2018年中考数学试题分项版解析汇编第01期专题1.1有理数含解析
【2018年中考数学试题(真题)分类汇编】-考点1-有理数及详细解析
2018中考数学试题分类汇编:考点1 有理数一.选择题(共28 小题)1.(2018•连云港)﹣8的相反数是()A.﹣8 B.C.8 D.﹣【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.2.(2018•泰州)﹣(﹣2)等于()A.﹣2 B. 2C.D.±2【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣(﹣2)=2,故选:B.3.(2018•青岛)如图,点A所表示的数的绝对值是()A.3 B.﹣3C.D.【分析】根据负数的绝对值是其相反数解答即可.【解答】解:|﹣3|=3,故选:A.4.(2018•海南)2018的相反数是()A.﹣2018 B.2018C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:2018的相反数是:﹣2018.故选:A.5.(2018•自贡)计算﹣3+1的结果是()A.﹣2 B.﹣4C. 4 D. 2【分析】利用异号两数相加取绝对值较大的加数的符号,然后用较大的绝对值减去较小的绝对值即可.【解答】解:﹣3+1=﹣2;故选:A.6.(2018•柳州)计算:0+(﹣2)=()A.﹣2 B.2C.0 D.﹣20【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:0+(﹣2)=﹣2.故选:A.7.(2018•呼和浩特)﹣3﹣(﹣2)的值是()A.﹣1 B.1 C.5 D.﹣5【分析】直接利用有理数的减法运算法则计算得出答案.【解答】解:﹣3﹣(﹣2)=﹣3+2=﹣1.故选:A.8.(2018•铜仁市)计算+++++……+的值为()A.B.C.D.【分析】直接利用分数的性质将原式变形进而得出答案.【解答】解:原式=++++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:B.9.(2018•台湾)已知a=(﹣)﹣,b=﹣(﹣),c=﹣﹣,判断下列叙述何者正确?()A.a=c,b=c B.a=c,b≠c C.a≠c,b=c D.a≠c,b≠c【分析】根据有理数的减法的运算方法,判断出a、c,b、c的关系即可.【解答】解:∵a=(﹣)﹣=﹣﹣,b=﹣(﹣)=﹣+,c=﹣﹣,∴a=c,b≠c.故选:B.10.(2018•台州)比﹣1小2的数是()A.3 B.1 C.﹣2 D.﹣3【分析】根据题意可得算式,再计算即可.【解答】解:﹣1﹣2=﹣3,故选:D.11.(2018•新疆)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高()A.10℃B.6℃C.﹣6℃D.﹣10℃【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣8)=2+8=10(℃).故选:A.12.(2018•临安区)我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7) C.(+39)+(﹣7)D.(+39)﹣(+7)【分析】根据题意列出算式即可.【解答】解:根据题意得:(+39)﹣(﹣7),故选:A.13.(2018•淄博)计算的结果是()A.0 B.1 C.﹣1 D.【分析】先计算绝对值,再计算减法即可得.【解答】解: =﹣=0,故选:A.14.(2018•天门)8的倒数是()A.﹣8 B.8 C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.15.(2018•宿迁)2的倒数是()A.2 B.C.﹣D.﹣2【分析】根据乘积是1的两数互为倒数可得答案.【解答】解:2的倒数是,故选:B.16.(2018•贵港)﹣8的倒数是()A.8 B.﹣8 C.D.【分析】根据倒数的定义作答.【解答】解:﹣8的倒数是﹣.故选:D.17.(2018•通辽)的倒数是()A.2018 B.﹣2018 C.﹣ D.【分析】根据倒数的定义,互为倒数的两数乘积为1,×2018=1即可解答.【解答】解:根据倒数的定义得:×2018=1,因此倒数是2018.故选:A.18.(2018•宜宾)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4 B.6.5×104C.﹣6.5×104D.65×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:65000=6.5×104,故选:B.19.(2018•贵港)一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106 B.2.18×105 C.21.8×106 D.21.8×105【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将数据2180000用科学记数法表示为2.18×106.故选:A.20.(2018•天津)计算(﹣3)2的结果等于()A.5 B.﹣5 C.9 D.﹣9【分析】根据有理数的乘方法则求出即可.【解答】解:(﹣3)2=9,故选:C.21.(2018•宜昌)计算4+(﹣2)2×5=()A.﹣16 B.16 C.20 D.24【分析】根据有理数的乘方、乘法和加法可以解答本题.【解答】解:4+(﹣2)2×5=4+4×5=4+20=24,故选:D.22.(2018•台湾)如图为大兴电器行的促销活动传单,已知促销第一天美食牌微波炉卖出10台,且其销售额为61000元,若活动期间此款微波炉总共卖出50台,则其总销售额为多少元?()A.305000 B.321000 C.329000 D.342000【分析】根据题意求出此款微波炉的单价,列式计算即可.【解答】解:此款微波炉的单价为(61000+10×800)÷10=6900,则卖出50台的总销售额为:61000×2+6900×30=329000,故选:C.23.(2018•烟台)2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二,82.7万亿用科学记数法表示为()A.0.827×1014B.82.7×1012C.8.27×1013D.8.27×1014【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:82.7万亿=8.27×1013,故选:C.24.(2018•绵阳)四川省公布了2017年经济数据GDP排行榜,绵阳市排名全省第二,GDP 总量为2075亿元,将2075亿用科学记数法表示为()A.0.2075×1012B.2.075×1011C.20.75×1010D.2.075×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2075亿用科学记数法表示为:2.075×1011.故选:B.25.(2018•德州)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1.496×107B.14.96×108C.0.1496×108D.1.496×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据1.496亿用科学记数法表示为1.496×108,故选:D.26.(2017•宜昌)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354 B.40000 C.50000 D.1200【分析】利用精确数和近似数的区别进行判断.【解答】解:27354为准确数,4000、50000、1200都是近似数.故选:A.27.(2017•通辽)近似数5.0×102精确到()A.十分位B.个位C.十位D.百位【分析】根据近似数的精确度求解.【解答】解:近似数5.0×102精确到十位.故选:C.28.(2018•河南)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.二.填空题(共16小题)29.(2018•达州)受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为 5.5×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5.5亿=5 5000 0000=5.5×108,故答案为:5.5×108.30.(2018•东营)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为 4.147×1011元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4147亿元用科学记数法表示为4.147×1011,故答案为:4.147×101131.(2018•泰州)亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为 4.4×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:44000000=4.4×107,故答案为:4.4×107.32.(2018•湘西州)﹣2018的绝对值是2018 .【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故答案为:201833.(2018•张家界)目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=10﹣9米,用科学记数法将16纳米表示为 1.6×10﹣8米.【分析】由1纳米=10﹣9米,可得出16纳米=1.6×10﹣8米,此题得解.【解答】解:∵1纳米=10﹣9米,∴16纳米=1.6×10﹣8米.故答案为:1.6×10﹣8.34.(2018•南充)某地某天的最高气温是6℃,最低气温是﹣4℃,则该地当天的温差为10 ℃.【分析】用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:6﹣(﹣4),=6+4,=10℃.故答案为:1035.(2018•香坊区)将数字37000000用科学记数法表示为 3.7×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:37000000=3.7×107.故答案为:3.7×107;36.(2018•玉林)计算:6﹣(3﹣5)= 8 .【分析】直接利用去括号法则进而计算得出答案.【解答】解:6﹣(3﹣5)=6﹣(﹣2)=8.故答案为:8.37.(2018•无锡)﹣2的相反数的值等于 2 .【分析】根据相反数的定义作答.【解答】解:﹣2的相反数的值等于 2.故答案是:2.38.(2018•云南)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为 3.451×103.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3451=3.451×103,故答案为:3.451×103.39.(2018•哈尔滨)将数920000000科学记数法表示为9.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:920000000用科学记数法表示为9.2×108,故答案为;9.2×10840.(2018•德州)计算:|﹣2+3|= 1 .【分析】根据有理数的加法解答即可.【解答】解:|﹣2+3|=1,故答案为:141.(2018•邵阳)点A在数轴上的位置如图所示,则点A表示的数的相反数是﹣2 .【分析】点A在数轴上表示的数是2,根据相反数的含义和求法,判断出点A表示的数的相反数是多少即可.【解答】解:∵点A在数轴上表示的数是2,∴点A表示的数的相反数是﹣2.故答案为:﹣2.42.(2018•南京)写出一个数,使这个数的绝对值等于它的相反数:﹣1 .【分析】根据绝对值的意义求解.【解答】解:一个数的绝对值等于它的相反数,那么这个数0或负数.故答案为:﹣143.(2018•云南)﹣1的绝对值是 1 .【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣1|=1,∴﹣1的绝对值是1.44.(2018•宁波)计算:|﹣2018|= 2018 .【分析】直接利用绝对值的性质得出答案.【解答】解:|﹣2018|=2018.故答案为:2018.三.解答题(共2小题)45.(2018•湖州)计算:(﹣6)2×(﹣).【分析】原式先计算乘方运算,再利用乘法分配律计算即可求出值.【解答】解:原式=36×(﹣)=18﹣12=6.46.(2018•高邑县一模)如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是30 .(2)经过几秒,点M、点N分别到原点O的距离相等?【分析】(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.【解答】(1)∵OB=3OA=30,∴B对应的数是30.故答案为:30.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x﹣10,点N对应的数为2x.①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则,3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.46.(2018•高邑县一模)如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是30 .(2)经过几秒,点M、点N分别到原点O的距离相等?【分析】(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.【解答】(1)∵OB=3OA=30,∴B对应的数是30.故答案为:30.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x﹣10,点N对应的数为2x.①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则,3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.。
2018年山西省中考数学试卷解析版
2018 年 山西省中考数学 试 卷(解析版)第 I 卷 选 择 题 ( 共 30 分)一 、选 择 题( 本 大 题 共 10 个 小 题 ,每 小 题 3 分 ,共 30 分 ,在 每 个 小 题 给 出 的 四 个 选 项 中 ,只 有 一项符合题目要求 , 请选出并在答题卡 上 将该项涂黑) 1.下 面 有 理 数 比 较 大 小 , 正 确 的 是 ( )A. 0< -2B. -5< 3C. -2< -3D. 1< -4 【答案】 B 【考点】 有 理 数 比 较 大 小 2. “算经十书”是指 汉唐一千多年间的 十 部著名数学著作,它 们曾经是隋唐时期 国 子监算学科 的 教 科 书 , 这 些 流 传 下 来 的 古 算 书 中 凝 聚 着 历 代 数 学 家 的 劳 动 成 果 .下 列 四 部 著 作 中 , 不 属 于 我 国古代数学著作的 是 ()A.《九章算术》B. 《几何原本》C. 《 海 岛 算 经 》D. 《 周 髀 算 经 》 【答案】 B 【考点】 数学文化 【解析 】《 几 何 原 本 》 的 作 者 是 欧 几 里 得 3. 下 列 运 算 正 确 的 是 ( )A. (- a 3 )2 = -a 6B. 2a 2 + 3a 2 = 6a 2C. 2a 2 ⋅ a 3 = 2a 6D. 2633()2b b aa -=- 【 答案】 D【考点】 整式运算【解析】 A . (- a 3 )2 = a 6 B 2a 2 + 3a 2 = 5a 2 C. 2a 2 ⋅ a 3 = 2a 54. 下列一元二次方程 中 ,没有实数根的是 ( )A. x 2 - 2x = 0B. x 2 + 4x -1 = 0C. 2x 2 - 4x + 3 = 0D. 3x 2 = 5x - 2【答案】 C 【考点】 一 元 二 次 方 程 根 的 判 别 式 【解析 】△> 0,有 两 个 不 相 等 的 实 数 根 ,△ =0,有 两 个 相 等 的 实 数 根 ,△ < 0,没 有 实 数 根 .A.△ =4B.△ =20C. △ =-8D. △ =15. 近年来快递业发展 迅 速 ,下表是 2018 年 1-3 月份我省部分地市 邮 政快递业务量的统 计 结 果( 单 位:万件)A.319.79 万件B. 332.68 万件C. 338.87 万件D. 416.01 万件 【答案】 C 【考点】 数 据 的 分 析 【解析】 将 表格中 七 个 数 据 从 小 到 大 排 列 , 第 四 个 数 据 为 中 位 数 , 即 338.87 万件 . 6. 黄河是中华民族的 象 征,被誉为母亲河, 黄河壶口瀑布位于 我 省吉县城西 45 千 米 处 ,是 黄 河 上最具气势的自然 景 观,其落差约 30 米 , 年 平 均 流 量 1010 立方米 /秒 . 若 以 小 时 作 时 间 单 位 , 则其年平均流量可 用 科学计数法表示为 A. 6.06 ⨯104 立方米 /时 B. 3.136 ⨯106 立方米 /时 C. 3.636 ⨯106 立方米 /时 D. 36.36 ⨯105 立方米 /时【答案】 C 【考点】 科 学 计 数 法 【解析】 一秒为 1010 立方米,则一小时 为 1010×60×60= 立方米, 用 科 学 计数法表示为 3.636×106.7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个 球,记下颜色后放 回 袋子中,充分摇匀 后 ,再随机摸出一个 球 ,两次都摸到黄球 的 概率是() A.49 B. 13 C. 29 D.19【答案】 A 【考点】 树 状 图 或 列 表 法 求 概 率 【解析】由表格可知,共有 9 种等可能结果,其 中 两次都摸到黄球的 结 果有 4 种, ∴ P ( 两 次 都 摸 到 黄 球 ) =498. 如 图,在 Rt △ A BC中 ,∠ A CB=90°,∠ A =60°,AC=6,将 △ A BC 绕 点 C 按 逆 时 针 方 向 旋 转 得 到 △ A ’ B ’ C , 此 时 点 A ’ 恰好在 AB 边 上 , 则 点 B ’ 与点 B 之 间 的 距 离 是 ( ) A. 12 B. 6【考点】 旋 转 , 等 边 三 角 形 性 质 【解析 】连接 BB ’ ,由 旋 转 可 知 AC=A ’ C ,BC=B ’ C ,∵ ∠ A =60°,∴ △ A CA ’ 为 等 边 三 角 形 ,∴∠ A CA ’ =60°, ∴ ∠ B CB ’ =60°∴ △ B CB ’ 为 等 边 三 角 形 , ∴ B B ’ =BC= 6 3 .9. 用配方法将二次函 数y = x 2 - 8x - 9 化为 y = a (x - h )2 + k 的形式为()A. y = (x - 4)2 + 7B. y = (x - 4)2 - 25C. y = (x + 4)2 + 7D. y = (x + 4)2- 25【答案】 B 【考点】 二 次 函 数 的 顶 点 式【解析】 y = x 2 - 8x - 9 = x 2 - 8x +16 -16 - 9 = (x - 4)2- 2510. 如图,正方形 ABCD 内 接 于 ⊙ O , ⊙ O 的 半 径 为 2,以点 A 为 圆 心 , 以 AC 为 半 径 画 弧 交 AB 的 延长线于点 E ,交 AD 的延长线于点 F , 则 图 中 阴 影 部 分 的 面 积 是 ( )A.4π -4B. 4π -8C. 8π -4D. 8π -8【答案】 A 【考点】 扇 形 面 积 , 正 方 形 性 质 【解析】 ∵四边形 ABCD 为正方形,∴∠ B AD=90°, 可 知 圆 和 正 方 形 是 中 心 对 称 图 形 ,第 I 卷 非 选 择 题 ( 共 90 分)二 、 填 空 题 ( 本 大 题 共 5 个 小 题 , 每 小 题 3 分 , 共 15 分)11.计算: +-1) = . 【答案】 17 【考点】 平 方 差 公 式【解析】 ∵ (a + b )(a - b ) = a 2 - b 2 ∴+-1) =)2-1 =18-1=17 12. 图 1 是 我 国 古 代 建 筑 中 的 一 种 窗 格 .其 中 冰 裂 纹 图 案 象 征 着 坚 冰 出 现 裂 纹 并 开 始 清 溶 , 形 状 无一定规则,代表 一 种自然和谐美 .图 2 是 从 图 1 冰 裂 纹 窗 格 图 案 中 提 取 的 由 五 条 线 段 组 成 的 图形,则 ∠1+ ∠2 + ∠3 + ∠4 + ∠5 = 度 .【考点】 多 边 形 外 角 和 【解析】 ∵任 意 n 边 形 的 外 角 和 为 360°, 图 中 五 条 线 段 组 成 五 边 形∴ ∠1+ ∠2 + ∠3 + ∠4 + ∠5 = 360︒ .13. 2018 年 国 内 航 空 公 司 规 定 : 旅 客 乘 机 时 , 免 费 携 带 行 李 箱 的 长 、 宽 、 高 之 和 不 超 过 115cm. 某厂家生产符合该 规 定的行李箱,已知 行 李箱的宽为 20cm , 长 与 高 的 比 为 8:11, 则 符 合 此 规 定 的行李箱的高的最 大 值为 _____cm.【答案】 55 【考点】 一 元 一 次 不 等 式 的 实 际 应 用 【解析】 解 : 设 行 李 箱 的 长 为 8xcm , 宽 为 11xcm20 + 8x +11x ≤ 115 解得 x ≤ 5∴高的最大值为 11⨯ 5 = 55 cm14.如 图 ,直 线 MN ∥ P Q ,直 线 AB 分别与 MN ,PQ 相交于点 A ,B.小宇同学利用尺规 按 以下步骤 作 图: ①以点 A 为 圆 心 , 以 任 意 长 为 半 径 作 弧 交 AN 于点 C ,交 AB 于点 D ;②分别以 C , D 为 圆 心 , 以大于12CD 长 为 半 径 作 弧 ,两 弧 在 ∠ N AB 内 交 于 点 E ;③ 作 射 线 AE 交 PQ 于点 F.若 AB=2,∠ A BP=600 , 则线段 AF 为 ______.【答案】【考点】 角 平 分 线 尺 规 作 图 , 平 行 线 性 质 , 等 腰 三 角 形 三 线 合 一 【解析】 过点 B 作 BG ⊥ A F 交 AF 于点 G由尺规作图可知, A F 平分∠ N AB ∴∠ N AF=∠ B AF ∵ M N ∥ P Q ∴∠ N AF=∠ B FA ∴∠ B AF=∠ B FA ∴ B A=BF=2 ∵ B G ⊥ A F ∴ A G=FG∵ ∠ A BP=600∴∠ B AF=∠ B FA=300Rt △ B FG 中,FG = BF ⋅ c o s∠BFA = 2=∴ AF = 2FG =15. 如 图 , 在 Rt △ A BC 中, ∠ A CB=900, A C=6, B C=8,点 D 是 AB 的 中 点 , 以 CD 为 直 径 作 ⊙ O ,⊙ O 分别与 AC , B C 交于点 E , F ,过点 F 作⊙ O 的切线 FG ,交 AB 于点 G ,则 FG 的长为 _____.【答案】 125【考点】 直 角 三 角 形 斜 中 线 , 切 线 性 质 , 平 行 线 分 线 段 成 比 例 , 三 角 函 数 【解析】 连接 OF∵ F G 为 ⊙ 0 的 切 线 ∴ O F ⊥ F G ∵ R t △ A BC 中, D 为 AB 中点 ∴ C D=BD ∴ ∠ D CB=∠ B ∵ O C=OF ∴ ∠ O CF=∠ O FC ∴ ∠ C FO=∠ B ∴ O F ∥ B D ∵ O 为 CD 中点 ∴ F 为 BC 中点∴ CF = BF = 12BC = 4Rt △ A BC 中, s i n ∠B =35Rt △ B GF 中, FG = BF sin ∠B = 4 ⨯35 =125三 、 解 答 题 ( 本 大 题 共 8 个 小 题 , 共 75 分 .解 答 应 写 出 文 字 说 明 , 证 明 过 程 或 演 算 步 骤 )16.(本题共 2 个 小 题 , 每 小 题 5 分,共 10 分)计 算 :( 1)2104362---+⨯+ 【考点】 实 数 的 计 算【解析】 解:原式 =8-4+2+1=7( 2)222111442x x x x x x --⋅---+- 【考点】 分式化简【解析】 解:原式 =222111442x x x x x x --⋅---+-=+1122x x x ---=2x x -17.(本题 8 分 )如 图 ,一 次 函 数 y 1 = k 1 x + b (k 1 ≠ 0) 的 图 象 分 别 与 x 轴,y 轴 相 交 于 点 A ,B ,与 反 比例函数 y 2= (k ≠ 0) 的 图 象 相 交 于 点 C ( -4, -2), D ( 2, 4) . ( 1) 求 一 次 函 数 和 反 比 例 函 数 的 表 达 式 ; ( 2)当 x 为 何 值 时 ,y 1 > 0 ;( 3)当 x 为 何 值 时 ,y 1 < y 2 ,请直接写出 x的 取 值 范 围 .【考点】反比例函数与一次函数【解析】(1)解:一次函数y1 =k1 x +b 的图象经过点 C(-4,-2),D(2,4),(3)解:x <-4 或0 <x <2.18.(本题 9 分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了 100 名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?( 3) 若 该 校 七 年 级 学 生 共 有 500 人 , 请 估 计 其 中 参 加 “ 书 法 ” 项 目 活 动 的 有 多 少 人 ? ( 4)学 校 教 务 处 要 从 这 些 被 调 查 的 女 生 中 ,随 机 抽 取 一 人 了 解 具 体 情 况 ,那 么 正 好 抽 到 参 加“ 器 乐”活动项目的女 生 的概率是多少? 【考点】 条 形 统 计 图 , 扇 形 统 计 图 【解析 】( 1)解:( 2)解:1010+15⨯100% = 40%.答:男生所占的百 分 比为 40%. ( 3)解: 500 ⨯ 21%=105(人) .答:估计其中参加 “ 书法”项目活动的 有 105 人 .(4)解:15155==15+10+8+1548165答:正好抽到参加 “ 器乐”活动项目的 女 生的概率为516. 19.(本题 8 分 )祥 云 桥 位 于 省 城 太 原 南 部 , 该 桥 塔 主 体 由 三 根 曲 线 塔 柱组合而成,全桥共设 13 对直线型斜拉索,造 型新颖,是“三晋 大 地” 的 一 种 象征 .某 数 学 “ 综 合 与 实 践 ” 小 组 的 同 学 把 “ 测 量 斜 拉 索 顶 端 到 桥 面 的 距 离 ”作 为 一 项 课 题 活 动 ,他 们 制 订 了 测 量 方 案 ,并 利 用 课 余 时 间借助该桥斜拉索 完 成了实地测量 . 测量结果如下表 .∠ A 的 度 数38°(1) 请帮助tan 38︒≈ 0.8 , s in 28︒≈ 0.5 , c os 28︒≈ 0.9 , t an 28︒≈ 0.5 ); (2) 该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【考点】 三 角 函 数 的 应 用 【解析】( 1) 解: 过点 C 作 CD ⊥ AB 于点 D. 设 CD= x 米,在 Rt ∆ ADC 中, ∠ A DC=90°, ∠ A =38°.AD + BD = AB = 234 . ∴ 54x + 2x = 234.解得 x = 72 .答:斜拉索顶端点 C 到 AB 的距离为 72 米 .( 2) 解 : 答 案 不 唯 一 , 还 需 要 补 充 的 项 目 可 为 : 测 量 工 具 , 计 算 过 程 , 人 员 分 工 , 指 导 教 师,活动感受等 .20.(本 题 7 分 )2018 年 1 月 20 日 ,山 西 迎 来 了“ 复 兴 号 ”列 车 ,与“和谐 号 ” 相 比 ,“复兴号” 列车 时 速 更快车多行驶 40 千 米 , 其 行 驶 时 间 是 该 列 “ 和 谐 号 ” 列 车 行 驶 时 间的45(两列车中途停留时间均 除外) .经 查 询 ,“ 复 兴 号 ” G 92 次 列 车 从 太 原 南 到 北 京 西 , 中 途 只 有 石 家 庄 一站,停留 10 分钟 .求乘坐“复兴号” G 92 次列车从太原南到 北 京西需要多长时间 . 【考点】 分 式 方 程 应 用 【解析】解: 设 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要 x 小时, 由题意,得500500=+40151()646x x -- 解得 x =83 经检验, x =83是原方程的根 .答 : 乘 坐 “ 复 兴 号 ” G 92 次 列 车 从 太 原 南 到 北 京 西 需 要83小时 .21. (本题 8 分 ) 请 阅 读 下 列 材 料 , 并 完 成 相 应 的 任 务 :在 数 学 中 ,利 用 图 形 在 变 化 过 程 中 的 不 变 性 质 ,常 常 可 以 找 到 解 决 问 题 的 办 法 .著 名 美 籍 匈 牙 利数学家波利亚在 他 所著的《数学的发现 》一书中有这样一个 例子:试问如何在一 个三角形 ABC 的 AC 和 BC 两 边 上 分 别 取 一 点 X 和 Y ,使得 AX=BY=XY.( 如 图 ) 解 决 这 个 问 题 的 操 作 步 骤 如 下 : 第 一 步 ,在 CA 上 作出 一 点 D ,使 得 CD=CB ,连 接 BD.第 二 步 ,在 CB 上 取 一 点 Y ’ ,作 Y ’ Z ’ //CA,交 BD 于点 Z ’ ,并在 AB 上取一点 A ’ ,使 Z ’ A ’ =Y ’ Z ’ .第 三 步 , 过 点 A 作 AZ//A ’ Z ’ ,交 BD 于点 Z.第 四 步 , 过 点 Z 作 ZY//AC ,交 BC 于点 Y ,再过 Y 作 YX//ZA ,交 AC 于点 X.则有 AX=BY=XY.下面是该结论的部 分 证明: 证明: A Z / / A ' Z ∴∠BA ' Z ' = ∠BAZ又 ∠A'BZ'=∠ABZ. ∴△BA ' Z △BAZ∴ Z ' A '=BZ ' .ZA BZ同 理 可 得Y ' Z ' = BZ ' . ∴ Z ' A ' = Y ' Z ' . YZ BZ ZA YZZ ' A ' = Y ' Z ' , ∴ZA = YZ ....任务: ( 1) 请 根 据 上 面 的 操 作 步 骤 及 部 分 证 明 过 程 , 判 断 四 边 形 AXYZ 的形状,并加以证 明 ; ( 2)请 再 仔 细 阅读 上面 ., 在 ( 1)的基础上完成 AX=BY=XY 的证明过程; ( 3)上 述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA ’ Z ’ Y ’ 放大得到四边形 BAZY ,从 而 确 定了点 Z , Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 . A.平移 B.旋转 C.轴对称 D.位似 【考点】菱形的性 质 与 判 定 ,图形的位似 【解析】(1) 答 :四边形 AXYZ 是菱形 . 证明:Z Y / / A C , Y X / / Z ∴A , 四边形 AXYZ 是 平 行 四 边 形 . ZA = YZ , ∴ AXYZ 是菱形(2) 答 :证明: C D = C B , ∴∠1 = ∠2 ZY / / AC , ∴∠1 = ∠3. ∴∠2=∠3 . ∴YB = YZ .四边形 AXYZ是 菱 形 , ∴AX=XY=YZ. ∴AX=BY=XY.(3)上述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA ’ Z ’ Y ’ 放大得到四边形 BAZY ,从 而 确定了点 Z , Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 D ( 或 位 似 ) . A.平移 B.旋转 C.轴对称 D.位似22. (本题 12 分 )综 合 与 实 践 问 题 情 境 : 在 数 学 活 动 课 上 , 老 师 出 示 了 这 样 一 个 问 题 : 如 图 1, 在 矩 形 ABCD 中, A D=2AB , E 是 AB 延 长 线 上 一 点 ,且 BE=AB ,连 接 DE ,交 BC 于点 M ,以 DE 为 一 边 在 DE 的 左 下 方 作 正 方 形 DEFG , 连接 AM . 试 判 断 线 段 AM 与 DE 的 位 置 关 系 . 探 究 展 示 : 勤 奋 小 组 发 现 , A M 垂直平分 DE ,并展示了如下的 证 明方法: 证明: B E = A B , ∴ AE = 2 AB AD = 2 AB , ∴ AD = AE 四边形 ABCD 是 矩 形 , ∴ AD / / BC .∴EM EBDM AB=( 依 据 1 ) BE = AB , ∴1EMDM =∴ EM = DM .即 AM 是△ A DE 的 DE 边上的中线,又 AD = AE , ∴ AM ⊥ DE . (依据 2)∴AM 垂直平分 DE .反 思 交 流 : (1)① 上 述 证 明 过 程 中 的 “ 依 据 1”“ 依 据 2”分别是指什么?② 试 判 断 图 1 中 的 点 A 是否在线段 GF 的 垂 直 平 分 上 , 请 直 接 回 答 , 不 必 证 明 ;(2)创 新 小 组 受 到 勤 奋 小 组 的 启 发 , 继 续 进 行 探 究 , 如 图 2, 连 接 CE ,以 CE 为 一 边 在 CE 的左下 方作正方形 CEFG , 发 现 点 G 在线段 BC 的 垂 直 平 分 线 上 , 请 你 给 出 证 明 ; 探 索 发 现 :(3)如图 3,连接 CE ,以 CE 为一边在 CE 的右上方作正方形 CEFG ,可以发现点 C ,点 B 都在线段 AE 的垂直平分线上, 除此之外,请观察 矩 形 ABCD 和正方形 CEFG 的顶点与边,你还能 发现哪个 顶点在哪条边的垂 直 平分线上,请写出 一 个你发现的结论, 并 加以证明 .【考点】 平 行 线 分 线 段 成 比 例 , 三 线 合 一 , 正 方 形 、 矩 形 性 质 , 全 等 【解析】 (1) 答 :① 依据 1:两 条 直 线 被 一 组 平 行 线 所 截 ,所 得 的 对 应 线 段 成 比 例( 或 平 行 线 分 线 段 成比例) .依据 2: 等 腰 三 角 形 顶 角 的 平 分 线 , 底 边 上 的 中 线 及 底 边 上 的 高 互 相 重 合 ( 或 等 腰 三 角 形的“三线合一 ”) . ② 答:点 A 在 线 段 GF 的垂直平分线上 . (2) 证明 :过点 G 作 GH ⊥ BC 于点 H ,四 边形 ABCD 是 矩 形 , 点 E 在 AB 的 延 长 线 上 ,∴∠CBE = ∠ABC = ∠GHC = 90︒. ∴∠1+∠2=90︒.四边形 CEFG 为 正 方 形 ,∴CG = CE , ∠GCE = 90︒.∠1+ ∠3 = 90︒. ∴∠2=∠3. ∴△GHC ≌ △CBE . ∴ HC = BE .四边形 ABCD 是 矩 形 , ∴ AD = BC .AD = 2 AB , BE = AB , ∴ BC = 2BE = 2HC . ∴ HC = BH .∴GH 垂直平分 BC.∴点 G 在 BC 的 垂 直 平 分 线 上(3)答:点 F 在 BC 边的垂直平分线上(或点 F 在 AD 边的垂直平分线上).证法一:过点 F 作 FM ⊥ BC 于点 M,过点 E 作 EN ⊥ FM 于点 N.∴∠BMN =∠ENM =∠ENF =90︒.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE =∠ABC = 90︒.∴四边形BENM 为矩形.∴BM =EN,∠BEN = 90︒. ∴∠1+∠2 =90︒.四边形 CEFG 为正方形,∴EF =EC, ∠CEF = 90︒. ∴∠2 +∠3 =90︒.∴∠1=∠3. ∠CBE =∠ENF =90︒,∴△ENF≌△EBC.∴NE =BE. ∴BM =BE.四边形 ABCD 是矩形,∴AD =BC.AD =2AB, AB =BE. ∴BC = 2BM . ∴BM =MC.∴FM 垂直平分 BC,∴点 F 在 BC 边的垂直平分线上.证法二:过 F 作 FN ⊥ BE 交 BE 的延长线于点 N,连接 FB,F C.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠C BE=∠A BC=∠N=90°. ∴∠1+∠3=90°.四边形 CEFG 为正方形,∴EC=EF,∠C EF=90°.∴∠1+∠2=90°. ∴∠2=∠3.∴△E NF ≅△C BE.∴NF=BE,NE=BC.四边形 ABCD 是矩形,∴AD=BC.AD=2AB,B E=AB. ∴设 BE=a,则 BC=EN=2a,NF=a.∴BF=CF. ∴点 F 在 BC 边的垂直平分线上.1 2 23. (本题 13 分 )综 合 与 探 究如图,抛物线211433y x x =--与 x 轴交于 A , B 两点(点 A 在点 B 的 左 侧 ), 与 y 轴交于点 C ,连接 AC , BC .点 P 是 第 四 象 限 内 抛 物 线 上 的 一 个 动 点 ,点 P 的横坐标为 m ,过 点 P 作 PM ⊥ x 轴 ,垂 足 为点 M , PM 交 BC 于点 Q ,过点 P 作 PE ∥ A C 交 x 轴于点 E ,交 BC 于点 F .( 1) 求 A , B , C 三点的坐标;( 2) 试探究在点 P 的 运 动 的 过 程 中 ,是 否 存 在 这 样 的 点 Q ,使 得 以 A , C , Q 为 顶 点 的 三 角 形 是 等腰三角形.若存在,.写出此时点 Q 的 坐 标 ; 若 不 存 在 , 请 说明理由; (3) 请用含 m 的 代 数 式 表 示 线 段 QF 的长,并求出 m 为 何 值 时 QF 有最大值 . 【考点】 几 何 与 二 次 函 数 综 合 【解析】 ( 1) 解: 由 y = 0 ,得2114=033x x -- 解得 x 1 = -3 , x 2 = 4 . ∴ 点 A , B 的坐标分别为 A(-3,0), B ( 4, 0) 由 x = 0 ,得 y = -4 .∴ 点 C 的 坐 标 为 C ( 0, -4) . ( 2) 答: Q ( 5 2 , 5 2 2 - 4) , Q (1,-3) . 2(3)过点F 作FG ⊥PQ 于点G .则FG∥x 轴.由 B(4,0),C(0,-4),得△O B C为等腰直角三角形.∴∠OBC =∠QFG = 45︒ . ∴GQ =FG =22FQ .PE∥A C , ∴∠1 =∠2 .FG∥x轴,∴∠2 =∠3 . ∴∠1 =∠3 . ∠FGP =∠AOC = 90︒ , ∴△FGP∽△AOC.。
2018年中考数学试题分项版解析汇编(第01期)专题1.3 代数式(含解析)
专题1.3 代数式一、单选题1.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C【解析】【分析】根据同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项的法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. a2与a1不是同类项,不能合并,故B选项错误;C. ,故C选项正确;D. ,故D选项错误,故选C.【点睛】本题考查了同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项等运算,熟练掌握有关的运算法则是解题的关键.2.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A点睛:本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C点睛:本题考查整式的混合运算,解答本题的关键是明确整式的混合运算的计算方法.4.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.5.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.6.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B【点睛】本题考查了同底数幂乘法、合并同类项、同底数幂除法、二次根式加减,熟练掌握各运算的运算法则是解题的关键.7.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.8.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D点睛:本题考查的是合并同类项、完全平方公式、积的乘方、同底数幂的乘法,掌握它们的运算法则是解题的关键.9.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.10.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.11.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B. 2 C. 3 D. 4【来源】山东省滨州市2018年中考数学试题【答案】B点睛:此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.12.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键. 13.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D【点评】考查同底数幂的除法,合并同类项,同底数幂的乘法,熟记它们的运算法则是解题的关键. 14.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得. 【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.15.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C点睛:本题主要考查了同底数幂的乘除法、合并同类项、积的乘方,关键是掌握各计算法则.16.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B点睛:本题考查了数字变化规律,通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.17.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得. 【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.18.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.19.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D点睛:本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.20.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C【解析】【分析】由题可知,代入、值前需先判断的正负,再进行运算方式选择,据此逐项进行计算即可得.【详解】选项,故将、代入,输出结果为,不符合题意;选项,故将、代入,输出结果为,不符合题意;选项,故将、代入,输出结果为,符合题意;选项,故将、代入,输出结果为,不符合题意,故选C.【点睛】本题主要考查程序型代数式求值,解题的关键是根据运算程序,先进行的正负判断,选择对应运算方式,然后再进行计算.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C【点评】考查完全平方公式,同底数幂的乘法,同底数幂的除法以及积的乘方,熟记它们的运算法则是解题的关键.二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】11点睛:本题主要考查数字的变化规律,解题的关键是根据已知数列得出a n=1+2+3+…+n=.25.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】点睛:本题考查了规律型中数字的变化类,根据数值的变化找出S n的值每6个一循环是解题的关键.27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣1点睛:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.30.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】4035【解析】【分析】整理得,从而可得a n+1-a n=2或a n=-a n+1,再根据题意进行取舍后即可求得a n的表达式,继而可得a2018.【点睛】本题考查了完全平方公式的应用、平方根的应用、规律型题,解题的关键是通过已知条件推导得出a n+1-a n=2.32.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1【点评】考查代数式的求值,找出其中的规律是解题的关键.三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+12点睛: 本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、二次根式、完全平方公式、去括号法则、合并同类项等考点的运算.35.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)【点睛】本题考查了整式的混合运算、解一元一次不等式,熟练掌握整式的运算法则、一元一次不等式的解法是关键.37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式: (用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键. 39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)【点评】本题考查了整式的混合运算、分式的混合运算,熟练掌握各运算的运算法则是解题的关键. 40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.【解析】【分析】(1)根据“极数”的概念写出即可,设任意一个“极数”为(其中1≤x≤9,0≤y≤9,且x、y为整数),整理可得由=99(10x+y+1),由此即可证明;(2)设m=(其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)=3(10x+y+1),根据1≤x≤9,0≤y≤9,以及D(m)为完全平方数且为3的倍数,可确定出D(m)可取36、81、144、225,然后逐一进行讨论求解即可得.(2)设m=(其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)==3(10x+y+1),∵1≤x≤9,0≤y≤9,∴33≤3(10x+y+1)≤300,又∵D(m)为完全平方数且为3的倍数,∴D(m)可取36、81、144、225,①D(m)=36时,3(10x+y+1)=36,10x+y+1=12,∴x=1,y=1,m=1188;②D(m)=81时,3(10x+y+1)=81,10x+y+1=27,∴x=2,y=6,m=2673;③D(m)=144时,3(10x+y+1)=144,10x+y+1=48,∴x=4,y=7,m=4752;④D(m)=225时,3(10x+y+1)=225,10x+y+1=75,∴x=7,y=4,m=7425;综上所述,满足D(m)为完全平方数的m的值为1188,2673,4752,7425.【点睛】本题考查数值问题,包括:题目翻译,数位设法,数位整除,完全平方数特征,分类讨论等,易错点是容易忽略数值上取值范围及所得关系式自身特征.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】见解析.点睛:本题考查了完全平方公式的几何背景,解答本题的关键是明确题意,写出相应的推导过程.。
2018年河北省中考数学试卷及解析
2018年河北省中考数学试卷及解析一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分)1.(3.00分)下列图形具有稳定性的是()A.B.C.D.2.(3.00分)一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4 B.6 C.7 D.103.(3.00分)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l44.(3.00分)将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.525.(3.00分)图中三视图对应的几何体是()A.B.C.D.6.(3.00分)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ7.(3.00分)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.8.(3.00分)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C9.(3.00分)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:==13,==15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是()A.甲B.乙C.丙D.丁10.(3.00分)图中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个 B.3个 C.4个 D.5个11.(2.00分)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°12.(2.00分)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm13.(2.00分)若2n+2n+2n+2n=2,则n=()A.﹣1 B.﹣2 C.0 D.14.(2.00分)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁15.(2.00分)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5 B.4 C.3 D.216.(2.00分)对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.(3.00分)计算:=.18.(3.00分)若a,b互为相反数,则a2﹣b2=.19.(6.00分)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而=45是360°(多边形外角和)的,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.三、解答题(本大题共7小题,共计66分)20.(8.00分)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21.(9.00分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22.(9.00分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.23.(9.00分)如图,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A 重合)的任意点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN;(2)当MN=2BN时,求α的度数;(3)若△BPN的外心在该三角形的内部,直接写出α的取值范围.24.(10.00分)如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC ﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k 的值.25.(10.00分)如图,点A在数轴上对应的数为26,以原点O为圆心,OA为半径作优弧,使点B在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧上一段的长为13π,求∠AOP的度数及x的值;(2)求x的最小值,并指出此时直线l与所在圆的位置关系;(3)若线段PQ的长为12.5,直接写出这时x的值.26.(11.00分)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;米/秒.当甲距(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.2018年河北省中考数学试卷参考答案与试题解析一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分)1.【解答】解:三角形具有稳定性.故选:A.2.【解答】解:∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6,故选:B.3.【解答】解:该图形的对称轴是直线l3,故选:C.4.【解答】解:9.52=(10﹣0.5)2=102﹣2×10×0.5+0.52,故选:C.5.【解答】解:观察图象可知选项C符合三视图的要求,故选:C.6.【解答】解:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.故选:D.7.【解答】解:设的质量为x,的质量为y,的质量为:a,假设A正确,则,x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意.故选:A.8.【解答】解:A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B.9.【解答】解:∵=>=,∴乙、丁的麦苗比甲、丙要高,2=s丁2<s乙2=s丙2,∵s甲∴甲、丁麦苗的长势比乙、丙的长势整齐,综上,麦苗又高又整齐的是丁,故选:D.10.【解答】解:①﹣1的倒数是﹣1,原题错误,该同学判断正确;②|﹣3|=3,原题计算正确,该同学判断错误;③1、2、3、3的众数为3,原题错误,该同学判断错误;④20=1,原题正确,该同学判断正确;⑤2m2÷(﹣m)=﹣2m,原题正确,该同学判断正确;故选:B.11.【解答】解:如图,AP∥BC,∴∠2=∠1=50°.∠3=∠4﹣∠2=80°﹣50°=30°,此时的航行方向为北偏东30°,故选:A.12.【解答】解:∵原正方形的周长为acm,∴原正方形的边长为cm,∵将它按图的方式向外等距扩1cm,∴新正方形的边长为(+2)cm,则新正方形的周长为4(+2)=a+8(cm),因此需要增加的长度为a+8﹣A=8cm.故选:B.13.【解答】解:∵2n+2n+2n+2n=2,∴4•2n=2,∴2•2n=1,∴21+n=1,∴1+n=0,∴n=﹣1.故选:A.14.【解答】解:∵÷=•=•=•==,∴出现错误是在乙和丁,故选:D.15.【解答】解:连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选:B.16.【解答】解:把y=x+2代入y=﹣x(x﹣3)+c得:x+2=﹣x(x﹣3)+c,即x2﹣2x+2﹣c=0,所以△=(﹣2)2﹣4×1×(2﹣c)=﹣4+4c=0,解得:c=1,所以甲的结果正确;故选:A.二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.【解答】解:==2,故答案为:2.18.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2﹣b2=(a+b)(a﹣b)=0.故答案为:0.19.【解答】解:图2中的图案外轮廓周长是:8﹣2+2+8﹣2=14;设∠BPC=2x,∴以∠BPC为内角的正多边形的边数为:=,以∠APB为内角的正多边形的边数为:,∴图案外轮廓周长是=﹣2+﹣2+﹣2=+﹣6,根据题意可知:2x的值只能为60°,90°,120°,144°,当x越小时,周长越大,∴当x=30时,周长最大,此时图案定为会标,则则会标的外轮廓周长是=+﹣6=21,故答案为:14,21.三、解答题(本大题共7小题,共计66分)20.【解答】解:(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.21.【解答】解:(1)抽查的学生总数为6÷25%=24(人),读书为5册的学生数为24﹣5﹣6﹣4=9(人),所以条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率==;(3)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了3人.故答案为3.22.【解答】解:尝试:(1)由题意得前4个台阶上数的和是﹣5﹣2+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1﹣2﹣5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.23.【解答】(1)证明:∵P是AB的中点,∴PA=PB,在△APM和△BPN中,∵,∴△APM≌△BPN;(2)解:由(1)得:△APM≌△BPN,∴PM=PN,∴MN=2PN,∵MN=2BN,∴BN=PN,∴α=∠B=50°;(3)解:∵△BPN的外心在该三角形的内部,∴△BPN是锐角三角形,∵∠B=50°,∴40°<∠BPN<90°,即40°<α<90°.24.【解答】解:(1)把C(m,4)代入一次函数y=﹣x+5,可得4=﹣m+5,解得m=2,∴C(2,4),设l2的解析式为y=ax,则4=2a,解得a=2,∴l2的解析式为y=2x;(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,y=﹣x+5,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∴S△AOC ﹣S△BOC=×10×4﹣×5×2=20﹣5=15;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,∴当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=﹣;故k的值为或2或﹣.25.【解答】解:(1)如图1中,由=13π,解得n=90°,∴∠POQ=90°,∵PQ∥OB,∴∠PQO=∠BOQ,∴tan∠PQO=tan∠QOB==,∴OQ=,∴x=.(2)当直线PQ经过圆心O时,x的值最小最小值为0,此时直线l是⊙O的对称轴.(3)①如图2中,作OH⊥PQ于H,设OH=4k,AH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5不合题意舍弃.②如图3中,作OH⊥PQ交PQ的延长线于H.设OH=4k,QH=3k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5+3k)2,整理得:k2+3k﹣20.79=0,解得k=﹣6.3(舍弃)或3.3,∴OQ=5k=16.5,③如图4中,作OH⊥PQ于H,设OH=4k,AH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5不合题意舍弃.综上所述,满足条件的x的值为16.5.26.【解答】解:(1)由题意,点A(1,18)带入y=得:18=∴k=18设h=at2,把t=1,h=5代入∴a=5∴h=5t2(2)∵v=5,AB=1∴x=5t+1∵h=5t2,OB=18∴y=﹣5t2+18由x=5t+1则t=∴y=﹣当y=13时,13=﹣解得x=6或﹣4∵x≥1∴x=6把x=6代入y=y=3∴运动员在与正下方滑道的竖直距离是13﹣3=10(米)(3)把y=1.8代入y=﹣5t2+18得t2=解得t=1.8或﹣1.8(负值舍去)∴x=10∴甲坐标为(10,1.8)恰号落在滑道y=上此时,乙的坐标为(1+1.8v,1.8)乙由题意:1+1.8v﹣(1+5×1.8)>4.5乙∴v>7.5乙。
18年初中数学中考河北试题解析
2018年初中数学中考河北试题解析2018年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题1.气温-1℃上升2℃后是A.-1℃B.1℃C.2℃D.3℃答案:B 解析:上升2℃,在原温度的基础上加2℃,即:-1+2=1,选B。
2. 截至2018年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为A.×107B.×106C.×105D.423×104 答案:B n解析:科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.4 230 000=×106 3.下列图形中,既是轴对称图形又是中心对称图形的是答案:C 解析:A是只中心对称图形,B、D只是轴对称图形,只有C既是轴对称图形又是中心对称图形。
4.下列等式从左到右的变形,属于因式分解的是A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1 C.(x+1)(x+3)=x2+4x+3 D.x3-x=x(x+1)(x-1) 答案:D 解析:因式分解是把一个多项式化为几个最简整式的积的形式,所以,A、B、C都不符合,选D。
5.若x=1,则|x-4|=A.3 B.-3 C.5 D.-5 答案:A 解析:当x=1时,|x-4|=|1-4|=3。
6.下列运算中,正确的是13-1A.9=±3 B.-8=2 C.(-2)0=0 D.2=2答案:D 30解析:9是9的算术平方根,9=3,故A错;-8=-2,B错,(-2)=1,C也错,选D。
湖北省黄冈市2018年中考数学试卷(含答案解析)
黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C.32 D.232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.236.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________. 8.因式分解:x 3-9x=___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________. 11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
有理数知识连线2018中考数学真题
)
A. 2+ (﹣ 2) B. 2﹣(﹣ 2) C. (﹣ 2) +2 【分析】根据数轴上两点间距离的定义进行解答。
D. (﹣ 2)﹣ 2
解: A 、 B 两点间的距离可表示为: 2-(﹣ 2)
【答案】 B
7.﹣ 8 的相反数是(
)
A. ﹣ 8
1
B. C. 8
8
1
D. ﹣
8
【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.
0的
绝对值是 0.
解: |﹣ 2|=2
【答案】 B
14. |1- 2 |( )
A. 1 - 2 B. 2 - 1C. 1+ 2 D. ﹣ 1- 2
【分析】根据绝对值的性质解答即可.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;
0的
绝对值是 0.
解: |1- 2 |= 2 -1
4
【答案】 B
【答案】 C
12.计算 |﹣ 1 |- 1 的结果是(
)
22
1
A. 0 B. 1 C. ﹣ 1 D.
4
【分析】先计算绝对值,再计算减法即可.
解: |﹣ 1 |- 1 = 1 - 1 = 0 2 222
【答案】 A
13.﹣ 2 的绝对值是()
11
A. ﹣ 2B. 2 C. ﹣ D.
22
【分析】根据绝对值的性质解答即可.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;
数, 0 的相反数是 0.
解: 3 的相反数是﹣ 3
【答案】 C
11. 2018 的相反数是(
)
1
A.
B. 2018
2018
中考数学专题01实数-(第01期)-2017年中考数学试题分项版解析汇编(解析版)
专题01 实数问题一、选择题目1.(2017浙江衢州市第1题)-2的倒数是A.B. C. -2 D. 2【答案】A 【解析】试题解析:根据倒数的定义得:﹣2的倒数是﹣. 故选A . 考点:倒数.2.(2017山东德州市第1题)-2的倒数是( )A .B .C .-2D .2【答案】A 【解析】试题分析:性质符号相同,分子分母位置颠倒的两个数称为互为倒数,所以-2的倒数是考点:互为倒数的定义.3.(2017山东德州市第2题)2016年,我市“全面改薄”和改变大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列。
477万用科学记数法表示正确的是( )学*科网 A .4.77×105B . 47.7×105C .4.77×106D .0.477×105【答案】C 【解析】21211-2121-2试题分析:选项B 和D 中,乘号前面的a 都不对,应该1≤a<10;选项A 中指数错误,当原数当绝对值>1时,应该为原数的整数位数减去1。
考点:科学记数法的表示方法4.(2017浙江宁波市第112,0,2这四个数中,为无理数的是( )B.12 C.0 D.2-【答案】A. 【解析】12,0,2故选A. 考点:无理数.5.(2017浙江宁波市第3题) 2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮——“泰欧”轮,其中45万吨用科学记数法表示为( )A.60.4510吨B.54.510吨C.44510吨D.44.510吨【答案】B.考点:科学记数法----表示较大的数.6.(2017浙江宁波市第4x 的取值范围是( ) A.3xB.3xC.3xD.3x【答案】D 【解析】试题解析:根据二次根式有意义的条件得:x-3≥0 解得:x≥3. 故选D.考点:二次根式有意义的条件.7.(2017重庆市A 卷第1题)在实数﹣3,2,0,﹣4中,最大的数是( )A .﹣3B .2C .0D .﹣4【答案】B. 【解析】试题解析:∵﹣4<﹣3<0<2, ∴四个实数中,最大的实数是2. 故选B .考点:有理数的大小比较.8.(2017重庆市A 卷第5+1的值应在( ) A .3和4之间 B .4和5之间C .5和6之间D .6和7之间【答案】B . 【解析】<4,+1<5. 故选B .考点:无理数的估算.9.(2017江苏徐州市第1题)的倒数是( )A .B .C .D .【答案】D . 【解析】试题解析:-5的倒数是-15;故选D . 考点:倒数10.(2017江苏徐州市第3题) 肥皂泡的泡壁厚度大约是米,数字用科学记数法表示为( )A .B .C .D .5-5-51515-0.000000710.0000007177.110⨯60.7110-⨯77.110-⨯87110-⨯【答案】C.【解析】试题解析:数字0.00000071用科学记数法表示为7.1×10-7,故选C.考点:科学记数法—表示较小的数.11.(2017甘肃平凉市第2题)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104 B.3.93×105 C.3.93×106 D.0.393×106【答案】B.考点:科学记数法—表示较大的数.12.(2017甘肃平凉市第3题)4的平方根是()A.16 B.2 C【答案】C【解析】试题解析:∵(±2)2=4,∴4的平方根是±2,故选C.考点:平方根.13.(2017广西贵港市第1题)7的相反数是()A.7 B.7- C.17 D.17-【答案】B 【解析】试题解析:7的相反数是﹣7, 故选:B . 考点:相反数.14.(2017广西贵港市第4题)下列二次根式中,最简二次根式是( )A. BD【答案】A考点:最简二次根式.15.(2017贵州安顺市第1题)﹣2017的绝对值是( )A .2017B .﹣2017C .±2017 D.﹣【答案】A .学科网 【解析】试题解析:﹣2017的绝对值是2017. 故选A . 考点:绝对值.16.(2017贵州安顺市第2题)我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( ) A .275×104B .2.75×104C .2.75×1012D .27.5×1011【答案】C . 【解析】试题解析:将27500亿用科学记数法表示为:2.75×1012.12017故选C .考点:科学记数法—表示较大的数.17.(2017湖北武汉市第1) A .6 B .-6 C .18 D .-18 【答案】A. 【解析】故选A.考点:算术平方根.18.(2017湖南怀化市第1题)2的倒数是( ) A.2B.2C.12D.12【答案】C 【解析】试题解析:﹣2得到数是12,故选C . 考点:倒数.19.(2017湖南怀化市第3题)为了贯彻习近平总书记提出的“精准扶贫”战略构想,怀化市2016年共扶贫149700人,将149700用科学记数法表示为( )A.51.49710B.414.9710C.60.149710D.61.49710【答案】A. 【解析】试题解析:将149700用科学记数法表示为1.497×105, 故选A .考点:科学记数法—表示较大的数.20.(2017江苏无锡市第1题)﹣5的倒数是( )A .B .±5C .5D .﹣1515【解析】试题解析:∵﹣5×(﹣)=1,∴﹣5的倒数是﹣.故选D.考点:倒数21.(2017江苏盐城市第1题)-2的绝对值是()A.2 B.-2 C.D.−【答案】A.【解析】试题解析:-2的绝对值是2,即|-2|=2.故选A.考点:绝对值.22.(2017贵州黔东南州第1题)|﹣2|的值是()A.﹣2 B.2 C.﹣12D.12【答案】B.【解析】试题解析:∵﹣2<0,∴|﹣2|=2.故选B.考点:绝对值.23.(2017四川泸州市第1题)-7的绝对值是()A.7 B.-7 C.17 D.-1715151 21 2【解析】试题解析:|-7|=7.故选A.考点:绝对值.24.(2017四川泸州市第2题)“五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567×103 B.56.7×104 C.5.67×105 D.0.567×106【答案】C.【解析】试题解析:567000=5.67×105,故选C.考点:科学记数法—表示较大的数.25.(2017四川省宜宾市第1题)9的算术平方根是()A.3 B.﹣3 C.±3【答案】A.【解析】试题解析:∵32=9,∴9的算术平方根是3.故选A.考点:算术平方根.26.(2017四川省宜宾市第2题)据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106B.0.55×108C.5.5×106D.5.5×107【答案】D.【解析】试题解析:55000000=5.5×107,故选D.考点:科学记数法—表示较大的数27.(2017四川省自贡市第1题)计算(﹣1)2017的结果是()A.﹣1 B.1 C.﹣2017 D.2017【答案】A【解析】试题解析:(﹣1)2017=﹣1,故选A.考点:有理数的乘方.28.(2017四川省自贡市第3题)380亿用科学记数法表示为()A.38×109B.0.38×1013C.3.8×1011 D.3.8×1010【答案】D【解析】试题解析:380亿=38 000 000 000=3.8×1010.故选D.考点:科学计数法----表示较大的数.29.(2017新疆建设兵团第1题)下列四个数中,最小的数是()A.﹣1 B.0 C. D.3【答案】A.【解析】试题解析:∵﹣1<0<<3,∴四个数中最小的数是﹣1.故选A.考点:有理数大小比较30.(2017浙江省嘉兴市第1题)2-的绝对值为()A.2B.2-C.12D.12-【答案】A. 【解析】1 21 2试题解析:-2的绝对值是2, 即|-2|=2. 故选A . 考点:绝对值.31.(2017山东烟台市第1题)下列实数中的无理数是( )A. B . C .0 D .【答案】B . 【解析】0,13是有理数,π是无理数,故选:B . 考点:无理数.32.(2017山东烟台市第3题)我国推行“一带一路”政策以来,已确定沿线有65个国家加入,共涉及总人口约达46亿人,用科学记数法表示该总人口为( )A .B .C .D .【答案】A . 【解析】试题解析:46亿=4600 000 000=4.6×109, 故选A .考点:科学记数法—表示较大的数.33.(2017山东烟台市第6题)如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序如下:9π319106.4⨯81046⨯101046.0⨯10106.4⨯则输出结果为( )A. B . C. D .【答案】C . 【解析】17=2.故选:C .考点:计算器—数的开方.二、填空题目1.(2017浙江衢州市第11题)二次根式中字母的取值范围是__________ 【答案】a≥2.考点:二次根式有意义的条件. 2.(2017山东德州市第2题) 计算:【答案】【解析】. 考点:无理数运算3.(2017浙江宁波市第4题)实数8的立方根是 . 【答案】-2 【解析】试题分析:∵(-2)3=-8212132172252 a a∴-8的立方根是-2.考点:立方根4.(2017重庆市A卷第13题)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.【答案】【解析】试题解析:11000=1.1×104.考点:科学记数法---表示较大的数.5.(2017重庆市A卷第14题)计算:|﹣3|+(﹣1)2= .【答案】4.【解析】试题解析:|﹣3|+(﹣1)2=4考点:有理数的混合运算.6.(2017江苏徐州市第9题)的算术平方根是.【答案】2【解析】试题解析:∵22=4,∴4的算术平方根是2.考点:算术平方根.7.(2017江苏徐州市第11的取值范围是.【答案】x≥6.考点:二次根式有意义的条件.8.(2017甘肃平凉市第12与0.50.5.(填“>”、“=”、“<”)4x【答案】> 【解析】1-2, >0,>0. 考点:实数大小比较.9.(2017广西贵港第13题)计算:35--= . 【答案】-8 【解析】试题解析:﹣3﹣5=﹣8. 考点:有理数的减法.10.(2017广西贵港第14题)中国的领水面积为2370000km ,把370000用科学记数法表示为 . 【答案】3.7×105. 【解析】试题解析:370 000=3.7×105. 考点:科学记数法—表示较大的数.11.(2017湖北武汉市第11题)计算23(4)⨯+-的结果为 . 【答案】2. 【解析】试题解析:23(4)⨯+-=6-4=2. 考点:有理数的混合运算.12.(2017江苏无锡市第11的值是 .【答案】6. 【解析】⨯=6.考点:二次根式的乘除法.13.(2017江苏无锡市第13题)贵州FAST 望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m 2,这个数据用科学记数法可表示为 . 【答案】2.5×105. 【解析】试题解析:将250000用科学记数法表示为:2.5×105. 考点:科学记数法—表示较大的数.14.(2017江苏无锡市第14题)如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.【答案】11.考点:1.有理数大小比较;2.有理数的减法.15.(2017江苏盐城市第7题)请写出一个无理数 【解析】考点:无理数.⨯=16.(2017江苏盐城市第9题)2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为 【答案】5.7×104. 【解析】试题解析:将57000用科学记数法表示为:5.7×104. 考点:科学记数法—表示较大的数.17.(2017江苏盐城市第10在实数范围内有意义,则x的取值范围是 【答案】x≥3. 【解析】试题解析:根据题意得x-3≥0, 解得x≥3.考点:二次根式有意义的条件.18.(2017四川泸州市第17题)计算:(-3)2+20170 【答案】7. 【解析】考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值.19.(2017四川省自贡市第13题)计算(﹣12)﹣1= .【答案】-2 【解析】试题解析:原式=11-2=﹣2.考点:负整数指数幂.20.(2017山东省烟台市第13题) .【答案】6. 【解析】试题解析:原式=1×4+2 =4+2 =6.考点:实数的运算;零指数幂;负整数指数幂.三、解答题1.(2017浙江衢州市第17题)计算:【答案】 【解析】试题分析:按照实数的运算法则依次进行计算即可得解. 试题解析:原式.考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值.2.(2017江苏徐州市第19(1)题)计算:;【答案】3.考点:1..实数的运算;2.零指数幂;3.负整数指数幂.3.(2017甘肃平凉市第193tan30°+(π-4)0-()-1.=-+⨯-|2|)21(320︒--⨯-+60tan 2)1(120π1201(2)20172-⎛⎫--+ ⎪⎝⎭121-.【解析】试题分析:本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则计算.试题解析:原式=312+-=12+-1-.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.二次根式的性质与化简;5.特殊角的三角函数值.4.(2017广西贵港市第19(1))计算:)20132cos602π-⎛⎫-+---⎪⎝⎭;【答案】-1.【解析】试题分析:根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;试题解析:原式=3+1-(-2)2-2×12=4-4-1=-1考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.5.(2017贵州安顺市第19题)|+(13)﹣1﹣(3﹣π)0﹣(﹣1)2017.【答案】3.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.6.(2017湖南怀化市第171031120173tan3084°.【答案】-2【解析】1是正数,所以它的绝对值是本身,任何不为0的零次幂都是1,11()4=4,tan30°=8的立方根,是2,分别代入计算可得结果.试题解析:原式1+1﹣4+2,4+2,=﹣2.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.7.(2017江苏无锡市第19(1)题)计算:|﹣6|+(﹣2)3+)0;【答案】-1.【解析】试题分析:(1)根据零指数幂的意义以及绝对值的意义即可求出答案;(2)根据平方差公式以及单项式乘以多项式法则即可求出答案.试题解析:原式=6﹣8+1=﹣1学*科网考点:实数的运算;单项式乘多项式;零指数幂.8.(江苏盐城市第17+()-1-20170.【答案】3.【解析】试题分析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.试题解析:原式=2+2-1=3.考点:实数的运算;零指数幂;负整数指数幂.9.(2017贵州黔东南州第17题)计算:﹣1﹣2(π﹣3.14)012【答案】【解析】试题分析:原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.试题解析:原式=1++1考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.10.(2017四川省宜宾市第17题(1))计算(2017﹣π)0﹣()﹣1+|﹣2|【答案】-1.【解析】试题分析:根据零指数幂、负整数指数幂、绝对值分别求出每个部分的值,再代入求出即可. 试题解析:原式=1﹣4+2=﹣1;考点:实数的运算;零指数幂;负整数指数幂.11.(2017四川省自贡市第19题)计算:4sin45°+|﹣2|+(13)0.【答案】3.【解析】考点:1.实数的运算;2.特殊角三角函数值;3.零指数幂.12.(2017新疆建设兵团第16题)计算:(12)﹣1﹣||(1﹣π)0.14【答案】【解析】试题分析:根据负整数指数幂,去绝对值,二次根式的化简以及零指数幂的计算法则计算.试题解析:原式=2考点:实数的运算;零指数幂;负整数指数幂.13.(2017浙江省嘉兴市第17题(1))计算:212(4)--⨯-.【答案】5.【解析】试题分析:首先计算乘方和负指数次幂,计算乘法,然后进行加减即可.试题解析:原式=3-12×(-4)=3+2=5.考点:实数的运算;负整数指数幂.祝你考试成功!祝你考试成功!。
2018年河北省中考数学试卷及答案解析
数学试卷 第1页(共20页)数学试卷 第2页(共20页)绝密★启用前河北省2018年初中毕业升学文化课考试数 学(考试时间120分钟,满分120分)第Ⅰ卷(选择题 共42分)一、选择题(本大题共16小题,共42分.1~10小题每小题3分,11~16小题每小题2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列图形具有稳定性的是( )A B C D 2.一个整数815550…0用科学记数法表示为108.155510⨯,则原数中“0”的个数为( ) A .4B .6C .7D .103.如图是由“○”和“□”组成的轴对称图形,该图形的对称轴是直线 ( )A .1lB .2lC .3lD .4l(第3题)4.将29.5变形正确的是 ( ) A .2229.590.5=+B .2(100.5)(109..505)=+-C .2229.5102100.50.5=-⨯⨯+D .2229.5990.50.5=+⨯+ 5.如图所示的三视图对应的几何体是( )ABCD(第5题)6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线. 如图是按上述要求,但排乱顺序的尺规作图:(第6题)则正确的配对是( )A .①—Ⅳ,②—Ⅱ,③—Ⅰ,④—Ⅲ B.①—Ⅳ,②—Ⅲ,③—Ⅱ,④—Ⅰ C.①—Ⅱ,②—Ⅳ,③—Ⅲ,④—Ⅰ D.①—Ⅳ,②—Ⅰ,③—Ⅱ,④—Ⅲ 7.有三种不同质量的物体,“”“”“”,其中,同一种物体的质量都相等.现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是 ( )ABCD8.已知,如图,点P 在线段AB 外,且PA PB =.求证:点P 在线段AB 的垂直平分线上.在证明该结论时,需添加辅助线,则作法不正确的是( )A .作APB ∠的平分线PC 交AB 于点CB .过点P 作PC AB ⊥于点C ,且AC BC = C .取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为点C(第8题)9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高的平均数(单位:cm)与方差分别为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,226.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页)数学试卷 第4页(共20页)10.如图所示的手机截屏内容是某同学完成的作业,他做对的题的个数是 ( )A .2B .3C .4D .5(第10题)(第11题)11.如图,快艇从P 处向正北航行到A 处时,向左转50︒航行到B 处,再向右转80︒继续航行,此时的航行方向为( )A .北偏东30B .北偏东80C .北偏西30D .北偏西5012.用一根长为cm a 的铁丝,首尾相接围成一个正方形.要将它按图所示的方式向外等距扩1cm ,得到新的正方形,则这根铁丝需增加( )A .4cmB .8cmC .(4)cm a +D .(8)cm a + (第12题) 13.若22222n n n n +++=,则n =( )A .1-B .2-C .0D .1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:(第14题)接力中,自己负责的一步出现错误的是 ( )A .只有乙B .甲和丁C .乙和丙D .乙和丁15.如图,点I 为ABC △的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I重合,则图中阴影部分的周长为 ( )A .4.5B .4C .3D .2(第15题)16.对于题目:“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确第Ⅱ卷(非选择题 共78分)二、填空题(本大题共3小题,共12分.17~18小题每小题3分;19小题有2个空,每空3分)17.计算:123-=- . 18.若a ,b 互为相反数,则22a b -= .19.如图1,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.(第19题)例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=,而90452=是360(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .数学试卷 第5页(共20页)数学试卷 第6页(共20页)三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)嘉淇准备完成题目:“化简:(2268)(652)x x x x ++-++.”发现系数“”印刷不清楚. (1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++.(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几.21.(本小题满分9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(如图1)和不完整的扇形图(如图2),其中条形图被墨迹掩盖了一部分.(第21题)(1)求条形图中被掩盖的数,并写出册数的中位数.(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率. (3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了 人.22.(本小题满分9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着5-,2-,1,9,且任意相邻4个台阶上数的和都相等. 尝试 (1)求前4个台阶上数的和.(2)求第5个台阶上的数x .应用 求从下到上前31个台阶上数的和.发现 试用含k (k 为正整数)的式子表示出数“1”所在的台阶数.23.(本小题满分9分)如图,50A B ∠=∠=,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=. (1)求证:APM BPN △△≌. (2)当2MN BN =时,求α的度数.(3)若BPN △的外心在该三角形的内部,直接写出α的取值范围.(第23题)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)24.(本小题满分10分)如图,在直角坐标系xOy 中,一次函数152y x =-+的图象1l 分别与x 轴、y 轴交于A ,B 两点,正比例函数的图象2l 与1l 交于点C (,4)m . (1)求m 的值及2l 的解析式.(2)求AOC BOC S S -△△的值.(3)一次函数1y kx =+的图象为3l ,且1l ,2l ,3l 不能围成三角形,直接写出k 的值.(第24题)25.(本小题满分12分)如图,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB ,使点B 在点O 右下方,且4tan 3AOB ∠=.在优弧AB 上任取一点P ,且能过P 作直线l OB ∥交数轴于点Q ,设点Q 在数轴上对应的数为x ,连接OP . (1)若优弧AB 上一段AP 的长为13π,求AOP ∠的度数及x 的值. (2)求x 的最小值,并指出此时直线l 与优弧AB 所在圆的位置关系. (3)若线段PQ 的长为12.5,直接写出这时x 的值.(第25题)26.(本小题满分11分)如图是轮滑场地的截面示意图,平台AB 距x 轴(水平)18m ,与y 轴交于点B ,与滑道(1)ky x x =≥交于点A ,且1m AB =.运动员(看成点)在BA 方向获得速度m/s v 后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:点M ,A 的竖直距离(m)h 与飞出时间(s)t 的平方成正比,且1t =时,5h =;点M ,A 的水平距离是m vt . (1)求k ,并用t 表示h .(2)设5m/s v =.用t 表示点M 的横坐标x 和纵坐标y ,并求y 与x 之间的关系式(不写x 的取值范围),及13y =时,运动员与正下方滑道的竖直距离.(3)若运动员甲、乙同时从A 处飞出,速度分别是5m/s 、m/s v 乙,当甲距x 轴1.8m ,且乙位于甲右侧超过4.5m 的位置时,直接写出t 的值及v 乙的范围.(第26题)河北省2018年初中毕业文化课考试数学答案解析 第Ⅰ卷一、选择题1.【答案】A【解析】A 项是三角形,具有稳定性,故A 项正确.B 项是四边形,C 项有四边形D 项是六边形,均不具有稳定性.【考点】三角形具有稳定性,四边形和其他多边形不具有稳定性.2.【答案】B【解析】∵108.155510⨯表示的原数为81555000000,∴原数中“0”的个数为6,故选:B.【考点】科学记数法.3.【答案】C【解析】该图形的对称轴是直线3l,故选:C.【考点】轴对称图形的概念和性质.4.【答案】C【解析】22229.5(100.5)102100.50.5=-=⨯⨯+-,故选:C.【考点】完全平方公式和平方差公式的运用.5.【答案】C【解析】A项,俯视图不符合题意.B项,主视图和左视图均不符合题意.C项,正确.D项,俯视图不符合题意.【考点】立体图形与三视图的关系.6.【答案】D【解析】Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.故选:D.【考点】基本的尺规作图.7.【答案】A【解析】设的质量为x,的质量为y,的质量为a,假设A正确,则 1.5x y=,此时B,C,D选项中都是2x y=,故A选项错误,符合题意.故选:A.【考点】等式的性质.8.【答案】B【解析】A、利用SAS判断出PCA PCB△≌△,∴CA CB=,90PCA PCB∠=∠=,∴点P在线段AB的垂直平分线上,符合题意;C、利用SSS判断出PCA PCB△≌△,∴CA CB=,90PCA PCB∠=∠=,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出PCA PCB△≌△,∴CA CB=,∴点P在线段AB的垂直平分线上,符合题意,B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B.【考点】等腰三角形的三线合一.9.【答案】D【解析】∵1513>,∴乙和丁的麦苗较高.∵3.6 6.3<,∴甲和丁的麦苗较整齐.∴麦苗又高又整齐的是丁.【考点】平均数和方差的概念及应用.10.【答案】B【解析】①1-的倒数是1-,原题错误,该同学判断正确;②|33|-=,原题计算正确,该同学判断错误;③1、2、3、3的众数为3,原题错误,该同学判断错误;④021=,原题正确,该同学判断正确;⑤22()2m m m÷-=-,原题正确,该同学判断正确;数学试卷第9页(共20页)数学试卷第10页(共20页)数学试卷 第11页(共20页) 数学试卷 第12页(共20页)故选:B .【考点】倒数、绝对值和众数的概念及整式运算. 11.【答案】A 【解析】如图,AP BC ∥,∴2150∠=∠=.342805030∠=∠-∠=-=,此时的航行方向为北偏东30, 故选:A .【考点】平行线的性质和方位角. 12.【答案】B【解析】∵原正方形的周长为cm a ,∴原正方形的边长为 cm 4a,∵将它按图的方式向外等距扩1cm ,∴新正方形的边长为(2)cm 4a+,则新正方形的周长为4(2)(a 8)cm4a +=+,因此需要增加的长度为88cm a a +-=. 故选:B .【考点】正方形的周长和整式的加减运算. 13.【答案】A【解析】∵22222n n n n +++=,∴422n =,∴221n =,∴121n +=,∴10n +=,∴1n =-.故选:A .【考点】整式的加减及乘方运算. 14.【答案】D【解析】甲负责的一步正确.乙负责的一步错误,错在将第二个分式的分子1x -直接变为1x -,与原式相差一个负号.丙负责的一步正确.丁负责的一步错误,错在第一个分式的分子x 与第二个分式的分母2x 约分后分母应为x ,不是2. 【考点】分式的乘除法. 15.【答案】B【解析】连接AI 、BI ,∵点I 为ABC △的内心, ∴AI 平分CAB ∠,∴CAI BAI ∠=∠, 由平移得:AC DI ∥, ∴CAI AID ∠=∠, ∴BAI AID ∠=∠, ∴AD DI =, 同理可得:BE EI =,∴DIE △的周长4DE DI EI DE AD BE AB =++=++==, 即图中阴影部分的周长为4, 故选:B .【考点】三角形的内心及平行线的性质.16.【答案】D【解析】∵抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点,数学试卷 第13页(共20页) 数学试卷 第14页(共20页)∴①如图1,抛物线与直线相切, 联立解析式(3)2y x x cy x =--+⎧⎨=+⎩得2220xx c -+-=2(2)4(2)0c ∆=---=解得1c =②如图2,抛物线与直线不相切,但在03x ≤≤上只有一个交点,此时两个临界值分别为(0,2)和(3,5)在抛物线上, ∴min 2c =,但取不到,max 5c =,能取到 ∴25c <≤ 又∵c 为整数 ∴3,4,5c = 综上,1,3,4,5c = 故选:D .【考点】二次函数和一次函数的图象及性质.第Ⅱ卷二、填空题 17.【答案】22,故答案为:2. 【考点】二次根式的化简. 18.【答案】0【解析】∵a ,b 互为相反数,∴0a b +=,∴22()()0a b a b a b -=+-=. 故答案为:0. 【考点】因式分解. 19.【答案】1421【解析】题中图2图案的外轮廓周长为(82)2214-⨯+=.当60BPC ∠=时,中间为等比三角形,而60302=是360的112,这样就恰好可以作出两个边长均为1的正十二边形,填充花纹后得到一个符合要求的图案,此时的图案外轮廓周长最大,周长为(122)2121-⨯+=.【考点】正多边形的外角和等于360,每个外角等于360n.三、解答题20.【答案】(1)原式22236865226x x x x x =++---=-+. (2)设方框内的数字为a ,则原式22268652(5)6ax x x x a x =++---=-+. ∵结果为常数,∴50a -=,解得5a =.【解析】(1)原式去括号、合并同类项即可得;(2)设“”是a ,将a 看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a 的值. 【考点】整式的加减.21.【答案】解:(1)625%24÷=(人),245649---=(人), 则条形图中被遮盖的数为9.将读书册数按从小到大的顺序排列后,位于中间的两个数据均为5册,故册数的中位数为5册.(2)由题意,得总人数为24人,超过5册的学生人数为6410+=数学试卷 第15页(共20页) 数学试卷 第16页(共20页)(人), 故642412P +5==. (3)3【解析】(1)用读书为6册的人数除以它所占的百分比得到调查的总人数,再用总人数分别减去读书为4册、6册和7册的人数得到读书5册的人数,然后根据中位数的定义求册数的中位数;(2)用读书为6册和7册的人数和除以总人数得到选中读书超过5册的学生的概率;(3)根据中位数的定义可判断总人数不能超过27,从而得到最多补查的人数.【考点】扇形统计图,条形统计图,中位数,概率公式. 22.【答案】解:尝试 (1)5(2)193-+-++=. (2)由题意,得(2)193x -+++=,解得5x =-. 应用 ∵31473÷=⋅⋅⋅⋅⋅⋅, ∴37(5)(2)115⨯+-+-+=.发现 找规律发现,数“1”所在的台阶数为3,7,11,15,…,∴数“1”所在的台阶数为41k -(k 为正整数). 【考点】图形的变化规律.23.【答案】(1)证明:∴P 为AB 的中点, ∴AP BP =.在APM △和BPN △中,∴,,,A B AP BP APM BPN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴APM BPN △≌△.(2)解:由(1)知,APM BPN △≌△,∴PM PN =, ∴2MN PN =.∴2MN BN =,∴BN PN =, ∴50BPN B α=∠=∠=. (3)解:4090α<<【解析】(1)根据AAS 证明:APM BPN △≌△;(2)由(1)中的全等得:2MN PN =,所以PN BN =,由等边对等角可得结论;(3)三角形的外心是外接圆的圆心,三边垂直平分线的交点,直角三角形的外心在直角顶点上,钝角三角形的外心在三角形的外部,只有锐角三角形的外心在三角形的内部,所以根据题中的要求可知:BPN △是锐角三角形,由三角形的内角和可得结论.【考点】三角形和圆的综合题. 24.【答案】解:(1)∴点(,4)C m 在1l 上, ∴1542m -+=, ∴2m =. ∴(2,4)C .设2l 的解析式为(0)y kx k =≠, ∴点(2,4)C 在2l 上,24k =, ∴2k =∴2l 的解析式为2y x =.(2)由题意可知,A ,B 两点分别是11:542l y m =-+=与x 轴、y 轴的交点, ∴(10,0),(0,5)A B , 即10,5OA OB ==. ∵111042022AOC c S OA y ==⨯⨯=△, 1152522BOCc S OB x ==⨯⨯=△,数学试卷 第17页(共20页) 数学试卷 第18页(共20页)∴15AOC BOC S S -=△△.(3)12k =-或2k =或32k =.【解析】(1)先求得点C 的坐标,再运用待定系数法即可得到2l 的解析式;(2)过C 作CD AO ⊥于D ,CE BO ⊥于E ,则4CD =,2CE =,再根据(10,0),(0,5)A B ,可得10,5OA OB ==,进而得出AOC BOC S S -△△的值; (3)分三种情况:当3l 经过点(2,4)C 时,32k =;当2l ,3l 平行时,2k =;当1l ,3l 平行时,12k =-;故k的值为32或2或12-.【考点】两条直线相交或平行问题.25.【答案】解:(1)如图1,以OA 为半径的圆的周长为2π2652π⨯=, ∴13π3609052πAOP ∠=⨯=.∵PQ OB ∥, ∴PQO AOB ∠=∠, ∴4tan tan 3PQO AOB ∠=∠=, 即2643OP OQx==,∴19.5x =.故x 的值为19.5.(2)如图2,当直线l 与优弧AB 所在圆相切于数轴下方时,x 的值最小,此时OP PQ ⊥. ∵PQ OB ∥, ∴PQO AOB ∠=∠,∴4tan tan 3PQO AOB ∠=∠=, 即43OP PQ=.设4,3OP a PQ a ==,在Rt OPQ △中,5OQ a . ∴5544OQ a OP a ==. ∵26OP =, ∴532.54OQ OP ==. 故x 的值为32.5-.(3)x 的值为31.5或16.5-或31.5-.【解析】(1)利用弧长公式求出圆心角即可解决问题; (2)如图当直线PQ 与O 相切时时,x 的值最小.(3)由于P 是优弧AB 上的任意一点,所以P 点的位置分三种情形,分别求解即可解决问题.【考点】圆综合题,平行线的性质,弧长公式,解直角三角形. 26.【答案】解:(1)根据题意,得点A 的坐标为(1,18),将其代入ky x=,得18k =.设2h mt =,当1t =时,5h =,∴5m =. ∴25h t =.(2)根据题意,得1x vt =+,当5v =时,51x t =+①. 根据题意,得18y h =-.∵25h t=,∴2185y t =-②.数学试卷 第19页(共20页) 数学试卷 第20页(共20页)由①,得15x t -=③. 将③代入②,得21185()5x y -=-. 化简,得21(1)185y x =--+. 当13y =时,即21(1)18135x --+=, 解得126,4x x ==-(舍去). 将6x =代入18y x =,得3y =. ∴13310(m)-=.∴13y =时,运动员与正下方滑道的竖直距离为10m . (3) 1.8s,7.5m /s t v =乙>.【解析】(1)用待定系数法解题即可;(2)根据题意,分别用t 表示x 、y ,再用代入消元法得出y 与x 之间的关系式;(3)求出甲距x 轴1.8米时的横坐标,根据题意求出乙位于甲右侧超过4.5米的v 乙. 【考点】二次函数和反比例函数的待定系数法,函数图象上的临界点问题.。
江西省2018年中考数学试题(含解析)
江西省2018年中等学校招生考试数学试题卷 【解析】说明:1.全卷满分120分,考试时间120分钟。
2.请将答案写在答题卡上,否则不给分。
一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.﹣2的绝对值是A. −2B.2C.﹣12D.12【解析】本题考察有理数中的绝对值的概念,容易,但注意与倒数,相反数的区别. 【答案】B ★2.计算(−a)2▪ba 2的结果为A. bB.−bC.abD. ba【解析】本题考察代数式的乘法运算,容易,注意(−a)2=a 2 ,约分后值为b . 【答案】A ★3.如图所示的几何体的左视图为ABCD【解析】本题考察三视图,容易,但注意错误的选项B 和C. 【答案】D ★4.某班组织了针对全班同学关于“你最喜欢的一项体育活动” 的问卷调查后,绘制出频数分布直方图,由图可知,下列结 论正确的是A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%【解析】本题考察条形统计图,容易,对相关概念要理解清楚. 【答案】C ★第3题(第4题)乒乓球径毛球足球篮球5.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD 从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个 正方形组成轴对称图形的平移方向有 A.3个B. 4个 C. 5个 D. 无数个【解析】本题考察图形变换,平移的方向只有5个,向上,下,右,右上45°,右下45°方向, 否则两个图形不轴对称. 【答案】C ★★6.在平面直角坐标系中,分别过点A(m,0),B(m ﹢2,0)作轴的垂线l 1和l 2 ,探究直线l 1和l 2与双曲 线的关系,下列结论中错误..的是 A.两直线中总有一条与双曲线相交B.当m =1时,两条直线与双曲线的交点到原点的距离相等C.当−2﹤m ﹤0时,两条直线与双曲线的交点在y 轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2【解析】本题考察直线与双曲线的关系,当m =0时,l 2与双曲线有交点,当m =-2时,l 1与双曲线有交点,当m ≠0,m ≠﹣2时,l 1与l 2和双曲线都有交点,所以A 正确;当m =1时,两交点分别是(1,3),(3,1),到原点的距离都是√10,所以B 正确;当−2﹤m ﹤0时,l 1在y 轴的左侧,l 2在y 轴的右侧,所以C 正确;两交点分别是(m,3m )和(m +2,3m+2),两交点的距离是√4+36[m (m+2)]2 ,当m 无限大时,两交点的距离趋近于2,所以D 不正确;注意是错误的选项.【答案】D ★★★二、填空题(本大题共6小题,每小题3分,共18分) 7.若分式有意义,则的取值范围是 .【解析】本题考察分式有意义的条件,当分母不为0时,分式有意义,所以. 【答案】★8.2018年5月13日,中国首艘国产航空母舰首次执行海上试航 任务,其排水量超过6万吨,将数60000用科学记数法表示应 为.【解析】本题考察科学记数法,把60000写成a ×10b 的形式,注意1≤a <10 【答案】6×104★9.中国的《九章算术》是世界现代数学的两大泉之一,其中有一问题:“今有牛五,羊二,值金十 两。
2018年成都市中考数学试题及答案详解
四川省成都市2018年中考数学试卷(解析版)一、选择题(A卷)1.实数在数轴上对应的点的位置如图所示,这四个数中最大的是()A. B. C. D.【答案】D【考点】数轴及有理数在数轴上的表示,有理数大小比较【解析】【解答】解:根据数轴可知a<b<0<c<d∴这四个数中最大的数是d故答案为:D【分析】根据数轴上右边的数总比左边的数大,即可得出结果。
2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:40万=4×105故答案为:B【分析】根据科学计数法的表示形式为:a×10n。
其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。
3.如图所示的正六棱柱的主视图是()A. B.C. D.【答案】A【考点】简单几何体的三视图【解析】【解答】解:∵从正面看是左右相邻的3个矩形,中间的矩形面积较大,两边的矩形面积相同,∴答案A符合题意故答案为:A【分析】根据主视图是从正面看到的平面图形,即可求解。
4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【考点】关于原点对称的坐标特征【解析】【解答】解:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。
5.下列计算正确的是()A. B. C. D.【答案】D【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,积的乘方【解析】【解答】解:A、x2+x2=2x2,因此A不符合题意;B、(x-y)2=x2-2xy+y2,因此B不符合题意;C、(x2y)3=x6y3,因此C不符合题意;D、,因此D符合题意;故答案为:D【分析】根据合并同类项的法则,可对A作出判断;根据完全平方公式,可对B作出判断;根据积的乘方运算法则及同底数幂的乘法,可对C、D作出判断;即可得出答案。
【精品】2018年中考数学《有理数》真题汇编解析
2018年中考数学《有理数》真题汇编解析2018中考数学真题汇编——有理数一、单选题1.(2017·嘉兴)-2的绝对值为()A. B.C.D.2.(2017•绍兴)研究表明,可燃冰是一种可替代石油的新型清洁能源。
在我国某海域已探明的可燃冰储存量达150 000 000 000立方米,其中数字150 000 000 000用科学记数法可表示为()A.15×1010B. 0.15×1012C. 1.5×1011D. 1.5×10123.(2017·台州)5的相反数是()A.5B.C. D.4.(2017·台州)人教版初中数学教科书共6册,总字数是978000,用科学记数法可将978000表示为()A.B.C. D.5.(2017•宁波)2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮——“泰欧”轮,其中45万吨用科学记数法表示为()A.吨B.吨 C.吨 D.吨6.(2017•益阳)目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.4×108B. 4×10﹣8C. 0.4×108D. ﹣4×1087.(2017•营口)﹣5的相反数是()A.﹣5B.±5C. D. 58.(2017•绍兴)-5的相反数是()A. B.5C.D.-59.(2017•玉林)下列四个数中最大的数是()A.0B.﹣1 C.﹣2 D.﹣310.(2017•玉林)一天时间为86400秒,用科学记数法表示这一数字是()A.864×102B. 86.4×103C. 8.64×104D. 0.864×10511.(2017•河北)下列运算结果为正数的是()A.(﹣3)2B. ﹣3÷2C. 0×(﹣2017) D.2﹣312.(2017•河北)把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A.1B.﹣2C.0.813D.8.1313.(2017•河北)=()A. B.C.D.14.(2017•黄石)地球绕太阳公转的速度约为110000km/h,则110000用科学记数法可表示为()A.0.11×106B. 1.1×105C. 0.11×105D. 1.1×10615.(2017•荆门)﹣的相反数是()A.﹣B.C.D. ﹣16.(2017•荆门)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿km,用科学记数法表示1个天文单位是()A.14.960×107kmB. 1.4960×108kmC. 1.4960×109kmD. 0.14960×109km17.(2017•海南)2017的相反数是()A.﹣2017 B.2017C.﹣D.18.(2017•河南)下列各数中比1大的数是()A.2B.0C.﹣1 D.﹣319.(2017•河南)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B. 7.44×1013C. 74.4×1013D. 7.44×101520.(2017•荆州)中国企业2016年已经在“一带一路”沿线国家建立了56个经贸合作区,直接为东道国增加了180 000个就业岗位.将180 000用科学记数法表示应为()A.18×104B. 1.8×105C. 1.8×106D. 18×10521.(2017•十堰)气温由﹣2℃上升3℃后是()℃.A.1B.3C.5D.﹣522.(2017•海南)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5B.6C.7D.823.(2017•六盘水)大米包装袋上(10±0.1)kg的标识表示此袋大米重()A.(9.9~10.1)kg B.10.1kgC.9.9kgD.10kg24.(2017•张家界)正在修建的黔张常铁路,横跨渝、鄂、湘三省,起于重庆市黔江区黔江站,止于常德市武陵区常德站.铁路规划线路总长340公里,工程估算金额375000000000元.将数据37500000000用科学记数法表示为()A.0.375×1011B. 3.75×1011C. 3.75×1010D. 375×10825.(2017•呼和浩特)中国的陆地面积约为9600000km2,将这个数用科学记数法可表示为()A.0.96×107km2B. 960×104km2C. 9.6×106km2D. 9.6×105km226.(2017•内江)下面四个数中比﹣5小的数是()A.1B.0C.﹣4 D.﹣627.(2017•内江)PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们还有一定量的有毒、有害物质,对人体健康和大气环境质量有很大影响.2.3μm用科学记数法可表示为()A.23×10﹣5mB. 2.3×10﹣5mC. 2.3×10﹣6mD. 0.23×10﹣7m28.(2017•随州)﹣2的绝对值是()A.2B.﹣2C. D.29.(2017•张家界)﹣2017的相反数是()A.﹣2017 B.2017C.﹣D.30.(2017•呼和浩特)我市冬季里某一天的最低气温是﹣10℃,最高气温是5℃,这一天的温差为()A.﹣5℃B.5℃C.10℃D.15℃二、解答题31.(2017·台州)计算:三、填空题32.(2017•营口)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为________.33.(2017•荆门)已知实数m、n满足|n﹣2|+ =0,则m+2n的值为________.34.(2017•六盘水)中国“蛟龙号”深潜器下潜深度为7062米,用科学记数法表示为________米.35.(2017•河南)计算:23﹣=________.36.(2017•十堰)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为________.37.(2017•六盘水)定义:A={b,c,a},B={c},A∪B={a,b,c},若M={﹣1},N={0,1,﹣1},则M∪N={________}.38.(2017•随州)根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为________.答案解析部分一、单选题1.【答案】A【解析】【解答】解:-2的绝对值是|-2|=2.故选A.【分析】-2是负数,它的绝对值是它的相反数.2.【答案】C【解析】【解答】解:150 000 000 000一共有12位数,那么n=12-1=11,则150 000 000 000= 1.5×1011,故选:C.【分析】用科学记数法表示数:把一个数字记为a×10n的形式(1≤|a|<10,n为整数).表示绝对值较大的数时,n=位数-1.3.【答案】B【解析】【解答】解:在数轴上,表示相反数(除零外)的两个点分别在原点的两边,并且到原点的距离相等。
2018年安徽省数学中考试卷及答案解析(精析版)
2018年安徽省初中毕业学业考试数学试题解析本试卷共8大题,计23小题,满分150分,考试时间120分钟。
一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分. 1.(2018安徽,1,4分)下面的数中,与-3的和为0的是………………………….()A.3 B.-3 C.31D.311. 解析:根据有理数的运算法则,可以把选项中的数字和-3相加,进行筛选只有选项A 符合,也可以利用相反数的性质,根据互为相反数的两数和为0,必选-3的相反数3.解答:A .点评:本题考查了有理数的运算、及其概念,理解有关概念,掌握运算法则,是解答此类题目的基础. 2. (2018安徽,2,4分)下面的几何体中,主(正)视图为三角形的是()A. B. C. D.2. 解析:根据这几个常见几何题的视图可知:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个靠着的矩形.解答:C .点评:此题是由立体图形到平面图形,熟悉常见几何体的三视图,如果要求画出几何体的三视图,要注意它们之间的尺寸大小,和虚实线.3. (2018安徽,3,4分)计算32)2(x 的结果是()A.52x B. 68x C.62x D.58x 3. 解析:根据积的乘方和幂的运算法则可得.解答:解:6323328)()2()2(x x x 故选B .点评:幂的几种运算不要混淆,当底数不变时,指数运算要相应的降一级,还要弄清符号,这些都是易错的地方,要熟练掌握,关键是理解乘方运算的意义.4. (2018安徽,4,4分)下面的多项式中,能因式分解的是()A.n m 2B. 12m mC. n m 2D.122m m 4. 解析:根据分解因式的方法,首先是提公因式,然后考虑用公式,如果项数较多,要分组分解,本题给出四个选项,问哪个可以分解,对照选项中的多项式,试用所学的方法分解.就能判断出只有D 项可以. 解答:解:22)1(12m m m 故选D .点评:在进行因式分解时,首先是提公因式,然后考虑用公式,(两项考虑用平方差公式,三项用完全平方公式,当然符合公式才可以.)如果项数较多,要分组分解,最后一定要分解到每个因式不能再分为止. 得分评卷人。
中考数学专题训练第1讲有理数(解析版)
有理数易错点梳理易错点01 误把0当成正数0既不是正数也不是负数.0是正数与负数的分界点。
易错点02 误以为带“+”号的数就是正数.带“-”号的数就是负数不能简单地理解为带“+”号的数就是正数.带“-”号的数就是负数。
例如:当0>a 时.a 表示正数.a -表示负数;当0=a 时.a 与a -都表示0;当0<a 时.a 表示负数.a -表示正数。
易错点03 误把无限循环小数看成无理数有限小数和无限循环小数都可以写成分数形式.所以有限小数和无限循环小数都是有理数;无限不循环小数是无理数。
易错点04 误把数轴当成线段数轴是规定了原点、正方向和单位长度的直线。
易错点05 混淆“单位长度”和“长度单位”单位长度是指具体的时间内具体的长度为1;长度单位是指毫米、厘米、分米、米、千米等。
它们是完全不同的概念。
易错点06 误认为0的倒数是00的相反数是0,0的绝对值为0,0没有倒数。
易错点07 混淆na -与na )(-的意义n a -表示n a 的相反数.n a )(-表示n 个a -相乘。
易错点08 运用加法交换律时弄错符号运用加法交换律时.在交换各加数的位置时.要连同它前面的符号一起交换.不能漏掉符号。
易错点09 运用分配律时易漏乘运用分配律时.括号内的每一项都要乘以括号外的数.不要漏乘。
考向01 正负数的概念易错点梳理例题分析例题1:(2021·青海西宁·中考真题)中国人最先使用负数.魏晋时期的数学家刘徽在其著作《九章算术注》中.用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正.黑色为负).如图1表示的是(+2)+(-2).根据这种表示法.可推算出图2所表示的算式是( )A .()()36+++B .()()36++-C .()()36-++D .()(36)-+-【答案】B【思路分析】根据题意图2中.红色的有三根.黑色的有六根可得答案.【解析】解:由题知. 图2红色的有三根.黑色的有六根.故图2表示的算式是(+3)+ (-6) .故选:B .【点拨】本题主要考查正负数的含义.解题的关键是理解正负数的含义.考向02 数轴的概念例题2:(2021·广东广州·中考真题)如图.在数轴上.点A 、B 分别表示a 、b .且0a b +=.若6AB =.则点A 表示的数为( )A .3-B .0C .3D .6-【答案】A【思路分析】由AB 的长度结合A 、B 表示的数互为相反数.即可得出A .B 表示的数 【解析】解:∵0a b += ∴A .B 两点对应的数互为相反数.∴可设A 表示的数为a .则B 表示的数为a -. ∵6AB = ∴6a a --=. 解得:3a =-.∴点A 表示的数为-3.故选:A .【点拨】本题考查了绝对值.相反数的应用.关键是能根据题意得出方程6a a --=.考向03 相反数的概念例题3:(2021·湖南永州·中考真题)1||202--的相反数为( ) A .2021- B .2021C .12021-D .12021【答案】B【思路分析】根据绝对值、相反数的概念求解即可.【解析】解:由题意可知:||=22110202-.故1||202--的相反数为2021.故选:B . 【点拨】本题考查相反数、绝对值的概念.属于基础题.熟练掌握概念是解决本题的关键.考向04 绝对值和概念和非负性例题4:(2021·黑龙江大庆·中考真题)下列说法正确的是( ) A .||x x <B .若|1|2x -+取最小值.则0x =C .若11x y >>>-.则||||x y <D .若|1|0x +≤.则1x =-【答案】D【思路分析】根据绝对值的定义和绝对值的非负性逐一分析判定即可.【解析】解:A .当0x =时.||=x x .故该项错误;B .∵10x -≥.∴当1x =时|1|2x -+取最小值.故该项错误;C .∵11x y >>>-.∴1x >.1y <.∴||||x y .故该项错误;D .∵|1|0x +≤且|1|0x +≥.∴|1|0x +=.∴1x =-.故该项正确;故选:D .【点拨】本题考查绝对值.掌握绝对值的定义和绝对值的非负性是解题的关键.考向05 有理数大小的比较例题5:(2021·四川巴中·中考真题)下列各式的值最小的是( ) A .20 B .|﹣2| C .2﹣1 D .﹣(﹣2)【答案】C【思路分析】直接利用零指数幂的性质以及负整数指数幂的性质、绝对值的性质、相反数分别化简得出答案.【解析】解:20=1.|-2|=2.2-1=12.-(-2)=2. ∵12<1<2. ∴最小的是2-1. 故选:C .【点拨】此题主要考查了零指数幂的性质以及负整数指数幂的性质、绝对值的性质、相反数.正确化简各数是解题关键.考向06 有理数加减法的运算例题6:(2021·四川广元·中考真题)计算()32---的最后结果是( ) A .1B .1-C .5D .5-【答案】C【思路分析】先计算绝对值.再将减法转化为加法运算即可得到最后结果. 【解析】解:原式325=+=.故选:C .【点拨】本题考查了绝对值化简和有理数的加减法运算.解决本题的关键是牢记绝对值定义与有理数运算法则.本题较基础.考查了学生对概念的理解与应用.考向07 科学计数法例题7:(2021·山东青岛·中考真题)2021年3月5 日.李克强总理在政府工作报告中指出.我国脱贫攻坚成果举世瞩目.5575万农村贫困人口实现脱贫.5575万=55750000.用科学记数法将55750000表示为( ) A .4557510⨯ B .555.7510⨯C .75.57510⨯D .80.557510⨯【答案】C【思路分析】根据科学记数法的定义“把一个大于10的数表示成10n a ⨯的形式(其中a 是整数位只有一位的数.即a 大于或等于1且小于10.n 是正整数).这样的记数方法叫做科学记数法”进行解答即可得.【解析】解:755750000 5.57510=⨯.故选C .【点拨】本题考查了科学记数法.解题的关键是熟记科学记数法的定义.一、单选题1.(2021·湖南·长沙市开福区青竹湖湘一外国语学校三模)-2021的绝对值是( ) A .2021- B .12021-C .2021D .12020【答案】C【解析】-2021的绝对值是2021.故选:C2.(2021·浙江·温州市教育教学研究院一模)2的相反数是( ) A .2 B .12C .2-D .4-【答案】C【解析】解:2的相反数是-2.故选C .3.(2021·安徽·合肥一六八中学模拟预测)下列是有理数的是( ) A .tan 45︒ B .sin 45︒C .cos45︒D .sin 60︒【答案】A微练习【解析】解:A 、tan 451︒=.是有理数.符合题意;B 、2sin 452=°.不是有理数.不符合题意;C 、2cos 452=°.不是有理数.不符合题意;D 、3sin 602︒=.不是有理数.不符合题意;故选:A .4.(2021·陕西·交大附中分校模拟预测)如图.数轴上点A 表示的数为( )A .﹣2B .﹣1C .0D .1【答案】B【解析】解:由图可知:点A 在﹣1的位置.表示的数为﹣1.故选:B .5.(2021·广东·佛山市华英学校一模)在2. 1.5-.0.23-这四个数中最小的数是( )A .2B . 1.5-C .0D .23-【答案】B【解析】解:∵2>0.0>﹣1.5.0>﹣23.又∵|﹣1.5|=32.|﹣23|=23.∴32>23.∴﹣1.5<﹣23.综上所述.﹣1.5<﹣23<0<2.故选:B .6.(2021·浙江·翠苑中学二模)计算42=( ) A .8 B .18C .16D .116【答案】C【解析】解:24=2×2×2×2=16.故选:C . 7.(2021·内蒙古东胜·二模)截止2021年4月17日.全国接种新冠病毒疫苗达到81.89810⨯剂次.则数据81.89810⨯表示的原数是( ) A .1898000 B .18980000 C .189800000 D .1898000000【答案】C【解析】解:81.89810⨯=189800000. 故选C .8.(2021·安徽·安庆市第四中学二模)计算:2﹣(﹣2)等于( ) A .﹣4 B .4 C .0 D .1【答案】B【解析】解:2﹣(﹣2)=2+2=4.故选择B . 二、填空题9.(2021·福建·泉州五中模拟预测)计算:1012(3)2--+-=_______.【答案】0 【解析】原式111022=-+=.故答案为:0. 10.(2021·福建·厦门双十中学思明分校二模)实数a 与b 在数轴上对应点的位置如图所示.a <c <﹣b .且c 为整数.则实数c 的值为________.【答案】3 【解析】解:如图由a <c <﹣b .且c 为整数.故实数c 的值为3.故答案为:3.11.(2021·广东·执信中学模拟预测)()0222cos4512 3.14π--+︒-+--=____________【答案】314【解析】解:()0222cos4512 3.14π--+︒---122(21)14=-++122114=-+314=.故答案为:314.12.(2021·福建·重庆实验外国语学校模拟预测)新华社北京5月11日电11日发布的第七次全国人口普查结果显示.全国人口共141178万人.与2010年第六次全国人口普查数据相比.增加7206万人.增长5.38%.年平均增长率为0.53%.数据表明.我国人口10年来继续保持低速增长态势.用科学记数法将数据“7206万”表示为 __. 【答案】77.20610⨯【解析】解:7206万77.20610=⨯故答案为:77.20610⨯. 三、解答题13.(2021·广西·南宁十四中三模)计算:()()3425284+-⨯--÷. 【答案】29-【解析】()()3425284+-⨯--÷485(7)=-⨯--1140=- 29=-14.(2021·云南昭通·二模)计算:1020211(1)|2|3-⎛⎫+-+--- ⎪⎝⎭(-2021). 【答案】-5【解析】原式1(1)(3)2=+-+--5=-.15.(2021·黑龙江·二模)计算: 120201(1)3-⎛⎫-+ ⎪⎝⎭【答案】2.【解析】原式132=+-2=.16.(2021·吉林长春·二模)计算:()()2111323π--+---+⎛⎫⎪⎝⎭【答案】3【解析】解:原式11233=+-+=.。
2018年吉林省中考数学试卷(含答案与解析)
数学试卷 第1页(共46页) 数学试卷 第2页(共46页)绝密★启用前吉林省2018年初中毕业生学业水平考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共12分)一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算(1)(2)-⨯-的结果是( ) A .2B .1C .2-D .3- 2.图是由4个相同的小正方体组成的立体图形,它的主视图是( )ABCD 3.下列计算结果为6a 的是( )A .23a a B .122a a ÷ C .23()aD .23()a -4.如图,将木条a ,b 与c 钉在一起,170︒=∠,250︒∠=,要使木条a 与b 平行,木条a 旋转的度数至少是 ( )A .10︒B .20︒C .50︒D .70︒5.如图,将ABC △折叠,使点A 与BC 边中点D 重合,折痕为MN ,若9AB =,6BC =,则DNB △的周长为( )A .12B .13C .14D .156.国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x 只,兔y 只,可列方程组为( )A .35,2294x y x y +=⎧⎨+=⎩B .35,4294x y x y +=⎧⎨+=⎩C .35,4494x y x y +=⎧⎨+=⎩D .35,2494x y x y +=⎧⎨+=⎩ 第Ⅱ卷(非选择题 共108分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上) 7..8.买单价3元的圆珠笔m 支,应付 元.9.若4a b +=,1ab =,则22a b ab += .10.若关于x 的一元二次方程220x x m +-=有两个相等的实数根,则m 的值为 .11.如图,在平面直角坐标系中,(4,0)A ,(0,3)B ,以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,则点C 坐标为 .12.如图是测量河宽的示意图,AE 与BC 相交于点D ,90B C ︒==∠∠,测得120 mBD =,60 m DC =,50 m EC =,求得河宽AB = m .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共46页) 数学试卷 第4页(共46页)13.如图,A ,B ,C ,D 是O 上的四个点,AB BC =,若58AOB ︒=∠,则BDC =∠ 度.14.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k .若12k =,则该等腰三角形的顶角为 度.三、解答题(本大题共12小题,共84分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分5分)某同学化简(2)()()a a b a b a b +-+-出现了错误,解答过程如下: 原式222()2a ab a b =+--(第一步)2222a a b a b=--+(第二步) 22a b b =-(第三步)(1)该同学解答过程从第 步开始出错,错误原因是 ; (2)写出此题正确的解答过程. 16.(本小题满分5分)如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,且BE CF =. 求证:ABE BCF △≌△.17.(本小题满分5分)一个不透明的口袋中有三个小球,上面分别标有字母A ,B ,C ,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.18.(本小题满分5分)在平面直角坐标系中,反比例函数(0)ky k x=≠图象与一次函数2y x =+图象的一个交点为P ,且点P 的横坐标为1,求该反比例函数的解析式.19.(本小题满分7分)根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x 表示 ,庆庆同学所列方程中的y 表示 ; (2)两个方程中任选一个,并写出它的等量关系; (3)解(2)中你所选择的方程,并回答老师提出的问题.数学试卷 第5页(共46页) 数学试卷 第6页(共46页)20.(本小题满分7分)如图是由边长为1的小正方形组成的84⨯网格,每个小正方形的顶点叫做格点,点A ,B ,C ,D 均在格点上,在网格中将点D 按下列步骤移动:第一步:点D 绕点A 顺时针旋转180︒得到点1D ; 第二步:点1D 绕点B 顺时针旋转得90︒到点2D ; 第三步:点2D 绕点C 顺时针旋转90︒回到点D . (1)请用圆规画出点12D D D D →→→经过的路径; (2)所画图形是 对称图形; (3)求所画图形的周长(结果保留π).21.(本小题满分7分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺.请帮助组长林平完成方案内容,用含a ,b ,α的代数式表示旗杆AB 的高度. 数学活动方案活动时间:2018年4月2日 活动地点:学校操场 填表人:林平22.(本小题满分7分)为了调查甲、乙两台包装机分装标准质量为400 g 奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题. 收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g )如下: 甲:400,400,408,406,410,409,400,393,394,395 乙:403,404,396,399,402,402,405,397,402,398 整理数据:表一分析数据:表二-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共46页) 数学试卷 第8页(共46页)得出结论:包装机分装情况比较好的是 (填甲或乙),说明你的理由. 23.(本小题满分8分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30 min .小东骑自行车以300 m/min 的速度直接回家,两人离家的路程(m)y 与各自离开出发地的时间(min)x 之间的函数图象如图所示 (1)家与图书馆之间的路程为 m ,小玲步行的速度为 m/min ; (2)求小东离家的路程y 关于x 的函数解析式,并写出自变量的取值范围; (3)求两人相遇的时间.24.(本小题满分8分)如图1,在ABC △中,AB AC =,过AB 上一点D 作DE AC ∥交BC 于点E ,以E 为顶点,ED 为一边,作DEF A =∠∠,另一边EF 交AC 于点F . (1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,ADEF 的形状为 ;(3)延长图1中的DE 到点G ,使EG DE =,连接AE ,AG ,FG ,得到图2,若AD AG =,判断四边形AEGF 的形状,并说明理由.图1图225.(本小题满分10分)如图,在矩形ABCD 中, 2 cm AB =,30ADB ︒=∠.P ,Q 两点分别从A ,B 同时出发,点P 沿折线AB BC -运动,在AB 上的速度是2 cm/s ,在BC 上的速度是;点Q 在BD 上以2 cm/s 的速度向终点D 运动,过点P 作PN AD ⊥,垂足为点N .连接PQ ,以PQ ,PN 为邻边作□PQMN .设运动的时间为(s)x ,□PQMN 与矩形ABCD 重叠部分的图形面积为2)(cm y(1)当PQ AB ⊥时,x = ;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)直线AM 将矩形ABCD 的面积分成1:3两部分时,直接写出x 的值.备用图26.(本小题满分10分)如图,在平面直角坐标系中,抛物线223(0)y ax ax a a =+-<与x 轴相交于A ,B 两点,与y 轴相交于点C ,顶点为D ,直线DC 与x 轴相交于点E . (1)当1a =-时,抛物线顶点D 的坐标为 ,OE = ; (2)OE 的长是否与a 值有关,说明你的理由; (3)设DEO β=∠,4560β︒︒≤≤,求a 的取值范围;(4)以DE 为斜边,在直线DE 的左下方作等腰直角三角形PDE .设(,)P m n ,直接写出n关于m的函数解析式及自变量m的取值范围.数学试卷第9页(共46页)数学试卷第10页(共46页)6吉林省2018年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】(1)(2)2-⨯-= 故选A . 【考点】有理数的运算. 2.【答案】B【解析】从正面看已知几何体,得到的平面图形是,故选B .【考点】几何体的主视图. 3.【答案】C【解析】23235 a a a a +==,12210122=a a a a -=÷,36223)=(a a a ⨯=,236()a a -=-,故选C . 【考点】整式的运算. 4.【答案】B【解析】根据题意,若使木条a 与b 平行,且木条a 旋转度数最少,则木条a 应按顺时针方向旋转的度数为1220︒-=∠∠,故选B .【考点】平行线的性质、旋转的性质. 5.【答案】A【解析】由翻折可知AN DN =,∴DNB △的周长为DN NB BD AN NB BD AB BD ++=++=+,∵9AB =,6BC =,点D 是BC 的中点,∴3BD =,∴DNB △的周长为9312+=,故选A .【考点】轴对称的性质、中点定义. 6.【答案】D【解析】根据题意,因为每只鸡有1个头和2只脚,每只免有1个头和4只脚,由“鸡兔共有35个头”得35x y +=,由“鸡兔共有94只脚”得2494x y +=,列出方程组为35,2494,x y x y +=⎧⎨+=⎩故选D .【考点】列方程组解应用题.第Ⅱ卷二.填空题7.【答案】4.【考点】二次根式的运算.8.【答案】3m【解析】根据题意,每支圆珠笔3元,m支圆珠笔3m元,则应付3m元.【考点】列代数式表示数.9.【答案】4【解析】∵4a b+=,1ab=,∴22()144a b ab ab a b+=+=⨯=.【考点】分解因式,求代数式的值.10.【答案】1-【解析】由题意知2241(=)0m⨯⨯--=∆,解得1m=-,即m的值为1-.【考点】]一元二次方程的根的判别式.11.【答案】(1,0)-【解析】根据题意,由点A的坐标(4,0)得4OA=,由点B的坐标(0,3)得3OB=,在Rt OAB△中,由勾股定理可得5AB=,∴5AC=,∴1OC AC OA=-=,又∵点C在x轴的负半轴上,∴点C的坐标为(1,0)-.【考点】勾股定理、平面直角坐标系内点的坐标.12.【答案】100【解析】∵90B C︒==∠∠,ADB EDC=∠∠,∴ABD ECD△∽△,∵AB BDEC CD=,又120 mBD=,60 mDC=,50 mEC=,则可得100 mAB=,即河宽AB为100 m.【考点】相似三角形的判定和性质.13.【答案】29【解析】如图,作AB所对的圆周角AEB∠,则1=2AEB AOB∠∠,∵°=58AOB∠,°=29AEB∠,又∵AB BC=,∴°29BDC AEB==∠∠.7 / 238【考点】圆周角定理及其推论. 14.【答案】36【解析】由题意可知当12k =时,设这个等腰三角形的顶角为°x .则它的一个底角为°(2)x ,根据三角形的内角和定理得22180x x x ++=,解得36x =,则这个等腰三角形的顶角是°36. 【考点】新定义、等腰三角形的性质、三角形的内角和定理. 三、解答题 15.【答案】(1)二; 去括号法则用错(2)原式222()2a ab a b =+--222()2a a b a b =+--22a b b =+【解析】(1)二; 去括号法则用错(2)原式222()2a ab a b =+--222()2a a b a b =+--22a b b =+评分说明:第(1)题,与“去括号法则用错”等同的说法均给分. 【考点】整式的化简16.【答案】证明:在正方形ABCD 中,9 / 23AB BC =,°90ABC C ==∠∠∵BE CF = ∴ABE BCF △≌△.【解析】证明:在正方形ABCD 中,AB BC =,°90ABC C ==∠∠∵BE CF = ∴ABE BCF △≌△.【考点】正方形的性质、全等三角形的判定. 17.【答案】13【解析】解法一:根据题意.可以画出如下树状图:从树状图可以看出,所有可能出现的结果共有9种,其中小球上字母相同的结果有3种,所以()3193P ==字母相同.10从表中可以看出,所有可能出现的结果共有9种,其中小球上字母相同的结果有3种,所以()3193P ==字母相同. 【考点】随机事件发生的概率.18.【答案】解:∵点P 的横坐标为1,∴1x =, ∵点P 在直线2y x =+上,∴3y =. ∴(1,3)P 将(1,3)P 代人ky x=中,∴3k =. ∴该反比例函数的解析式为3y x=. 【解析】解:∵点P 的横坐标为1,∴1x =, ∵点P 在直线2y x =+上,∴3y =. ∴(1,3)P 将(1,3)P 代人ky x=中,∴3k =. ∴该反比例函数的解析式为3y x=. 【考点】]一次函数、反比例函数的图象与性质. 19.【答案】解:(1)甲队每天修路的长度;甲队修路400米所用的天数(乙队修路600米所的天数). (2)选冰冰所列方程(选第一个方程),甲队修路400米与乙队修路800米所用时间相等; 选庆庆所列方程(选第二个方程),乙队每天修路长度与甲队每天修路长度的差等于20米. (3)选第一个方程:40060020x x =+解方程,得40x =. 经检验:40x =是原分式方程的解且符合题意. ∴40x =.答:甲队每天修路40米. 选第二个方程:11 / 2360040020y y-=.解方程,得10y =. 经检验:10y =是原分式方程的解且符合题意. ∴400=4010. 答:甲队每天修路40米.【解析】解:(1)甲队每天修路的长度;甲队修路400米所用的天数(乙队修路600米所的天数). (2)选冰冰所列方程(选第一个方程),甲队修路400米与乙队修路800米所用时间相等; 选庆庆所列方程(选第二个方程),乙队每天修路长度与甲队每天修路长度的差等于20米. (3)选第一个方程:40060020x x =+解方程,得40x =. 经检验:40x =是原分式方程的解且符合题意. ∴40x =.答:甲队每天修路40米. 选第二个方程:60040020y y-=.解方程,得10y =. 经检验:10y =是原分式方程的解且符合题意. ∴400=4010. 答:甲队每天修路40米. 【考点】列分式方程解应用题. 20.【答案】解:(1)(2)轴.(3)所画图形周长2π42π4=+2=4π+4π=8π24⨯⨯⨯. 【解析】解:(1)(2)轴.(3)所画图形周长2π42π4=+2=4π+4π=8π24⨯⨯⨯. 【考点】]基本作图一一作弧、轴对称图形和中心对称图形的概念、扇形的弧长. 21.【答案】【解析】测量步骤:(1)测角仪. (2)皮尺.计算过程:如图,ADE α=∠,DE BC a ==,BE CD b ==.在Rt ADE △中,角°90AED =∠. ∵tan AE ADE DE=∠. ∴ tan AE ED ADE =∠. ∴ tan αAE a =.∴( tan α)AB AE EB b a =+=+(米). 【解析】测量步骤:(1)测角仪. (2)皮尺.13 / 23计算过程:如图,ADE α=∠,DE BC a ==,BE CD b ==.在Rt ADE △中,角°90AED =∠. ∵tan AEADE DE=∠. ∴ tan AE ED ADE =∠. ∴ tan αAE a =.∴( tan α)AB AE EB b a =+=+(米).【考点】]基本作图一一作弧、轴对称图形和中心对称图形的概念、扇形的弧长. 22.【答案】表二甲,理由:从中位数(众数)角度说,甲的中位数(众数)为标准质量400 g . 乙,理由:从方差角度说,乙的方差小,分装情况更稳定 从平均数角度说,乙的平均数更接近标准质量400 g.【解析】表一表二甲,理由:从中位数(众数)角度说,甲的中位数(众数)为标准质量400 g.乙,理由:从方差角度说,乙的方差小,分装情况更稳定从平均数角度说,乙的平均数更接近标准质量400 g【考点】数据的整理、统计知识的应用.23.【答案】(1)4 000100(2)如图,∵小东从图书馆到家的时间4 00040(h)3003x==,∴40(,0)3D.15 / 23设CD 的解析式为(0)y kx b k =+≠, ∵图像过40(,0)3D 和(0,4 000)C 两点. ∴400,3 4 000.k b b ⎧+=⎪⎨⎪=⎩解得300,4 000.k b =-⎧⎨=⎩∴CD 的解析式为300 4 000y x =-+.∴小乐离家的路程y 与x 的解析式为40300 4 000(0)3y x x =-+≤≤. (3)设OA 的解析式为(0)y k x k ''=≠. ∵图象过点(10,2 000)A , ∴10 2 000k '=,∴200k '=. ∴OA 的解析式为200(010)y x x =≤≤∴200,300 4 000.y x y x =⎧⎨=-+⎩解得8,1 600.x y =⎧⎨=⎩答:两人出发后8分钟相遇. 【解析】(1)4 000 100(2)如图,∵小东从图书馆到家的时间 4 00040(h)3003x ==,∴40(,0)3D .设CD 的解析式为(0)y kx b k =+≠, ∵图像过40(,0)3D 和(0,4 000)C 两点.∴400,3 4 000.k b b ⎧+=⎪⎨⎪=⎩解得300,4 000.k b =-⎧⎨=⎩∴CD 的解析式为300 4 000y x =-+.∴小乐离家的路程y 与x 的解析式为40300 4 000(0)3y x x =-+≤≤. (3)设OA 的解析式为(0)y k x k ''=≠. ∵图象过点(10,2 000)A , ∴10 2 000k '=,∴200k '=. ∴OA 的解析式为200(010)y x x =≤≤∴200,300 4 000.y x y x =⎧⎨=-+⎩解得8,1 600.x y =⎧⎨=⎩ 答:两人出发后8分钟相遇. 【考点】一次函数的应用.24.【答案】(1)如图1,∵DE AC ∥,∴DEF EFC =∠∠图1∵DEF A =∠∠,∴A EFC =∠∠. ∴EF AB ∥.∴四边形ADEF 为平行四边形. (2)菱形(3)结论:四边形AEGF 为矩形.理由:如图2,由(1)知,四边形ADEF 为平行四边形.图2∴AF DE ∥,AD EF =,17 / 23∵EG ED =,∴AF EG ∥, ∴四边形AEGF 是平行四边形, ∵AD AG =,∴AG EF = ∴四边形AEGF 是矩形.【解析】(1)如图1,∵DE AC ∥,∴DEF EFC =∠∠图1∵DEF A =∠∠,∴A EFC =∠∠. ∴EF AB ∥.∴四边形ADEF 为平行四边形. (2)菱形(3)结论:四边形AEGF 为矩形.理由:如图2,由(1)知,四边形ADEF 为平行四边形.图2∴AF DE ∥,AD EF =, ∵EG ED =,∴AF EG ∥, ∴四边形AEGF 是平行四边形, ∵AD AG =,∴AG EF = ∴四边形AEGF 是矩形.【考点】平行线的性质、特殊四边形的判定. 25.【答案】(1)23(2)当203x ≤<时,如图1,过点Q 作QH AB ⊥于H .由题意得QH ,2AP x =.2 2PQMNAP QH S===.∴2y =.当01x ≤<时,如图2,设QM 与AD 交于点G ∴1() 2PQGA y S QG AP QH ==+梯形1(22) 32x x x =-+2+∴2y图1图2图3当12x ≤≤时,如图3∴1() 2PQGA y S QG PN GN ==+梯形1(22) 31)2x x x ⎡⎤=-+--⎣⎦2x -+∴2y -+19 / 23(3)25或47(如图4,如图5)图4图5【解析】(1)23(2)当203x ≤<时,如图1,过点Q 作QH AB ⊥于H .由题意得QH ,2AP x =.2 2PQMNAP QH S===.∴2y =.当01x ≤<时,如图2,设QM 与AD 交于点G ∴1() 2PQGA y S QG AP QH ==+梯形1(22) 32x x x =-+2+∴22y x =图1图2图3当12x ≤≤时,如图3∴1() 2PQGA y S QG PN GN ==+梯形1(22) 31)2x x x ⎡⎤=-+--⎣⎦2x -+∴2y -+ (3)25或47(如图4,如图5)图4图5【考点】矩形的性质、函数的应用、图形的面积. 26.【答案】(1)(1,4)- 3(2)OE 的长与a 值无关21 / 23理由:如图1,∵223y ax ax a =+-,图1∴(0,3)C a -,(1,4)D a ,∴直线CD 的解析式为3y ax a =-,当0y =时,3x =,∴3OE =,∴OE 的长与a 值无关.(3)当45β︒=时,在Rt OCE △中,OC OE =,∵3OE =,3OC a =-∴33a -=,∴1a =-.当60β︒=时,在Rt OCE △中,OC ,∵3OE =,3OC a =-∴3a -=∴a =∴当4560β︒︒≤≤,a的取值范围为1a ≤≥-.(4)1(1)n m m =--<.(如图2)22图1【解析】(1)(1,4)-3(2)OE 的长与a 值无关理由:如图1,∵223y ax ax a =+-,图1∴(0,3)C a -,(1,4)D a ,∴直线CD 的解析式为3y ax a =-,当0y =时,3x =,∴3OE =,23 / 23∴OE 的长与a 值无关.(3)当45β︒=时,在Rt OCE △中,OC OE =,∵3OE =,3OC a =-∴33a -=,∴1a =-.当60β︒=时,在Rt OCE △中,OC ,∵3OE =,3OC a =-∴3a -=∴a =∴当4560β︒︒≤≤,a的取值范围为1a ≤≥-.(4)1(1)n m m =--<.(如图2)图1【考点】在二次函数的图象与性质行分三角函数的运用、等腰直角三角形的性质、数形结合思想.。
专题1.1 有理数(第01期)-2018年中考数学试题分项版解析汇编
一、单选题1.【安徽省2018年中考数学试题】的绝对值是()A. B. 8 C. D.【答案】B【分析】根据绝对值的定义“一个数的绝对值是数轴上表示这个数的点到原点的距离”进行解答即可. 【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2.【2018年重庆市中考数学试卷(A卷)】的相反数是()A. B. C. D.【答案】A【分析】根据只有符号不同的两个数互为相反数进行求解即可得.【详解】2与-2只有符号不同,所以2的相反数是-2,故选A.【点评】本题考查了相反数的定义,属于中考中的简单题3.【浙江省衢州市2018年中考数学试卷】﹣3的相反数是()A. 3B. ﹣3C.D. ﹣点睛:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.4.【2018年浙江省绍兴市中考数学试卷】如果向东走记为,则向西走可记为()A. B. C. D.【答案】C分析首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.详解:如果向东走2m时,记作+2m,那么向西走3m应记作−3m.故选C.点睛:考查了相反意义的量,相反意义的量用正数和负数来表示.5.【天津市2018年中考数学试题】计算的结果等于()A. 5B.C. 9D.分析:根据有理数的乘方运算进行计算. 详解:(-3)2=9,故选C .点睛:本题考查了有理数的乘方,比较简单,注意负号.6.【山东省滨州市2018年中考数学试题】若数轴上点A 、B 分别表示数2、﹣2,则A 、B 两点之间的距离可表示为( )A. 2+(﹣2)B. 2﹣(﹣2)C. (﹣2)+2D. (﹣2)﹣2点睛:本题考查的是数轴上两点间的距离、数轴等知识,熟知数轴上两点间的距离公式是解答此题的关键.7.【江苏省连云港市2018年中考数学试题】﹣8的相反数是( )A. ﹣8B.C. 8D. ﹣ 【答案】C分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案. 详解:-8的相反数是8,故选:C .点睛:此题主要考查了相反数,关键是掌握相反数的定义. 8.【江苏省盐城市2018年中考数学试题】-2018的相反数是( )A. 2018B. -2018C.D.【答案】A分析:只有符号不同的两个数叫做互为相反数. 详解:-2018的相反数是2018.故选:A .点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键. 9.【湖北省黄冈市2018年中考数学试题】-的相反数是( )A. -B. -C.D. 【答案】C分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数. 详解:-的相反数是.点睛:本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.10.【四川省宜宾市2018年中考数学试题】3的相反数是()A. B. 3 C. ﹣3 D. ±【答案】C分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.详解:3的相反数是﹣3,故选C.点睛:此题主要考查了相反数,关键是掌握相反数的定义.11.【湖南省娄底市2018年中考数学试题】2018的相反数是()A. B. 2018 C. -2018 D.【答案】C【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.12.【山东省德州市2018年中考数学试题】3的相反数是()A. 3B.C. -3D.【答案】C分析:根据相反数的定义,即可解答.详解:3的相反数是﹣3.故选C.点睛:本题考查了相反数,解决本题的关键是熟记相反数的定义.13.【山东省淄博市2018年中考数学试题】计算的结果是()A. 0B. 1C. ﹣1D.【答案】A【解析】分析:先计算绝对值,再计算减法即可得.详解:=﹣=0,故选:A.点睛:本题主要考查绝对值和有理数的减法,解题的关键是掌握绝对值的性质和有理数的减法法则.14.【山东省潍坊市2018年中考数学试题】( )A. B. C. D.【答案】B分析:根据绝对值的性质解答即可.详解:|1-|=.故选B.点睛:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.15.【江西省2018年中等学校招生考试数学试题】﹣2的绝对值是A. B. C. D.【答案】B【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.16.【浙江省金华市2018年中考数学试题】在0,1,﹣,﹣1四个数中,最小的数是()A. 0B. 1C.D. ﹣1【答案】D分析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.详解:∵-1<-<0<1,∴最小的数是-1,故选D.点睛:本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.17.【浙江省金华市2018年中考数学试题】在0,1,﹣,﹣1四个数中,最小的数是()A. 0B. 1C.D. ﹣1【答案】D点睛:本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.18.【江苏省连云港市2018年中考数学试题】地球上陆地的面积约为150 000 000km2.把“150 000 000”用科学记数法表示为()A. 1.5×108B. 1.5×107C. 1.5×109D. 1.5×106【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.详解:150 000 000=1.5×108,故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.【江苏省盐城市2018年中考数学试题】盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A. B. C. D.【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将146000用科学记数法表示为:1.46×105.故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.【湖北省孝感市2018年中考数学试题】的倒数是()A. 4B. -4C.D. 16【答案】B分析:根据乘积是1的两个数互为倒数解答.详解:∵-×(-4)=1,∴的倒数是-4.故选:B.点睛:此题考查的知识点是倒数,关键掌握求一个数的倒数的方法.注意:负数的倒数还是负数.21.【广东省深圳市2018年中考数学试题】260000000用科学计数法表示为( )A. B. C. D.【答案】B【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.22.【四川省成都市2018年中考数学试题】2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.1万=10000=104.详解:40万=4×105,故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.23.【天津市2018年中考数学试题】今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题24.【山东省德州市2018年中考数学试题】计算:=__________.【答案】1分析:根据有理数的加法解答即可.详解:|﹣2+3|=1.故答案为:1.点睛:本题考查了有理数的加法,关键是根据法则计算.25.【湖北省黄冈市2018年中考数学试题】实数16 800 000用科学计数法表示为______________________.【答案】1.68×107分析:用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.详解:16800000=1.68×107.故答案为:1.68×107.点睛:此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.26.【江苏省南京市2018年中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________.【答案】(答案不唯一)分析:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.又根据绝对值的定义,可以得到答案.详解:设|a|=-a,|a|≥0,所以-a≥0,所以a≤0,即a为非正数.故答案为:-1(答案不唯一).点睛:本题综合考查绝对值和相反数的应用和定义.27.【江苏省南京市2018年中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________.【答案】(答案不唯一)点睛:本题综合考查绝对值和相反数的应用和定义.三、解答题28.【江苏省南京市2018年中考数学试卷】如图,在数轴上,点、分别表示数、.(1)求的取值范围.(2)数轴上表示数的点应落在()A.点的左边B.线段上C.点的右边【答案】(1).(2)B.【解析】分析:(1)根据点B在点A 的右侧列出不等式即可求出;(2)利用(1)的结果可判断-x+2的位置.详解:(1)根据题意,得.解得.(2)B.点睛:本题考查了数轴的运用.关键是利用数轴,数形结合求出答案.。
2018年中考数学试题分项版解析汇编第02期专题1.1有理数含解析
专题1.1 有理数一、单选题1.【新疆自治区2018年中考数学试题】的相反数是()A.﹣ B. 2 C.﹣2 D. 0.5【答案】A【解析】分析:根据“只有符号不同的两个数互为相反数”求解即可.详解:的相反数是-.故选:A.点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.【湖南省张家界市2018年初中毕业学业考试数学试题】的绝对值是()A. B. C. D.【答案】A【解析】分析:根据正数的绝对值是它本身可得答案.详解:2018的绝对值是2018,故选:A.点睛:此题主要考查了绝对值,关键是掌握绝对值的性质.3.【吉林省长春市2018年中考数学试卷】﹣的绝对值是()A.﹣ B. C.﹣5 D. 5【答案】B【点睛】本题考查了绝对值的定义,熟练掌握绝对值的定义是解题的关键.4.【黑龙江省哈尔滨市2018年中考数学试题】﹣的绝对值是()A. B. C. - D. -点睛:本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.5.【浙江省宁波市2018年中考数学试卷】在,,0,1这四个数中,最小的数是A. B. C. 0 D. 1【答案】A【解析】【分析】根据正数大于零,零大于负数,正数大于一切负数,即可得答案.【详解】由正数大于零,零大于负数,得,最小的数是,故选A.【点睛】本题考查了有理数比较大小,利用好“正数大于零,零大于负数,两个负数绝对值大的反而小”是解题关键.6.【湖北省荆门市2018年中考数学试卷】8的相反数的立方根是()A. 2 B. C.﹣2 D.【答案】C【解析】【分析】根据相反数的定义、立方根的概念计算即可.【详解】8的相反数是﹣8,﹣8的立方根是﹣2,则8的相反数的立方根是﹣2,故选C.【点睛】本题考查了实数的性质,掌握相反数的定义、立方根的概念是解题的关键.7.【山东省淄博市2018年中考数学试题】计算的结果是()A. 0 B. 1 C.﹣1 D.【解析】分析:先计算绝对值,再计算减法即可得.详解:=﹣=0,故选:A.点睛:本题主要考查绝对值和有理数的减法,解题的关键是掌握绝对值的性质和有理数的减法法则.8.【湖北省襄阳市2018年中考数学试卷】﹣2的相反数为()A. 2 B. C.﹣2 D. -【答案】A【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.9.【台湾省2018年中考数学试卷】如图为O、A、B、C四点在数线上的位置图,其中O为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.﹣(x+1) B.﹣(x﹣1) C. x+1 D. x﹣1【答案】B【解析】分析:首先根据AC=1,C点所表示的数为x,求出A表示的数是多少,然后根据OA=OB,求出B点所表示的数是多少即可.详解:∵AC=1,C点所表示的数为x,∴A点表示的数是x﹣1,又∵OA=OB,∴B点和A点表示的数互为相反数,∴B点所表示的数是﹣(x﹣1).故选:B.点睛:此题主要考查了在数轴上表示数的方法,以及数轴的特征和应用,要熟练掌握.10.【四川省内江市2018年中考数学试卷】﹣3的绝对值是()A.﹣3 B. 3 C. - D.【答案】B【解析】根据绝对值的性质得:|-3|=3.故选B.11.【山东省威海市2018年中考数学试题】﹣2的绝对值是()A. 2 B.﹣ C. D.﹣2【答案】A点睛:此题主要考查了绝对值,关键是掌握绝对值的性质.12.【四川省资阳市2018年中考数学试卷】﹣的相反数是()A. 3 B.﹣3 C. - D.【答案】D【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【详解】﹣与只有符号不同,所以﹣的相反数是,故选D.【点睛】本题考查了相反数,熟练掌握相反数的定义是解题的关键.在一个数的前面加上负号就是这个数的相反数.13.【贵州省贵阳市2018年中考数学试卷】如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B. 0 C. 1 D. 4【答案】C【点睛】本题主要考查了数轴,关键是正确确定原点位置.14.【河南省2018年中考数学试卷】﹣的相反数是()A.﹣ B. C.﹣ D.【答案】B【解析】分析:直接利用相反数的定义分析得出答案.详解:-的相反数是:.故选:B.点睛:此题主要考查了相反数,正确把握相反数的定义是解题关键.15.【辽宁省葫芦岛市2018年中考数学试卷】如果温度上升10℃记作+10℃,那么温度下降5℃记作()A.+10℃ B.﹣10℃ C.+5℃ D.﹣5℃【答案】D【解析】【分析】根据用正负数表示具有相反意义的量进行求解即可得.【详解】如果温度上升10℃记作+10℃,那么下降5℃记作﹣5℃,故选D.【点睛】本题考查了用正负数表示具有相反意义的量,熟练掌握相关知识是解题的关键.【湖北省咸宁市2018年中考数学试卷】咸宁冬季里某一天的气温为﹣3℃~2℃,则这一天的温差是()16.A.1℃ B.﹣1℃ C.5℃ D.﹣5℃【答案】C【解析】【分析】根据题意列出算式,再利用减法法则计算即可得.【详解】由题意知这一天的最高气温是2℃,最低气温是﹣3℃,所以这一天的温差是2﹣(﹣3)=2+3=5(℃),故选C.【点睛】本题考查了有理数减法的应用,根据题意列出算式,熟练应用减法法则是解题的关键.17.【广东省2018年中考数学试题】据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A. 1.442×107 B.0.1442×107 C.1.442×108 D.0.1442×108【答案】A【详解】14420000的小数点向左移动7位得到1.442,所以14420000用科学记数法可以表示为:1.442×107,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.【广西壮族自治区贵港市2018年中考数学试卷】一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A. 2.18×106 B. 2.18×105 C.21.8×106 D.21.8×105【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.【黑龙江省大庆市2018年中考数学试卷】已知两个有理数a,b,如果ab<0且a+b>0,那么()A. a>0,b>0B. a<0,b>0C. a、b同号D. a、b异号,且正数的绝对值较大【答案】D【点睛】本题考查了有理数的乘法、加法,熟练掌握和灵活应用有理数的加法法则和乘法法则是解题的关键.20.【贵州省铜仁市2018年中考数学试题】计算+++++……+的值为()A. B. C. D.【答案】B【解析】分析:直接利用分数的性质将原式变形进而得出答案.详解:原式==,=1-=.故选:B.点睛:此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.二、填空题21.【四川省资阳市2018年中考数学试卷】已知a、b满足(a﹣1)2+=0,则a+b=_____【答案】﹣1【解析】【分析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a,b的值,进而得出答案.【详解】∵(a﹣1)2+=0,∴a=1,b=﹣2,∴a+b=﹣1,故答案为:﹣1.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键. 22.【湖南省湘西州2018年中考数学试卷】﹣2018的绝对值是_____.【答案】2018【点睛】本题考查了绝对值的定义,熟练掌握绝对值的定义是解题的关键.23.【云南省昆明市2018年中考数学试题】在实数﹣3,0,1中,最大的数是_____.【答案】1【解析】分析:根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行分析即可.详解:在实数-3,0,1中,最大的数是1,故答案为:1.点睛:此题主要考查了实数的大小,关键是掌握实数比较大小的方法.24.【浙江省宁波市2018年中考数学试卷】计算:______.【答案】2018【解析】【分析】利用绝对值的定义进行求解即可得.【详解】|-2018|表示求-2018的绝对值,-2018的绝对值是2018,所以,|-2018|=2018,故答案为:2018.【点睛】本题考查了绝对值,熟练掌握绝对值的概念与性质是解题的关键.【湖南省邵阳市2018年中考数学试卷】点A在数轴上的位置如图所示,则点A表示的数的相反数是_____.25.【答案】-2【点睛】本题考查了在数轴上表示数的方法,以及相反数的含义和求法,熟练掌握相关知识是解题的关键. 26.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】如图为洪涛同学的小测卷,他的得分应是_____分.【答案】100【解析】分析:根据相反数的定义、倒数、绝对值性质及立方根的定义逐一判断即可得.详解:①2的相反数是﹣2,此题正确;②倒数等于它本身的数是1和﹣1,此题正确;③﹣1的绝对值是1,此题正确;④8的立方根是2,此题正确;则洪涛同学的得分是4×25=100,故答案为:100.点睛:本题主要考查立方根、绝对值、相反数及倒数,解题的关键是掌握相反数的定义、倒数、绝对值性质及立方根的定义.27.【广西壮族自治区桂林市2018年中考数学试题】比较大小:-3__________0.(填“< ”“=”“> ”)【答案】<【解析】分析:根据负数都小于0得出即可.详解:-3<0.故答案为:<.点睛:本题考查了有理数的大小比较的应用,能熟记有理数的大小比较法则是解此题的关键,难度不大.28.【四川省乐山市2018年中考数学试题】如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为______.【答案】﹣6点睛:本题主要考查实数与数轴的对应关系和轴对称的性质,熟练掌握对称性质是解本题的关键.29.【内蒙古通辽市2018年中考数学试卷】2018年5月13日,我国第一艘国产航母出海试航,这标志着我国从此进入“双航母”时代,据估测该航母的满载排水量与辽宁舰相当,约67500吨,将67500用科学记数法表示为_____.【答案】6.75×104【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】67500的小数点向左移动4位得到6.75,所以67500用科学记数法表示为6.75×104,故答案为:6.75×104.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.30.【云南省2018年中考数学试卷】某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为_____.【答案】3.451×103【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.三、解答题31.【浙江省湖州市2018年中考数学试题】计算:(﹣6)2×(﹣).【答案】6【解析】分析:原式先计算乘方运算,再利用乘法分配律计算即可求出值.详解:原式=36×(-)=18-12=6.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。
2018全国各地中考数学分类解析第1章 有理数
第一章 有理数1.1 正数和负数1.<2018浙江丽水3分,1题)如果零上2℃记作+2℃,那么零下3℃记作< )A.-3℃B.-2℃C.+3℃D.+2℃【解读】根据相反意义的量可知,零上2℃记作“+2℃”,则零下3℃记作“-3℃”,故选A.【答案】A【点评】本题考查相反意义的量.2.(2018山东德州中考,9,4,>-1, 0, 0.2,71 , 3 中正数一共有个.lsvhMVoRBX 【解读】由题意知2, 17,3是正数,共有三个. 【答案】3.【点评】有理数的分类方法有2种:①正有理数、0、负有理数;②整数和分数.3.<2018安徽,1,4分)下面的数中,与-3的和为0的是 < ) A.3 B.-3 C.31 D.31 【解读】根据有理数的运算法则,可以把选项中的数字和-3相加,进行筛选只有选项A 符合,也可以利用相反数的性质,根据互为相反数的两数和为0,必选-3的相反数3.lsvhMVoRBX 【答案】A .【点评】本题考查了有理数的运算、及其概念,理解有关概念,掌握运算法则,是解答此类题目的基础.4.<2018山东泰安,1,3分)下列各数比-3小的数是< )A. 0B. 1C.-4D.-1【解读】根据正数大于0,0大于负数,两个负数绝对值大的反而小可得,比-3小的数是-4.【答案】C【点评】本题考查了实数大小的比较.要掌握实数大小的比较:正数大于0,负数小于0,正数大于负数;数轴上表示的两个数,右边的比左边的大.lsvhMVoRBX 5.<2018浙江省衢州,1,3分)下列四个数中,最小的数是( >A.2B.-2C.0D.21- 【解读】根据有理数比较大小的法则进行判断,有-2<12-<0<2. 【答案】B【点评】本题考查了有理数大小的比较,①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.lsvhMVoRBX 6.(2018重庆,1,4分>在一3,一1,0,2这四个数中,最小的数是< )A .一3B .一1 C.0D.2lsvhMVoRBX 【解读】正数大于0,负数小于0,两个负数绝对值大的反而小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题1.1 有理数一、单选题1.【安徽省2018年中考数学试题】的绝对值是()A. B. 8 C. D.【答案】B【分析】根据绝对值的定义“一个数的绝对值是数轴上表示这个数的点到原点的距离”进行解答即可.【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2.【2018年重庆市中考数学试卷(A卷)】的相反数是()A. B. C. D.【答案】A【分析】根据只有符号不同的两个数互为相反数进行求解即可得.【详解】2与-2只有符号不同,所以2的相反数是-2,故选A.【点评】本题考查了相反数的定义,属于中考中的简单题3.【浙江省衢州市2018年中考数学试卷】﹣3的相反数是()A. 3B. ﹣3C.D. ﹣点睛:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.4.【2018年浙江省绍兴市中考数学试卷】如果向东走记为,则向西走可记为()A. B. C. D.【答案】C分析首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.详解:如果向东走2m时,记作+2m,那么向西走3m应记作−3m.故选C.点睛:考查了相反意义的量,相反意义的量用正数和负数来表示.5.【天津市2018年中考数学试题】计算的结果等于()A. 5B.C. 9D.【答案】C分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.6.【山东省滨州市2018年中考数学试题】若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A. 2+(﹣2)B. 2﹣(﹣2)C. (﹣2)+2D. (﹣2)﹣2点睛:本题考查的是数轴上两点间的距离、数轴等知识,熟知数轴上两点间的距离公式是解答此题的关键.7.【江苏省连云港市2018年中考数学试题】﹣8的相反数是()A. ﹣8B.C. 8D. ﹣【答案】C分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.详解:-8的相反数是8,故选:C.点睛:此题主要考查了相反数,关键是掌握相反数的定义.8.【江苏省盐城市2018年中考数学试题】-2018的相反数是()A. 2018B. -2018C.D.【答案】A分析:只有符号不同的两个数叫做互为相反数.详解:-2018的相反数是2018.故选:A.点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.9.【湖北省黄冈市2018年中考数学试题】-的相反数是()A. -B. -C.D.【答案】C分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:-的相反数是.故选C.点睛:本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.10.【四川省宜宾市2018年中考数学试题】3的相反数是()A. B. 3 C. ﹣3 D. ±【答案】C分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.详解:3的相反数是﹣3,故选C.点睛:此题主要考查了相反数,关键是掌握相反数的定义.11.【湖南省娄底市2018年中考数学试题】2018的相反数是()A. B. 2018 C. -2018 D.【答案】C【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键. 12.【山东省德州市2018年中考数学试题】3的相反数是()A. 3B.C. -3D.【答案】C分析:根据相反数的定义,即可解答.详解:3的相反数是﹣3.故选C.点睛:本题考查了相反数,解决本题的关键是熟记相反数的定义.13.【山东省淄博市2018年中考数学试题】计算的结果是()A. 0B. 1C. ﹣1D.【答案】A【解析】分析:先计算绝对值,再计算减法即可得.详解:=﹣=0,故选:A.点睛:本题主要考查绝对值和有理数的减法,解题的关键是掌握绝对值的性质和有理数的减法法则.14.【山东省潍坊市2018年中考数学试题】( )A. B. C. D.【答案】B分析:根据绝对值的性质解答即可.详解:|1-|=.故选B.点睛:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.15.【江西省2018年中等学校招生考试数学试题】﹣2的绝对值是A. B. C. D.【答案】B【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.16.【浙江省金华市2018年中考数学试题】在0,1,﹣,﹣1四个数中,最小的数是()A. 0B. 1C.D. ﹣1【答案】D分析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.详解:∵-1<-<0<1,∴最小的数是-1,故选D.点睛:本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.17.【浙江省金华市2018年中考数学试题】在0,1,﹣,﹣1四个数中,最小的数是()A. 0B. 1C.D. ﹣1【答案】D点睛:本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.18.【江苏省连云港市2018年中考数学试题】地球上陆地的面积约为150 000 000km2.把“150 000 000”用科学记数法表示为()A. 1.5×108B. 1.5×107C. 1.5×109D. 1.5×106【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.详解:150 000 000=1.5×108,故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.【江苏省盐城市2018年中考数学试题】盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A. B. C. D.【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将146000用科学记数法表示为:1.46×105.故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.【湖北省孝感市2018年中考数学试题】的倒数是()A. 4B. -4C.D. 16【答案】B分析:根据乘积是1的两个数互为倒数解答.详解:∵-×(-4)=1,∴的倒数是-4.故选:B.点睛:此题考查的知识点是倒数,关键掌握求一个数的倒数的方法.注意:负数的倒数还是负数.21.【广东省深圳市2018年中考数学试题】260000000用科学计数法表示为( )A. B. C. D.【答案】B【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.22.【四川省成都市2018年中考数学试题】2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.1万=10000=104.详解:40万=4×105,故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.23.【天津市2018年中考数学试题】今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题24.【山东省德州市2018年中考数学试题】计算:=__________.【答案】1分析:根据有理数的加法解答即可.详解:|﹣2+3|=1.故答案为:1.点睛:本题考查了有理数的加法,关键是根据法则计算.25.【湖北省黄冈市2018年中考数学试题】实数16 800 000用科学计数法表示为______________________.【答案】1.68×107分析:用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.详解:16800000=1.68×107.故答案为:1.68×107.点睛:此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a 与n的值是解题的关键.26.【江苏省南京市2018年中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________.【答案】(答案不唯一)分析:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.又根据绝对值的定义,可以得到答案.详解:设|a|=-a,|a|≥0,所以-a≥0,所以a≤0,即a为非正数.故答案为:-1(答案不唯一).点睛:本题综合考查绝对值和相反数的应用和定义.27.【江苏省南京市2018年中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________.【答案】(答案不唯一)点睛:本题综合考查绝对值和相反数的应用和定义.三、解答题28.【江苏省南京市2018年中考数学试卷】如图,在数轴上,点、分别表示数、.(1)求的取值范围.(2)数轴上表示数的点应落在()A.点的左边 B.线段上 C.点的右边【答案】(1).(2)B.【解析】分析:(1)根据点B在点A 的右侧列出不等式即可求出;(2)利用(1)的结果可判断-x+2的位置.详解:(1)根据题意,得.解得.(2)B.点睛:本题考查了数轴的运用.关键是利用数轴,数形结合求出答案.。