38函数复习(1)
函数的应用(知识梳理)-高一数学单元复习(人教A版必修1)
专题02函数的应用(知识梳理)第一节 函数与方程1.函数的零点 (1)函数零点的定义对于函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的零点. (2)几个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)函数零点的判定(零点存在性定理)如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.2.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系Δ>0Δ=0Δ<0图象与x 轴的交点 (x 1,0),(x 2,0)(x 1,0) 无交点 零点个数 21[小题体验]1.函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)答案:B2.(教材习题改编)函数f (x )=ln x +2x -6的零点个数是______. 答案:13.函数f (x )=kx +1在[1,2]上有零点,则k 的取值范围是________. 答案:⎣⎡⎦⎤-1,-121.函数f (x )的零点是一个实数,是方程f (x )=0的根,也是函数y =f (x )的图象与x 轴交点的横坐标.2.函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还要根据函数的单调性、对称性或结合函数图象.[小题纠偏]1.(2018·诸暨模拟)函数f(x)按照下述方法定义:当x≤2时,f(x)=-x2+2x;当x>2时,f(x)=12(x-2)2,则方程f(x)=12的所有实数根之和是()A.2 B.3 C.5 D.8解析:选C画出函数f(x)的图象,如图所示:结合图象x<2时,两根之和是2,x>2时,由12(x-2)2=12,解得x=3,故方程f(x)=12的所有实数根之和是5,故选C.2.给出下列命题:①函数f(x)=x2-1的零点是(-1,0)和(1,0);②函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则一定有f(a)·f(b)<0;③二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点;④若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.其中正确的是________(填序号).答案:③④考点一函数零点所在区间的判定基础送分型考点——自主练透[题组练透]1.已知实数a>1,0<b<1,则函数f(x)=a x+x-b的零点所在的区间是()A.(-2,-1)B.(-1,0)C.(0,1) D.(1,2)解析:选B∵a>1,0<b<1,f(x)=a x+x-b,∴f(-1)=1a-1-b<0,f(0)=1-b>0,由零点存在性定理可知f(x)在区间(-1,0)上存在零点.2.设f(x)=ln x+x-2,则函数f(x)的零点所在的区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,4)解析:选B函数f(x)的零点所在的区间转化为函数g(x)=ln x,h(x)=-x +2图象交点的横坐标所在的范围.作出两函数大致图象如图所示,可知f(x)的零点所在的区间为(1,2).故选B.3.函数f(x)=x2-3x-18在区间[1,8]上______(填“存在”或“不存在”)零点.解析:法一:∵f(1)=12-3×1-18=-20<0,f(8)=82-3×8-18=22>0,∴f(1)·f(8)<0,又f(x)=x2-3x-18在区间[1,8]的图象是连续的,故f(x)=x2-3x-18在区间[1,8]上存在零点.法二:令f(x)=0,得x2-3x-18=0,∴(x-6)(x+3)=0.∵x=6∈[1,8],x=-3∉[1,8],∴f(x)=x2-3x-18在区间[1,8]上存在零点.答案:存在[谨记通法]确定函数f(x)的零点所在区间的2种常用方法(1)定义法:使用零点存在性定理,函数y=f(x)必须在区间[a,b]上是连续的,当f(a)·f(b)<0时,函数在区间(a,b)内至少有一个零点,如“题组练透”第1题.(2)图象法:若一个函数(或方程)由两个初等函数的和(或差)构成,则可考虑用图象法求解,如f(x)=g(x)-h(x),作出y=g(x)和y=h(x)的图象,其交点的横坐标即为函数f(x)的零点,如“题组练透”第2题.考点二判断函数零点个数重点保分型考点——师生共研[典例引领]1.函数f(x)=|x-2|-ln x在定义域内的零点的个数为()A.0B.1C.2 D.3解析:选C 由题意可知f (x )的定义域为(0,+∞).在同一直角坐标系中画出函数y =|x -2|(x >0),y =ln x (x >0)的图象,如图所示:由图可知函数f (x )在定义域内的零点个数为2.2.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))+1的零点的个数是( )A .4B .3C .2D .1解析:选A 由f (f (x ))+1=0得f (f (x ))=-1, 由f (-2)=f ⎝⎛⎭⎫12=-1 得f (x )=-2或f (x )=12.若f (x )=-2,则x =-3或x =14;若f (x )=12,则x =-12或x = 2.综上可得函数y =f (f (x ))+1的零点的个数是4,故选A.[由题悟法]判断函数零点个数的3种方法(1)方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.[即时应用]1.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,log 13x ,x >1,则函数y =f (x )+x -4的零点个数为( )A .1B .2C .3D .4解析:选B 函数y =f (x )+x -4的零点,即函数y =-x +4与y =f (x )的交点的横坐标.如图所示,函数y =-x +4与y =f (x )的图象有两个交点,故函数y =f (x )+x -4的零点有2个.故选B.2.(2018·杭州模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x ,-1<x ≤1,f x -2+1,1<x ≤3,则函数g (x )=f (f (x ))-2在区间(-1,3]上的零点个数是( )A .1B .2C .3D .4解析:选C ∵函数f (x )=⎩⎪⎨⎪⎧2x ,-1<x ≤1,f x -2+1,1<x ≤3,∴当-1<x ≤1时,12<f (x )≤2,当1<x ≤3时,-1<x -2≤1,f (x )=f (x -2)+1=2x -2+1∈⎝⎛⎦⎤32,3; 设h (x )=f (f (x )),①当-1<x ≤0时,h (x )=22x ,2<h (x )≤2, ∴g (x )=h (x )-2有一个零点x =0; ②当0<x ≤1时,h (x )=22x -2+1,32<h (x )≤2,∴g (x )=h (x )-2有一个零点x =1; ③当1<x ≤3时,h (x )=22x -2+1-2+1, 22+1<h (x )≤3,g (x )有一个零点; 综上,函数g (x )在区间(-1,3]上有3个零点,故选C. 考点三 函数零点的应用重点保分型考点——师生共研[典例引领]已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=a |x -2|-a ,其中a >0,且为常数.若函数y =f (f (x ))有10个零点,则a 的取值范围是________.解析:当x ≥0时,令f (x )=0,得|x -2|=1, 即x =1或x =3.因为f (x )是定义在R 上的偶函数, 所以f (x )的零点为x =±1或x =±3. 令f (f (x ))=0, 则f (x )=±1或f (x )=±3.因为函数y =f (f (x ))有10个零点,所以函数y =f (x )的图象与直线y =±1和y =±3共有10个交点.由图可知1<a <3.答案:(1,3)[由题悟法]已知函数有零点(方程有根)求参数取值范围常用3方法 直接法 直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围 分离参数法 先将参数分离,转化成求函数值域问题加以解决数形结合法 先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解[即时应用]1.若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________. 解析:∵函数f (x )=4x -2x -a ,x ∈[-1,1]有零点, ∴方程4x -2x -a =0在[-1,1]上有解, 即方程a =4x -2x 在[-1,1]上有解. 方程a =4x -2x 可变形为a =⎝⎛⎭⎫2x -122-14, ∵x ∈[-1,1],∴2x ∈⎣⎡⎦⎤12,2, ∴⎝⎛⎭⎫2x -122-14∈⎣⎡⎦⎤-14,2. ∴实数a 的取值范围是⎣⎡⎦⎤-14,2. 答案:⎣⎡⎦⎤-14,2 2.(2018·浙江名校高考研究联盟联考)方程x 2+3x -2=0的解可视为函数y =x +3的图象与函数y =2x的图象交点的横坐标.若方程x 4+ax -4=0的各个实根x 1,x 2,…,x k (k ≤4)所对应的点⎝⎛⎭⎫x i ,4x i (i =1,2,…,k )均在直线y =x 的同侧,则实数a 的取值范围是________. 解析:由题意知,方程x 4+ax -4=0的实根是曲线y =x 3+a 与曲线y =4x 的交点的横坐标,而曲线y =x 3+a 是由函数y =x 3的图象向上或向下平移|a |个单位长度得到的.若方程x 4+ax -4=0的各个实数根x 1,x 2,…,x k (k ≤4)所对应的点⎝⎛⎭⎫x i ,4x i(i =1,2,…,k )均在直线y =x 的同侧,如图,结合图象可得⎩⎪⎨⎪⎧ a >0,-23+a >-2或⎩⎪⎨⎪⎧a <0,23+a <2,解得a <-6或a >6,所以实数a 的取值范围是(-∞,-6)∪(6,+∞).答案:(-∞,-6)∪(6,+∞)第二节 函数模型及其应用1.几类函数模型函数模型 函数解析式一次函数模型 f (x )=ax +b (a ,b 为常数,a ≠0) 反比例函 数模型 f (x )=kx +b (k ,b 为常数且k ≠0) 二次函数模型f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0) 指数函数模型f (x )=ba x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1) 对数函数模型 f (x )=b log a x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1) 幂函数模型 f (x )=ax n +b (a ,b 为常数,a ≠0)函数 性质 y =a x (a >1) y =log a x (a >1) y =x n (n >0) 在(0,+∞) 上的增减性 单调递增 单调递增 单调递增 增长速度 越来越快 越来越慢 相对平稳 图象的变化随x 的增大 逐渐表现为 随x 的增大 逐渐表现为随n 值变化 而各有不同与y轴平行与x轴平行值的比较存在一个x0,当x>x0时,有log a x<x n<a x3.解函数应用问题的4步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择函数模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的函数模型;(3)解模:求解函数模型,得出数学结论;(4)还原:将数学结论还原为实际意义的问题.以上过程用框图表示如下:[小题体验]1.(教材习题改编)一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为图中的()答案:B2.已知某种动物繁殖量y(只)与时间x(年)的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们发展到________只.答案:2001.函数模型应用不当,是常见的解题错误.所以要正确理解题意,选择适当的函数模型.2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.[小题纠偏]1.甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点答案:D2.据调查,某自行车存车处在某星期日的存车量为4 000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.若普通车存车量为x辆次,存车费总收入为y元,则y关于x的函数关系式是__________.答案:y=-0.1x+1 200(0≤x≤4 000)考点一二次函数模型重点保分型考点——师生共研[典例引领]某跳水运动员在一次跳水训练时的跳水曲线为如图所示抛物线的一段.已知跳水板AB长为2 m,跳水板距水面CD的高BC为3 m.为安全和空中姿态优美,训练时跳水曲线应在离起跳点A处水平距h m(h≥1)时达到距水面最大高度4 m,规定:以CD为横轴,BC为纵轴建立直角坐标系.(1)当h=1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF内入水时才能达到比较好的训练效果,求此时h的取值范围.解:由题意,最高点为(2+h,4),(h≥1).设抛物线方程为y=a[x-(2+h)]2+4.(1)当h=1时,最高点为(3,4),方程为y=a(x-3)2+4.(*)将点A(2,3)代入(*)式得a=-1.即所求抛物线的方程为y=-x2+6x-5.(2)将点A(2,3)代入y=a[x-(2+h)]2+4,得ah2=-1.由题意,方程a[x-(2+h)]2+4=0在区间[5,6]内有一解.令f (x )=a [x -(2+h )]2+4=-1h2[x -(2+h )]2+4,则⎩⎨⎧f 5=-1h 23-h 2+4≥0,f6=-1h24-h2+4≤0.解得1≤h ≤43.故达到比较好的训练效果时的h 的取值范围是⎣⎡⎦⎤1,43. [由题悟法]二次函数模型问题的3个注意点(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法; (3)解决函数应用问题时,最后要还原到实际问题.[即时应用]A ,B 两城相距100 km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电总费用y 最少? 解:(1)由题意知x 的取值范围为[10,90]. (2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25 000=152⎝⎛⎭⎫x -10032+50 0003, 所以当x =1003时,y min =50 0003. 故核电站建在距A 城1003 km 处,能使供电总费用y 最少.考点二 函数y =x +ax模型的应用重点保分型考点——师生共研[典例引领]为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元,设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.解:(1)由已知条件得C (0)=8,则k =40,因此f (x )=6x +20C (x )=6x +8003x +5(0≤x ≤10). (2)f (x )=6x +10+8003x +5-10≥2 6x +10·f(8003x +5)-10=70(万元), 当且仅当6x +10=8003x +5, 即x =5时等号成立.所以当隔热层厚度为5 cm 时,总费用f (x )达到最小值,最小值为70万元.[由题悟法]应用函数y =x +a x模型的关键点 (1)明确对勾函数是正比例函数f (x )=ax 与反比例函数f (x )=b x叠加而成的. (2)解决实际问题时一般可以直接建立f (x )=ax +b x的模型,有时可以将所列函数关系式转化为f (x )=ax +b x的形式. (3)利用模型f (x )=ax +b x求解最值时,要注意自变量的取值范围,及取得最值时等号成立的条件. [即时应用]“水资源与永恒发展”是2015年联合国世界水资源日主题,近年来,某企业每年需要向自来水厂所缴纳水费约4万元,为了缓解供水压力,决定安装一个可使用4年的自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积(单位:平方米)成正比,比例系数约为0.2.为了保证正常用水,安装后采用净水装置净水和自来水厂供水互补的用水模式.假设在此模式下,安装后该企业每年向自来水厂缴纳的水费C (单位:万元)与安装的这种净水设备的占地面积x (单位:平方米)之间的函数关系是C (x )=k 50x +250(x ≥0,k 为常数).记y 为该企业安装这种净水设备的费用与该企业4年共将消耗的水费之和.(1)试解释C (0)的实际意义,并建立y 关于x 的函数关系式并化简;(2)当x 为多少平方米时,y 取得最小值,最小值是多少万元?解:(1)C (0)表示不安装设备时每年缴纳的水费为4万元,∵C (0)=k 250=4, ∴k =1 000,∴y=0.2x+1 00050x+250×4=0.2x+80x+5(x≥0).(2)y=0.2(x+5)+80x+5-1≥20.2×80-1=7,当x+5=20,即x=15时,y min=7,∴当x为15平方米时,y取得最小值7万元.考点三指数函数与对数函数模型重点保分型考点——师生共研[典例引领](2016·四川高考)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg 1.12≈0.05,lg 1.3≈0.11, lg 2≈0.30)A.2018年B.2019年C.2020年D.2021年解析:选B法一:设2015年后的第n年,该公司全年投入的研发资金开始超过200万元,由130(1+12%)n>200,得 1.12n>2013,两边取常用对数,得n>lg 2-lg 1.3lg 1.12≈0.30-0.110.05=195,∴n≥4,∴从2019年开始,该公司全年投入的研发资金开始超过200万元.法二:根据题意,知每年投入的研发资金增长的百分率相同,所以从2015年起,每年投入的研发资金组成一个等比数列{a n},其中,首项a1=130,公比q=1+12%=1.12,所以a n=130×1.12n-1.由130×1.12n-1>200,两边同时取常用对数,得n-1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.3-0.110.05=3.8,则n>4.8,即a5开始超过200,所以2019年投入的研发资金开始超过200万元,故选B.[由题悟法]指数函数与对数函数模型的应用技巧(1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题.[即时应用]某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.解:(1)由题图,设y =⎩⎪⎨⎪⎧ kt ,0≤t ≤1,⎝⎛⎭⎫12t -a ,t >1, 当t =1时,由y =4得k =4,由⎝⎛⎭⎫121-a =4得a =3.所以y =⎩⎪⎨⎪⎧4t ,0≤t ≤1,⎝⎛⎭⎫12t -3,t >1. (2)由y ≥0.25得⎩⎪⎨⎪⎧ 0≤t ≤1,4t ≥0.25或⎩⎪⎨⎪⎧ t >1,⎝⎛⎭⎫12t -3≥0.25,解得116≤t ≤5. 因此服药一次后治疗疾病有效的时间是5-116=7916(小时).。
第二章 函数复习题 (一)
1.函数的定义域为R,则实数m的取值范围是2.已知函数f(x)是定义在(﹣∞,+∞)上的奇函数,当x∈[0,+∞)时,f(x)=x2﹣4x,则当x∈(﹣∞,0)时,f(x)=.3.若函数的定义域为A,则函数y=4x﹣2x+1(x∈A)的值域为.4.已知定义在R上的函数f(x)=a x﹣a﹣x+3(a>0,a≠1),若f(m)=5,则f(﹣m)=.5.已知函数f(x)的定义域为[﹣1,1],则函数f(x﹣1)的定义域是.6.函数的定义域是.7.函数f(x)=1﹣x﹣(x>0)的值域为.8.已知函数f(x)=,若f(x)的定义域为R,则实数a的取值范围是:若f(x)的值域为[0,+∞).则实数a的取值范围是.9.已知f(2x+1)的定义域为[1,3],则f(x)的定义域为:;f(3﹣2x)的定义域为:.10.已知函数f(x)的定义域为[﹣2,2],则函数f(x+3)﹣f()的定义域为.11.若一次函数f(x)满足f(f(x))=x+4,则f(﹣1)=.12.若函数f(2x+1)=x2﹣2x,则f(3)=,f(x)=.13.设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时f(x)=x2+2x﹣3,则f(x)的解析式为.14.已知f(x)=2x2+1,则f(2x+1)=.15.定义在R上的函数f(x)满足f(1+x)=f(1﹣x),且x≥1时,f(x)=+1,则f (x)的解析式为.16.已知函数f(x)是二次函数且f(0)=2,f(x+1)﹣f(x)=x﹣1,则函数f(x)=.17.已知定义在R上的函数f(x)满足f(x+)=x2+,则f(x)的表达式为.18.函数y=f(x)的值域是[﹣1,1],则函数y=2f(x+1)的值域为19.函数的定义域为.20.若函数f(x)的定义域是[0,1],则函数的定义域为:.21.已知定义在R上的偶函数f(x)满足:,当x∈(0,2]时,f(x)=2x,则f(2019)=.22.设f(x)是定义在R上的奇函数,且满足f(1﹣x)=f(x),则f(1)+f(2)+f(3)+f(4)+f(5)=.23.已知函数f(x)=,那么f(1)+f(2)+f()+f(3)+f()+f(4)+f()+…f(2012)+f()=.24.已知函数f(x)=|x2﹣2x|在[0,m]上值域为[0,m],则实数m的值为.25.函数的值域是.26.函数的值域是.27.函数y=的值域是.28.函数y=(x≤0)的值域是.29.函数y=的值域为.30.当x∈[﹣1,1]时.函数f(x)=3x﹣1﹣2的值域为.31.已知f(x﹣1)=2x+3,且f(m)=6,则m=.32.已知函数f(x)为一次函数,且f(2)=﹣1,若f[f(x)]=4x﹣3,则函数f(x)的解析式为.33.已知,则函数f(x)的解析式为.34.已知,则f(x)=35.若函数f(x﹣2)=x2﹣x+1,则f(2x+1)=36.已知函数f(x)满足,则f(x)的解析式为37.已知函数f(x)是二次函数,且满足f(2x+1)+f(2x﹣1)=16x2﹣4x+6,则f(x)=.38.已知f(x)是定义在R上的奇函数,且当x<0时,有f(x)=,则f(x)在R上的解析式为f(x)=.39.已知f(2x+1)=4x2+6x+5,则f(x)=.40.已知f(1﹣2x)=,那么f(x)等于.。
高三一轮复习函数及其表示 (1)
第四课时函数及其表示考纲要求:函数的概念(B)知识梳理:函数由定义域、对应关系和值域三个要素构成,对函数y=f(x),x∈A,其中x叫做自变量,x的取值范围A叫做定义域,与x的值对应的y值叫做函数值,函数值的集合{f(x)|x ∈A}叫做值域.3.函数的表示法表示函数的常用方法有:解析法、列表法、图象法.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.基础训练:1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数是建立在其定义域到值域的映射.()(2)函数y=f(x)的图象与直线x=a最多有2个交点.()(3)函数f(x)=x2-2x与g(t)=t2-2t是同一函数.()(4)若两个函数的定义域与值域相同,则这两个函数是相等函数.()(5)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射.()(6)分段函数是由两个或几个函数组成的.()(7)分段函数的定义域等于各段定义域的并集,值域等于各段值域的并集.()答案:(1)√(2)×(3)√(4)×(5)×(6)×(7)√2.下列四组函数中,表示同一函数的是________.(填序号)①y=x-1与y=(x-1)2;②y=x-1与y=x-1x-1;③y=4lg x与y=2lg x2;④y=lg x-2与y=lgx 100.答案:④3.函数f(x)=x-4|x|-5的定义域为________.答案:[4,5)∪(5,+∞)4.已知函数y=f(x)满足f(1)=2,且f(x+1)=3f(x),则f(4)=________.答案:545.已知函数f (x )=⎩⎪⎨⎪⎧4x ,x ≤1,-x ,x >1则f (2)=________,f (-2)=________.答案:-21166.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫13x ,x ≤0,则满足方程f (a )=1的所有a 的值组成的集合为________.答案:{0,3}例题讲解:[典题1](1)函数f (x )=3x 21-x+lg(3x +1)的定义域是________.(2)函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.(3)若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为________.解析:(1)要使函数有意义,需满足⎩⎪⎨⎪⎧1-x >0,3x +1>0.解得-13<x <1.(2)由⎩⎪⎨⎪⎧ 1-|x -1|≥0,a x -1≠0⇒⎩⎪⎨⎪⎧0≤x ≤2,x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2].(3)由⎩⎪⎨⎪⎧x -1≠0,0≤2x ≤2,得0≤x <1,即定义域是[0,1).答案:(1)⎝⎛⎭⎫-13,1 (2)(0,2] (3)[0,1) 小结:(1)给出解析式的函数的定义域是使解析式中各个部分都有意义的自变量的取值集合,在求解时,要把各个部分自变量的限制条件列成一个不等式(组),这个不等式(组)的解集就是这个函数的定义域,函数的定义域要写成集合或者区间的形式.(2)①若f (x )的定义域为[a ,b ],则f (g (x ))的定义域为a ≤g (x )≤b 的解集;②若f (g (x ))的定义域为[a ,b ],则f (x )的定义域为y =g (x )在[a ,b ]上的值域.[典题2] (1)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________.(2)已知f ⎝⎛⎭⎫x +1x =x 2+1x2,则f (x )=________. 解析:(1)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1,即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R .(2)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.答案:(1)12x 2+12x ,x ∈R (2)x 2-2,x ∈(-∞,-2]∪[2,+∞)[探究1] 若将本例(2)的条件改为f ⎝⎛⎭⎫2x +1=lg x ,如何求解?解:令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1,x >1.[探究2] 若将本例(2)的条件改为“f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x ·x -1”,如何求解?解:在f (x )=2f ⎝⎛⎭⎫1x x -1中,用1x 代替x ,得f ⎝⎛⎭⎫1x =2f (x )1x-1, 将f ⎝⎛⎭⎫1x =2f (x )x-1代入f (x )=2f ⎝⎛⎭⎫1x x -1中, 可求得f (x )=23x +13.即函数f (x )的解析式为f (x )=2x 3+13,x ∈(1,+∞).小结:函数解析式的求法(1)待定系数法:适合已知函数的类型(如一次函数、二次函数).(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围. (3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)消去法:已知f (x )与f ⎝⎛⎭⎫1x 或f (-x )之间的关系式,可根据已知条件将x 换成1x 或-x 构造出另外一个等式组成方程组,通过解方程组求出f (x ).练习:定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当 -1≤x ≤0时,f (x )=________.解析:当0≤x ≤1时,f (x )=x (1-x ),当-1≤x ≤0时,0≤x +1≤1, ∴f (x +1)=(x +1)[1-(x +1)]=-x (x +1),而f (x )=12f (x +1)=-12x 2-12x .∴当-1≤x ≤0时,f (x )=-12x 2-12x .答案:-12x 2-12x分段函数是一类重要的函数,是高考的命题热点,多以填空题的形式呈现,试题难度不大,多为容易题或中档题,且主要有以下几个命题角度:角度一:求分段函数的函数值[典题3](1)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=________.(2)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=________. [听前试做] (1)∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3.∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.(2)∵f ⎝⎛⎭⎫π4=-tan π4=-1,∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=f (-1)=2×(-1)3=-2. 答案:(1)9 (2)-2小结:求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.角度二:求解参数的值或取值范围 [典题4](1)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=________.(2)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.解析:(1)由于f (a )=-3,①若a ≤1,则2a -1-2=-3,整理得2a -1=-1.由于2x >0,所以2a -1=-1无解;②若a >1,则-log 2(a +1)=-3,解得a +1=8,a =7,所以f (6-a )=f (-1)=2-1-1-2=-74.综上所述,f (6-a )=-74.(2)当x <1时,由e x -1≤2得x ≤1+ln 2,∴x <1;当x ≥1时,由x 13≤2得x ≤8,∴1≤x ≤8.综上,符合题意的x 的取值范围是x ≤8.答案:(1)-74(2)(-∞,8]小结:求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.角度三:研究分段函数的性质 [典题5](1)设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则下列结论正确的是________.(填序号)①|x |=x |sgn x |;②|x |=x sgn|x |;③|x |=|x |sgn x ;④|x |=x sgn x .(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x ,x ≤0,则下列结论正确的是________.(填序号)①f (x )是偶函数;②f (x )是增函数;③f (x )是周期函数;④f (x )的值域为[-1,+∞). 解析:(1)当x <0时,|x |=-x ,x |sgn x |=x ,x sgn|x |=x ,|x |sgn x =(-x )·(-1)=x ,故④正确. (2)因为f (π)=π2+1,f (-π)=-1,所以f (-π)≠f (π),所以函数f (x )不是偶函数,故①错误;因为函数f (x ) 在(-2π,-π)上单调递减,故②错误;函数f (x )在(0,+∞)上单调递增,所以函数f (x )不是周期函数,故③错误;因为x >0时,f (x )>1,x ≤0时,-1≤f (x )≤1,所以函数f (x )的值域为[-1,+∞),故④正确.答案:(1)④ (2)④ 注意:解决分段函数问题时,一定要注意自变量的取值所在的区间,要注意分类讨论的应用.总结:1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.函数表达式有意义的准则一般有:(1)分式中的分母不为0;(2)偶次根式的被开方数非负;(3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、消去法. 4.分段函数问题要分段求解. 5.复合函数的定义域(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.注意:1.求函数定义域时,不要对解析式进行化简变形,以免定义域发生变化. 2.利用换元法求解析式时,要注意函数的定义域.3.分段函数中,各段函数的定义域不可以相交,这是由函数定义的惟一性决定的. 4.求分段函数应注意的问题:在求分段函数的值f (x )时,首先要判断x 属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.课后作业:1.函数g (x )=x +3+log 2(6-x )的定义域是________.解析:由⎩⎪⎨⎪⎧x +3≥0,6-x >0,解得-3≤x <6,故函数的定义域为[-3,6).答案:{x |-3≤x <6}2.下列图象可以表示以M ={x |0≤x ≤1}为定义域,以N ={x |0≤x ≤1}为值域的函数的是________.(填序号)解析:①中的值域不对,②中的定义域错误,④不是函数的图象,由函数的定义可知③正确.答案:③3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的解析式是________. 解析:因为g (x +2)=f (x )=2x +3=2(x +2)-1,所以g (x )=2x -1. 答案:g (x )=2x -14.设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x ,x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b =________. 解析:f ⎝⎛⎭⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝⎛⎭⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则252-b =4,解得b =12. 答案:125.已知函数f (x )=4|x |+2-1的定义域是[a ,b ](a ,b ∈Z ),值域是[0,1],那么满足条件的整数数对(a ,b )共有________对.解析:由题意函数f (x )=4|x |+2-1的值域是[0,1],∴1≤4|x |+2≤2,∴0≤|x |≤2,∴-2≤x ≤2,∴[a ,b ]⊂[-2,2].由于x =0时,y =1,x =±2时,y =0,故在定义域中一定有0,而±2必有其一,又a ,b ∈Z ,取b =2时,a 可取-2,-1,0,取a =-2时,b 可取0,1.故满足条件的整数数对(a ,b )共有5对. 答案:56.下列集合A 到集合B 的对应f 中:①A ={-1,0,1},B ={-1,0,1},f :A 中的数平方; ②A ={0,1},B ={-1,0,1},f :A 中的数开方; ③A =Z ,B =Q ,f :A 中的数取倒数;④A =R ,B ={正实数},f :A 中的数取绝对值, 是从集合A 到集合B 的函数的为________.解析:其中②,由于1的开方数不惟一,因此f 不是A 到B 的函数;其中③,A 中的元素0在B 中没有对应元素;其中④,A 中的元素0在B 中没有对应元素.答案:①7.设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=________.解析:因为-2<0,所以f (-2)=2-2=14>0,所以f ⎝⎛⎭⎫14=1-14=1-12=12. 答案:128.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:当a >0时,1-a <1,1+a >1,此时f (1-a )=2(1-a )+a =2-a ,f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32.不合题意,舍去.当a <0时,1-a >1,1+a <1,此时f (1-a )=-(1-a )-2a =-1-a ,f (1+a )=2(1+a )+a =2+3a , 由f (1-a )=f (1+a )得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.答案:-349.已知函数f (x )满足f ⎝⎛⎭⎫2x +|x |=log 2x |x |,则f (x )的解析式是________.解析:要使f ⎝⎛⎭⎫2x +|x |=log 2x |x |有意义,则x |x |>0,即x >0.故f ⎝⎛⎭⎫1x =log 2x ,即f (x )=log 21x =-log 2x .答案:f (x )=-log 2x10.已知f (x )=⎩⎪⎨⎪⎧-cos πx ,x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于________. 解析:f ⎝⎛⎭⎫43=-cos 4π3=cos π3=12;f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=-cos 2π3+2=12+2=52.故f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3.答案:311.定义域为R 的函数f (x )满足f (x +2)=2f (x )-2,当x ∈(0,2]时,f (x )=⎩⎪⎨⎪⎧x 2-x ,x ∈(0,1),1x,x ∈[1,2],若x ∈(0,4]时,t 2-7t 2≤f (x )恒成立,则实数t 的取值范围是________.解析:当x ∈(2,3)时,x -2∈(0,1),则f (x )=2f (x -2)-2=2(x -2)2-2(x -2)-2,即为f (x )=2x 2-10x +10,当x ∈[3,4]时,x -2∈[1,2],则f (x )=2f (x -2)-2=2x -2-2.当x ∈(0,1)时,当x =12时,f (x )取得最小值,且为-14;当x ∈[1,2]时,当x =2时,f (x )取得最小值,且为12;当x ∈(2,3)时,当x =52时,f (x )取得最小值,且为-52;当x ∈[3,4]时,当x =4时,f (x )取得最小值,且为-1.综上可得,f (x )在(0,4]的最小值为-52.若x ∈(0,4]时,t 2-7t2≤f (x )恒成立,则有t 2-7t 2≤-52.解得1≤t ≤52.答案:⎣⎡⎦⎤1,52 12.如图展示了一个由(0,1)到实数集R 的映射过程;(0,1)中的实数x 对应数轴上的点M ,如图①;将线段AB 围成一个圆,使两端点A ,B 恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y 轴上,点A 的坐标为(0,1),如图③.图③中直线AM 与x 轴交于点N (n,0),则x 的象就是n ,记作f (x )=n .下列命题中正确的是________(填上所有正确命题的序号). ①f (x )在定义域上单调递增; ②f (x )的图象关于y 轴对称; ③12是f (x )的零点; ④f ⎝⎛⎭⎫13+f ⎝⎛⎭⎫23=1;⑤f (x )>1的解集是⎝⎛⎭⎫34,1.解析:①正确,由图③知,当m 由0增大到1时,点M 由A 运动到B ,此时N 由x 轴的负半轴向正半轴运动,由此可知此时N 点的横坐标逐渐变大,即函数在定义域(0,1)上为增函数;②错,函数定义域不关于原点对称,故为非奇非偶函数,因此其图象不关于y 轴对称;③正确,当m =12时,M 位于圆与y 轴的下交点处,直线为x =0,故f ⎝⎛⎭⎫12=0,即12是函数的零点;④错,因为f (x )=-f (1-x ),即其图象关于点⎝⎛⎭⎫12,0成中心对称,故f ⎝⎛⎭⎫13+f ⎝⎛⎭⎫23=0;⑤正确,由已知定义可求得f ⎝⎛⎭⎫34=1,又函数在定义域(0,1)上为增函数,故f (x )>1=f ⎝⎛⎭⎫34的解集是⎝⎛⎭⎫34,1.综上可知,正确命题的序号是①③⑤.答案:①③⑤13.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.解:设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立, ∴⎩⎪⎨⎪⎧ a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7. 14.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (min)的关系.试写出y =f (x )的函数解析式.解:当x ∈[0,30]时,设y =k 1x +b 1,由已知得⎩⎪⎨⎪⎧b 1=0,30k 1+b 1=2,解得⎩⎪⎨⎪⎧k 1=115,b 1=0.即y =115x .当x ∈(30,40)时,y =2;当x ∈[40,60]时,设y =k 2x +b 2,由已知得⎩⎪⎨⎪⎧40k 2+b 2=2,60k 2+b 2=4,解得⎩⎪⎨⎪⎧k 2=110,b 2=-2,即y =110x -2.综上,f (x )=⎩⎪⎨⎪⎧115x ,x ∈[0,30],2,x ∈(30,40),110x -2,x ∈[40,60].。
考研高数38个高频知识点汇总
考研⾼数38个⾼频知识点汇总 在2020年考研数学的备考过程中,⾼数是很重要的⼀部分。
为此,⼩编整理了相关内容,希望能帮助到您。
考研⾼数38个⾼频知识点汇总 ⼀、函数极限连续 1、正确理解函数的概念,了解函数的奇偶性、单调性、周期性和有界性,理解复合函数、反函数及隐函数的概念。
2、理解极限的概念,理解函数左、右极限的概念以及极限存在与左右极限之间的关系。
掌握利⽤两个重要极限求极限的⽅法。
理解⽆穷⼩、⽆穷⼤以及⽆穷⼩阶的概念,会⽤等价⽆穷⼩求极限。
3、理解函数连续性的概念,会判别函数间断点的类型。
了解初等函数的连续性和闭区间上连续函数的性质(最.⼤值、最⼩值定理和介值定理),并会应⽤这些性质。
重点是数列极限与函数极限的概念,两个重要的极限:lim(sinx/x)=1,lim(1+1/x)=e,连续函数的概念及闭区间上连续函数的性质。
难点是分段函,复合函数,极限的概念及⽤定义证明极限的等式。
⼆、⼀元函数微分学 1、理解导数和微分的概念,导数的⼏何意义,会求平⾯曲线的切线⽅程,理解函数可导性与连续性之间的关系。
2、掌握导数的四则运算法则和⼀阶微分的形式不变性。
了解⾼阶导数的概念,会求简单函数的n阶导数,分段函数的⼀阶、⼆阶导数。
会求隐函数和由参数⽅程所确定的函数的⼀阶、⼆阶导数及反函数的导数。
3、理解并会⽤罗尔中值定理,拉格朗⽇中值定理,了解并会⽤柯西中值定理。
4、理解函数极值的概念,掌握函数最.⼤值和最⼩值的求法及简单应⽤,会⽤导数判断函数的凹凸性和拐点,会求函数图形⽔平铅直和斜渐近线。
5、了解曲率和曲率半径的概念,会计算曲率和曲率半径及两曲线的交⾓。
6、掌握⽤罗必塔法则求未定式极限的⽅法,重点是导数和微分的概念,平⾯曲线的切线和法线⽅程函数的可导性与连续性之间的关系,⼀阶微分形式的不变性,分段函数的导数。
罗必塔法则函数的极值和最.⼤值、最⼩值的概念及其求法,函数的凹凸性判别和拐点的求法。
第三章 函数的概念与性质 章节复习知识点网络 高一上学期数学人教A版(2019)必修第一册
第三章 函数的概念与性质章节复习一、本章知识结构二、本章重难点概念知识点1、函数及三要素(定义域、对应法则、值域) 一、函数的概念2、区间一般区间、特殊区间、 端点大小关系、开闭区间 1、函数概念中强调三性:“任意性”、“存在性”、“唯一性”; 2、定义域、值域的结果写成集合或区间形式; 3、对应关系包括一对一、多对一。
一、判断对应法则或图象是否是一个函数(非空性、任意性x 、唯一确定性y )二、判断两个函数是否是相同函数(定义域、对应法则) 三、求函数定义域(写成集合或区间形式)3、分段函数概念、表示方式、定义域、值域、图象4、复合函数(定义域、值域) 二、函数的表示法5、函数的单调性、单调区间 1、三种表示方法:解析法、列表法、图像法; 2、列表法表示的函数图象是一些孤立的点,函数图象呈现形式主要有2种:连续的曲线或孤立的点; 3、画函数图象方法:描点法(列表、描点、连线)6、函数的最大值、最小值7、函数的奇偶性8、幂函数(概念、图象、性质)三、题型1、求一般函数的定义域(写成集合或区间形式)函数类型定义域举例①整式函数R f(x)=x2+2x+3②分式函数分母不为0 f(x)=1 2x+3③偶次根式函数根号中式子≥0f(x)=√x2+2x−3④奇次根式函数R f(x)=√x2+2x+33⑤绝对值函数R f(x)=|x2+2x+3|⑥0次幂函数底数不为0 f(x)=(x2+2x−3)0⑦对数函数真数大于0 f(x)=log2(2x−3)⑧实际问题考虑实际意义正方形周长公式f(x)=4x(x>0)多个使函数有意义的条件用花括号连接,写成不等式组。
2、求复合函数的定义域①已知f(x)的定义域,求f(g(x))的定义域;②已知f(g(x))的定义域,求f(x)的定义域;③已知f(g(x))的定义域,求f(g(x))的定义域;④已知f(g(x))的定义域,求F(x)=f(g(x))+f(ℎ(x))的定义域关键:定义域是指自变量x的值相同对应法则f下的整体变量取值范围相同(空间不变原理)3、求简单函数的值域(写成集合或区间形式)函数类型定义域值域一次函数R R二次函数Ra>0时,[4ac−b24a,+∞)a<0时,(-∞,4ac−b24a]配方、画图、找最高点和最低点反比例函数(−∞,0)∪(0,+∞)(−∞,0)∪(0,+∞)分式函数分母不为0 配凑法(利用基本不等式求解)4、求函数的解析式①待定系数法②换元法/配凑法③方程组法/消元法 ④赋值法最后一定要考虑定义域,定义域不是R 一定要写出来5、函数单调性的判断、证明及应用 单调递增单调递减函数f(x)在区间D 上为增函数,x 1,x 2∈D ,且x 1≠x 2,则函数f(x)在区间D 上为减函数,x 1,x 2∈D ,且x 1≠x 2,则① x 1<x 2⟺f (x 1)<f(x 2) ① x 1<x 2⟺f (x 1)>f(x 2) ② (x 1−x 2)[f (x 1)−f(x 2)]>0 ② (x 1−x 2)[f (x 1)−f(x 2)]<0 ③f (x 1)−f(x 2)x 1−x 2>0 ③f (x 1)−f(x 2)x 1−x 2<0④ x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1) ④ x 1f (x 1)+x 2f (x 2)<x 1f (x 2)+x 2f (x 1) 即x 与f(x)的变化趋势相同, 自变量增量与函数值增量同号。
第三章函数的概念与性质 小结与复习(第1课时) 教案-高一上学期数学人教A版必修第一册
第三章函数的概念与性质小结与复习教案第1课时一、内容和内容解析1.内容函数的概念、表示和函数单调性的复习课2. 内容解析这是在学生已经学习完本章内容的基础上进行的复习课,复习课一共两节课,这是第一节复习课.在这一章中,学生从用变量之间依赖关系描述函数上升到用集合语言和对应关系刻画函数,建立了完整的函数概念,并体会集合语言和对应关系在刻画函数概念中的作用.这是一个难点,因此在复习的过程中还要巩固.除此之外,还要了解构成函数的要素,能求简单函数的定义域,能根据实际的情况用不同的函数表示方法表示函数,了解简单的分段函数,并能简单应用.同样地,在研究函数单调性的过程中,能够使用符号化的语言来描述,这是学生学习这部分内容时的一个难点. 这样一种从形象直观到定性刻画再到定量刻画的研究过程,以及通过引入数学符号、借助代数语言精确刻画刻画定量变化规律的方法,体现了数学抽象的一般过程,对于培养学生的数学抽象能力具有重要意义.基于以上分析,确定教学重点:复习建立在集合与对应关系的函数概念以及函数单调性的符号语言刻画和单调性的应用.二、目标和目标解析1.目标(1)理解函数的概念和表示方法,并能应用函数的概念解决一些问题;(2)掌握函数单调性的概念,会用符号语言表达单调性、最值,理解它们的作用和实际意义;(3)能用定义证明简单函数的单调性;(4)能运用所学的知识解决一些数学问题和实际问题.2.目标解析达成上述目标的标志是:(1)能用集合间的对应关系的观点定义函数,能根据实际的问题表示函数;(2)知道用符号语言刻画函数单调性时,“任意”“都有”等关键词的含义;能够从函数图象,或通过代数推理,得出函数的单调递增、单调递减区间;知道函数的单调性反映了现实世界中事物在量的增加或减小上的变化趋势.(3)会用函数单调性的定义,按一定的步骤证明函数的单调性;(4)会用函数最大值、最小值的定义,按一定的步骤求函数的最大(小)值.三、教学问题诊断分析学生已经学习了相关的知识,在这节复习课上,要巩固前面学习的相关内容,让学生进一步体会用数学的语言和符号化的方式表达数学概念,表达函数的概念、函数的性质等.作为复习课,在教学的过程中也要充分利用信息技术展示函数的对应关系、函数的单调变化规律、函数的最值等,也可以用表格形式加强自变量从小到大时函数值的大小变化趋势等,数形结合地提出问题,给学生设置一条从定性到定量、从粗糙到精确的归纳过程,引导学生逐步抽象出函数单调性的定义,再通过辨析、练习帮助学生理解定义.另外,在教学的过程中,还要有一定的习题,让学生通过习题,自己体会函数的概念和函数的性质等,通过习题,体会这些概念和性质的应用,并体会一些内容的综合运用.根据以上分析,确定教学难点是:符号化的语言表述,对量词的使用和运用函数的单调性解决问题.四、教学支持条件分析为使学生更好地理解形式化定义,降低归纳定义过程中的难度,可利用计算工具,采用动态方式展现函数图象、展示变化规律等.五、教学过程设计(一)引入问题1:初中函数概念和高中函数概念的区别是什么?(1)请说出初中函数的定义;(2)请说出高中函数的定义;(3)辨析这两者有什么不同.师生活动:教师提出问题,前2个问题学生自主回答,第3个问题由学生之间讨论、分析并总结.设计意图:让学生复习函数的概念,并通过对比初中和高中的概念区别,进一步体会函数是建立在集合间的对应关系.(二)函数的概念和表示法的巩固师生活动:学生先独立思考,计算,黑板板书(或者利用信息技术将学生的书写过程展示).设计意图:让学生体会在一个熟知的二次函数中,利用单调性解决数学问题.(四)课堂小结问题11:回答下列问题(1)在解决有关函数概念的问题,以及利用函数的概念解决其他问题的时候,有什么需要特别注意的问题吗?(2)在处理函数单调性的问题时,有什么需要注意的吗?师生活动:学生先独立思考,然后讨论,发表观点,教师进行归纳.设计意图:让学生进一步体会和注意,处理有关函数问题的时候,需要注意的问题.六、目标检测设计设计意图:本题通过绘制函数图象,能够观察出(也可以严格的证明)它是一个增函数,因此将f(2-a2)>f(a)转化为1-a2>a,解二次不等式得到结果. 这道题目将分段函数,函数的图象,函数的单调性充分综合,是检测学生综合运用本章知识分析和解决问题的能力.。
2024届高考一轮复习数学教案(新人教B版):函数的概念及其表示
§2.1函数的概念及其表示考试要求 1.了解函数的含义.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.知识梳理1.函数的概念给定两个非空实数集A与B,以及对应关系f,如果对于集合A中每一个实数x,在集合B中都有唯一确定的实数y与x对应,则称f为定义在集合A上的一个函数,记作y=f(x),x∈A. 2.函数的三要素(1)函数的三要素:定义域、对应关系、值域.(2)如果两个函数表达式表示的函数定义域相同,对应关系也相同,则称这两个函数表达式表示的就是同一个函数.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数如果一个函数,在其定义域内,对于自变量的不同取值区间,有不同的对应方式,则称其为分段函数.常用结论1.直线x=a与函数y=f(x)的图象至多有1个交点.2.在函数的定义中,非空数集A,B,A即为函数的定义域,值域为B的子集.3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若两个函数的定义域和值域相同,则这两个函数是同一个函数.(×)(2)函数y =f (x )的图象可以是一条封闭曲线.(×)(3)y =x 0与y =1是同一个函数.(×)(4)函数f (x )-1,x ≥0,2,x <0的定义域为R .(√)教材改编题1.(多选)下列所给图象是函数图象的是()答案CD 解析A 中,当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;B 中,当x =x 0时,y 的值有两个,因此不是函数图象;CD 中,每一个x 的值对应唯一的y 值,因此是函数图象.2.下列各组函数表示同一个函数的是()A .y =x -1与y =x 2-1x +1B .y =x -1与y =-1xC .y =2x 2与y =2xD .y =2x -1与v =2t -1答案D 解析y =x -1的定义域为R ,y =x 2-1x +1的定义域为{x |x ≠-1},定义域不同,不是同一个函数,故选项A 不正确;y =x -1=1x 与y =-1x的对应关系不同,不是同一个函数,故选项B 不正确;y =2x 2=2|x |与y =2x 的对应关系不同,不是同一个函数,故选项C 不正确;y =2x -1与v =2t -1的定义域都是(-∞,1)∪(1,+∞),对应关系也相同,所以是同一个函数,故选项D 正确.3.已知函数f (x )x ,x >0,x ,x ≤0,则函数f ()A .3B .-3 C.13D .-13答案C解析由题意可知,f ln 13=-ln 3,所以f f (-ln 3)=e -ln 3=13.题型一函数的定义域例1(1)函数y =ln (x +1)-x 2-3x +4的定义域为()A .(-4,-1)B .(-4,1)C .(-1,1)D .(-1,1]答案C解析+1>0,x 2-3x +4>0,解得-1<x <1,故定义域为(-1,1).(2)已知函数f (x )的定义域为(-4,-2),则函数g (x )=f (x -1)+x +2的定义域为________.答案[-2,-1)解析∵f (x )的定义域为(-4,-2),要使g (x )=f (x -1)+x +2有意义,4<x -1<-2,+2≥0,解得-2≤x <-1,∴函数g (x )的定义域为[-2,-1).思维升华(1)无论抽象函数的形式如何,已知定义域还是求定义域,均是指其中的x 的取值集合;(2)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(3)若复合函数f (g (x ))的定义域为[a ,b ],则函数f (x )的定义域为g (x )在[a ,b ]上的值域.跟踪训练1(1)函数f (x )=1ln (x -1)+3-x 的定义域为()A .(1,3]B .(1,2)∪(2,3]C .(1,3)∪(3,+∞)D .(-∞,3)答案B解析-1>0,-1≠1,-x ≥0,所以1<x <2或2<x ≤3,所以函数的定义域为(1,2)∪(2,3].(2)(2023·南阳检测)已知函数f (x )=lg 1-x 1+x ,则函数g (x )=f (x -1)+2x -1的定义域是()A .{x |x >2或x <0}|12≤x <2C .{x |x >2}|x ≥12答案B 解析要使f (x )=lg 1-x 1+x 有意义,则1-x 1+x>0,即(1-x )(1+x )>0,解得-1<x <1,所以函数f (x )的定义域为(-1,1).要使g (x )=f (x -1)+2x -1有意义,1<x -1<1,x -1≥0,解得12≤x <2,所以函数g (x )|12≤x <2题型二函数的解析式例2(1)已知f (1-sin x )=cos 2x ,求f (x )的解析式;(2)已知f x 2+1x2,求f (x )的解析式;(3)已知f (x )是一次函数且3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.(4)已知f (x )满足2f (x )+f (-x )=3x ,求f (x )的解析式.解(1)(换元法)设1-sin x =t ,t ∈[0,2],则sin x =1-t ,∵f (1-sin x )=cos 2x =1-sin 2x ,∴f (t )=1-(1-t )2=2t -t 2,t ∈[0,2].即f (x )=2x -x 2,x ∈[0,2].(2)(配凑法)∵f x 2+1x2=-2,∴f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞).(3)(待定系数法)∵f (x )是一次函数,可设f (x )=ax +b (a ≠0),∴3[a (x +1)+b ]-2[a (x -1)+b ]=2x +17.即ax +(5a +b )=2x +17,=2,a +b =17,=2,=7.∴f(x)的解析式是f(x)=2x+7.(4)(解方程组法)∵2f(x)+f(-x)=3x,①∴将x用-x替换,得2f(-x)+f(x)=-3x,②由①②解得f(x)=3x.思维升华函数解析式的求法(1)配凑法;(2)待定系数法;(3)换元法;(4)解方程组法.跟踪训练2(1)已知f(x-1)=x2+4x-5,则f(x)的解析式是() A.f(x)=x2+6x B.f(x)=x2+8x+7C.f(x)=x2+2x-3D.f(x)=x2+6x-10答案A解析f(x-1)=x2+4x-5,设x-1=t,x=t+1,则f(t)=(t+1)2+4(t+1)-5=t2+6t,故f(x)=x2+6x.(2)若f =x1-x,则f(x)=________.答案1x-1(x≠0且x≠1)解析f(x)=1x1-1x=1x-1(x≠0且x≠1).(3)已知函数f(x)满足f(x)+2f3x,则f(2)等于()A.-3B.3C.-1D.1答案A解析f(x)+2f3x,①则f2f(x)=-3x,②联立①②解得f(x)=-2x-x,则f(2)=-22-2=-3.题型三分段函数例3(1)已知函数f(x)x-1),x>0,ln(x+e)+2,x≤0,则f(2024)的值为() A.-1B.0C.1D.2答案C解析因为f (x )x -1),x >0,ln (x +e )+2,x ≤0,所以f (2024)=f (2023)=f (2022)=…=f (1),又f (1)=f (1-1)=f (0)=-ln(0+e)+2=-1+2=1,所以f (2024)=1.(2)已知函数f (x )x 2-3x +2,x <-1,x -3,x ≥-1,若f (a )=4,则实数a 的值是________;若f (a )≥2,则实数a 的取值范围是________.答案-2或5[-3,-1)∪[4,+∞)解析若f (a )=4,<-1,a 2-3a +2=4≥-1,a -3=4,解得a =-2或a =5.若f (a )≥2,<-1,a 2-3a +2≥2≥-1,a -3≥2,解得-3≤a <-1或a ≥4,∴a 的取值范围是[-3,-1)∪[4,+∞).思维升华分段函数求值问题的解题思路(1)求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.跟踪训练3(1)已知函数f (x )+2,x ≤0,+1x ,x >0,若f (f (a ))=2,则a 等于()A .0或1B .-1或1C .0或-2D .-2或-1答案D 解析令f (a )=t ,则f (t )=2,可得t =0或t =1,当t =0时,即f (a )=0,显然a ≤0,因此a +2=0⇒a =-2,当t =1时,即f (a )=1,显然a ≤0,因此a +2=1⇒a =-1,综上所述,a =-2或-1.(2)(2023·重庆质检)已知函数f (x )2x ,x >1,2-1,x ≤1,则f (x )<f (x +1)的解集为________.答案-12,+∞解析当x ≤0时,x +1≤1,f (x )<f (x +1)等价于x 2-1<(x +1)2-1,解得-12<x ≤0;当0<x ≤1时,x +1>1,此时f (x )=x 2-1≤0,f (x +1)=log 2(x +1)>0,∴当0<x ≤1时,恒有f (x )<f (x +1);当x >1时,x +1>2,f (x )<f (x +1)等价于log 2x <log 2(x +1),此时也恒成立.综上,不等式f (x )<f (x +1)-12,+课时精练1.函数f (x )=lg(x -2)+1x -3的定义域是()A .(2,+∞)B .(2,3)C .(3,+∞)D .(2,3)∪(3,+∞)答案D 解析∵f (x )=lg(x -2)+1x -3,-2>0,-3≠0,解得x >2,且x ≠3,∴函数f (x )的定义域为(2,3)∪(3,+∞).2.(2023·北京模拟)已知集合A ={x |-2<x ≤1},B ={x |0<x ≤4},则下列对应关系中是从集合A 到集合B 的函数是()A .y =x +1B .y =e xC .y =x 2D .y =|x |答案B 解析对于A ,当x =-1时,由y =x +1得y =0,但0∉B ,故A 错误;对于B ,因为从A ={x |-2<x ≤1}中任取一个元素,通过y =e x 在B ={x |0<x ≤4}中都有唯一的元素与之对应,故B 正确;对于C ,当x =0时,由y =x 2得y =0,但0∉B ,故C 错误;对于D ,当x =0时,由y =|x |得y =0,但0∉B ,故D 错误.3.已知f (x 3)=lg x ,则f (10)的值为()A .1 B.310 C.13 D.1310答案C 解析令x 3=10,则x =1310,∴f (10)=lg 1310=13.4.图中的文物叫做“垂鳞纹圆壶”,是甘肃礼县出土的先秦时期的青铜器皿,其身流线自若、纹理分明,展现了古代中国精湛的制造技术.科研人员为了测量其容积,以恒定的流速向其内注水,恰好用时30秒注满,设注水过程中,壶中水面高度为h ,注水时间为t ,则下面选项中最符合h 关于t 的函数图象的是()答案A 解析水壶的结构:底端与上端细、中间粗,所以在注水恒定的情况下,开始水的高度增加的快,中间增加的慢,最后又变快,由图可知选项A 符合.5.函数y =1+x -1-2x 的值域为()-∞,32D.32,+∞答案B解析设1-2x =t ,则t ≥0,x =1-t 22所以y =1+1-t 22-t =12(-t 2-2t +3)=-12(t +1)2+2,因为t ≥0,所以y ≤32.所以函数y =1+x -1-2x ∞,32.6.已知函数f (x )x 2+2x +3,x ≤2,+log a x ,x >2(a >0且a ≠1),若函数f (x )的值域是(-∞,4],则实数a 的取值范围是()B.22,C .(1,2]D .(1,2)答案B 解析当x ≤2时,f (x )=-x 2+2x +3=-(x -1)2+4,当x =1时,f (x )=-x 2+2x +3取得最大值4,所以当x ≤2时,函数f (x )的值域是(-∞,4],所以当x >2时,函数f (x )=6+log a x 的值域为(-∞,4]的子集,当a >1时,f (x )=6+log a x 在(2,+∞)上单调递增,此时f (x )>f (2)=6+log a 2>6,不符合题意,当0<a <1时,f (x )=6+log a x 在(2,+∞)上单调递减,此时f (x )<f (2)=6+log a 2≤4,即log a 2≤-2,所以a 2≥12,可得22≤a <1,所以实数a 的取值范围是22,7.(多选)下列四个函数,定义域和值域相同的是()A .y =-x +1B .133,0,1,0x x y x x⎧≤⎪=⎨⎪>⎩C .y =ln|x |D .y =2x -1x -2答案ABD 解析对A ,函数的定义域和值域都是R ;对B ,根据分段函数和幂函数的性质,可知函数的定义域和值域都是R ;对C ,函数的定义域为(-∞,0)∪(0,+∞),值域为R ;对D ,因为函数y =2x -1x -2=2+3x -2,所以函数的定义域为(-∞,2)∪(2,+∞),值域为(-∞,2)∪(2,+∞).所以ABD 是定义域和值域相同的函数.8.(多选)函数概念最早是在17世纪由德国数学家莱布尼茨提出的,后又经历了贝努利、欧拉等人的改译.1821年法国数学家柯西给出了这样的定义:在某些变数存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着确定时,则称最初的变数叫自变量,其他的变数叫做函数.德国数学家康托尔创立的集合论使得函数的概念更严谨.后人在此基础上构建了高中教材中的函数定义:“一般地,设A ,B 是两个非空的数集,如果按某种对应法则f ,对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个函数”,则下列对应法则f 满足函数定义的有()A .f (x 2)=|x |B .f (x 2)=xC .f (cos x )=xD .f (e x )=x 答案AD 解析令t =x 2(t ≥0),f (t )=|±t |=t ,故A 符合函数定义;令t =x 2(t ≥0),f (t )=±t ,设t =4,f (t )=±2,一个自变量对应两个函数值,故B 不符合函数定义;设t =cos x ,当t =12时,x 可以取±π3等无数多个值,故C 不符合函数定义;令t =e x (t >0),f (t )=ln t ,故D 符合函数定义.9.已知函数f (x )x ,x <0,x -π),x >0,则f ________.答案12解析由已知得f f f f f =12.10.已知f (x )=x -1,则f (x )=________.答案x 2-1(x ≥0)解析令t =x ,则t ≥0,x =t 2,所以f (t )=t 2-1(t ≥0),即f (x )=x 2-1(x ≥0).11.已知函数f (x )的定义域为[-2,2],则函数g (x )=f (2x )+1-2x 的定义域为__________.答案[-1,0]解析2≤2x ≤2,-2x ≥0,解得-1≤x ≤0,所以函数g (x )的定义域是[-1,0].12.已知f (x )x +3,x >0,2-4,x ≤0,若f (a )=5,则实数a 的值是__________;若f (f (a ))≤5,则实数a 的取值范围是__________.答案1或-3[-5,-1]解析①当a >0时,2a +3=5,解得a =1;当a ≤0时,a 2-4=5,解得a =-3或a =3(舍).综上,a =1或-3.②设t =f (a ),由f (t )≤5得-3≤t ≤1.由-3≤f (a )≤1,解得-5≤a ≤-1.13.(2022·广州模拟)已知定义在R 上的函数f (x )满足,f (1-x )+2f (x )=x 2+1,则f (1)等于()A .-1B .1C .-13 D.13答案B解析∵定义在R 上的函数f (x )满足,f (1-x )+2f (x )=x 2+1,∴当x =0时,f (1)+2f (0)=1,①当x =1时,f (0)+2f (1)=2,②②×2-①,得3f (1)=3,解得f (1)=1.14.(2023·南昌模拟)已知函数f (x )3,x ≤0,x >0,若f (a -3)=f (a +2),则f (a )等于()A .2 B.2C .1D .0答案B解析作出函数f (x )的图象,如图所示.因为f (a -3)=f (a +2),且a -3<a +2,-3≤0,+2>0,即-2<a ≤3,此时f (a -3)=a -3+3=a ,f (a +2)=a +2,所以a =a +2,即a 2=a +2,解得a =2或a =-1(不满足a =a +2,舍去),则f (a )= 2.15.∀x∈R,用M(x)表示f(x),g(x)中最大者,M(x)={|x|-1,1-x2},若M(n)<1,则实数n 的取值范围是()A.(-2,2)B.(-2,0)∪(0,2)C.[-2,2]D.(-2,2)答案B解析当x≥0时,若x-1≥1-x2,则x≥1,当x<0时,若-x-1≥1-x2,则x≤-1,所以M(x)||-1,x≥1或x≤-1,1-x2,-1<x<1,若M(n)<1,则当-1<n<1时,1-n2<1⇒-n2<0⇒n≠0,即-1<n<0或0<n<1,当n≥1或n≤-1时,|n|-1<1,解得-2<n≤-1或1≤n<2,综上,-2<n<0或0<n<2.16.(多选)德国数学家狄利克雷在数学领域成就显著,以其名字命名的函数F(x)=1,x为有理数,0,x为无理数被称为狄利克雷函数.关于狄利克雷函数,下列说法正确的是() A.F(F(x))=0B.对任意x∈R,恒有F(x)=F(-x)成立C.任取一个不为0的实数T,F(x+T)=F(x)对任意实数x均成立D.存在三个点A(x1,F(x1)),B(x2,F(x2)),C(x3,F(x3)),使得△ABC为等边三角形答案BD解析∵当x为有理数时,F(x)=1,当x为无理数时,F(x)=0,当x为有理数时,F(F(x))=F(1)=1,当x为无理数时,F(F(x))=F(0)=1,所以F(F(x))=1恒成立,故A错误;因为有理数的相反数是有理数,无理数的相反数是无理数,所以对任意x∈R,恒有F(x)=F(-x)成立,故B正确;若x是有理数,T是有理数,则x+T是有理数;若x是有理数,T是无理数,则x+T是无理数;若x是无理数,则x+T是无理数或有理数,所以任取一个不为0的实数T,F(x+T)=F(x)不恒成立,故C错误;取x1=-33,x2=0,x3=33,可得F(x1)=0,F(x2)=1,F(x3)=0,所以A-33,0,B(0,1),C33,0△ABC为等边三角形,故D正确.。
第1讲函数(复习) §1.1函数§1.2初等函数
x
x f 1 ( y )
交换x, y的位置
y f ( x)
1
数统教研室
广东科贸职业学院
4、反函数的图形
y
y f (x)
x f 1 ( y) y f 1 ( x)
yx
将函数 y = f (x) 的
反函数写成 x = f 1(y)
时,函数与其反函数
O
x
的图形相同.
反函数的图形
数统教研室
广东科贸职业学院
2.区间 (1) 闭区间 [a, b] = { x | a x b }
O
[
a
]
b
x
(2) 开区间
(a, b) = { x | a < x < b }
。 (
O
a
。 )
b
x
数统教研室
广东科贸职业学院
(3) 半开闭区间
(a, b] = { x | a < x b } (称为左开右闭区间) [a, b) = { x | a x < b }
4.函数的周期性
设函数 f(x) 的定义域为 D。如果存在一个正常数 T ,
使得对于任一 xD,有 (xT)D,且 f(x+T) = f(x),则
称 f(x) 为周期函数,T称为 f(x) 的周期。
周期函数的图形特点:
y y=f(x)
-2T
-T
O
T
2T
x
数统教研室
广东科贸职业学院
四、反函数
圆的面积与半径的关系是:
若 x Df , 有 f ( x ) = f ( x ) 成立,则称 f ( x ) 为偶函数。 若 x Df , 有 f ( x ) = f ( x )
第一章 三角函数复习题(一)-学生版
知识点部分:1.任意角的三角函数的定义定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sin α=y,cos α=x,tan α=.2.三角函数值的符号记忆技巧:一全正、二正弦、三正切、四余弦(为正).即第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.3.诱导公式公式一:sin(α+2kπ)=sin α,cos(α+2kπ)=cosα,其中k∈Z.公式二:sin(π+α)=﹣sinα,cos(π+α)=﹣cosα,tan(π+α)=tan α.公式三:sin(﹣α)=﹣sinα,cos(﹣α)=cosα.公式四:sin(π﹣α)=sinα,cos(π﹣α)=﹣cosα.公式五:sin(﹣α)=cosα,cos(﹣α)=sinα.公式六:sin(+α)=cosα,cos(+α)=﹣sinα诱导公式记忆口诀:对于角“±α”(k∈Z)的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k为奇数时,正弦变余弦,余弦变正弦;当k为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号”.4.三角函数的周期性①一般地,对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期.②对于一个周期函数f(x),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.③函数y=Asin(ωx+φ),x∈R及函数y=Acos(ωx+φ);x∈R(其中A、ω、φ为常数,且A≠0,ω>0)的周期T=.5.正弦函数、余弦函数、正切函数的图象和性质函数y=sin x y=cos x y=tan x 图象定义域R R x≠2kπ+(k∈Z)值域[﹣1,1] [﹣1,1] R单调性递增区间:(2kπ﹣,2kπ+)(k∈Z);递减区间:(2kπ+,2kπ+)(k∈Z)递增区间:(2kπ﹣π,2kπ)(k∈Z);递减区间:(2kπ,2kπ+π)(k ∈Z)递增区间:(kπ﹣,kπ+)(k∈Z)最值x=2kπ+(k∈Z)时,ymax=1;x=2kπ﹣(k∈Z)时,ymin =﹣1x=2kπ(k∈Z)时,ymax=1;x=2kπ+π(k∈Z)时,ymin=﹣1无最值奇偶性奇函数偶函数奇函数对称性对称中心:(kπ,0)(k∈Z)对称轴:x=kπ+,k∈Z 对称中心:(kπ+,0)(k∈Z)对称轴:x=kπ,k∈Z对称中心:(,0)(k∈Z)无对称轴周期2π2ππ6.函数y=Asin(ωx+φ)的图象变换函数y=sin x的图象变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象的步骤练习题部分:1.(2020春•新余期末)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则f()=()A.B.1 C.D.2.(2020春•驻马店期末)有以下变换方式:①先向右平移个单位长度,再将每个点的横坐标缩短为原来的倍;②先向左平移个单位长度,再将每个点的横坐标伸长为原来的2倍;③先将每个点的横坐标伸长为原来的2倍,再向左平移个单位长度;④先将每个点的横坐标缩短为原来的倍,再向右平移个单位长度.其中能将函数的图象变为函数y=2sinx的图象的是()A.①和④B.①和③C.②和④D.②和③3.(2020春•未央区校级期末)若函数f(x)=sinx+cosx﹣2sinxcosx+1﹣a在上有零点,则实数a的取值范围()A.[﹣,2] B.[﹣,] C.[﹣2,] D.[,]4.(2020春•驻马店期末)已知扇形AOB的圆心角为α,周长为4.那么当其面积取得最大值时,α的值是.5.(2020•江苏)将函数y=3sin(2x+)的图象向右平移个单位长度,则平移后的图象中与y轴最近的对称轴的方程是.6.(2019秋•新华区校级期末)若在区间[﹣a,a]上是增函数,则正实数a的最大值为;7.(2020春•沈阳期末)已知角α终边上一点坐标(1,﹣3),f(α)=.(1)求f(α)的值.(2)求f()的值.(3)求sin()cos()的值.8.(2020春•潍坊月考)已知cos(+θ)=,求+的值9.(2020春•吉林期末)已知.(1)求2+sinαcosα﹣cos2α的值;(2)求的值.10.(2019秋•遂宁期末)已知角α的终边经过点,且α为第二象限角.(1)求m、cosα、tanα的值;(2)若,求的值.11.(2019秋•上高县校级期末)已知函数.(1)化简f(x)并求的值.(2)设函数g(x)=1﹣2f(x)且,求函数g(x)的单调区间和值域.12.(2016秋•东安区校级月考)设函数f(x)=tan()(1)求函数f(x)的定义域、最小正周期、单调区间及对称中心.(2)求不等式﹣1≤f(x)≤的解集.13.(2020春•驻马店期末)已知函数的部分图象如图所示.(Ⅰ)求f(x)的解析式及对称中心坐标;(Ⅱ)先将f(x)的图象纵坐标缩短到原来的倍,再向右平移个单位,最后将图象向上平移1个单位后得到g(x)的图象,求函数y=g(x)在上的单调减区间和最值.14.(2020•宁波模拟)已知函数.(Ⅰ)求f(x)的振幅、最小正周期和初相位;(Ⅱ)将f(x)的图象向右平移个单位,得到函数y=g(x)的图象,当时,求g(x)的取值范围.15.(2016秋•福建月考)已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤),满足:最大值为2,其图象相邻两个最低点之间距离为π,且函数f(x)的图象关于点(,0)对称.(Ⅰ)求f(x)的解析式;(Ⅱ)若向量=(f(x﹣),1),=(,﹣2cosx),,设函数,求函数g(x)的值域.。
函数复习课(1)
已知y+m与 已知y+m与x-2n成正比 y+m 2n成正比 (m、 是常数), ),请你说 例(m、n是常数),请你说 的一次函数. 明y是x的一次函数.
如图,等腰梯形ABCD中 如图,等腰梯形ABCD中, ABCD AB∥CD,AD=BC,AB=4,CD=2,∠ABC=60° AB∥CD,AD=BC,AB=4,CD=2,∠ABC=60°, 求梯形ABCD的四个顶点的坐标. ABCD的四个顶点的坐标 求梯形ABCD的四个顶点的坐标.
的坐标满足xy=0 3.若点P(x, y)的坐标满足xy=0, 若点P(x, y)的坐标满足xy=0, 则点P 则点P一定在 . 在第三象限, 4.已知点P(2a-8, 2-a)在第三象限, 已知点P(2a- 2-a)在第三象限 P(2a 则a满足 . 5.如果点P(2a-8, 2-a)在x轴上,则 如果点P(2a- 2-a)在 轴上, P(2a 点P的坐标为 . 6、矩形ABCD中,A(-4,1)、B(0,1)、 矩形ABCD中,A(-4,1)、B(0,1)、 ABCD C(0,3),则点D坐标是__________. ),则点D坐标是__________. 则点
制作:王从亮 审核:成学斌
知识热身
1、在平面直角坐标系中,若x>0, 在平面直角坐标系中, 则点P y<0,则点P(x,y)在: ( ) A、第一象限 B、第二象限 C、第三象限 D、第四象限 已知点A 在第二象限, 2、已知点A(x,y)在第二象限, 则点A 则点A到y轴的距离是 A、x C、y B、-x D、-y ( )
已知点P 向右移动3个单位, 7.已知点P(-2,1)向右移动3个单位, 再向下移动3 再向下移动 3 个单位后的坐标应该是 ( )
A、(1,4) 、 ) C、(1,-2) 、 - ) B、(-5,-2) 、 - ) D、(-5,4) 、 )
函数基础复习(1)
函数基础复习(1) 姓名[知识回顾]1.一般地,设在一个变化过程中有两个变量x 和y ,如果对于变量x 的每一个值,变量y 都有惟一的值与它对应,我们称y 是x 的函数.其中,x 是自变量,y 是因变量.(1)函数有3种常用的表示方法: ; (2)自变量取值范围的确定方法?2.若两个变量 x, y 之间的关系式可以表示成 的形式,则称y 是x 的一次函数(linear function )(x 为自变量,y 为因变量). 特别地, ,称y 是x 的正比例函数.3.确定一次函数的表达式:待定系数法:(1) (2) (3) (4)4.一次函数y=kx+b(k ,b 为常数,且k ≠0)图象的特征(1)图象:一次函数y=kx+b 的图象是经过点(0, ,),( ,0 ) 一条直线,正比例函数y=kx 的图象是经过原点(0,0)一条直线.(2)一次函数的性质:y=kx +b(k 、b 为常数,k ≠0)当k >0时,y 的值随x 的值增大而 ;当k <0时,y 的值随x 值的增大而 .5.直线y=kx +b(k 、b 为常数,k ≠0)时在坐标平面内的位置与k 在的关系. ⑴00k k >⎫⇔⎬>⎭直线经过第 象限; ⑵00k k >⎫⇔⎬<⎭直线经过第 象限; ⑶00k k <⎫⇔⎬>⎭直线经过第 象限; ⑷00k k <⎫⇔⎬<⎭直线经过第 象限;[小试牛刀] 1.在函数y =2x 中,函数y 随自变量x 的增大而_________.2.已知一次函数y =kx +5过点P (-1,2),则k =_________.3.已知一次函数y =2x +4的图象经过点(m ,8),则m =_________.4.已知y 与x 成正比例,且当x =1时,y =2,那么当x =3时,y =_________.5.一弹簧,不挂物体时,长6 cm ,挂上物体后,所挂重物每增加1 kg ,弹簧就伸长41cm ,但所挂重物不能超过10 kg ,则弹簧总长y (cm)与重物质量x (kg)之间的函数关系式为_________. 6.写出两个一次函数,使它们的图象都经过点(-2,3): . 7.下列函数中,是一次函数的是( )A.y =x 3 B.y =x 2+3 C.y =3x -1 D.y =11-x 8.当x 逐渐增大,y 反而减小的函数是( )A.y =xB.y =0.001xC.y =31D.y =-5x 9.下列说法中,不正确的是( )A.在y =-2x中,y 与x 成正比例 B.在y =3x +2中,y 与x 成正比例 C.在xy =1中,y 与x1成正比例 D.在圆面积公式S =πr 2中,S 是r 2是成正比例[典型例题]1.在函数y=(a-2)x -4+a 2 中 当a ,是一次函数;a= ,是正比例函数(直线经过原点)。
函数复习学案(1)
高二数学《函数》复习学案(一)2010.5知识梳理(一)函数(1)函数的概念设集合A是一个,对A内,按照,都有与它对应,则这种叫做集合A上的一个函数,记作,其中叫做自变量(2)函数的定义域、值域函数y=f(x) 的取值范围(数集A)叫做函数的定义域.所有构成的集合叫做这个函数的值域(3)函数的三要素函数的三要素:、和值域.其中是由完全确定的,因此确定一个函数只需要这两个要素确定即可(4)函数的表示方法表示函数的常用方法有(5)分段函数在函数的定义域内,对于自变量x的不同取值区间,有着这样的函数通常叫做(二)映射(1)映射及其相关概念设A、B是两个非空集合,如果按照某种对应法则f,对A内元素x,在B中元素y 与x对应,则称f是集合A到集合B的映射,这时,称是在映射f的作用下的象,记作f(x), 称为原象,其中叫做映射f的定义域,由所有构成的集合叫做映射f的值域.(2)一一映射如果映射f是集合A到集合B的映射,并且对于集合B中的任一元素,在集合A中都原象,把这个映射叫做集合A到集合B的(三)函数的定义域和值域(1)函数的定义域是自变量x的取值的集合,函数的值域取决于函数的________和________. (2)求函数定义域的主要依据:分式的分母________;偶次方根的___________;对数函数的___________;指数函数和对数函数的__________________。
(3)函数值域的主要求法1)利用函数的单调性:若y=f(x)是[a,b]上的单调增(减)函数,则f(a)、f(b)分别是f(x)在区间[a,b]的________值,___________值。
2)利用配方法3)利用“判别式”法4)利用换元法5)利用“均值定理”6)几何法:利用数形结合的思维方法,通过函数曲线图形间的关系,利用平面几何知识求值域。
7)导数法:利用导数与函数的连续性求较复杂函数的极值和最值,然后求出值域。
高中基本初等函数复习(1)
高中基本初等函数复习一、指数函数00,1(0),0n a a a a a a a =⋅⋅⋅⋅⋅=≠无意义 1(0)n na a a -=≠ ;()m n m n m n mn a a a a a +⋅== (),()n m m n nn na a ab a b ==在下列的关系式中,哪些不是指数函数,为什么? (1)22x y += (2)(2)x y =- (3)2xy =-(4)x y π= (5)2y x = (6)24y x = (7)xy x = (8)(1)xy a =- (a >1,且2a ≠)二、对数函数复习:对数的定义及对数恒等式log b a N b a N =⇔= (a >0,且a ≠1,N >0),如果a >0且a ≠1,M >0,N >0,那么: (1)log log log a a a MN M N =+ (2)log log log a a a MM N N=- (3)log log ()na a M n Mn R =∈(4)换底公式、a >0,且a ≠1,c >0,且e ≠1,b >0log log log c a c bb a=3.幂函数的定义一般地,形如y x α=(x ∈R )的函数称为幂孙函数,其中x 是自变量,α是常数. 如11234,,y x y x y x-===等都是幂函数,1、已知0.70.90.80.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c . 2.研究函数的图像(1)y x = (2)12y x = (3)2y x = (4)1y x -= (5)3y x = 填写下表:习题、1.下列幂函数为偶函数的是( ) A .y =x 12 B .y =3xC .y =x 2D .y =x -12.函数y =1-x +x 的定义域是( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0} D .{x |0≤x ≤1} 3、若,则的元素个数为( )0 1234.已知p >q >1,0<a <1,则下列各式中正确的是( )A .q p a a >B .a a q p >C .q p a a -->D .a a q p --> 5、已知(10)x f x =,则(5)f =( )A 、510B 、105C 、lg10D 、lg5 6.函数x y a log =当x >2 时恒有y >1,则a 的取值范围是A .1221≠≤≤a a 且B .02121≤<≤<a a 或C .21≤<aD .2101≤<≥a a 或7、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则 ( )A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >>8.设f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ∩B 一定是( )A .∅B .∅或{1}C .{1}D .∅或{2}9.下列函数完全相同的是( )A .f (x )=|x |,g (x )=(x )2B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +310.下列函数中哪个与函数x y =相等? (1)2)(x y = (2)33x y =(3)2x y = (4)xx y 2=11、设f (x )是定义在R 上奇函数,且当x >0时,等于( )A.-1 B. C.1 D.-12、已知则等于A B C D14、已知,则、、的大小关系是()A. B. C. D.15、设函数是定义在R上周期为3的奇函数,若,则有A .且 B. 或 C. D.16.设α∈{-1,1,12,3},则使函数y=xα的定义域为R,且为奇函数的所有α值为( )A.1,3 B.-1,1 C.-1,3 D.-1,1,317.幂函数的图象过点(2,14),则它的单调递增区间是( )A.(0,+∞) B.[0,+∞) C.(-∞,0) D.(-∞,+∞)18.给出四个说法:①当n=0时,y=x n的图象是一个点;②幂函数的图象都经过点(0,0),(1,1);③幂函数的图象不可能出现在第四象限;④幂函数y=x n在第一象限为减函数,则n<0.其中正确的说法个数是( )A.1 B.2 C.3 D.419.若[a,3a-1]为一确定区间,则a的取值范围是________.20.函数y=x+103-2x的定义域是________.21.函数y=x2-2的定义域是{-1,0,1,2},则其值域是________.22.已知f(x)=11+x(x∈R且x≠-1),g(x)=x2+2(x∈R).求f(g(2))的值.23 已知2(21)2f x x x +=-,则(3)f =____________ 24. 函数]3,0[,322∈--=x x x y 的值域是_____________ 25. 设1,(0)(), (0)0, (0)x x f x x x π⎧⎪⎨⎪⎩+>==<,则{[(1)]}f f f -=________________26 若函数2()2(1)2f x x a x =+-+在(,4)-∞上是减函数,则实数a 的取值范围是__________27.已知函数 f (x )的定义域是(1,2),则函数)2(x f 的定义域是 .28.函数y=)124(log 221-+x x 的单调递增区间是 .29、函数是定义在上的奇函数,且,对于任意,都有恒成立,则的值为 。
浙教版数学中考复习:函数(一)课件 (共69张PPT)
• 解析:因为一次函数y=kx+b过点(2,3),(0,1),
•
所以ቊ3
= 1
2������ + = ������
������,解得ቊ������������
= =
1 1
•
所以一次函数的解析式为������ = ������ + 1.
•
当y=0时,x+1=0,x=-1,
•
所以一次函数������ = ������ + 1的图象与x轴交于点(-
4. 实际应用
考点1:反比例函数的概念
定义:形如________(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是x的函
数,k是比例系数.
表达式:
或
或xy=k(k≠0).
防错提醒:(1)k≠0; (2)自变量x≠0; (3)函数y≠0.
考点2:反比例函数的图象与性质
(1)反比例函数的图象:反比例函数y=������������(k≠0)的图象是________,且关于________对称. (2)反比例函数的性质:
• C.当x>0时,y随x的增大而增大
D.当x<0时,y随x的增大而减小
2.1反比例函数的图象与性质
【练6】已知点A(1,y1),B(2,y2),C(-3,y3)都在反比例函数y=���6���的图象上,则y1,y2,y3的 大小关系是( )
A.y3<y1<y2
B.y1<y2<y3
C.y2<y1<y3
1.3一次函数的解析式
【例4】已知一次函数y=kx+b(k≠0)的图象过点(0,2),且与两坐标轴围成的三角形面积为 2,求此一次函数的解析式.
解析:
【例4】已知一次函数y=kx+b(k≠0)的图象过点(0,2),且与两坐标轴围成的三角形面积为 2,求此一次函数的解析式.
高中数学高考三角函数复习专题
高中数学高考三角函数复习专题三角函数复专题一、核心知识点归纳:1、正弦函数、余弦函数和正切函数的图象与性质:函数性质:y=sinx y=cosx y=tanx图象定义域 R R R\{kπ+π/2|k∈Z}值域 [-1,1] [-1,1] R最值y_max=1 (when x=2kπ) y_max=1 (when x=2kπ+π/2) 无最大值y_min=-1 (when x=2kπ-π) y_min=-1 (when x=2kπ) 无最小值周期性2π 2π π奇偶性奇函数偶函数奇函数单调性在[2kπ-π/2,2kπ+π/2](k∈Z)上是增函数;在[2kπ+π/2,2kπ+3π/2](k∈Z)上是减函数。
在[kπ,kπ+π](k∈Z)上是减函数。
在[kπ-π/2,kπ+π/2](k∈Z)上是增函数;在[kπ+π/2,kπ+3π/2](k∈Z)上是减函数。
对称中心(kπ,0)(k∈Z) 对称中心(kπ+π/2,0)(k∈Z) 无对称中心对称性奇对称偶对称无对称轴对称轴x=kπ+π/2 (k∈Z) 对称轴x=kπ (k∈Z) 无对称轴2.正、余弦定理:在△ABC中有:①正弦定理:a/sinA=b/sinB=c/sinC=2R(R为△ABC外接圆半径)注意变形应用:sinA=2R/asinB=2R/bsinC=2R/c②面积公式:S△ABC=1/2absinC=1/2acsinB=1/2bcsinA ③余弦定理:b²=c²+a²-2accosBc²=a²+b²-2abcosCa²=b²+c²-2bccosA三、例题集锦:考点一:三角函数的概念1.如图,设A是单位圆和x轴正半轴的交点,P、Q是单位圆上的两点,O是坐标原点,∠AOP=π/6,∠AOQ=α,α∈[0,π)。
若Q(√3/2,y),求cos(α-π/6)。
人教版高中数学基本初等函数(1)复习课(共21张PPT)教育课件
2 2
,
1
小结:1、构造两个函数,研究函数图象, 利用数形结合求解;
2、数形结合是解决方程、不等式的重要工具;
3、考查函数思想、数形结合思想、分类讨论思想
四、核心考点 突破练
例2:复习参考题B组第3题 (课后练习)
对于函数f
x
a
2 2x 1
a
R :
1 探索函数f x的单调性;
2是否存在实数a使函数f x为奇函数?
•
: 其实兴趣真的那么重要吗?很多事情我 们提不 起兴趣 可能就 是运维 我们没 有做好 。想想 看,如 果一件 事情你 能做好 ,至少 做到比 大多数 人好, 你可能 没有办 法岁那 件事情 没有兴 趣。再 想想看 ,一个 刚来到 人世的 小孩, 白纸一 张,开 始什么 都不会 ,当然 对事情 开始的 时候也 没有 兴趣这 一说了 ,随着 年龄的 增长, 慢慢的 开始做 一些事 情,也 逐渐开 始对一 些事情 有兴趣 。通过 观察小 孩的兴 趣,我 们可以 发现一 个规律 ,往往 不是有 了兴趣 才能做 好,而 是做好 了才有 了兴趣 。人们 总是搞 错顺序 ,并对 错误豪 布知晓 。尽管 并不绝 对是这 样,但 大多数 事情都 需要熟 能生巧 。做得 多了, 自然就 擅长了 ;擅长 了,就 自然比 别人做 得好; 做得比 别人好 ,兴趣 就大起 来,而 后就更 喜欢做 ,更擅 长,更 。。更 良性循 环。教 育小孩 也是如 此,并 不是说 买来一 架钢琴 ,或者 买本书 给孩子 就可以 。事实 上,要 花更多 的时间 根据孩 子的情 况,选 出孩子 最可能 比别人 做得好 的事情 ,然后 挤破脑 袋想出 来怎样 能让孩 子学会 并做到 很好, 比一般 人更好 ,做到 比谁都 好,然 后兴趣 就自然 出现了 。
三角函数复习(同角三角函数基本关系与诱导公式)
三角函数复习(同角三角函数基本关系与诱导公式). (2)商数关系:sin αcos α=tan α.1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1(3)倒数关系:tan α=co 1t∝2.六组诱导公式(1)诱导公式的记忆口诀:奇变偶不变,符号看象限. (2)同角三角函数基本关系式的常用变形:(sin α±cos α)2=1±2sin αcos α; (sin α+cos α)2+(sin α-cos α)2=2; (sin α+cos α)2-(sin α-cos α)2=4sin αcos α. 二、课前自测1. tan 等于 ( ) A. √B. √C.√D.√2. 若 α=1,α ./,则 tanα 等于 ( )A.√B.√C. √D. √3. 已知 tanα= 1,且 α 为第二象限角,则 nα 的值为 ( )A. 1B. 11C.1D.14. .1 / n.1/= .5. 已知 tanα= ,则的值为 .三、典型例题1. 已知 α 是三角形的内角,且 nα α=1.Ⅰ求tanα的值;Ⅱ把1用tanα表示出来,并求其值;Ⅲ求:的值;Ⅳ求 nα nα α的值.2. (1) n()() n()=;(2)已知 .α/=√,则 .α/ n.α/的值为.(3)已知 n.1 α/=,则 .α111/=.(4)若 .α/=1,则 n.α/=.3. (1)已知=()()(),则的值构成的集合是()A. *+B. *+C. *+D. *+(2)()() . /()()=.(3)已知α为第三象限角,(α)= . / . / ()()().Ⅰ化简(α);Ⅱ若 .α/=1,求(α)的值.同角三角函数基本关系式与诱导公式答案课前自测 1. D 2. C 3. C4. √5. 1典型例题1. (1) 解法一: 联立 { nα α=1n αα=由 得 α=1nα, 将其代入 ,整理得 n α nα = . 因为 α 是三角形的内角, 所以 nα=,所以 α=, 所以 tanα=. 解法二:因为 nα α=1,所以 ( nα α)=.1 /,则 nα α=1,所以 nα α=,所以 ( nα α) = nα α==. 因为 nα α= 1且 α , 所以 nα , α , 所以 nα α . 所以 nα α= .由 { nα α=1nα α=得 { nα=α=所以 tanα= .(2)1 === 11因为tanα=,所以α nα=tanαtanα=. /. /=(3)tanα=,则:==. /=.(4)nα nα α==1=1=2. (1);(2)√(3)(4). 13. (1)C 【解析】当为偶数时,==;当为奇数时,==.所以的值构成的集合是*+.(2).【解析】原式=0 ./1 ( ), ( )-=./( ) =( ) ===(3)(α)= . / ./ ( ) ( ) ( )=( ) ( )( )= α(4) 因为 .α/=1, 所以 nα=1,从而 nα= 1. 又 α 为第三象限角, 所以 α= √ n α= √,所以 (α)= √.同角三角函数基本关系式与诱导公式课堂练习与作业一、选择题(共7小题;共35分) 1. n 的值为 ( ) A. 1B. √C.D. √2. 已知 ./=√,且,则 tan = ( )A. √B. √C. √D. √3. 若 α 是第三象限角,且 tanα=1,则 α= ( )A. √11B.√11C.√11D. √114. 在 中,若 tan = 则 = ( )A. √B. √C. √D. √5. 已知 n ( )= n./ 则 n = ( )A.B.C. 或D. 16. 已知 (α)=( ) ( )( ),则 .1/ 的值为 ( )A. 1B. 1C. 1D. 17. 已知函数 ( )= n ( α) ( ),且 ( )= ,则 ( ) 的值为 ( )A. B. C. D.二、填空题(共1小题;共5分)8. 已知α为锐角,且 tan(α) . /=,tan(α) n()=,则 nα的值是.三、解答题(共2小题;共26分)9. 已知 n(α)= n.α/,求下列各式的值:(1);(2) nα nα α.10. 已知 n(α)(α)=√.α /,求下列各式的值.(1) nα α;(2) n.α/.α/.答案第一部分1. A【解析】 n = n ( ) ( )= n ( )= n =1 1=12. D 【解析】 ./= n =√,又,则 =1,所以 tan =√ .3. C【解析】因为 α 是第三象限角,且 tanα= =1, n α α= ,所以 α= √1 1.4. B【解析】在 中,当 tan = 时, ./,所以 =√1=√= √. 5. B【解析】由已知等式得 n = , 所以 n = = ,所以 =1,故 n = =. 6. C【解析】因为 (α)== α,所以 . 1/= .1/= ./== 1.7. c【解析】因为 ( )= n ( α) ( )= nα = ,所以( )= n ( α) ( )= n (α) ( )=第二部分 8. √1 1【解析】由已知可得 tanα n = ,tanα n = , 解得 tanα= , 又 α 为锐角,故 nα= √11. 第三部分9. (1) 解法一:由 n ( α)= n.α/ 得 tanα= .原式=== 1.解法二:由已知得 nα= α.原式==1.(2)解法一:原式==1=.解法二:原式===.10. (1)由 n(α)(α)=√,得 nα α=√.将两边平方,得 nα α=,故 nα α=.又α,所以 nα, α.( nα α)= nα α= . /=1 ,所以 nα α=.(2) n.α/.α/=α nα=( α nα)(α α nα nα)= .1/=。