可.【解答】解:∵一个正数的两个平方根分别是2a﹣3和a﹣2,∴2a﹣3+a﹣2=0,解得:a=,故答案为:.12.(4分)点A(m,m+5)在函数y=﹣2x+1的图象上,则m=﹣.【分析】把点A(m,m+5)代入y=﹣2x+1得到关于m的一元一次方程,解之即可.【解答】解:把点A(m,m+5)代入y=﹣2x+1得:m+5=﹣2m+1,解得:m=﹣,故答案为:﹣.13.(4分)如图,已知O为△ABC内任意一点,且∠A=40°,∠1=25°,∠2=35°,则∠BOC=100°.【分析】连接AO,延长AO交BC于点D,利用三角形的外角性质可得出∠BOD=∠1+∠BAO,∠COD=∠2+∠CAO,结合∠BOC=∠BOD+∠COD,∠BAC=∠BAO+∠CAO,即可求出∠BOC的度数.【解答】解:连接AO,延长AO交BC于点D,如图所示.∵∠BOD=∠1+∠BAO,∠COD=∠2+∠CAO,∴∠BOC=∠BOD+∠COD=∠1+∠BAO+∠2+∠CAO=∠BAC+∠1+∠2=40°+25°+35°=100°.故答案为:100°.14.(4分)如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.【分析】由两条直线的交点坐标(m,4),先求出m,再求出方程组的解即可.【解答】解:∵y=x=2经过P(m,4),∴4=m+2,∴m=2,∴直线l1:y=x+2与直线l2:y=kx+b相交于点P(2,4),∴,故答案为15.(4分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.若PE=5,则点P 到AB的距离是5.【分析】作PF⊥AB于F,根据角平分线的性质解答即可.【解答】解:作PF⊥AB于F,∵AD是∠BAC的平分线,PE⊥AC,PF⊥AB,∴PF=PE=5,故答案为:5.三、解答题:本大题8小题,共50分.16.(9分)计算:(2)3x(x﹣2)=2(x﹣2)【分析】(1)先算乘方,二次根式,绝对值,再算乘法即可求解;(2)根据因式分解法解方程即可求解.【解答】解:(1)原式==﹣1+2+π﹣3=π﹣2;(2)3x(x﹣2)=2(x﹣2),3x(x﹣2)﹣2(x﹣2)=0,(x﹣2)(3x﹣2)=0,x﹣2=0或3x﹣2=0,解得.17.(9分)如图,在四边形ABCD中,点E,F分别在AB和CD上,已知AB∥CD,∠CDE =∠ABF.求证:DE∥BF【分析】先由AB∥CD知∠CDE=∠AED,结合∠CDE=∠ABF得∠AED=∠ABF,据此即可得证.【解答】证明:∵AB∥CD,∴∠CDE=∠AED.∵∠CDE=∠ABF,∴∠AED=∠ABF.∴DE∥BF.18.(9分)如图,正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积.(2)判断△ABC是什么形状?并说明理由.【分析】(1)用长方形的面积减去三个小三角形的面积即可求出△ABC的面积.(2)根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解答】解:(1)△ABC的面积=4×8﹣1×8÷2﹣2×3÷2﹣6×4÷2=13.故△ABC的面积为13;(2)∵正方形小方格边长为1∴AC==,AB==,BC==2,∵在△ABC中,AB2+BC2=13+52=65,AC2=65,∴AB2+BC2=AC2,∴网格中的△ABC是直角三角形.19.(9分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)在图中画出△ABC关于y轴的对称图形△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积;(3)在x轴上找出使P A+PB的值最小的点P,并写出点P的坐标【分析】(1)直接利用关于y轴对称点的性质得出对应点位置进而得出答案;(2)根据三角形的面积公式解答即可;(3)利用轴对称求最短路线的方法分析得出答案.【解答】解:(1)如图△A1B1C1即为所求.(﹣3,4);;(3)如图,点P即为所求.(2,0)20.(9分)周口市某水果店一周内甲、乙两种水果每天销售情况统计如下:(单位:千克)品种星期一二三四五六日甲45444842575566乙48444754515360(1)分别求出本周内甲、乙两种水果每天销售量的平均数;(2)哪种水果销售量比较稳定?【分析】(1)根据平均数的计算公式分别进行计算即可;(2)根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:(1)甲==51(千克),==51(千克);乙(2)S甲2=[(45﹣51)2+(44﹣51)2+(48﹣51)2+(42﹣51)2+(57﹣51)2+(55﹣51)2+(66﹣51)2]=,S乙2=[48﹣51)2+(44﹣51)2+(47﹣51)2+(54﹣51)2+(51﹣51)2+(53﹣51)2+(60﹣51)2]=,∵S甲2>S乙2,∴乙种水果销量比较稳定.21.(9分)甲开车从距离B市100千米的A市出发去B市,乙从同一路线上的C市出发也去往B市,二人离A市的距离与行驶时间的函数图象如图(y代表距离,x代表时间).(1)C市离A市的距离是28千米;(2)甲的速度是40千米∕小时,乙的速度是12千米∕小时;(3)1小时,甲追上乙;(4)试分别写出甲、乙离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式.(注明自变量的范围)【分析】(1)由函数图象可以直接得出C市离A市的距离是28千米;(2)由函数图象可以直接得出甲的速度为40千米∕小时,乙的速度为12千米∕小时;(3)由函数图象可以直接得出1小时,甲追上乙;(4)设甲离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式为y甲=k1x,乙离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式为y乙=k2x+b,由待定系数法求出其解即可.【解答】解:(1)由函数图象可以直接得出C市离A市的距离是28千米.故答案为:28;(2)由函数图象可以直接得出甲的速度为40千米∕小时,乙的速度为12千米∕小时.故答案为:40,12;(3)由函数图象可以直接得出1小时,甲追上乙.故答案为:1.(4)设甲离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式为y甲=k1x,乙离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式为y乙=k2x+b,由题意,得40=k1,∴y甲=40x(0≤x≤2.5).,解得:,∴y乙=12x+28(0≤x≤6).22.(8分)某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.【分析】(1)根据题意可知本题的等量关系有,1个大餐厅容纳的学生人数+2个小餐厅容纳的学生人数=1680,2个大餐厅容纳的学生人数+1个小餐厅容纳的学生人数=2280.根据这两个等量关系,可列出方程组.(2)根据题(1)得到1个大餐厅和1个小餐厅分别可容纳学生的人数,可以求出5个大餐厅和2个小餐厅一共可容纳学生的人数,再和5300比较.【解答】解:(1)设1个大餐厅可供x名学生就餐,1个小餐厅可供y名学生就餐,根据题意,得解这个方程组,得答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐.(2)因为960×5+360×2=5520>5300,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.23.(8分)已知一次函数y=kx+b经过点(0,3)和(3,0).(1)求此一次函数解析式;(2)求这个函数与直线y=2x﹣3及y轴围成的三角形的面积.【分析】(1)将两坐标代入函数求得k,b,即求出了一次函数解析式;(2)求出两直线的交点坐标及两直线分别与y轴相交得到的交点坐标,再根据三角形面积公式求得结果.【解答】解:(1)将(0,3)(3,0)代入y=kx+b解得:∴一次函数解析式y=﹣x+3(2)一次函数y=﹣x+3与y轴的交点坐标为(0,3)直线y=2x﹣3与y轴的交点坐标为(0,﹣3)两直线的交点坐标解得交点坐标(2,1)∴S△==6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年贵州省贵阳市八年级(上)期末数学试卷一、选择题:以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请在答题卡相应位置作答,每小题3分,共30分.1. 在实数0,1,2,3中,比√5大的数是( ) A.1 B.0C.3D.22. 下列各组数,可以作为直角三角形的三边长的是( ) A.3,4,5 B.2,3,4C.4,5,6D.5,6,73. 在平面直角坐标系中,点P 的坐标是(2, 3),则点P 到y 轴的距离是( ) A.3 B.2C.4D.√134. 一副三角板如图方式摆放,点D 在直线EF 上,且AB // EF ,则∠ADE 的度数是( )A.75∘B.105∘C.45∘D.60∘5. 已知{x =3y =1 是方程mx −y =2的解,则m 的值是( )A.−13 B.−1 C.5D.16. 一组数据为5,6,7,8,10,10,某同学在抄题时,误把其中一个10抄成了100,那么该同学所抄的数据和原数据相比,不变的统计量是( ) A.平均数 B.中位数C.众数D.方差7. 如图所示,已知点A(−1, 2)是一次函数y =kx +b(k ≠0)图象上的一点,则方程kx +b =2的解是( )A.x =−1B.x =2C.无法确定D.x =08. 下列语句中是命题的是( ) A.两直线平行 B.作线段AB =CD C.连接AB D.对顶角相等9. 游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x 人,女孩有y 人,则下列方程组正确的是( )A.{x =yx =2(y −1) B.{x −1=y x =2yC.{x −1=y x =2(y −1)D.{x +1=y x =2(y −1)10. 一次函数y =ax +b 与y =abx(ab ≠0),在同一平面直角坐标系里的图象应该是( )A.B.C. D.二、填空题:每小题4分,共16分.实数−√2的相反数是________.甲同学利用计算器探索.一个数x的平方,并将数据记录如表:请根据表求出275.56的平方根是________.秋天到了,花溪区高坡乡美景如画,其中露营基地吸引了不少露营爱好者,露营基地为了接待30名露营爱好者,需要搭建可容纳3人或2人的帐篷若干,若所搭建的帐篷恰好能容纳这30名露营爱好者,则不同的搭建方案有________种.如图,△ABC中,AB的垂直平分线交AC于点E,BC的垂直平分线交AC于点F,点D,G分别是垂足,若AE =6,EF=8,FC=10,则△ABC的周长是________.三、解答题:本大题7小题,共54分.(1)化简:(√2+√6)2;(2)如图,已知OA=OB,请直接写出数轴上点A表示数a的值,并求√a2+4的值.如图,在66的正方形网格纸中,△ABC是以格点为顶点的三角形,请在该正方形网格纸中建立适当的平面直角坐标系.(1)写出A,B,C三点的坐标;(2)作出△ABC关于坐标轴对称的三角形.2019年是中华人民共和国成立70周年,某校将开展“爱我中华,了解历史”为主题的知识竞赛,八年级某老师为了解所任教的甲,乙两班学生相关知识的掌握情况,对两个班的学生进行了中国历史知识检测,满分为100分.现从两个班分别随机抽取了20名学生的检测成绩进行整理、描述和分析,下面给出了部分信息:(成绩得分用x表示,共分为五组,A组:0≤x<80,B组:80≤x<85,C组:85≤x<90,D组:90≤x< 95,E组:95≤x≤100)甲班20名学生的成绩为:82,85,96,73,91,99,87,91,86,9187,94,89,96,96,91,100,93,94,99乙班20名学生的成绩在D组中的数据是:91,92,92,92,92,93,94甲,乙两班抽取的学生成绩数据统计表:根据以上信息,解答下列问题:(1)请直接写出上述统计表中a,b的值:a=________,b=________;(2)若甲,乙两班总人数为120名,且都参加了此次知识检测,若规定成绩得分x ≥95为优秀,请估计此次检测成绩优秀的学生人数是多少名?为打赢“脱贫攻坚”战,某地党委、政府联合某企业带领农户脱贫致富,盒(其中A 款包装盒无盖,B 款包装盒有盖).请你帮这户人家计算他家领取的360张长方形纸板和140张正方形纸板,做成A ,B 型盒子分别多少个能使纸板刚好全部用完?笔直的河流一侧有一旅游地C ,河边有两个漂流点A .B .其中AB =AC ,由于某种原因,由C 到A 的路现在已经不通,为方便游客决定在河边新建一个漂流点H (A ,H ,B 在一条直线上),并新修一条路CH 测得BC =5千米,CH =4干米,BH =3千米,(1)问CH 是否为从旅游地C 到河的最近的路线?请通过计算加以说明;(2)求原来路线AC 的长.在学习了一次函数后,某校数学兴趣小组根据学习的经验,对函数y =−|x|−2的图象和性质进行了探究,下面是该兴趣小组的探究过程,请补充完整:(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值如表:①n=________;②如图,在所给的平面直角坐标系中,描出以表中各组对应值为坐标的点,根据描出的点画出该函数的图象;(2)当−2<x ≤5时,y 的取值范围是________;(3)根据所画的图象,请写出一条关于该函数图象的性质.(1)如图1,直线AB // CD ,试确定∠B ,∠BPC ,∠C 之间的数量关系:(2)如图2,直线AB // CD ,∠ABP 与∠DCP 的平分线相交于点P 1,请确定∠P 与∠P 1的数量关系;(3)如图3,若∠A =α(120<α<180∘,且α≠135∘),点B ,点C 分别在∠A 的两边上,分别过点B 和点C 作直线l 1和l 2.使得l 1,l 2分别与AB ,AC 的夹角为α.且l 1和l 2交于点O ,请直接写出∠BOC 的度数.参考答案与试题解析2019-2020学年贵州省贵阳市八年级(上)期末数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请在答题卡相应位置作答,每小题3分,共30分.1.【答案】此题暂无答案【考点】算三平最根实数根盖比较【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】勾股定体的展定理【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】点较严标【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】三角形常角簧定理平行体的省质【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】二元一明方织的解【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】统计正活选择众数算三平最数方差中位数【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】一使函凝亚一卵一次方程【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】命体与白理【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】由实正问构抽他加二元一次方程组【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】两直正键行问题两直正区直问题两直线相来非垂筒问题相交线【解析】此题暂无解析【解答】此题暂无解答二、填空题:每小题4分,共16分. 【答案】此题暂无答案【考点】实根的冬质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】计算器常数铝开方【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】由实根气笔抽科出二元一次方程【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】线段垂直来分线慢性质【解析】此题暂无解析【解答】此题暂无解答三、解答题:本大题7小题,共54分. 【答案】此题暂无答案【考点】实数数轴在数轴来表示兴数二次根明的织合运算【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】作图-射对称变面作图验流似变换作图使胞似变换【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】方差用样射子计总体众数中位数【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二元一正构程组的置用——移程问题二元一因方程似应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】勾股表理抛应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次常数图按上点入适标特点一次水体的性质一次射可的图象【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】平行体的省质【解析】此题暂无解析【解答】此题暂无解答。