相遇与追及问题

合集下载

(完整版)高中物理相遇和追及问题(完整版)

(完整版)高中物理相遇和追及问题(完整版)

、考点、热点回顾一、追及问题1. 类型图象 说明匀加速追匀速①t=t 0 以前,后面物体与 前面物体间距离增大②t=t 0 时,两物体相距最 远为 x 0+Δx③t=t 0 以后,后面物体与前面物体间距离减小④能追及且只能相遇一 次匀速追匀减速匀加速追匀减速2. 速度大者追速度小者度大者追速度小者 开始追及时, 后面物体与 前面物体间的距离在减小, 当 两物体速度相等时,即 t=t0 时刻:① 若Δ x=x0, 则恰能追 及,两物体只能相遇一次, 这相遇追及问题匀减速追匀速也是避免相撞的临界条件② 若Δ x<x0, 则不能追 及,此时两物体最小距离为x0- Δ x③ 若Δ x>x0, 则相遇两次,设t1 时刻Δ x1=x0, 两物体第一次相遇 ,则 t2 时刻两物体第 二次相遇① 表中的Δ x 是开始追及以后,后面物体因速度大而比前面物体多运动的位移; ② x 0是开始追及以前两物体之间的距离; ③ t 2-t 0=t 0-t 1;④ v 1 是前面物 体的速度, v 2是后面物体的速度 . 二、相遇问题这一类 : 同向运动的两物体的相遇问题 , 即追及问题 .第二类 : 相向运动的物体 , 当各自移动的位移大小之和等于开始时两物体的距离时相遇 . 解此类问题首先应注意先画示意图 , 标明数值及物理量 ; 然后注意当被追赶的物体做匀 减速运动时 , 还要注意该物体是否停止运动了 .求解追及问题的分析思路(1) 根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物 体运动时间之间的关系.(2) 通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追 及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等 时有最大距离; 速度大者减速追赶速度小者, 在两物体速度相等时有最小距离,等等. 利用 这些临界条件常能简化解题 过程.(4)求解此类问题的方法, 除了以上所述根据追及的主要条件和临界条件解联立方程外, 还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:匀速追匀加速匀减速追匀加速相遇问题分为追及相遇和相向运动相遇两种情形, 其主要条件是两物体在相遇处的位置 坐标相同.(1) 列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2) 利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4) 与追及中的解题方法相同.【例 1】物体 A 、B 同时从同一地点, 沿同一方向运动, A 以 10m/s 的速度匀速前进, B 以2m/s 2 的加速度从静止开始做匀加速直线运动,求 A 、 B 再次相遇前两物体间的最大距离.【 解析一 】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度 a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内, A 的速度大于 B 的速度,它们间的距离逐渐变大,当 B 的速度加速到大于 A 的速度后,它们间的距离又逐渐变小; A 、B 间距离有最大值的临界条 件是 υA = υB .①设两物体经历时间 t 相距最远,则 υA = at ② 把已知数据代入①②两式联立得 t =5 s 在时间 t 内, A 、B 两物体前进的距离分别为 s A = υA t =10×5 m = 50 m1 2 1 2s B = at 2= ×2×52 m = 25 m22A 、B 再次相遇前两物体间的最大距离为Δ s m = s A - s B = 50 m -25 m = 25 m解析二 】 相对运动法因为本题求解的是 A 、B 间的最大距离,所以可利用相对运动求解.选 B 为参考系,则 A2 相对 B 的初速度、末速度、加速度分别是 υ0=10 m/s 、υt =υA -υB =0、a =- 2 m/s .22 根据 υt 2-υ0=2as .有 0- 102=2× (-2) ×s AB 解得A、 B 间的最大距离为 s AB =25 m . 解析三 】 极值法11物体 A 、 B 的位移随时间变化规律分别是 s A =10t ,s B =2at 2=2×2×t 2 =t 5.B 间 的 距 离 Δs =10t -t 2, 可 见 ,4×( -1)×0- 102 4×(-1) m =25 m【解析四 】 图象法根据题意作出 A 、B 两物体的 υ-t 图象,如图 1-5-1 所示.由图可知,B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得 t 1=5 s A 、 B 间 距 离 的 最 大 值 数 值 上 等 于 ΔO υA P 的 面 积 , 1 Δs m = 2×5×10 m = 25 m .【答案 】25 m【点拨 】相遇问题的常用方法(1) 物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,典型例题且最大值为按(解法一)中的思Δ s m = A 、即设甲、乙两车行驶的总路程分别为 s 、 s ′,则有路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3) 极值法:设相遇时间为 t ,根据条件列方程,得到关于 t 的一元二次方程,用判别 式进行讨论,若△> 0,即有两个解,说明可以相遇两次;若△= 0,说明刚好追上或相碰;若△< 0,说明追不上或不能相碰.(4) 图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解.拓展如图 1-5-2 所示是甲、乙两物体从同一地点,沿同一方向做直线运动的 υ- t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是 1s 末和 4s 末B .这两个物体两次相遇的时刻分别是 2s 末和 6s 末C .两物体相距最远的时刻是 2s 末D . 4s 末以后甲在乙的前面【解析 】从图象可知两图线相交点 1s 末和 4s 末是两物速度相等时刻,从 4s 末两物相距最远,到 6s 末追上乙.故选 B . 答案 】 B的加速度大小减小为原来的一半。

追及与相遇问题

追及与相遇问题
相撞?
见全品练习册,20页的13题
方法一:设:经过时间t,人与车速度相等,

人追不上车。人车间的最小距离为
方法二:设:经过时间t,人与车相距S,
则S= S0+S车 - S人=25 + 0.5 t2 - 6 t 令S=0,既假设人能追上车,0.5 t2 - 6 t+25=0 因b2-4ac = (-6)2 -4×0.5×25=-14<0,方程无 解,故人追不上车 当t=人车间的最小距离为 s =25 + 0.5×62 - 6× 6=7m 时,s有最小值
追及与相遇问题
一、追及问题:二者速度相等时相距最远 (或者最近) 1、后面加速,前面匀速,二者相距x 。一定 能追上,二者速度相等时相距最远 。
2、后面匀速,前面从静止加速,二者相距x 。 不一定能追上,二者速度相等时相距最远近。
2 例6、车从静止开始以1m/s 的加
速度前进,车后相距s0为25m处, 某人同时开始以6m/s的速度匀速 追车,能否追上?若追不上,求 人、车间的最小距离。

相遇与追及问题

相遇与追及问题
⑴ 两个运动物体一般同地不同时(或同时不同地)出发作同向运动,在后面的,行进速度要快些,在前面的,行进速度要慢些.
⑵ 在一定时间内,后面的追上前面的.
共同点:⑴ 是否同时出发
⑵ 是否同地出发
⑶ 方向:同向、背向、相向
⑷ 方法:画图
3.简单的相遇与追及问题各自解题时的入手点及需要注意的地方
1.相遇问题:与速度和、路程和有关
【巩固】甲、乙两车同时从A,B两地相向而行,它们相遇时距A,B两地中心处8千米,已知甲车速度是乙车的1.2倍,求A,B两地的距离。
【巩固】甲乙二人同时分别自A、B两地出发相向而行,相遇之地距A、B中点300米,已知甲每分钟行100米,乙每分钟行70米,求A地至B地的距离.
4.行程间的倍比关系
【例 8】甲、乙两车分别同时从 、 两地相对开出,第一次在离 地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离 地25千米处相遇.求 、 两地间的距离.
5.王新从教室去图书馆还书,如果每分钟走70米,能在图书馆闭馆前2分钟到达,如果每分钟走50米,就要超过闭馆时间2分钟,求教室到图书馆的路程有多远?
6.甲、乙两车分别同时从 、 两地相对开出,第一次在离 地 千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离 地 千米处相遇.求 、 两地间的距离?
⑴ 是否同时出发
⑵ 是否有返回条件
⑶ 是否和中点有关:判断相遇点位置
⑷ 是否是多次返回:按倍数关系走。
⑸ 一般条件下,入手点从"和"入手,但当条件与"差"有关时,就从差入手,再分析出时间,由此再得所需结果
2.追及问题:与速度差、路程差有关
⑴ 速度差与路程差的本质含义
⑵ 是否同时出发,是否同地出发。

追及和相遇问题

追及和相遇问题

例3:一辆轿车违章超车,以108km/h的速度驶入 左侧逆行道时,猛然发现正前方80m处一辆卡车 正以72km/h的速度迎面驶来,两车司机同时刹 车,刹车加速度大小都是10m/s2,两司机的的反 应时间(即司机发现险情到实施刹车所经历的时 间)都是△t,试问△t是何数值 ,才能保证两车不相 撞?
例 4:一辆轿车的最大速度为30m/s,要想从静止开 始用4分钟追上前面1000m处以25m/s匀速同向 行驶的货车,轿车至少要以多大的加速度起速运动的物体甲追 赶同方向匀加速运动的物体乙。(v甲﹥ v0乙)
v甲 S0 v0乙 a
A、当v乙= v甲时:S甲=S0+S乙,甲恰好追上乙 B、当v乙= v甲时: S甲<S0+S乙,甲永远追不上乙, 此时两者有最小间距⊿Smin C、当v乙< v甲时: S甲>S0+S乙,甲追上了乙,由 乙作匀加速运动,以后v乙> v甲,则乙还有一次 追 上甲的机会,其间两者速度相等时两者距离 v 有一个较大值。 v
追及和相遇问题
追及问题:追和被追的两物体同向运动,往 往当两者速度相等是能否追上或者两者距离有最 大值、最小值的临界条件。追及问题常见情形有 三种: ①同时同地出发:初速为零的匀加速直线运动物体 甲追匀速运动的物体乙:一定能追上,当v甲= v乙 时,两者之间有△xmax v(m/s) v0甲=0 v0乙 a o 甲
(2)相遇问题:相遇问题分为追及相遇和相向相 遇问题,上面三种常见问题属于追及相遇问题, 至于相向相遇问题,我们通过例题来进行说明, 本节课重点解决追及相遇问题。 对于追及相遇问题我们解题过程中要弄清 物体的运动过程,挖掘题中隐含的临界条件,在 解题方法上常常用到解析法、数学法、图象法、 相对运动法等等。
例1:火车以速度v1匀速行驶,司机发现前方同轨 道上相距S处有另一火车沿同方向以速度v2(对 地,且v1> v2)做匀速运动,司机立即以加速度 大小为a紧急刹车,要使两车不相撞, a应满足 什么条件?

(完整版)相遇问题与追及问题

(完整版)相遇问题与追及问题

相遇与追及问题一、学习目标1. 理解相遇与追及的运动模型,掌握相遇与追及这两种情况下路程、时间、速度这三个基本量之间的关系.会利用这个关系来解决一些简单的行程问题.2. 体会数形结合的数学思想方法.二、主要内容1. 行程问题的基本数量关系式:路程=时间×速度;速度=路程÷时间;时间=路程÷速度.2.相遇问题的数量关系式:相遇路程=相遇时间×速度和;速度和=相遇路程÷相遇时间;相遇时间=相遇路程÷速度和.3.追及问题的数量关系式:追及距离=追及时间×速度差;速度差=追及距离÷追及时间;追及时间=追及距离÷速度差.4. 能熟练运用路程、时间、速度这三个基本量的关系,结合图形分析,解决一些简单的行程问题.三、例题选讲例1两辆汽车同时分别从相距500千米的A,B两地出发,相向而行,速度分别为每小时40千米和每小时60千米.求几小时后两车相遇.例2甲车在乙车前200千米,同时出发,速度分别为每小时40千米与60千米.问多少小时后,乙车追上甲车.例3一辆公共汽车和一辆小轿车同时从相距598千米的两地相向而行.公共汽车每小时行40千米,小轿车每小时行52千米,问几小时后两车相距138千米?例4甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地相距多少千米?例6一辆卡车和一辆摩托车同时从A、B两地相对开出,两车在途中距A地60千米处第一次相遇.然后,两车继续前进,卡车到达B地,摩托车到达A地后都立即返回,两车又在途中距B地30千米处第二次相遇.求A、B两地相距多少千米?例7甲、乙、丙三人进行100米赛跑.当甲到达终点时,乙离终点还有20米,丙离终点还有40米.如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多远?例8小明步行上学,每分行75米,小明离家12分后,爸爸骑单车去追,每分行375米.问爸爸出发多少分后能追上小明?例9解放军某部快艇追击敌舰,追到A岛时,敌舰已逃离该岛15分钟,已测出敌舰每分钟行驶1000米,解放军快艇每分钟行驶1360米,在距离敌舰600米处可开炮射击.问解放军快艇从A岛出发经过多少分钟就可以开炮射击敌舰?例10甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而行,乙跑4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需要多少分钟?例11两名运动员在湖周围环形道上练习长跑,甲每分跑250米,乙每分跑200米,两人同时从两地同向出发,经过45分甲追上乙,如果两人同时同地反向出发,经过多少分两人相遇?例12甲、乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米,如果她们同时分别从直路两端点出发,跑了6分,那么,这段时间内,两人共迎面相遇了多少次?巩固练习:1、甲、乙两站相距980千米,两列火车由两站相对开出,快车每小时行50千米,慢车每小时行多少千米,两车经10小时能相遇?2、甲车每小时行60千米,1小时后,乙车紧紧追赶,速度为每小时80千米,几小时后乙车可追上甲车?3、早晨6时,有一列货车和一列客车同时从相距360千米的甲、乙两城相对开出,中途相遇,这期间,货车停车一次60分钟,客车停车两次各30分钟,已知货车每小时行42千米,客车每小时行78千米,问两车在几点钟相遇?4、东、西两镇相距240千米,一辆客车从上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12点,两车恰好在两镇间的中点相遇,如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?5、骑单车从甲地到乙地,以每小时10千米的速度行进,下午1点到,以每小时15千米的速度行进,上午11点到.如果希望中午12点到,那么应以怎样的速度行进呢?6、某人由甲地去乙地,如果他从甲地先骑摩托车行了12小时,再换骑自行车行9小时,恰好到达乙地.如果他从甲地先骑自行车行了21小时,再换骑摩托车行8小时,也恰好到达乙地.问:全程骑摩托车需要多少小时才能到达乙地?7、兄妹两人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门口时,发现忘了带课本,立即沿原路返回去取,行至离校门口180米处与妹妹相遇,他们家离学校多少米?8、兄妹两人在周长300米的圆形水池边玩.从同一地点同时背向饶水池而行.哥哥每分钟走13米,妹妹每分钟走12米.他们第5次相遇时,哥哥共走了多长的路?课后作业:1.甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙多少小时可追上甲?2.小张从家到公园,原打算每分钟走50米,为了提早10分钟到,他把速度加快,每分钟走75米.小张家到公园有多少米?3.父亲和儿子都在某厂工作,他们从家里出发步行到工厂,父亲用40分钟,儿子用30分钟.如果父亲比儿子早5分钟离家,问儿子用多少分钟可赶上父亲?4.解放军某部小分队,以每小时6千米的速度到某地执行任务,途中休息30分后继续前进,在出发5.5小时后,通讯员骑摩托车以56千米的速度追赶他们。

相遇追及问题

相遇追及问题

相遇、追及问题一、相遇问题两个物体从不同地点做面对面的运动,即相向运动,相向运动能使两运动物体在途中相遇,它是研究速度和、相遇时间、总距离(总路程)之间的关系,解答相遇问题的关键是要求出两物体在同一时间的速度之和,又称速度和。

例题1:两辆汽车从A、B两地相向开出,甲车每小时行55千米,乙车每小时行45千米,经过3小时两车相遇,A、B两地相距多少千米?EX1:两列火车同时从两地相对开出,甲列火车每小时行86千米,乙列火车每小时行102千米,经过5小时两车在途中相遇,求两地相距多少千米?EX2:甲乙两列火车分别从A、B两地同时出发相向而行,甲车每小时行驶75千米,乙车每小时行驶69千米,经过18小时两车途中相遇,两地间的铁路长多少千米?相遇问题中存在的数量关系:速度和× 相遇时间= 路程和路程和÷相遇时间= 速度和路程和÷速度和= 相遇时间例题2:北京到沈阳的铁路长830千米,两辆火车同时相向开出10小时相遇,已知甲车每小时行41千米,乙车每小时行多少千米?EX1:甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,经过2小时后两人相遇,问乙每小时行多少千米?例题3:姐妹两人在周长为30米的圆形水池边玩,她们约好从同一地点同时背向绕水池行走,姐姐每秒走1.3米,妹妹每秒走1.2米。

多长时间她们能相遇?例题4:甲、乙两辆汽车同时从两地相向而行,甲车每小时行60千米,乙车每小时行48千米,两车离两地中点30千米处相遇,求这两地间的距离是多少?EX1:甲地到乙地快车每小时行32千米,慢车每小时行18千米,如果两车同时从甲乙两地相对开出,可在距中点35千米的地方相遇,甲乙两地相距是多少千米??★例题5:明明和亮亮同时从相距3000米的家里相向出发,明明每分钟行70米,一只狗与他同时出发,每分钟跑320米,亮亮每分钟走80米,狗遇到亮亮后立即朝明明跑去,遇到明明后又朝亮亮跑去,直到两人相遇,这只狗一共跑了多少米?EX1:王明和妹妹两人从相距2000米的两地相向而行,王明每分钟行110米,妹妹每分钟行90米,如果一只狗与王明同时同向而行,每分钟行500米,遇到妹妹后,立即回头向王明跑去,遇到王明再向妹妹跑去,这样不断来回,直到王明和妹妹相遇为止。

追及相遇问题

追及相遇问题
追及和相遇问题
1.追及问题 “追及”的主要条件是两个物体在追 赶过程中处在同一位置,常见的情形有 三种: (1)初速度为零的匀加速直线运动的 物体甲追赶同方向的匀速运动的物体乙 时,一定能追上,在追上之前两者有最 大距离的条件是两物体的速度相等,即 v甲=v乙.
(2)匀速运动的物体甲追赶同方向做匀
3.相遇问题 (1)相遇的特点:在同一时刻两物 体处于同一位置. (2)相遇的条件:同向运动的物体 追及即相遇;相向运动的物体,各自 发生的位移的绝对值之和等于开始时 两物体之间的距离时即相遇.
类型一 追及相遇问题的求解方法
例1 一小汽车从静止开始以3 m/s2的 加速度行驶,恰有一自行车以6 m/s的 速度从车边匀速驶过.
加速运动的物体乙时,恰好追上或恰好
追不上的临界条件是两物体速度相等,
即v甲=v乙. 判断此种追赶情形能否追上的方法是:
假定在追赶过程中两者在同一位置,比
较此时的速度大小,若v甲>v乙,则能追上; v甲<v乙,则追不上,如果始终追不上,当 两物体速度相等即v甲=v乙时,两物体的 间距最小.
(3)速度大者减速(如匀减速直线运动)追速 度小者(如匀速运动)
(1)汽车从开动后在追上自行车之 前,要经多长时间两者相距最远?最 远距离是多少?
(2)什么时候追上自行车,此时汽 车的速度是多少?
(2)由图知,t=2 s以后,若两车位移相等, 即v-t图象与时间轴所夹的“面积”相等.
由几何关系知,相遇时间为t′=4 s,此 时v汽=2v自=12 m/s.
解析:汽车和自行车运动草图如下:
六、追及和相遇问题 1.追及问题 “追及”的主要条件是两个物体在追 赶过程中处在同一位置,常见的情形有 三种: (1)初速度为零的匀加速直线运动的 物体甲追赶同方向的匀速运动的物体乙 时,一定能追上,在追上之前两者有最 大距离的条件是两物体的速度相等,即 v甲=v乙.

相遇问题、追及问题

相遇问题、追及问题

【解题思路和方法】 简单的题目直接利用公 式,复杂的题目变通后利用公式。
例1 好马每天走120千米,劣马每天走75千米, 劣马先走12天,好马几天能追上劣马? 解 (1)劣马先走12天能走多少千米? 75×12=900(千米) (2)好马几天追上劣马? 900÷(120- 75)=20(天) 列成综合算式 75×12÷(120-75)= 900÷45=20(天) 答:好马20天能追上劣马。
追及问题
【含义】两个运动物体在不同地点同时出发 (或者在同一地点而不是同时出发,或者 在不同地点又不是同时出发)作同向运动, 在后面的,行进速度要快些,在前面的, 行进速度较慢些,在一定时间之内,后面 的追上前面的物体。这类应用题就叫做追 及问题。 【数量关系】 追及时间=追及路程÷(快速 -慢速) 追及路程=(快速-慢速)×追及时间

例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹 妹每分钟走60米。哥哥到校门口时发现忘记带课本, 立即沿原路回家去取,行至离校180米处和妹妹相遇。 问他们家离学校有多远? 解要求距离,速度已知,所以关键是求出相遇时间。 从题中可知,在相同时间(从出发到相遇)内哥 哥比妹妹多走(180×2)米,这是因为哥哥比妹 妹每分钟多走(90-60)米, 那么,二人从家出走到相遇所用时间为 180×2÷(90-60)=12(分钟) 家离学校的距离为 90×12-180=900(米) 答:家离学校有900米远。
例3 甲乙二人同时从两地骑自行车相向而行, 甲每小时行15千米,乙每小时行13千米,两 人在距中点3千米处相遇,求两地的距离。
解 “两人在距中点3千米处相遇”是正确理解本题 题意的关键。从题中可知甲骑得快,乙骑得慢, 甲过了中点3千米,乙距中点3千米,就是说甲比 乙多走的路程是(3×2)千米,因此, 相遇时间=(3×2)÷(15-13)=3(小时) 两地距离=(15+13)×3=84(千米) 答:两地距离是84千米。

追及和相遇问题

追及和相遇问题

追击和相遇问题两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。

因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系而解出。

一、追及问题1、追及问题中两者速度大小与两者距离变化的关系。

若甲2⑴⑵⑶3⑴⑴⑵例1以5m s的速度匀速驶过停车线与汽车同方向行驶,求:(1)什么时候它们相距最远?最远距离是多少?(2)在什么地方汽车追上自行车?追到时汽车的速度是多大?分析:分析过程,合理分段,画出示意图,并找出各段之间的连接点解题过程:例2、在某市区内,一辆小汽车在公路上以速度v 1向东行驶,一位观光游客正由南向北从斑马线上横过马路。

汽车司机发现游客途经经14.01.甲乙两个质点同时同地向同一方向做直线运动,它们的v —t 图象如图所示,则 ( )A.乙比甲运动的快B.2 s乙追上甲C.甲的平均速度大于乙的平均速度D.乙追上甲时距出发点40 m远2.汽车A在红绿灯前停住,绿灯亮起时起动,以0.4 m/s2的加速度做匀加速运动,经过30 s 后以该时刻的速度做匀速直线运动.设在绿灯亮的同时,汽车B以8 m/s的速度从A车旁边驶过,且一直以相同速度做匀速直线运动,运动方向与A车相同,则从绿灯亮时开始()A.A车在加速过程中与B车相遇B.A、B相遇时速度相同C.相遇时A车做匀速运动D.两车不可能再次相遇3.两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度均为V0,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车.已知前车在刹车过程中所行的距离为s,若要保证两辆车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少应为:()A.s B.2s C.3s D.4s4.A与B两个质点向同一方向运动,A做初速为零的匀加速直线运动,B做匀速直线运动.开始计时时,A、B位于同一位置,则当它们再次位于同位置时:A.两质点速度相等.B.A与B在这段时间内的平均速度相等.C.A的即时速度是B的2倍.D.A与B的位移相等.5.汽车甲沿平直公路以速度V做匀速直线运动,当它经过某处的另一辆静止的汽车乙时,乙开始做初速度为零的匀加速直线运动去追甲。

四年级相遇与追及问题

四年级相遇与追及问题

四年级相遇与追及问题相遇和追及是初中数学中比较基础的运动问题。

相遇问题是指两个人从两个不同的地点出发,在途中相遇的情况。

追及问题是指一个人从后面赶上另一个人的情况。

在解决这些问题时,需要用到速度、时间和路程的关系。

具体来说,对于相遇问题,假设甲从A地到B地,乙从B地到A地。

如果两人同时出发,他们在途中相遇,实质上是甲和乙一起走了A、B之间这段路程。

如果甲的速度为v甲,乙的速度为v乙,相遇的时间为t,则相遇路程为S和=V和t,其中V和=v甲+v乙。

对于追及问题,假设甲走得快,乙走得慢。

在相同的时间(追及时间)内,甲比乙多走了一段路程,也就是追及路程。

如果甲的速度为v甲,乙的速度为v乙,速度差为V差=v甲-v乙,则追及路程为S差=V差t。

需要注意的是,在研究这些问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,两个物体所运行的时间相同;(2)在整个运行过程中,两个物体所走的是同一路径。

举个例子,假设XXX和明明同时从各自的家相对出发,明明每分钟走20米,XXX骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇。

那么,聪聪家和明明家的距离为S和=(20+42)×20=1640米。

在解决这些问题时,可以选择直接利用公式计算,也可以画图帮助理解。

对于刚刚研究奥数的孩子,需要引导他们认识、理解及应用公式。

已经行驶了82千米(41千米/小时×2小时),此时甲、乙两车相距770-82=688千米。

接下来,甲、乙两车相向而行,速度之和为45+41=86千米/小时。

根据“相遇时间=路程和/速度和”的公式,甲车行驶的时间为688/86=8小时。

因此,甲车行驶8小时后与乙车相遇。

答案】甲车行驶8小时后与乙车相遇。

考点】行程问题【难度】☆☆【题型】解答【解析】先求出XXX出发后,XXX所行的路程:70×5=350(米);再求出XXX返回学校和取运动服所需的时间:2×2=4(分钟);因为XXX比XXX每分钟多走40米,所以追上XXX的时间为350÷40=8.75(分钟),即约9分钟后追上XXX.答案】9分钟已知XXX和XXX同时从学校出发,XXX的速度是XXX的1.6倍,他们向同一个方向走,5分钟后XXX返回学校取运动服,这样用去了5分钟,在学校又耽误了2分钟,XXX一共耽误了12分钟。

追及与相遇问题

追及与相遇问题
追及与相遇问题 1.相遇:若同一时刻,两物体处于同一位置,则说两物
体在该时刻相遇。
2.追及:(1)若追及过程中,前者速度小于后者速度,
两物体距离越来越近; (2)若追及过程中,前者速度大于后者速度, 两物体距离越来越近。 (3)若后者能追上前者,则速度一定不小于前 者。
3.临界:速度相等时是物体距离极大值或极小值的时
例2、A火车以v1=20m/s速度匀速行驶,司机发现
前方同轨道上相距100m处有另一列火车B正以 v2=10m/s速度匀速行驶,A车立即做加速度大小为 a的匀减速直线运动。要使两车不相撞,a应满足 什么条件?
例3、A、B两车在平直的公路上分别以v1=10 m/s和v2=20 m/s的速度匀速行驶,两车相距 10m处,从该时刻起,前方的B车以2m/s2的 恒定加速度开始刹车,求A车何时追上B车?
例4、甲、乙两汽车在一条平直的单行道上乙前甲
后同向匀速行驶.甲、乙两车的速度分别为v1=40 m/s和v2=20 m/s ,当两车距离接近到250 m时两车 同时刹车,已知两车刹车时的加速度大小分别为 a1=1 m/s2和a2=1/3 m/s2问甲车是 Nhomakorabea会撞上乙车?
刻———速度相等往往是追及过程中两物体能 否相遇的临界条件。
追及与相遇问题
解题思路 1.分析相互追及的两物体运动情况,画出运动示意图;
2.由运动示意图找出两物体位移关系;
3.根据位移关系由位移公式列方程求解或利用速度时间图 像求解。
例1、一辆汽车在十字路口等候绿灯,当绿灯亮时
汽车以3m/s2的加速度开始加速行驶,恰在这时一 辆自行车以6m/s的速度匀速驶来,从后边超过汽 车。试求:汽车从路口开动后,在追上自行车之前 经过多长时间两车相距最远?此时距离是多少?汽 车在第几秒追上自行车?

初一数学相遇和追及问题解析

初一数学相遇和追及问题解析

初一数学相遇和追及问题解析一、相遇问题的基本概念相遇问题是指在两个或多个物体或人在同一直线上运动,并在某个时间点相遇的问题。

在数学中,我们通常用速度、时间、距离等变量来描述相遇问题。

二、追及问题的基本概念追及问题是指两个或多个物体或人在同一直线上运动,其中一人或物体追赶另一个物体或人,并最终追上的问题。

在数学中,我们通常用速度、时间、距离等变量来描述追及问题。

三、相遇问题的解决方法解决相遇问题的关键是找到相遇时各个物体或人行驶的距离总和等于两物体或人的初始距离。

具体解决方法如下:1. 找到两物体或人的初始距离。

2. 计算两物体或人相遇时各自行驶的距离。

3. 计算两物体或人相遇时的总距离。

4. 根据总距离和初始距离的关系,确定相遇时各个物体或人的速度、时间等变量。

四、追及问题的解决方法解决追及问题的关键是找到追及时各个物体或人行驶的距离差等于两物体或人的初始距离。

具体解决方法如下:1. 找到两物体或人的初始距离。

2. 计算追及时各个物体或人行驶的距离差。

3. 根据初始距离和行驶的距离差的关系,确定追及时各个物体或人的速度、时间等变量。

五、相遇和追及问题的应用实例相遇和追及问题在现实生活中很常见,比如两个人同时从两地出发相向而行,或者一个人从后面追赶另一个人等。

这些问题的解决方法都可以从初一数学的角度来解析。

六、相遇和追及问题的常见陷阱在解决相遇和追及问题时,学生容易犯的错误主要有以下几个方面:1. 没有考虑到相遇或追及的时刻是否已经过去,导致计算错误。

2. 没有考虑到物体的速度是否相同或相等,导致计算错误。

3. 没有考虑到物体的初始位置是否相同,导致计算错误。

4. 没有考虑到物体的行驶方向是否相同或相反,导致计算错误。

七、如何提高解决相遇和追及问题的能力为了提高解决相遇和追及问题的能力,学生可以采取以下措施:1. 熟悉相遇和追及问题的基本概念和解决方法,掌握相关的数学知识和技能。

2. 多做练习题,通过反复练习加深对知识的理解和掌握程度。

追及和相遇问题

追及和相遇问题
在这段时间里,人、车的位移分别为:
x人=v人t=6×6=36m
x车=at′2/2=1×62/2=18m
△x=x0+x车-x人=25+18-36=7m
结论:速度大者减速追赶速度小者,追上前在两 个物体速度相等时,有最小距离.即必须在此之前
追上,否则就不能追上.
解析:作汽车与人的运动草图如下图甲和v-t图象如下图乙所 示.因v-t图象不能看出物体运动的初位置,故在图乙中标上两 物体的前、后.由图乙可知:在0~6 s时间内后面的人速度大, 运动得快;前面的汽车运动得慢.即0~6 s内两者间距越来越 近.因而速度相等时两者的位置关系,是判断人能否追上汽车
临界条件。
若无解,则不能追上。
代入数据并整理得:t2-12t+50=0 △=b2-4ac=122-4×50×1=-56<0
所以,人追不上车。
在刚开始追车时,由于人的速度大于车的速度, 因此人车间的距离逐渐减小;当车速大于人的 速度时,人车间的距离逐渐增大。因此,当人 车速度相等时,两者间距离最小。
at′= v人 t′=6s
的两个关系:
1.两个物体运动的时间关系; 2.两个物体相遇时必须处于同一位置。
即:两个物体的位移关系
③匀减速直线运动的物体追赶同向匀速(或匀加速)直线运动的 物体时,恰好追上(或恰好追不上)的临界条件为:即追尾时, 追及者速度等于被追及者速度.当追及者速度大于被追及者速度,
例题3:经检测汽车A的制动性能:以标准速度20m/s 在平直公路上行使时,制动后40s停下来。现A在平直 公路上以20m/s的速度行使发现前方180m处有一货车 B以6m/s的速度同向匀速行使,司机立即制动,能否
∵△x=x1-x2=v自t - at(2/2位移关系)

追及和相遇问题

追及和相遇问题

△x
x
v自t
1 2
at 2
6t
3 2
t2
x自
当t
6 2 (
3)
2s时
xm
62 4( 3)
6m
2
2
那么,汽车经过多少时间能追上自行车?此时汽车的速度是多
大?汽车运动的位移又是多大?
x
6T
3 2
T
2
0 x汽
T 4s
1 aT 2=24m 2
v汽
aT
12m /
s
方法四:相对运动法
选自行车为参照物,则从开始运动到两车相距最远这段过程中,
v自T
1 2
aT 2
T 2v自 4s a
v汽 aT 12m / s
x汽
1 2
aT 2=24m
方法二:图象法
解:画出自行车和汽车的速度-时间图线,自行车的位移x自等于 其图线与时间轴围成的矩形的面积,而汽车的位移x汽则等于其 图线与时间轴围成的三角形的面积。两车之间的距离则等于图
中矩形的面积与三角形面积的差,不难看出,当t=t0时矩形与三 角形的面积之差最大。
x汽
△x
x自
方法一:公式法
当汽车的速度与自行车的速度
x汽
相等时,两车之间的距离最大。设
经时间t两车之间的距离最大。则
△x
v汽 at v自
t v自 6 s 2s
x自
xm
x自
a
x汽
3
v自t
1 2
at 2
6 2m
1 2
3 22 m
6m
那么,汽车经过多少时间能追上自行车?此时汽车的速度是
多大?汽车运动的位移又是多大?

高中物理-追及和相遇问题

高中物理-追及和相遇问题

V自
t/s
t t′
t=v自/a= 6 / 3=2(s)
s
v自t
1 2
t
v自
6m
/
s
2s
1 2
2s
6m
/
s
6m
2)在t时刻以后,由v自线与v汽线组成的三角形面积与标
有斜线的三角形面积相等时,两车的位移相等(即相遇)。
所以由图得相遇时t′=2t=4 s v′ = 2v自=12 m/s
思考:若自行车超过汽车2s后,汽车才开始加
者距离有一个较大值。
速度小 的加速 追速度 大的
当两者速度相等时有最大距离 若两者位移相等,则追上。
练习1. 做直线运动的甲、乙物体的位移—时间
图象,由图象可知( ABD )
A.甲起动的时间比乙早t1秒 B.当t=t2时两物体相遇 C.当t=t2时两物体相距最远图3 D.当t=t3时两物体相距S0米
2m/s2的加速度做匀减速直线运动,则从此时 开始A车经多长时间可追上B车?
v汽= 10m/s a= -6m/s2
v自= 4m/s
10m
追上处
A车追上B车可能有两种不同情况:
B车停止前被追及和B车停止后被追及。
解答:设经时间t 追上。依题意:vBt + at2/2 + x = vAt
10t - t 2 + 7 = 4 t t=7s t=-1s(舍去)
追和被追的两物体的速度相等是关键。
速度大 的减速 追速度 小的
当速度相等时,若追者位移仍小于被追击者位移,则 永远追不上,此时两者间有最小距离。
当两者位移相等时,且两者速度相等时,则恰 能追上,也是两者避免碰撞的临界条件。
若两者位移相等时,追者速度仍大于被追者的速度, 则被追击者还有一次追上的机会,其间速度相等时两

相遇与追及问题

相遇与追及问题

相遇与追及知识框架一、相遇甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了儿8之间这段路程,如果两人同时出发,那么甲乙甲乙・・・・・A 3 A B0时刻唯每出发时向t后相遇相遇路程=甲走的路程+乙走的路程=甲的速度X相遇时间+乙的速度X相遇时间=(甲的速度+乙的速度)X相遇时间=速度和X相遇时间.一般地,相遇问题的关系式为:速度和X相遇时间二路程和,即S和二v n t二、追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他. 这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度X追及时间-乙的速度X追及时间=(甲的速度-乙的速度)X追及时间=速度差X追及时间.一般地,追击问题有这样的数量关系:追及路程二速度差X追及时间,即S差=Qt例如:假设甲乙两人站在100米的跑道上,甲位于起点(0米)处,乙位于中间5米处,经过时间t后甲乙同时到达终点,甲乙的速度分别为、和y乙,那么我们可以看到经过时间t后,甲比乙多跑了5米,或者可以说,在时间t内甲的路程比乙的路程多5米,甲用了时间1追了乙5米甲甲乙乙«--- •----------------------- » ・・。

米 5米10。

米100三、相遇和追及在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同(2)在整个运行过程中,2个物体所走的是同一路径。

Page 1 of 11例题精讲【例1】一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。

3.5小时两车相遇。

甲、乙两个城市的路程是多少千米?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】本题是简单的相遇问题,根据相遇路程等于速度和乘以相遇时间得到甲乙两地路程为:(46+48)X3.5=94X3.5=329 (千米).【答案】329千米【巩固】聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】方法一:由题意知聪聪的速度是:20 + 42 = 62 (米/分),两家的距离=明明走过的路程+聪聪走 过的路程=20x 20 + 62x 20 = 400 +1240 = 1640 (米),请教师画图帮助学生理解分析.注意利用乘法分配律的反向应用就可以得到公式:S 和=v 和t .对于刚刚学习奥数的孩子, 注意引导他们认识、理解及应用公式.方法二:直接利用公式:S 和=v 和t =(20 + 62)x 20 = 1640 (米). 【答案】1640米【例2】A 、B 两地相距90米,包子从A 地到B 地需要30秒,菠萝从B 地到A 地需要15秒,现在包子和菠萝从A 、B 两地同时相对而行,相遇时包子与B 地的距离是多少米?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】包子的速度:90 ・ 30 = 3 (米/秒),菠萝的速度:90 ・15 = 6 (米/秒),相遇的时间: 90 + (3 + 6) =10 (秒),包子距B 地的距离:90 — 3x 10 = 60 (米).【答案】包子距B 地的距离是60米【巩固】两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时 行40千米。

追及与相遇问题

追及与相遇问题

第 1 页 共 1 页 追及与相遇问题
1.概述
当两个物体在同一条直线上运动时,由于两物体的运动情况不同,所以两物体之间的距离会不断发生变化,就会涉及追及、相遇或避免碰撞等问题.
2.两类情况
(1)若后者能追上前者,则追上时,两者处于同一位置,后者的速度一定不小于前者的速度.
(2)若后者追不上前者,则当后者的速度与前者的速度相等时,两者相距最近.
3.相遇问题的常见情况
(1)同向运动的两物体追及并相遇:两物体位移大小之差等于开始时两物体间的距离.
(2)相向运动的两物体相遇:各自发生的位移大小之和等于开始时两物体间的距离.
自测3 平直公路上的甲车以10 m /s 的速度做匀速直线运动,乙车静止在路面上,当甲车经过乙车旁边时,乙车立即以大小为1 m/s 2的加速度沿相同方向做匀加速运动,从乙车加速开始计时,则( )
A.乙车追上甲车所用的时间为10 s
B.乙车追上甲车所用的时间为20 s
C.乙追上甲时,乙的速度是15 m/s
D.乙追上甲时,乙的速度是10 m/s
答案 B
解析 设乙车追上甲车所用的时间为t ,则有v 甲t =12
at 2,解得t =20 s ,选项A 错误,B 正确;由v =at 得,乙车追上甲车时,乙车速度v 乙=20 m/s ,选项C 、D 错误.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相遇问题
1、甲乙两地相距49千米,AB两人同时从两地相向而行,甲每小时行3千米,乙每小时行4千米,()小时可以相遇。

2、甲乙两地相距480千米,客车和货车同时从两地相向而行,经过5小时相遇,客车的速度是每小时50千米,货车的速度每小时行()千米。

3、两列火车同时从两地相对开出,快车每小时行80千米,慢车每小时行60千米,4小时相遇,两地相距多少千米?
4、两汽车同时从两个车站对开,已知这两个车站的距离是468千米,甲车每小时行40千米,经过6小时两车相遇。

求乙车每小时行多少千米?
5、甲乙两人同时从相距1080米的两地相对而行,8分钟相遇。

已知甲每分钟走65米,乙每分钟走多少米?
6、北京到沈阳的铁路长830千米,两火车同时相对开出。

已知甲车每小时行41千米,乙车每小时行42千米,求两车开出多少小时相遇?
7、两辆汽车同时从甲乙两地相对开出,A车每小时行50千米,B车每小时行40千米,两车在距中点20千米处相遇。

则甲乙两地相距多少千米?
8、甲、乙两汽车同时从A、B两地相对开出,已知A车每小时行40千米,经过4小时,A车已经驶过中点25千米,这时与B车还相距6千米,B车每小时行多少千米?
9、甲乙两地相距300千米,客车和货车同时从甲地出发驶向乙地。

货车的速度为每小时60千米,客车的速度为每小时40千米,货车到达乙地后立即以原速返回甲地,从甲地出发后几小时两车相遇?10、小米渣和妈妈晚饭后分别从一座桥的两端同时相向出发,往返于两端之间。

小米渣每分钟走60米,妈妈每分钟走75米,经过6分钟两人第二次相遇。

这座桥长多少米?
11、甲、乙两地相距13.7千米,他们相向而行。

甲每小时行4.8千米,乙每小时行4.2千米。

甲先走25分钟后乙才出发,乙出发后几分钟两人相遇?
12、甲、乙两城相距237千米,货车每小时行驶34千米,客车3小时行驶135千米,两车分别从甲、乙两城相向开出,相遇时货车离乙城有多少千米?
13、甲乙两车同时从相距506千米的两地相向开出,甲车每小时行52千米,乙车每小时行40千米,那么几小时后两车相距138千米?
14、甲乙二人从相距36千米的两地相向而行。

甲速度为每小时3千米,乙速度为每小时4千米,若乙先出发2小时,甲才出发,则甲经过几小时后与乙相遇?
15、甲乙两站相距360千米,客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米,客车到达乙站后又以原速立即返回甲站,与货车相遇,从出发到相遇共经过多少小时?
16、甲乙两车同时从A、B两地相向出发,5小时后相遇,相遇后甲车继续行驶4小时到达B地,已知乙车每小时行48千米,甲车每小时行多少千米?A、B相距多少千米?
追及问题
1、甲、乙两人分别从相距18千米的东西两村同时向而行,甲在乙后面,甲骑自行车每小时行14千米,乙步行每小时行5千米,1小时甲可以追上乙()千米,()小时后甲可以追上乙。

2、甲乙两人同向而行,甲比乙早出发2小时,甲的速度是每小时3千米,乙的速度是每小时4千米,那么甲乙两人的路程差是()千米;乙()小时后可以追上甲,追上时甲行()千米,乙行()千米。

3、小王步行到县城去,每分钟行80米,5分钟后老王发现小王忘了带文件,立即骑车去追小王,2分钟后追上,求老王骑车的速度?
4、甲乙两匹马在相距70米的地方同时出发,出发时甲马在前,乙马在后,如果甲马每秒跑8米,乙马每秒跑14米,多少秒后乙马超过甲马50米?
5、两辆汽车相距1500千米,甲车在乙车前面,甲车每分钟行610米,乙车每分钟660米,乙车追上甲车需几分钟?
6、老王和老张从甲地到乙地开会,老张骑自行车的速度是15千米/小时,先出发2小时后,老王老出发,老王用了3小时追上老张,求老王骑车速度。

7、上午10点,从一个港口开出一只货船,下午2点钟,又从这个港口开出一只客船,客船开出12小时追上货船,客船速度20千米/小时,求货船速度。

8、两地相距900千米,甲车行全程需15小时,乙车行全程需12小时,甲车先出发2小时后,乙去追甲,问乙车要走多少千米才能追上甲车?
9、甲、乙两船同时从两个码头出发,方向相同,乙船在前,每小时行24千米,甲船在后,每小时行28千米,4小时后甲船追上乙船,求两个码头相距离多少千米?
10、甲、乙两城之间的铁路长240千米,快车从甲城、慢车从乙城同时相向开出,3小时相遇,如果两车分别从两城向同一方向开出,慢车在前、快车在后,15小时快车就可以追上慢车,求快车与慢车每小时各行多少千米?
11、甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙_______小时可追上甲.
12、解放军某部小分队,以每小时6千米的速度到某地执行任务,途中休息30分后继续前进,在出发5.5小时后,通讯员骑摩托车以56千米的速度追赶他们.______小可以追上他们?
13、.小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,求小明骑自行车的速度是______米/分.。

相关文档
最新文档